1
|
Zango ZU, Khoo KS, Ali AF, Abidin AZ, Zango MU, Lim JW, Wadi IA, Eisa MH, Alhathlool R, Abu Alrub S, Aldaghri O, Suresh S, Ibnaouf KH. Development of inorganic and mixed matrix membranes for application in toxic dyes-contaminated industrial effluents with in-situ treatments. ENVIRONMENTAL RESEARCH 2024; 256:119235. [PMID: 38810826 DOI: 10.1016/j.envres.2024.119235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/13/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Dyes are the most ubiquitous organic pollutants in industrial effluents. They are highly toxic to both plants and animals; thus, their removal is paramount to the sustainability of ecosystem. However, they have shown resistance to photolysis and various biological, physical, and chemical wastewater remediation processes. Membrane removal technology has been vital for the filtration/separation of the dyes. In comparison to polymeric membranes, inorganic and mixed matrix (MM) membranes have shown potentials to the removal of dyes. The inorganic and MM membranes are particularly effective due to their high porosity, enhanced stability, improved permeability, higher enhanced selectivity and good stability and resistance to harsh chemical and thermal conditions. They have shown prospects in filtration/separation, adsorption, and catalytic degradation of the dyes. This review highlighted the advantages of the inorganic and MM membranes for the various removal techniques for the treatments of the dyes. Methods for the membranes production have been reviewed. Their application for the filtration/separation and adsorption have been critically analyzed. Their application as support for advanced oxidation processes such as persulfate, photo-Fenton and photocatalytic degradations have been highlighted. The mechanisms underscoring the efficiency of the processes have been cited. Lastly, comments were given on the prospects and challenges of both inorganic and MM membranes towards removal of the dyes from industrial effluents.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, 2137, Katsina, Nigeria; Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, 2137, Katsina, Nigeria.
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Ahmed Fate Ali
- Department of Environmental Management, Bayero University, 3011, Kano State, Nigeria
| | - Asmaa Zainal Abidin
- Department of Chemistry and Biology, Centre for Defense Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000, Kuala Lumpur, Malaysia
| | - Muttaqa Uba Zango
- Department of Civil Engineering, Kano University of Science and Technology, Wudil, P.M.B. 3244, Kano, Nigeria
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Ismael A Wadi
- Prince Sattam Bin Abdulaziz University, Basic Science Unit, Alkharj, 16278, Alkharj, Saudi Arabia
| | - M H Eisa
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia
| | - Raed Alhathlool
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia
| | - S Abu Alrub
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia
| | - Osamah Aldaghri
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia
| | - Sagadevan Suresh
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Khalid Hassan Ibnaouf
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
Research Progress of Water Treatment Technology Based on Nanofiber Membranes. Polymers (Basel) 2023; 15:polym15030741. [PMID: 36772042 PMCID: PMC9920505 DOI: 10.3390/polym15030741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
In the field of water purification, membrane separation technology plays a significant role. Electrospinning has emerged as a primary method to produce nanofiber membranes due to its straightforward, low cost, functional diversity, and process controllability. It is possible to flexibly control the structural characteristics of electrospun nanofiber membranes as well as carry out various membrane material combinations to make full use of their various properties, including high porosity, high selectivity, and microporous permeability to obtain high-performance water treatment membranes. These water separation membranes can satisfy the fast and efficient purification requirements in different water purification applications due to their high filtration efficiency. The current research on water treatment membranes is still focused on creating high-permeability membranes with outstanding selectivity, remarkable antifouling performance, superior physical and chemical performance, and long-term stability. This paper reviewed the preparation methods and properties of electrospun nanofiber membranes for water treatment in various fields, including microfiltration, ultrafiltration, nanofiltration, reverse osmosis, forward osmosis, and other special applications. Lastly, various antifouling technologies and research progress of water treatment membranes were discussed, and the future development direction of electrospun nanofiber membranes for water treatment was also presented.
Collapse
|
3
|
Nayak V, Mannekote Shivanna J, Ramu S, Radoor S, Balakrishna RG. Efficacy of Electrospun Nanofiber Membranes on Fouling Mitigation: A Review. ACS OMEGA 2022; 7:43346-43363. [PMID: 36506161 PMCID: PMC9730468 DOI: 10.1021/acsomega.2c02081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/06/2022] [Indexed: 06/17/2023]
Abstract
Despite the advantages of high contaminant removal, operational flexibility, and technical advancements offered, the undesirable fouling property of membranes limits their durability, thus posing restrictions on their usage. An enormous struggle is underway to conquer this major challenge. Most of the earlier reviews include the basic concepts of fouling and antifouling, with respect to particular separation processes such as ultrafiltration, nanofiltration, reverse osmosis and membrane bioreactors, graphene-based membranes, zwitterionic membranes, and so on. As per our knowledge, the importance of nanofiber membranes in challenging the fouling process has not been included in any record to date. Nanofibers with the ability to be embedded in any medium with a high surface to volume ratio play a key role in mitigating the fouling of membranes, and it is important for these studies to be critically analyzed and reported. Our Review hence intends to focus on nanofiber membranes developed with enhanced antifouling and biofouling properties with a brief introduction on fabrication processes and surface and chemical modifications. A summary on surface modifications of preformed nanofibers is given along with different nanofiller combinations used and blend fabrication with efficacy in wastewater treatment and antifouling abilities. In addition, future prospects and advancements are discussed.
Collapse
Affiliation(s)
- Vignesh Nayak
- Institute
of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice-532 10, Czech Republic
| | - Jyothi Mannekote Shivanna
- Department
of Chemistry, AMC Engineering College, Bannerughatta Road, Bengaluru 260083, Karnataka, India
| | - Shwetharani Ramu
- Centre
for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Bangalore 562112, Karnataka, India
| | - Sabarish Radoor
- Department
of Mechanical and Process Engineering, The Sirindhorn International
Thai-German Graduate School of Engineering (TGGS), King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - R. Geetha Balakrishna
- Centre
for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Bangalore 562112, Karnataka, India
| |
Collapse
|
4
|
Nur'aini S, Zulfi A, Arrosyid BH, Rafryanto AF, Noviyanto A, Hapidin DA, Feriyanto D, Saputro KE, Khairurrijal K, Rochman NT. Waste acrylonitrile butadiene styrene (ABS) incorporated with polyvinylpyrrolidone (PVP) for potential water filtration membrane. RSC Adv 2022; 12:33751-33760. [PMID: 36505690 PMCID: PMC9685737 DOI: 10.1039/d2ra05969j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Acrylonitrile butadiene styrene (ABS) is one of the most common fused-filament feedstocks for 3D printing. The rapid growth of the 3D printing industry has resulted in huge demand for ABS filaments; however, it generates a large amount of waste. This study developed a novel method using waste ABS to fabricate electrospun nanofiber membranes (ENMs) for water filtration. Polyvinylpyrrolidone (PVP) was employed to modify the properties of waste ABS, and the effect of PVP addition in the range of 0-5 wt% was investigated. The results showed that adding PVP increased the viscosity and surface tension but decreased the conductivity of the precursor solution. After electrospinning, PVP could reduce the number of beads, increase the porosity and fiber diameter, and improve the wettability of the fabricated fibers. Moreover, the bilayer of ABS ENMs achieved a high flux value between 2951 and 48 041 L m-2 h-1 and a high rejection rate of 99%. Our study demonstrates a sustainable strategy to convert waste plastics to inexpensive materials for wastewater treatment membranes.
Collapse
Affiliation(s)
- Syarifa Nur'aini
- Nano Center Indonesia, Jalan Raya PUSPIPTEK South Tangerang Banten 15314 Indonesia
| | - Akmal Zulfi
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Bandung Advanced Science and Creative Engineering Space (BASICS) Jl. Cisitu Bandung 40135 Indonesia
| | - Bagas Haqi Arrosyid
- Nano Center Indonesia, Jalan Raya PUSPIPTEK South Tangerang Banten 15314 Indonesia
| | - Ande Fudja Rafryanto
- Nano Center Indonesia, Jalan Raya PUSPIPTEK South Tangerang Banten 15314 Indonesia
| | - Alfian Noviyanto
- Nano Center Indonesia, Jalan Raya PUSPIPTEK South Tangerang Banten 15314 Indonesia
- Department of Mechanical Engineering, Mercu Buana University Jl. Meruya Selatan, Kebun Jeruk Jakarta 11650 Indonesia
| | - Dian Ahmad Hapidin
- Department of Physics, Institut Teknologi Bandung Jalan Ganesa 10 Bandung 40132 Indonesia
| | - Dafit Feriyanto
- Department of Mechanical Engineering, Mercu Buana University Jl. Meruya Selatan, Kebun Jeruk Jakarta 11650 Indonesia
| | | | | | - Nurul Taufiqu Rochman
- Research Center for Metallurgy and Materials, National Research and Innovation Agency South Tangerang Banten 15314 Indonesia
| |
Collapse
|
5
|
A review on ion-exchange nanofiber membranes: properties, structure and application in electrochemical (waste)water treatment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Physicochemical characteristics of polysulfone nanofiber membranes with iron oxide nanoparticles via electrospinning. J Appl Polym Sci 2022. [DOI: 10.1002/app.51661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Sustainable Treatment of Food Industry Wastewater Using Membrane Technology: A Short Review. WATER 2021. [DOI: 10.3390/w13233450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Water is needed for food processing facilities to carry out a number of tasks, including moving goods, washing, processing, and cleaning operations. This causes them to produce wastewater effluent, and they are typically undesirable since it contains a high volume of suspended solids, bacteria, dyestuffs, salts, oils, fats, chemical oxygen demand and biological oxygen demand. Therefore, treatment of food industry wastewater effluent is critical in improving process conditions, socio-economic benefits and our environmental. This short review summarizes the role of available membrane technologies that have been employed for food wastewater treatment and analyse their performance. Particularly, electrospun nanofiber membrane technology is revealed as an emerging membrane science and technology area producing materials of increasing performance and effectiveness in treating wastewater. This review reveals the challenges and perspectives that will assist in treating the food industry wastewater by developing novel membrane technologies.
Collapse
|
8
|
Green electrospinning of chitin propionate to manufacture nanofiber mats. Carbohydr Polym 2021; 273:118593. [PMID: 34560994 DOI: 10.1016/j.carbpol.2021.118593] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 01/23/2023]
Abstract
Chitin is the second most abundant biopolymer after cellulose in nature, and it is currently under-utilized partially because of its insolubility in common solvents. Herein, chitin was propionylated to improve its dissolution in green solvents, i.e., ethanol and water, and manufactured nanofibers and nonwoven mats via electrospinning with poly(ethylene oxide) (PEO) as a co-spinning aid. Polymer solution viscosity, electrospun CP/PEO fiber morphology, mechanical, thermal, dynamic thermal, and surface contact angle of nanofiber mats were evaluated. Results showed that fibers with CP content up to 97% could be produced. The electrospun CP/PEO nanofiber mats exhibited good mechanical strength, thermal stability, and hydrophobicity with water contact angles up to 133°. Filtration test of separating carbon nanofibers and carbon nanotubes from water demonstrated the potential use of the CP/PEO nanofiber mats in fluid filtration of fibrous pollutants.
Collapse
|
9
|
Hung SH, Bowden JW, Peltier RE, Schiffman JD. Optimizing the Packing Density and Chemistry of Cellulose Nanofilters for High-Efficiency Particulate Removal. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shao-Hsiang Hung
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Jared W. Bowden
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Richard E. Peltier
- School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Jessica D. Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| |
Collapse
|
10
|
|
11
|
Dobosz KM, Kuo-Leblanc CA, Bowden JW, Schiffman JD. Robust, small diameter hydrophilic nanofibers improve the flux of ultrafiltration membranes. Ind Eng Chem Res 2021; 60:9179-9188. [PMID: 34602741 DOI: 10.1021/acs.iecr.1c01332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we systematically investigated the flux performance of ultrafiltration (UF) membranes functionalized with randomly-accumulated nanofibers. By electrospinning nanofibers from hydrophobic polysulfone (PSf) and hydrophilic cellulose (CL), we were able to explore the role that bulk nanofiber (NF) layer thickness, individual NF diameter, and intrinsic chemistry have on composite membrane flux. Additional parameters that we systematically tested include the molecular weight cut-off (MWCO) of the base membrane (10, 100, and 200 kDa), flow orientation (cross-flow versus dead-end), and the feed solution (hydrophilic water versus hydrophobic oil). Structurally, the crosslinked PSf nanofibers were more robust than the CL nanofibers, which lead to the PSfNF-UF membranes having a greater flux performance. To decouple the structural robustness from the water affinity of the fibers, we chemically modified the PSf fibers to be hydrophilic and indeed, the flux of these new composite membranes featuring hydrophilic crosslinked nanofibers were superior. In summary, the greatest increase in flux performance arises from the smallest diameter, hydrophilic nanofibers that are mechanically robust (crosslinked). We have demonstrated that electrospun nanofiber layers improve the flux performance of ultrafiltration membranes.
Collapse
Affiliation(s)
- Kerianne M Dobosz
- Department of Chemical Engineering University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Christopher A Kuo-Leblanc
- Department of Chemical Engineering University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Jared W Bowden
- Department of Chemical Engineering University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Jessica D Schiffman
- Department of Chemical Engineering University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| |
Collapse
|
12
|
Diep E, Schiffman JD. Encapsulating bacteria in alginate-based electrospun nanofibers. Biomater Sci 2021; 9:4364-4373. [PMID: 34128000 DOI: 10.1039/d0bm02205e] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Encapsulation technologies are imperative for the safe delivery of live bacteria into the gut where they regulate bodily functions and human health. In this study, we develop alginate-based nanofibers that could potentially serve as a biocompatible, edible probiotic delivery system. By systematically exploring the ratio of three components, the biopolymer alginate (SA), the carrier polymer poly(ethylene oxide) (PEO), and the FDA approved surfactant polysorbate 80 (PS80), the surface tension and conductivity of the precursor solutions were optimized to electrospin bead-free fibers with an average diameter of 167 ± 23 nm. Next, the optimized precursor solution (2.8/1.2/3 wt% of SA/PEO/PS80) was loaded with Escherichia coli (E. coli, 108 CFU mL-1), which served as our model bacterium. We determined that the bacteria in the precursor solution remained viable after passing through a typical electric field (∼1 kV cm-1) employed during electrospinning. This is because the microbes are pulled into a sink-like flow, which encapsulates them into the polymer nanofibers. Upon electrospinning the E. coli-loaded solutions, beads that were much smaller than the size of an E. coli were initially observed. To compensate for the addition of bacteria, the SA/PEO/PS80 weight ratio was reoptimized to be 2.5/1.5/3. Smooth fibers with bulges around the live microbes were formed, as confirmed using fluorescence and scanning electron microscopy. By dissolving and plating the nanofibers, we found that 2.74 × 105 CFU g-1 of live E. coli cells were contained within the alginate-based fibers. This work demonstrates the use of electrospinning to encapsulate live bacteria in alginate-based nanofibers for the potential delivery of probiotics to the gut.
Collapse
Affiliation(s)
- Emily Diep
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-9303, USA.
| | - Jessica D Schiffman
- Department of Chemical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003-9303, USA.
| |
Collapse
|
13
|
Müller AK, Xu ZK, Greiner A. Preparation and Performance Assessment of Low-Pressure Affinity Membranes Based on Functionalized, Electrospun Polyacrylates for Gold Nanoparticle Filtration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15659-15667. [PMID: 33761236 DOI: 10.1021/acsami.1c01217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrospun nanofibrous membranes (ENM) possess many advantages over commonly utilized water purification systems. They provide high porosity with interconnected pores and a high surface to volume ratio, facilitating particle adsorption. Affinity separation moves into a promising future for application, for example, nanoparticle adsorption with excellent filtration efficiency, because of its highly specific adsorption mechanism. However, not all effects on filtration performance are entirely understood. In this paper, we investigate significant filtration parameters, such as pore size, mechanical stability, and hydrophilicity, and determine a sequence of importance for an optimal pressure drop. Copolymers with various hydrophilic functional groups such as acid, amide, pyridine, and quaternary amine were utilized. Effects on the pressure drop or nanoparticle filtration efficiency can then easily be attributed to the corresponding functional group. UV-light was used to induce cross-linking in the membranes, which subsequently surpassed the mechanical stability of commonly used hydrophobic membranes. A maximum tensile-stress of up to 11.6 MPa was obtained, whereby an optimization of at least 22% was achieved. Moreover, these cross-links reduce fiber swelling by a maximum of 26%. The membrane potential depends on the different functional groups and their incorporation number from 10 to 50 mol %. Successful gold nanoparticle (AuNP) filtration in flow mode was demonstrated and highlighted the outstanding membrane properties and selectivity. The Nplus membrane achieved 100% filtration efficiency over a duration of 6 min, surpassing the Pyr membrane's performance. This was attributed to the ionic interaction of the Nplus membrane, in contrast with the physical adsorption of the Pyr membrane.
Collapse
Affiliation(s)
- Ann-Kathrin Müller
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, Universitätsstraße 30, Bayreuth 95440, Germany
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Andreas Greiner
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, Universitätsstraße 30, Bayreuth 95440, Germany
| |
Collapse
|
14
|
Joo SH, Liang Y, Kim M, Byun J, Choi H. Microplastics with adsorbed contaminants: Mechanisms and Treatment. ENVIRONMENTAL CHALLENGES (AMSTERDAM, NETHERLANDS) 2021; 3:100042. [PMID: 37521158 PMCID: PMC9767417 DOI: 10.1016/j.envc.2021.100042] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/06/2021] [Accepted: 02/06/2021] [Indexed: 05/02/2023]
Abstract
Plastic pollution has been a significant and widespread global issue, and the recent COVID-19 pandemic has been attributed to its worsening effect as plastics have been contaminated with the deadly infectious virus. Microplastics (MPs) may have played a role as a vector that carries hazardous microbes such as emerging bacterial threats (i.e. antibiotic resistant bacteria) and deadly viruses (e.g., coronavirus); this causes great concern over microplastics contaminated with emerging contaminants. Mitigation and treatment of MPs are challenging because of a range of factors including but not limited to physicochemical properties and composition of MPs and pH and salinity of the solution. Despite the heterogeneous nature of aquatic systems, research has overlooked interactions between contaminants and MPs under environmental conditions, degradation pathways of MPs with adsorbed contaminants, and, especially, the role of adsorbed contaminants in the efficiency of MP treatment through membrane filtration, in comparison with other treatment methods. This review aims to (1) analyze an assortment of factors that could influence the removal of MPs and mechanisms of contaminant adsorption on MPs, (2) identify mechanisms influencing membrane filtration of MPs, (3) examine the fate and transport of MPs with adsorbed contaminants, (4) evaluate membrane filtration of contaminant-adsorbing MPs in comparison to other treatment methods, and (5) draw conclusions and the future outlook based on a literature analysis.
Collapse
Key Words
- Adsorption mechanisms
- Contaminants
- DDT, dichloro-diphenyl-trichloroethane
- DM, dynamic membrane
- EDCs, endocrine-disrupting compounds
- FOSA or PFOSA, perfluorooctane sulfonamide
- GAC, granular activated carbon
- HDPE, high-density polyethylene
- LDPE, low-density PE
- MBR, membrane bioreactor
- MF, microfiltration
- MPs, microplastics
- Membrane filtration
- Microplastics
- NF, nanofiltration
- NOM, natural organic matter
- NPs, nanoplastics
- OM, organic matter
- PA, polyamide (nylon)
- PAHs, polycyclic aromatic hydrocarbons
- PAs, polyacrylates
- PBDEs, polybrominated diphenyl ethers
- PCBs, polychlorinated biphenyls
- PE, polyethylene
- PET, polyethylene terephthalate
- PFAS, per-/poly-fluoroalkyl substances
- PFCAs, perfluorinated carboxylates
- PFCs, perfluorinated compounds
- PFHxA, perfluorohexanoic acid
- PFOA, perfluorooctanoic acid
- PFOS, perfluorooctanesulfonic acid
- POPs, persistent organic pollutants
- PP, polypropylene
- PPCPs, pharmaceuticals and personal care products
- PS, polystyrene
- PVC, polyvinyl chloride
- PVDF, polyvinylidene fluoride
- RO, reverse osmosis
- SR, synthetic rubber
- TMP, trans membrane pressure
- UF, ultrafiltration
Collapse
Affiliation(s)
- Sung Hee Joo
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Oryong-dong, Republic of Korea
| | - Yejin Liang
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Oryong-dong, Republic of Korea
| | - Minbeom Kim
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Oryong-dong, Republic of Korea
| | - Jaehyun Byun
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Oryong-dong, Republic of Korea
| | - Heechul Choi
- School of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Oryong-dong, Republic of Korea
| |
Collapse
|
15
|
Orooji Y, Movahedi A, Liu Z, Asadnia M, Ghasali E, Ganjkhanlou Y, Razmjou A, Karimi-Maleh H, Kiadeh NTH. Luminescent film: Biofouling investigation of tetraphenylethylene blended polyethersulfone ultrafiltration membrane. CHEMOSPHERE 2021; 267:128871. [PMID: 33308836 DOI: 10.1016/j.chemosphere.2020.128871] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/03/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
Despite the huge contribution of membrane-based brine and wastewater purification systems in today's life, biofouling still affects sustainability of membrane engineering. Aimed at reducing membrane modules wastage, the need to study biofouling monitoring as one of contributory factors stemmed from the short time between initial attachment and irreversible biofoulant adhesion. Hence, a membrane for monitoring is introduced to determine the right cleaning time by using fluorescent sensing as a non-destructive and scalable approach. The classical solid-state emissive fluorophore, tetraphenylethylene (TPE), was introduced as a sustainable, safe and sensitive fluorescent indicator in order to show the potential of the method, and polyethersulfone (PES) and nonsolvent-induced phase separation method, the most popular material and method, are used to fabricate membrane in industry and academia. Since the employed filler has an aggregation-induced emission (AIE) characteristic, it can track the biofouling throughout the operation. The fabricated membranes have certain characterizations (i.e. morphology assessment, flux, antibiogram, flow cytometry, surface free energy, and protein adsorption) which indicate that hybrid membrane with 5 wt % of TPE has identical biofouling activity compared to neat PES membrane and its optimal luminescence properties make it an appropriate candidate for non-destructive and online biofouling monitoring.
Collapse
Affiliation(s)
- Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, PR China.
| | - Ali Movahedi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Zhipeng Liu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Ehsan Ghasali
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Yadolah Ganjkhanlou
- Department of Chemistry, NIS and INSTM Centers, Università di Torino, via P. Giuria 7, 10125, Turin, Italy
| | - Amir Razmjou
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Australia
| | - Hassan Karimi-Maleh
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Islamic Republic of Iran; School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, P. O. Box 611731, Chengdu, PR China; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, P. O. Box 17011, Johannesburg, 2028, South Africa.
| | | |
Collapse
|
16
|
Bai L, Li Q, Yang Y, Ling S, Yu H, Liu S, Li J, Chen W. Biopolymer Nanofibers for Nanogenerator Development. RESEARCH (WASHINGTON, D.C.) 2021; 2021:1843061. [PMID: 33709081 PMCID: PMC7926511 DOI: 10.34133/2021/1843061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/05/2021] [Indexed: 11/23/2022]
Abstract
The development of nanogenerators (NGs) with optimal performances and functionalities requires more novel materials. Over the past decade, biopolymer nanofibers (BPNFs) have become critical sustainable building blocks in energy-related fields because they have distinctive nanostructures and properties and can be obtained from abundant and renewable resources. This review summarizes recent advances in the use of BPNFs for NG development. We will begin by introducing various strategies for fabricating BPNFs with diverse structures and performances. Then, we will systematically present the utilization of polysaccharide and protein nanofibers for NGs. We will mainly focus on the use of BPNFs to generate bulk materials with tailored structures and properties for assembling of triboelectric and piezoelectric NGs. The use of BPNFs to construct NGs for the generation of electricity from moisture and osmosis is also discussed. Finally, we illustrate our personal perspectives on several issues that require special attention with regard to future developments in this active field.
Collapse
Affiliation(s)
- Lulu Bai
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Qing Li
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Ya Yang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Haipeng Yu
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shouxin Liu
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jian Li
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Wenshuai Chen
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
17
|
Baghali M, Jayathilaka W, Ramakrishna S. The Role of Electrospun Nanomaterials in the Future of Energy and Environment. MATERIALS (BASEL, SWITZERLAND) 2021; 14:558. [PMID: 33503924 PMCID: PMC7865989 DOI: 10.3390/ma14030558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 12/23/2022]
Abstract
Electrospinning is one of the most successful and efficient techniques for the fabrication of one-dimensional nanofibrous materials as they have widely been utilized in multiple application fields due to their intrinsic properties like high porosity, large surface area, good connectivity, wettability, and ease of fabrication from various materials. Together with current trends on energy conservation and environment remediation, a number of researchers have focused on the applications of nanofibers and their composites in this field as they have achieved some key results along the way with multiple materials and designs. In this review, recent advances on the application of nanofibers in the areas-including energy conversion, energy storage, and environmental aspects-are summarized with an outlook on their materials and structural designs. Also, this will provide a detailed overview on the future directions of demanding energy and environment fields.
Collapse
Affiliation(s)
| | | | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore; (M.B.); (W.A.D.M.J.)
| |
Collapse
|
18
|
Khalil AM, Schäfer AI. Cross-linked β-cyclodextrin nanofiber composite membrane for steroid hormone micropollutant removal from water. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118228] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Pishnamazi M, Koushkbaghi S, Hosseini SS, Darabi M, Yousefi A, Irani M. Metal organic framework nanoparticles loaded- PVDF/chitosan nanofibrous ultrafiltration membranes for the removal of BSA protein and Cr(VI) ions. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113934] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Chen H, Huang M, Liu Y, Meng L, Ma M. Functionalized electrospun nanofiber membranes for water treatment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139944. [PMID: 32535464 DOI: 10.1016/j.scitotenv.2020.139944] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Electrospun nanofiber membranes (ENMs) have high porosity, high specific surface area and unique interconnected structure. It has huge advantages and potential in the treatment and recycling of wastewater. In addition, ENMs can be easily functionalized by combining multifunctional materials to achieve different water treatment effects. Based on this, this review summarizes the preparation of functionalized ENMs and its detailed application in the field of water treatment. First, the process and influence factors of electrospinning process are introduced. ENMs with high porosity, thin and small fiber diameter have better performance. Secondly, the modification methods of ENMs are analyzed. Pre-electrospinning and post-electrospinning modification technology can prepare specific functionalized ENMs. Subsequently, functionalized ENMs show water treatment capabilities such as separation, adsorption, photocatalysis, and antimicrobial. Subsequently, the application of functionalized ENMs in water treatment capabilities such as separation, adsorption, photocatalysis, and antimicrobial capabilities were listed. Finally, we also made some predictions about the future development direction of ENMs in water treatment, and hope this article can provide some clues and guidance for the research of ENMs in water treatment.
Collapse
Affiliation(s)
- Haisheng Chen
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China; Aerospace Kaitian Environmental Technology Co., Ltd, Changsha 410100, China
| | - Manhong Huang
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China; College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China.
| | - Yanbiao Liu
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Lijun Meng
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Mengdie Ma
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| |
Collapse
|
21
|
Su Z, Luo J, Li X, Pinelo M. Enzyme membrane reactors for production of oligosaccharides: A review on the interdependence between enzyme reaction and membrane separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116840] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Shah AA, Cho YH, Nam SE, Park A, Park YI, Park H. High performance thin-film nanocomposite forward osmosis membrane based on PVDF/bentonite nanofiber support. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.02.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Eggensperger C, Giagnorio M, Holland MC, Dobosz KM, Schiffman JD, Tiraferri A, Zodrow KR. Sustainable Living Filtration Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2020; 7:213-218. [PMID: 32175443 PMCID: PMC7066645 DOI: 10.1021/acs.estlett.0c00019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 05/09/2023]
Abstract
As demand for clean water increases, there is a growing need for effective sustainable water treatment systems. We used the symbiotic culture of bacteria and yeast (SCOBY) that forms while brewing kombucha tea as a living water filtration membrane (LFM). The LFMs function as ultrafiltration membranes with a permeability of 135 ± 25 L m-2 h-1 bar-1 and a 90% rejection of 30 nm nanoparticles. Because they contain living microorganisms that produce cellulose fibers, the surface of an LFM heals after a puncture or incision. Following punctures or incisions, membrane permeability, after a rapid increase postpuncture, returns to 110-250% of the original flux after 10 days in a growth solution. Additionally, LFMs may be manufactured using readily available materials, increasing membrane production accessibility.
Collapse
Affiliation(s)
- Christina
G. Eggensperger
- Environmental
Engineering Department, Montana Technological
University, Butte, Montana 59701, United States
| | - Mattia Giagnorio
- Environmental
Engineering Department, Montana Technological
University, Butte, Montana 59701, United States
- Department
of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Turin 10129, Italy
| | - Marcus C. Holland
- Environmental
Engineering Department, Montana Technological
University, Butte, Montana 59701, United States
| | - Kerianne M. Dobosz
- Department
of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jessica D. Schiffman
- Department
of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Alberto Tiraferri
- Department
of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Turin 10129, Italy
| | - Katherine R. Zodrow
- Environmental
Engineering Department, Montana Technological
University, Butte, Montana 59701, United States
| |
Collapse
|
24
|
Cimadoro J, Goyanes S. Reversible swelling as a strategy in the development of smart membranes from electrospun polyvinyl alcohol nanofiber mats. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jonathan Cimadoro
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Departamento de Física, Laboratorio de Polímeros y Materiales Compuestos (LP&MC)Instituto de Física de Buenos Aires (IFIBA‐CONICET) Buenos Aires Argentina
| | - Silvia Goyanes
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Departamento de Física, Laboratorio de Polímeros y Materiales Compuestos (LP&MC)Instituto de Física de Buenos Aires (IFIBA‐CONICET) Buenos Aires Argentina
| |
Collapse
|
25
|
Hussain D, Raza Naqvi ST, Ashiq MN, Najam-ul-Haq M. Analytical sample preparation by electrospun solid phase microextraction sorbents. Talanta 2020; 208:120413. [DOI: 10.1016/j.talanta.2019.120413] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022]
|
26
|
Liu Z, Zhou L, Ruan F, Wei A, Zhao J, Feng Q. Needle-disk Electrospinning: Mechanism Elucidation, Parameter Optimization and Productivity Improvement. RECENT PATENTS ON NANOTECHNOLOGY 2020; 14:46-55. [PMID: 31656162 DOI: 10.2174/1872210513666191018102605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/22/2019] [Accepted: 03/07/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Nanofiber's productivity plagues nanofibrous membranes' applications in many areas. Herein, we present the needle-disk electrospinning to improve throughput. In this method, multiple high-curvature mentals are used as the spinning electrode. METHODS Three aspects were investigated: 1) mechanism elucidation of the needle-disk electrospinning; 2) parameter optimization of the needle-disk electrospinning; 3) productivity improvement of the needle-disk electrospinning. RESULTS Results show that high-curvature electrode evokes high electric field intensity, making lower voltage supply in spinning process. The needle number, needle length and needle curvature synergistically affect the spinning process and nanofiber morphology. Additionally, higher disk rotation velocity and higher voltage supply can also result in higher nanofiber's productivity. CONCLUSION Compared with previous patents related to this topic, the needle-disk electrospinning is featured with the merits of high throughput, low voltage supply, controllable spinning process and nanofiber morphology, benefiting the nanofiber practical industrial employment and further applications of nanofiber-based materials.
Collapse
Affiliation(s)
- Zhi Liu
- School of Textile and Garment, Anhui Polytechnic University, No.8 Beijing Mid-Road, Wuhu, 241000, China
| | - Lei Zhou
- School of Textile and Garment, Anhui Polytechnic University, No.8 Beijing Mid-Road, Wuhu, 241000, China
| | - Fangtao Ruan
- School of Textile and Garment, Anhui Polytechnic University, No.8 Beijing Mid-Road, Wuhu, 241000, China
| | - Anfang Wei
- School of Textile and Garment, Anhui Polytechnic University, No.8 Beijing Mid-Road, Wuhu, 241000, China
| | - Jianghui Zhao
- School of Textile and Garment, Anhui Polytechnic University, No.8 Beijing Mid-Road, Wuhu, 241000, China
| | - Quan Feng
- School of Textile and Garment, Anhui Polytechnic University, No.8 Beijing Mid-Road, Wuhu, 241000, China
| |
Collapse
|
27
|
Mondragón M, López‐Villegas O, Sánchez‐Valdés S, Rodríguez‐González FJ. Effect of Thermoplastic Starch and Photocrosslinking on the Properties and Morphology of Electrospun Poly(ethylene‐
co
‐vinyl alcohol) Mats. POLYM ENG SCI 2019. [DOI: 10.1002/pen.25302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Margarita Mondragón
- Instituto Politécnico Nacional, CIIDIR Oaxaca 71230 Santa Cruz Xoxocotlán Oaxaca Mexico
| | | | - Saúl Sánchez‐Valdés
- Centro de Investigación en Química Aplicada (CIQA) 25294 Saltillo Coahuila Mexico
| | | |
Collapse
|
28
|
Uematsu I, Naka T, Tokuno Y, Nakagawa Y, Matsumoto H. Organic Liquid Impregnation Behavior into Nanofibrous Membranes: Quantitative Analysis of the Effects of Structural Parameters. ACS OMEGA 2019; 4:15856-15861. [PMID: 31592455 PMCID: PMC6776969 DOI: 10.1021/acsomega.9b01738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
This paper reports the effects of structural parameters on organic liquid impregnation behavior into nanofibrous (NF) polymer membranes. The NF membranes were prepared from organic liquidphilic polymers, poly(amide-imide)s (PAIs), by electrospinning. The impregnation velocity of the organic liquid, ethylmethylcarbonate, into the as-spun PAI NF membranes with diameters ranging from 400 to 900 nm was approximately 10-20 times higher than that into commercial cellulose nonwoven membranes. Our theoretical analyses based on the Kozeny-Carman equation and multivariate statistics clearly indicate that in addition to the porosity of the membranes, the variation in fiber diameter as well as the average fiber diameter is a crucial factor for controlling the liquid impregnation behavior.
Collapse
Affiliation(s)
- Ikuo Uematsu
- Department
of Materials Science and Engineering, Tokyo
Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
- Corporate
Manufacturing Engineering Center, Toshiba
Corporation, 33 Shin-Isogo-Cho, Isogo-ku, Yokohama 235-0017, Japan
| | - Tomomichi Naka
- Corporate
Manufacturing Engineering Center, Toshiba
Corporation, 33 Shin-Isogo-Cho, Isogo-ku, Yokohama 235-0017, Japan
| | - Yoko Tokuno
- Corporate
Manufacturing Engineering Center, Toshiba
Corporation, 33 Shin-Isogo-Cho, Isogo-ku, Yokohama 235-0017, Japan
| | - Yasutada Nakagawa
- Corporate
Manufacturing Engineering Center, Toshiba
Corporation, 33 Shin-Isogo-Cho, Isogo-ku, Yokohama 235-0017, Japan
| | - Hidetoshi Matsumoto
- Department
of Materials Science and Engineering, Tokyo
Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
29
|
Miao L, Wu Y, Hu J, Wang P, Liu G, Lin S, Tu Y. Hierarchical aramid nanofibrous membranes from a nanofiber-based solvent-induced phase inversion process. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
30
|
Celebioglu A, Topuz F, Yildiz ZI, Uyar T. Efficient Removal of Polycyclic Aromatic Hydrocarbons and Heavy Metals from Water by Electrospun Nanofibrous Polycyclodextrin Membranes. ACS OMEGA 2019; 4:7850-7860. [PMID: 31459873 PMCID: PMC6648243 DOI: 10.1021/acsomega.9b00279] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/17/2019] [Indexed: 05/16/2023]
Abstract
Here, a highly efficient membrane based on electrospun polycyclodextrin (poly-CD) nanofibers was prepared and exploited for the scavenging of various polycyclic aromatic hydrocarbons (PAHs) and heavy metals from water. The poly-CD nanofibers were produced by the electrospinning of CD molecules in the presence of a cross-linker (i.e., 1,2,3,4-butanetetracarboxylic acid), followed by heat treatment to obtain an insoluble poly-CD nanofibrous membrane. The membrane was used for the removal of several PAH compounds (i.e., acenaphthene, fluorene, fluoranthene, phenanthrene, and pyrene) and heavy metals (i.e., Pb2+, Ni2+, Mn2+, Cd2+, Zn2+, and Cu2+) from water over time. Experiments were made on the batch sorption of PAHs and heavy metals from contaminated water to explore the binding affinity of PAHs and heavy metals to the poly-CD membrane. The equilibrium sorption capacity (q e) of the poly-CD nanofibrous membrane was found to be 0.43 ± 0.045 mg/g for PAHs and 4.54 ± 0.063 mg/g for heavy metals, and the sorption kinetics fitted well with the pseudo-second-order model for both types of pollutants. The membrane could be recycled after treatment with acetonitrile or a 2% nitric acid solution and reused up to four times with similar performance. Further, dead-end filtration experiments showed that the PAH removal efficiencies were as high as 92.6 ± 1.6 and 89.9 ± 4.8% in 40 s for the solutions of 400 and 600 μg/L PAHs, respectively. On the other hand, the removal efficiencies for heavy metals during the filtration were 94.3 ± 5.3 and 72.4 ± 23.4% for 10 and 50 mg/L solutions, respectively, suggesting rapid and efficient filtration of heavy metals and PAHs by the nanofibrous poly-CD membrane.
Collapse
Affiliation(s)
- Asli Celebioglu
- Institute of Materials
Science & Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Fuat Topuz
- Institute of Materials
Science & Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Zehra Irem Yildiz
- Institute of Materials
Science & Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Tamer Uyar
- Institute of Materials
Science & Nanotechnology, Bilkent University, Ankara 06800, Turkey
- Department of Fiber Science & Apparel
Design, College of Human Ecology, Cornell
University, Ithaca, New York 14853, United
States
- E-mail:
| |
Collapse
|
31
|
Dobosz KM, Kuo-LeBlanc CA, Emrick T, Schiffman JD. Antifouling Ultrafiltration Membranes with Retained Pore Size by Controlled Deposition of Zwitterionic Polymers and Poly(ethylene glycol). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1872-1881. [PMID: 30145903 PMCID: PMC6363866 DOI: 10.1021/acs.langmuir.8b02184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We demonstrate antifouling ultrafiltration membranes with retained selectivity and pure water flux through the controlled deposition of zwitterionic polymers and poly(ethylene glycol) (PEG). Molecules for polymerization were immobilized on the membrane's surface yet prevented from attaching to the membrane's pores due to a backflow of nitrogen (N2) gas achieved using an in-house constructed apparatus that we named the polymer prevention apparatus, or "PolyPrev". First, the operating parameters of the PolyPrev were optimized by investigating the polymerization of dopamine, which was selected due to its versatility in enabling further chemical reactions, published metrics for comparison, and its oxidative self-polymerization. Membrane characterization revealed that the polydopamine-modified membranes exhibited enhanced hydrophilicity; moreover, their size selectivity and pure water flux were statistically the same as those of the unmodified membranes. Because it is well documented that polydopamine coatings do not provide a long-lasting antifouling activity, poly(2-methacryloyloxyethyl phosphorylcholine) (polyMPC, Mn = 30 kDa) and succinimidyl-carboxymethyl-ester-terminated PEG ( Mn = 40 kDa) were codeposited while dopamine was polymerizing to generate antifouling membranes. Statistically, the molecular-weight cutoff of the polyMPC- and PEG-functionalized membranes synthesized in the PolyPrev was equivalent to that of the unmodified membranes, and the pure water flux of the PEG membranes was equivalent to that of the unmodified membranes. Notably, membranes prepared in the PolyPrev with polyMPC and PEG decreased bovine serum albumin fouling and Escherichia coli attachment. This study demonstrates that by restricting antifouling chemistries from attaching within the pores of membranes, we can generate high-performance, antifouling membranes appropriate for a wide range of water treatment applications without compromising intrinsic transport properties.
Collapse
Affiliation(s)
- Kerianne M. Dobosz
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Christopher A. Kuo-LeBlanc
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Todd Emrick
- Department of Polymer Science & Engineering, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Jessica D. Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| |
Collapse
|
32
|
Somayajula D, Agarwal A, Sharma AK, Pall AE, Datta S, Ghosh G. In Situ Synthesis of Silver Nanoparticles within Hydrogel-Conjugated Membrane for Enhanced Antibacterial Properties. ACS APPLIED BIO MATERIALS 2019; 2:665-674. [DOI: 10.1021/acsabm.8b00471] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Deepika Somayajula
- Department of Mechanical Engineering, University of Michigan—Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, United States
| | - Ayushi Agarwal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Ajay K. Sharma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Ashley E. Pall
- Department of Natural Sciences, University of Michigan—Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, United States
| | - Saurav Datta
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Gargi Ghosh
- Department of Mechanical Engineering, University of Michigan—Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, United States
| |
Collapse
|
33
|
Fabrication of polyetherimide nanocomposite membrane with amine functionalised halloysite nanotubes for effective removal of cationic dye effluents. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.07.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Rasouli R, Barhoum A, Bechelany M, Dufresne A. Nanofibers for Biomedical and Healthcare Applications. Macromol Biosci 2018; 19:e1800256. [DOI: 10.1002/mabi.201800256] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/30/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Rahimeh Rasouli
- Department of Medical NanotechnologyTehran University of Medical Sciences—International Campus 14177‐43373 Tehran Iran
| | - Ahmed Barhoum
- Faculty of ScienceChemistry DepartmentHelwan University 11795 Helwan Cairo Egypt
- Institut Européen des Membranes (IEM UMR 5635)ENSCMCNRSUniversity of Montpellier 34090 Montpellier France
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM UMR 5635)ENSCMCNRSUniversity of Montpellier 34090 Montpellier France
| | - Alain Dufresne
- LGP2, Grenoble INP, CNRSUniversité Grenoble Alpes F‐38000 Grenoble France
| |
Collapse
|
35
|
Díez B, Amariei G, Rosal R. Electrospun Composite Membranes for Fouling and Biofouling Control. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b04011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Berta Díez
- Department of Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Georgiana Amariei
- Department of Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Roberto Rosal
- Department of Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
36
|
Orooji Y, Liang F, Razmjou A, Liu G, Jin W. Preparation of anti-adhesion and bacterial destructive polymeric ultrafiltration membranes using modified mesoporous carbon. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Hu D, Xiao Y, Liu H, Wang H, Li J, Zhou B, Liu P, Shen M, Shi X. Loading of Au/Ag bimetallic nanoparticles within electrospun PVA/PEI nanofibers for catalytic applications. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.05.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
38
|
Liu T, Zhou H, Graham N, Lian Y, Yu W, Sun K. The antifouling performance of an ultrafiltration membrane with pre-deposited carbon nanofiber layers for water treatment. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.04.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
39
|
Kurtz IS, Schiffman JD. Current and Emerging Approaches to Engineer Antibacterial and Antifouling Electrospun Nanofibers. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1059. [PMID: 29932127 PMCID: PMC6073658 DOI: 10.3390/ma11071059] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 11/16/2022]
Abstract
From ship hulls to bandages, biological fouling is a ubiquitous problem that impacts a wide range of industries and requires complex engineered solutions. Eliciting materials to have antibacterial or antifouling properties describes two main approaches to delay biofouling by killing or repelling bacteria, respectively. In this review article, we discuss how electrospun nanofiber mats are blank canvases that can be tailored to have controlled interactions with biologics, which would improve the design of intelligent conformal coatings or freestanding meshes that deliver targeted antimicrobials or cause bacteria to slip off surfaces. Firstly, we will briefly discuss the established and emerging technologies for addressing biofouling through antibacterial and antifouling surface engineering, and then highlight the recent advances in incorporating these strategies into electrospun nanofibers. These strategies highlight the potential for engineering electrospun nanofibers to solicit specific microbial responses for human health and environmental applications.
Collapse
Affiliation(s)
- Irene S Kurtz
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Jessica D Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| |
Collapse
|