1
|
Yun H, Park S, Bang J, Kim J, Jung S, Won S, Kim S, Lim H, Kim SG, Choi IG, Kwak HW. Lignin-derived carbon flake sorbent for efficient oil-water separation. Int J Biol Macromol 2025; 308:142618. [PMID: 40158594 DOI: 10.1016/j.ijbiomac.2025.142618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Rapid industrialization and economic growth have intensified the impact of oily contaminants on human health and economic activities. This study developed an sorbent for oil spill remediation in aquatic systems using lignin-derived carbon flakes. Melamine foam, known for its commercial applicability, was used as a polymer matrix, with lignin serving as a binding agent for carbon flake coating. The modified foam exhibited a contact angle of 139°, confirming successful hydrophobization. The foam demonstrated an oil sorption capacity of 49-105 g/g for various organic solvents and showed excellent reusability through repeated sorption-desorption cycles and structural stability tests. This study highlighted the potential of lignin as a renewable resource for creating high-value, green sorbents, contributing to sustainable environmental management and a circular economy.
Collapse
Affiliation(s)
- Heecheol Yun
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sangwoo Park
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Junsik Bang
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jungkyu Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seungoh Jung
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sungwook Won
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seojin Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyoseung Lim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seon-Gyeong Kim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - In-Gyu Choi
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyo Won Kwak
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Miao Y, Xu Y, Hu C, Liu J, Wu Z, Lu R, Zhang L, Zhang F. Polydopamine/Melamine Sponge-Derived Compressible Carbon Foam for High-Performance Supercapacitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2181-2190. [PMID: 39836974 DOI: 10.1021/acs.langmuir.4c03499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Electrode materials with a deformation capability are vital to the development of flexible supercapacitors. However, the preparation of porous carbons with a deformability remains challenging. Herein, a compressible carbon foam has been successfully prepared using a polydopamine/melamine sponge (PDA/MS) as the precursor material. The porous structure of the carbon foam was controlled by using cetyltrimethylammonium bromide and K2CO3 as template and activating agent, respectively. The resultant PDA/MS-derived carbon foam (KDMC) has a three-dimensional network architecture and exhibits excellent compressibility. The specific surface area reaches ∼2890.0 m2 g-1. Furthermore, KDMC demonstrates outstanding capacitive performance, including excellent specific capacitance (365.6 F g-1, 0.5 A g-1), good rate capability (86.6% capacitance retention from 0.5 to 10 A g-1), and outstanding cycling stability (only 1.9% capacitance loss after 10,000 cycles). To further demonstrate the practical application potential of KDMC, a symmetric supercapacitor (KDMC//KDMC) was assembled with a PVA/KOH gel electrolyte. The symmetric device achieved an energy density of 10.44 W h kg-1. This work presents a robust method to prepare compressible electrode materials for high-performance supercapacitors.
Collapse
Affiliation(s)
- Yixin Miao
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, China
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yuge Xu
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Cheng Hu
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Junling Liu
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhaofeng Wu
- Department of Physics, Yancheng Institute of Technology, Yancheng 224051, China
| | - Rong Lu
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Liang Zhang
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Feng Zhang
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, China
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
3
|
Pan B, He Q, Yu X, De Choch D, Lam KS, Hammock BD, Sun G. Versatility and stability of melamine foam-based biosensors (f-ELISA) using antibodies, nanobodies, and peptides as sensing probes. Talanta 2024; 279:126634. [PMID: 39121553 DOI: 10.1016/j.talanta.2024.126634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Macroporous three-dimensional (3D) framework structured melamine foam-based Enzyme-Linked Immunosorbent Assay (f-ELISA) biosensors were developed for rapid, reliable, sensitive, and on-site detection of trace amount of biomolecules and chemicals. Various ligands can be chemically immobilized onto the melamine foam, which brings in the possibility of working with antibodies, nanobodies, and peptides, respectively, as affinity probes for f-ELISA biosensors with improved stability. Different chemical reagents can be used to modify the foam materials, resulting in varied reactivities with antibodies, nanobodies, and peptides. As a result, the f-ELISA sensors produced from these modified foams exhibit varying levels of sensitivity and performance. This study demonstrated that the chemical reagents used for immobilizing antibodies, nanobodies, and peptides could affect the sensitivities of the f-ELISA sensors, and their storage stabilities under different temperatures varied depending on the sensing probes used, with f-ELISA sensors employing nanobodies as probes exhibiting the highest stability. This study not only showcases the versatility of the f-ELISA system but also opens new avenues for developing cost-effective, portable, and user-friendly diagnostic tools with optimized sensitivity and stability.
Collapse
Affiliation(s)
- Bofeng Pan
- Biological and Agricultural Engineering, University of California Davis, Davis, CA, 95616, USA
| | - Qiyi He
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, USA
| | - Xingjian Yu
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Dylan De Choch
- Biological and Agricultural Engineering, University of California Davis, Davis, CA, 95616, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, USA
| | - Gang Sun
- Biological and Agricultural Engineering, University of California Davis, Davis, CA, 95616, USA.
| |
Collapse
|
4
|
Caratenuto A, Zheng Y. Critical assessment of water enthalpy characterization through dark environment evaporation. SCIENCE ADVANCES 2024; 10:eadn6368. [PMID: 39292782 PMCID: PMC11409960 DOI: 10.1126/sciadv.adn6368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
Comparative evaporation rate testing in a dark environment, commonly used to characterize a reduced vaporization enthalpy in interfacial solar evaporators, requires the assumption of equal energy input between cases. However, this assumption is not generally valid, leading to misleading characterization results. Interfacial evaporators yield larger evaporation rates in dark conditions due to enlarged liquid-vapor surface areas, resulting in increased evaporative cooling and larger environmental temperature differentials. Theoretical and experimental evidence is provided, which shows that these temperature differences invalidate the equal energy input assumption. The results indicate that differences in evaporation rates correspond to energy input variations, without requiring enthalpy to be reduced below theoretical values. These findings offer alternative explanations for previous claims of reduced vaporization enthalpy and contradict enthalpy-related conclusions drawn from differential scanning calorimetry. We conclude that postulating a reduced vaporization enthalpy using the dark environment method is inaccurate and that re-evaluation of vaporization enthalpy reduction is required.
Collapse
Affiliation(s)
- Andrew Caratenuto
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Yi Zheng
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
5
|
Han S, Li S, Fu X, Han S, Chen H, Zhang L, Wang J, Sun G. Research Progress of Flexible Piezoresistive Sensors Based on Polymer Porous Materials. ACS Sens 2024; 9:3848-3863. [PMID: 39046083 DOI: 10.1021/acssensors.4c00836] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Flexible piezoresistive sensors are in high demand in areas such as wearable devices, electronic skin, and human-machine interfaces due to their advantageous features, including low power consumption, excellent bending stability, broad testing pressure range, and simple manufacturing technology. With the advancement of intelligent technology, higher requirements for the sensitivity, accuracy, response time, measurement range, and weather resistance of piezoresistive sensors are emerging. Due to the designability of polymer porous materials and conductive phases, and with more multivariate combinations, it is possible to achieve higher sensitivity and lower detection limits, which are more promising than traditional flexible sensor materials. Based on this, this work reviews recent advancements in research on flexible pressure sensors utilizing polymer porous materials. Furthermore, this review examines sensor performance optimization and development from the perspectives of three-dimensional porous flexible substrate regulation, sensing material selection and composite technology, and substrate and sensing material structure design.
Collapse
Affiliation(s)
- Song Han
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Sheng Li
- China Academy of Machinery Wuhan Research Institute of Materials Protection Company, Ltd., Wuhan 430030, People's Republic of China
| | - Xin Fu
- Wuhan Second Ship Design & Research Institute, Wuhan 430064, People's Republic of China
| | - Shihui Han
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Huanyu Chen
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Liu Zhang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Jun Wang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Gaohui Sun
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, People's Republic of China
| |
Collapse
|
6
|
Qi L, Wang Z, Chen J, Xie JW. Development and validation of a QuEChERS-HPLC-DAD method using polymer-functionalized melamine sponges for the analysis of antipsychotic drugs in milk. Food Chem 2024; 444:138553. [PMID: 38309075 DOI: 10.1016/j.foodchem.2024.138553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 02/05/2024]
Abstract
The prohibition of antipsychotic drugs in animal foodstuffs has raised significant concerns. In this study, a novel matrix purification adsorbent comprising a polymer (polyaniline and polypyrrole)-functionalized melamine sponge (Ms) was employed for the high performance liquid chromatography-diode array detector (HPLC-DAD) detection of three phenothiazines (chlorpromazine, thioridazine, and promethazine), and a tricyclic imipramine in milk. The as-prepared functionalized Ms was characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and water contact angle measurements. Excellent linearity with a coefficient of determination (R2) of 0.999 was achieved for all drugs within the concentration range of 0.01-47.00 μg mL-1. The recoveries of the four analytes ranged from 92.1 % to 106.9 % at the three spiked levels. These results demonstrate the successful application of the proposed method for the determination of the four drugs. Cost-effective polymer-functionalized Ms is a viable alternative for matrix purification, enabling rapid determination of drug residues in diverse food samples.
Collapse
Affiliation(s)
- Liang Qi
- School of Food Science and Engineering (School of Biomedical and Pharmaceutical Sciences), Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Zhe Wang
- School of Food Science and Engineering (School of Biomedical and Pharmaceutical Sciences), Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jian Chen
- School of Food Science and Engineering (School of Biomedical and Pharmaceutical Sciences), Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jian-Wu Xie
- School of Food Science and Engineering (School of Biomedical and Pharmaceutical Sciences), Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
7
|
Su Y, Yang C, Wang S, Li H, Wu Y, Xing B, Ji R. Mechanochemical Formation of Poly(melamine-formaldehyde) Microplastic Fibers During Abrasion of Cleaning Sponges. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10764-10775. [PMID: 38843113 DOI: 10.1021/acs.est.4c00846] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
The abrasion of synthetic textile fibers is a significant factor in the generation of environmental microplastic fibers (MPFs). The extent to which polymer sponges designed specifically for surface cleaning have a tendency to release MPFs during normal use remains unknown. Here, the tribological behaviors of melamine cleaning sponges (also known as "magic erasers") with different strut densities against metal surfaces of different roughness were investigated using a reciprocating abrader. The MPFs formed by sponge wear under various conditions were characterized in terms of their morphology, composition, and quantity. They were mainly composed of poly(melamine-formaldehyde) polymer with linear or branched fiber morphologies (10-405 μm in length), which were formed through deformation and fracture of the struts within open cells of the sponges, facilitated by friction-induced polymer decomposition. The rate and capability of MPF production generally increased with increasing roughness of the metal surface and density of the struts, respectively. The sponge wear could release 6.5 million MPFs/g, which could suggest a global overall emission of 4.9 trillion MPFs due to sponge consumption. Our study reveals a hitherto unrecognized source of the environmental MPF contamination and highlights the need to evaluate exposure risks associated with these new forms of MPFs.
Collapse
Affiliation(s)
- Yu Su
- School of Energy and Environment, Southeast University, Nanjing 211189, China
| | - Chenqi Yang
- School of Energy and Environment, Southeast University, Nanjing 211189, China
| | - Songfeng Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Huimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yiyu Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Weldemhret TG, Park YT, Song JI. Recent progress in surface engineering methods and advanced applications of flexible polymeric foams. Adv Colloid Interface Sci 2024; 326:103132. [PMID: 38537566 DOI: 10.1016/j.cis.2024.103132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/15/2024] [Accepted: 03/10/2024] [Indexed: 04/13/2024]
Abstract
Polymeric foams, also known as three-dimensional (3D) polymeric sponges, are lightweight, flexible, compressible, and possess a high surface area compared with other bulk polymers. These sponges have traditionally been used for mattresses or seat cushions in homes, offices, aircraft, automobiles, and trains, and to insulate against heat, electricity, and noise. Recently, the demand for modern materials has expanded the application of polymeric foams to various high-value technologies, including in areas that need high flame retardancy, flame sensors, oil/water separation, metal adsorption, solar steam generation, piezoresistivity, electromagnetic interference shielding, thermal energy storage, catalysis, supercapacitors, batteries, and triboelectric energy harvesting. Proper modification of foams is a prerequisite for their use in high-value applications. Several new strategies for the surface coating of 3D porous foams and novel emerging applications have been recently developed. Therefore, in this review, current advances in the field of surface coating and the application of 3D polymeric foams are discussed. A brief background on 3D polymeric foams, including the unique properties and benefits of polymeric sponges and their routes of synthesis, is presented. Different coating strategies for polymeric sponges are discussed, and their advantages and drawbacks are highlighted. Different advanced applications of polymeric sponges, in conjunction with specific and detailed examples of the above-mentioned applications, are also described. Finally, challenges and potential applications related to the coating of polymeric foams are discussed. We envisage that this review will be useful to facilitate further research, promote continued efforts on the advanced applications mentioned above, and provide new stimuli for the design of novel polymeric sponges for future modern applications.
Collapse
Affiliation(s)
- Teklebrahan Gebrekrstos Weldemhret
- Department of Mechanical Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon, Gyeongsangnam-do 51140, Republic of Korea; Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea
| | - Yong Tae Park
- Department of Mechanical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Republic of Korea.
| | - Jung Il Song
- Department of Mechanical Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon, Gyeongsangnam-do 51140, Republic of Korea.
| |
Collapse
|
9
|
Lv Z, Deng J, Cao T, Lee JY, Luo Y, Mao Y, Kim SH, Wang C, Hwang JH, Kang H, Yan X, Na J. Metal-Organic Frameworks Marry Sponge: New Opportunities for Advanced Water Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5590-5605. [PMID: 38457783 DOI: 10.1021/acs.langmuir.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Metal-organic frameworks (MOFs) have garnered attention across various fields due to their noteworthy features like high specific surface area, substantial porosity, and adjustable performance. In the realm of water treatment, MOFs exhibit great potential for eliminating pollutants such as organics, heavy metals, and oils. Nonetheless, the inherent powder characteristics of MOFs pose challenges in terms of recycling, pipeline blockage, and even secondary pollution in practical applications. Addressing these issues, the incorporation of MOFs into sponges proves to be an effective solution. Strategies like one-pot synthesis, in situ growth, and impregnation are commonly employed for loading MOFs onto sponges. This review comprehensively explores the synthesis strategies of MOFs and sponges, along with their applications in water treatment, aiming to contribute to the ongoing advancement of MOF materials.
Collapse
Affiliation(s)
- Zheng Lv
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zheng Zhou, 450046, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Jianmian Deng
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zheng Zhou, 450046, China
| | - Taiyang Cao
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zheng Zhou, 450046, China
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Jun Young Lee
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yulong Luo
- Faculty of Innovation and Design, City University of Macao, Macao 999078, China
| | - Yanli Mao
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Seong Hwan Kim
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Chaohai Wang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Jin Hyun Hwang
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Haiyan Kang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Xu Yan
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon-Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Jongbeom Na
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
10
|
Wang M, Chen J, Wei Y, Hu L, Xu Y, Liu Y, Wang R. "Needle" hidden in silk floss: Inactivation effect and mechanism of melamine sponge loaded bismuth oxide composite copper-metal organic framework (MS/Bi 2O 3@Cu-MOF) as floating photocatalyst on Microcystis aeruginosa. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133273. [PMID: 38113729 DOI: 10.1016/j.jhazmat.2023.133273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Photocatalytic technology showed significant potential for addressing the issue of cyanobacterial blooms resulting from eutrophication in bodies of water. However, the traditional powder materials were easy to agglomerate and settle, which led to the decrease of photocatalytic activity. The emergence of floating photocatalyst was important for the practical application of controlling harmful algal blooms. This study was based on the efficient powder photocatalyst bismuth oxide composite copper-metal organic framework (Bi2O3 @Cu-MOF), which was successfully loaded onto melamine sponge (MS) by sodium alginate immobilization to prepare a floating photocatalyst MS/Bi2O3 @Cu-MOF for the inactivation of Microcystis aeruginosa (M. aeruginosa) under visible light. When the capacity was 0.4 g (CA0.4), MS/Bi2O3 @Cu-MOF showed good photocatalytic activity, and the inactivation rate of M. aeruginosa reached 74.462% after 120 h. MS/Bi2O3 @Cu-MOF-CA0.4 showed a large specific surface area of 30.490 m2/g and an average pore size of 22.862 nm, belonging to mesoporous materials. After 120 h of treatment, the content of soluble protein in the MS/Bi2O3 @Cu-MOF-CA0.4 treatment group decreased to 0.365 mg/L, the content of chlorophyll a (chla) was 0.023 mg/L, the content of malondialdehyde (MDA) increased to 3.168 nmol/mgprot, and the contents of various antioxidant enzymes experienced drastic changes, first increasing and then decreasing. The photocatalytic process generated·OH and·O2-, which played key role in inactivating the algae cells. Additionally, the release of Cu2+ and adsorption of the material also contributed to the process.
Collapse
Affiliation(s)
- Mengjiao Wang
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Junfeng Chen
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China.
| | - Yushan Wei
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Lijun Hu
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Yuling Xu
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Yanyan Liu
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Renjun Wang
- School of Life Sciences, Qufu Normal University, Qufu 273165, PR China.
| |
Collapse
|
11
|
He Z, Wang M, Ma S. Porous lignin-based composites for oil/water separation: A review. Int J Biol Macromol 2024; 260:129569. [PMID: 38253151 DOI: 10.1016/j.ijbiomac.2024.129569] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Frequent oceanic oil spill incidents and the discharge of industrial oily wastewaters have caused serious threats to environments, food chains and human beings. Lignin wastes with many reactive groups exist as the byproducts from bioethanol and pulping processing industries, and they are either discarded as wastes or directly consumed as a fuel. To make full use of lignin wastes and simultaneously deal with oily wastewaters, porous lignin-based composites have been rationally designed and prepared. In this review, recent advances in the preparation of porous lignin-based composites are summarized in terms of aerogels, sponges, foams, papers, and membranes, respectively. Then, the mechanisms and the application of porous lignin-based adsorbents and filtration materials for oil/water separation are discussed. Finally, the challenges and perspectives of porous lignin-based composites are proposed in the field of oil/water separation. The utilization of abundant lignin wastes can replace fossil resources, and meanwhile porous lignin-based composites can be used to efficiently treat with oily wastewaters. The above utilization strategy opens an avenue to the rational design and preparation of lignin wastes with high-added value, and gives a possible solution to use lignin wastes in a sustainable and environmentally friendly way.
Collapse
Affiliation(s)
- Zhiwei He
- Anti-Icing Materials (AIM) Laboratory, Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Mingkun Wang
- Anti-Icing Materials (AIM) Laboratory, Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Shiyu Ma
- Anti-Icing Materials (AIM) Laboratory, Center for Advanced Optoelectronic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
12
|
Xu X, Lv J, Zhou J, Ji B, Yang L, Xu G, Hou Z, Li L, Bai Y. Improved matrix purification using a graphene oxide-coated melamine sponge for UPLC-MS/MS-based determination of 37 veterinary drugs in milks. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:856-863. [PMID: 38240139 DOI: 10.1039/d3ay01797d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
A rapid and highly sensitive method was established for the analysis of 37 veterinary drug residues in milk using a modified QuEChERS method based on a reduced graphene oxide-coated melamine sponge (rGO@MeS) coupled with UPLC-MS/MS. Under optimal chromatographic and mass spectrometric conditions, the effects of different dehydrated salts (MgSO4 and Na2SO4) and metal chelating agents (Na2EDTA) on extraction efficiency were first investigated. Next, the influence of a dynamic and static purification mode was evaluated in terms of drug recoveries. Calibration curves of 37 veterinary drugs were constructed in the range 0.6-500 μg kg-1, and good linearities were obtained with all determination coefficients (R2) ≥0.992. The limits of detection (LODs) and quantitation (LOQs) were in the range 0.3-1.1 μg kg-1 and 0.6-3.5 μg kg-1, respectively. The recoveries of all compounds were in the range 61.3-118.2% at three spiked levels (20, 100, and 200 μg kg-1) with RSDs ≤15.4% for both intra- and inter-day precisions. Compared to pristine melamine sponges and commercial adsorbents (C18, PSA, and GCB), rGO@MeS demonstrated an equal or even better purification performance in terms of recoveries, matrix effects, and matrix removal efficiency. This method is rapid, simple, efficient, and appropriate for the qualitative and quantitative analyses of 37 veterinary drug residues in milk, providing a new detection strategy and technical support for the routine analysis of animal-derived food.
Collapse
Affiliation(s)
- Xu Xu
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, P. R. China.
- Henan Key Laboratory of Cold Chain Quality and Safety Control, Zhengzhou, P. R. China
- Collaborative Innovation Center of Food Production and Safety, Henan Province, P. R. China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, P. R. China
| | - Jia Lv
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, P. R. China.
- Henan Key Laboratory of Cold Chain Quality and Safety Control, Zhengzhou, P. R. China
- Collaborative Innovation Center of Food Production and Safety, Henan Province, P. R. China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, P. R. China
| | - Jintian Zhou
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, P. R. China.
| | - Baocheng Ji
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, P. R. China.
- Henan Key Laboratory of Cold Chain Quality and Safety Control, Zhengzhou, P. R. China
- Collaborative Innovation Center of Food Production and Safety, Henan Province, P. R. China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, P. R. China
| | - Lanrui Yang
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, P. R. China.
- Henan Key Laboratory of Cold Chain Quality and Safety Control, Zhengzhou, P. R. China
- Collaborative Innovation Center of Food Production and Safety, Henan Province, P. R. China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, P. R. China
| | - Gaigai Xu
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, P. R. China.
| | - Zhuchen Hou
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, P. R. China.
- Henan Key Laboratory of Cold Chain Quality and Safety Control, Zhengzhou, P. R. China
- Collaborative Innovation Center of Food Production and Safety, Henan Province, P. R. China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, P. R. China
| | - Lulu Li
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, P. R. China.
| | - Yanhong Bai
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, P. R. China.
- Henan Key Laboratory of Cold Chain Quality and Safety Control, Zhengzhou, P. R. China
- Collaborative Innovation Center of Food Production and Safety, Henan Province, P. R. China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, P. R. China
| |
Collapse
|
13
|
Amaly N, El-Moghazy AY, Sun G, Pandey PK. A novel scalable polycationic melamine sponge-based filtration matrix for continuous ultrafast adsorption of anionic pollutants. CHEMOSPHERE 2024; 350:140977. [PMID: 38158085 DOI: 10.1016/j.chemosphere.2023.140977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Effective capturing of anionic pollutants from wastewater under industrial operating conditions, which requires high processing flux and fast adsorption rate remains a challenge. Here, a commercially available melamine sponge (MS) with reticulated 3D macroporous structures was covalently modified with positively charged moieties using a single step functionalization under mild conditions. The developed novel polycationic melamine sponge (MS+) was formed by a nucleophilic addition reaction between glycidyltrimethylammonium chloride (GMTA) and MS, followed by a self-propagation of GMTA. The produced MS+ possessed strong electrostatic interactions with different anions such as Rose Bengal (RB) and phosphates (P) under a wide pH range (3-11). The MS+ exhibited promoted static adsorption efficiencies of 400 mg g-1 (P) and 600 mg g-1 (RB), within 5 min and 60 s, respectively. Furthermore, the MS+ showed high stability and recyclability for up to 15 cycles of uses, and the recycling process was environmentally friendly by using 1 M NaCl as a releasing solution. Benefiting from fast flow through the macroporous MS+ and highly positive charged skeleton, the MS+ was applied for rapid dynamic enrichment process of P from real manure wastewater with an enrichment factor of 4.4. Utilization of the MS+ as the substrate brings additional advantages such as low cost, availability, and flexibility to fit into existing filtration devices. The developed MS+ could be expanded for enrichments of other anionic species from various polluted water sources.
Collapse
Affiliation(s)
- Noha Amaly
- Department of Biological and Agricultural Engineering, University of California, Davis, USA; Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt; Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, USA.
| | - Ahmed Y El-Moghazy
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt
| | - Gang Sun
- Department of Biological and Agricultural Engineering, University of California, Davis, USA.
| | - Pramod K Pandey
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, USA.
| |
Collapse
|
14
|
Makoś-Chełstowska P, Słupek E, Mielewczyk-Gryń A, Klimczuk T. Magnetic superhydrophobic melamine sponges for crude oil removal from water. CHEMOSPHERE 2024; 346:140533. [PMID: 38303396 DOI: 10.1016/j.chemosphere.2023.140533] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 02/03/2024]
Abstract
This paper proposes the preparation of a new sorbent material based on melamine sponges (MS) with superhydrophobic, superoleophilic, and magnetic properties. This study involved impregnating the surface of commercially available MS with eco-friendly deep eutectic solvents (DES) and Fe3O4 nanoparticles. The DES selection was based on the screening of 105 eutectic mixtures using COSMO-RS modeling. Other parameters affecting the efficiency and selectivity of oil removal from water were optimized using the Box-Bhenken model. Menthol:Thymol (1:1)@Fe3O4-MS exhibited the highest sorption capacity for real crude oils (101.7-127.3 g/g). This new sponge demonstrated paramagnetic behavior (31.06 emu/g), superhydrophobicity (151°), superoleophobicity (0°), low density (15.6 mg/cm3), high porosity (99 %), and excellent mechanical stability. Furthermore, it allows multiple regeneration processes without losing its sorption capacity. Based on these benefits, Menthol:Thymol (1:1)@Fe3O4-MS shows promise as an efficient, cost-effective, and eco-friendly substitute for the existing sorbents.
Collapse
Affiliation(s)
- Patrycja Makoś-Chełstowska
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdańsk, Poland.
| | - Edyta Słupek
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdańsk, Poland
| | - Aleksandra Mielewczyk-Gryń
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, and Advanced Materials Centre, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdańsk, Poland
| | - Tomasz Klimczuk
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, and Advanced Materials Centre, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdańsk, Poland
| |
Collapse
|
15
|
Guan H, Li R, Lian R, Cui J, Ou M, Liu L, Chen X, Jiao C, Kuang S. A biomimetic design for efficient petrochemical spill disposal: CoFe-PBA modified superhydrophobic melamine sponge with mechanical/chemical durability and low fire risk. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132041. [PMID: 37487334 DOI: 10.1016/j.jhazmat.2023.132041] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 07/26/2023]
Abstract
Due to frequent petrochemical spills, environmental pollution and the threat of secondary marine fires have arisen, necessitating an urgent need for petrochemical spill treatment strategies with high-performance oil-water separation capabilities. To address the challenges of poor durability, instability in hydrophobic conditions, and difficulty in absorbing high-viscosity crude oil associated with hydrophobic absorbent materials, the authors of this study took inspiration from the unique micro and nanostructures of springtails' water-repellent skin. We engineered a superhydrophobic melamine sponge using interfacial assembly techniques designated as Si@PBA@PDA@MS. This material demonstrated improved mechanical and chemical durability, enhanced photothermal performance, and reduced fire risk. The metal-organic framework (MOF)-derived cobalt-iron Prussian blue analog (CoFe-PBA) was firmly anchored to the sponge framework by the chelation of cobalt ions using polydopamine (PDA). The results demonstrated that Si@PBA@PDA@MS demonstrated excellent superhydrophobicity (WCA=163.5°) and oil absorption capacity (53.4-97.5 g/g), maintaining high durability even after 20 cycles of absorption-squeezing. Additionally, it could still exhibit excellent mechanical properties, hydrophobic stability, and absorption performance across a wide temperature range (0-100 °C), pH range (1-14), and high compression strength (ε = 80%), with excellent mechanical/chemical durability. Furthermore, Si@PBA@PDA@MS demonstrated remarkable photothermal performance and low fire risk, offering efficient, safe, and sustainable practical value for effective petrochemical spill treatment.
Collapse
Affiliation(s)
- Haocun Guan
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Rongjia Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Richeng Lian
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Jiahui Cui
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Mingyu Ou
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Lei Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Xilei Chen
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| | - Chuanmei Jiao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| |
Collapse
|
16
|
Wei W, Wildy M, Xu K, Schossig J, Hu X, Hyun DC, Chen W, Zhang C, Lu P. Advancing Nanofiber Research: Assessing Nonsolvent Contributions to Structure Using Coaxial Electrospinning. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10881-10891. [PMID: 37390484 PMCID: PMC10413944 DOI: 10.1021/acs.langmuir.3c01038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/01/2023] [Indexed: 07/02/2023]
Abstract
In this study, we explored the influence of molecular interactions and solvent evaporation kinetics on the formation of porous structures in electrospun nanofibers, utilizing polyacrylonitrile (PAN) and polystyrene (PS) as model polymers. The coaxial electrospinning technique was employed to control the injection of water and ethylene glycol (EG) as nonsolvents into polymer jets, demonstrating its potential as a powerful tool for manipulating phase separation processes and fabricating nanofibers with tailored properties. Our findings highlighted the critical role of intermolecular interactions between nonsolvents and polymers in governing phase separation and porous structure formation. Additionally, we observed that the size and polarity of nonsolvent molecules affected the phase separation process. Furthermore, solvent evaporation kinetics were found to significantly impact phase separation, as evidenced by less distinct porous structures when using a rapidly evaporating solvent like tetrahydrofuran (THF) instead of dimethylformamide (DMF). This work offers valuable insights into the intricate relationship between molecular interactions and solvent evaporation kinetics during electrospinning, providing guidance for researchers developing porous nanofibers with specific characteristics for various applications, including filtration, drug delivery, and tissue engineering.
Collapse
Affiliation(s)
- Wanying Wei
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Michael Wildy
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Kai Xu
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - John Schossig
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Xiao Hu
- Department
of Physics and Astronomy, Rowan University, Glassboro, New Jersey 08028, United States
| | - Dong Choon Hyun
- Department
of Polymer Science and Engineering, Kyungpook
National University, Daegu 41566, South Korea
| | - Wenshuai Chen
- Key
Laboratory of Bio-based Material Science and Technology, Ministry
of Education, Northeast Forestry University, Harbin 150040, China
| | - Cheng Zhang
- Chemistry
Department, Long Island University (Post), Brookville, New York 11548, United States
| | - Ping Lu
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
17
|
Wu Z, Lin Z, Wang S, Yang B, Xiao K. Functionalization of melamine sponge for the efficient recovery of Pt(IV) from acid leachates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84609-84619. [PMID: 37368212 DOI: 10.1007/s11356-023-28410-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
The recovery of platinum from industrial waste is of critical importance. Usually, the recovery method is to dissolve the solid waste with acid to form a solution where platinum mainly exists in the form of Pt(IV). Therefore, it is urgent to efficiently and selectively adsorb Pt(IV) ions from acid leachates. In this study, a highly efficient adsorbent was developed by grafting of carboxyl and amine groups onto melamine sponge with alginate-Ca and polyethylenimine-glutaraldehyde (ML/ACPG). Combination of SEM, FTIR and XPS showed that the ML/ACPG sponge had a tree structure and the amino, carboxyl and hydroxyl groups were successfully introduced. Maximum adsorption capacity of ML/ACPG sponge reached up to 101.1 mg/L at pH of 1 (optimum initial pH value). The Pt(IV) ions were readily desorbed (within 60-80 min) using 0.1 M HCl + 0.025 M thiourea solution. Desorption efficiency remained higher than 83.3% while adsorption capacity decreased by less than 6.0% after 5 cycles operation. The ML/ACPG sponge was stable in 3 M of HNO3, NaCl after shaking for 72 h at 300 rpm with mass loss less than 2.5%. The mechanism of Pt(IV) adsorption onto ML/ACPG sponge mainly involved coordination by electrostatic attraction and carboxyl groups by protonated amine groups. The above results confirmed that the ML/ACPG sponge has a good practical application potential for Pt(IV) recovery from acid leachates.
Collapse
Affiliation(s)
- Zhaojiang Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zheng Lin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Shengye Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ke Xiao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
18
|
Lee HB, Choi AJ, Kim YK, Lee MW. Composite Membrane Based on Melamine Sponge and Boehmite Manufactured by Simple and Economical Dip-Coating Method for Fluoride Ion Removal. Polymers (Basel) 2023; 15:2916. [PMID: 37447561 DOI: 10.3390/polym15132916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The wastewater generated from the semiconductor production process contains a wide range and a large number of harmful substances at high concentrations. Excessive exposure to fluoride can lead to life-threatening effects such as skin necrosis and respiratory damage. Accordingly, a guideline value of fluoride ions in drinking water was 1.5 mg L-1 recommended by the World Health Organization (WHO). Polyvinylidene fluoride (PVDF) has the characteristics of excellent chemical and thermal stability. Boehmite (AlOOH) is a mineral and has been widely used as an adsorbent due to its high surface area and strong adsorption capacity for fluoride ions. It can be densely coated on negatively charged surfaces through electrostatic interaction due to its positively charged surface. In this study, a composite membrane was fabricated by a simple and economical dip coating of a commercial melamine sponge (MS) with PVDF and boehmite to remove fluoride ions from semiconductor wastewater. The prepared MS-PVDF-Boehmite composite membrane showed a high removal efficiency for fluoride ions in both incubation and filtration. By the incubation process, the removal efficiency of fluoride ions was 55% within 10 min and reached 80% after 24 h. In the case of filtration, the removal efficiency was 95.5% by 4 cycles of filtering with a flow rate of 70 mL h-1. In addition, the removal mechanism of fluoride ions on MS-PVDF-Boehmite was also explored by using Langmuir and Freundlich isotherms and kinetic analysis. (R2-1) From the physical, chemical, thermal, morphological, and mechanical analyses of present materials, this study provides an MS-PVDF-Boehmite composite filter material that is suitable for fluoride removal applications due to its simple fabrication process, cost-effectiveness, and high performance.
Collapse
Affiliation(s)
- Han-Bi Lee
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Jeonbuk 55324, Republic of Korea
| | - Ah-Jeong Choi
- Department of Chemistry, Seoul Campus, Dongguk University, 30 Pildong-ro, Seoul 04620, Republic of Korea
| | - Young-Kwan Kim
- Department of Chemistry, Seoul Campus, Dongguk University, 30 Pildong-ro, Seoul 04620, Republic of Korea
| | - Min-Wook Lee
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Jeonbuk 55324, Republic of Korea
| |
Collapse
|
19
|
Azhari S, Banerjee D, Kotooka T, Usami Y, Tanaka H. Influence of junction resistance on spatiotemporal dynamics and reservoir computing performance arising from an SWNT/POM 3D network formed via a scaffold template technique. NANOSCALE 2023; 15:8169-8180. [PMID: 36892200 DOI: 10.1039/d2nr04619a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
For scientists in numerous fields, creating a physical device that can function like the human brain is an aspiration. It is believed that we may achieve brain-like spatiotemporal information processing by fabricating an in materio reservoir computing (RC) device because of a complex random network topology with nonlinear dynamics. One of the significant drawbacks of a two-dimensional physical reservoir system is the difficulty in controlling the network density. This work reports the use of a 3D porous template as a scaffold to fabricate a three-dimensional network of a single-walled carbon nanotube polyoxometalate nanocomposite. Although the three-dimensional system exhibits better nonlinear dynamics and spatiotemporal dynamics, and higher harmonics generation than a two-dimensional system, the results suggest a correlation between a higher number of resistive junctions and reservoir performance. We show that by increasing the spatial dimension of the device, the memory capacity improves, while the scale-free network exponent (γ) remains nearly unchanged. The three-dimensional device also displays improved performance in the well-known RC benchmark task of waveform generation. This study demonstrates the impact of an additional spatial dimension, network distribution and network density on in materio RC device performance and tries to shed some light on the reason behind such behavior.
Collapse
Affiliation(s)
- Saman Azhari
- Research Center for Neuromorphic AI Hardware, Kyushu Institute of Technology (Kyutech), 2-4 Hibikino, Wakamatsu, Kitakyushu 8080196, Japan.
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology (Kyutech), 2-4 Hibikino, Wakamatsu, Kitakyushu 8080196, Japan
| | - Deep Banerjee
- Research Center for Neuromorphic AI Hardware, Kyushu Institute of Technology (Kyutech), 2-4 Hibikino, Wakamatsu, Kitakyushu 8080196, Japan.
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology (Kyutech), 2-4 Hibikino, Wakamatsu, Kitakyushu 8080196, Japan
| | - Takumi Kotooka
- Research Center for Neuromorphic AI Hardware, Kyushu Institute of Technology (Kyutech), 2-4 Hibikino, Wakamatsu, Kitakyushu 8080196, Japan.
| | - Yuki Usami
- Research Center for Neuromorphic AI Hardware, Kyushu Institute of Technology (Kyutech), 2-4 Hibikino, Wakamatsu, Kitakyushu 8080196, Japan.
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology (Kyutech), 2-4 Hibikino, Wakamatsu, Kitakyushu 8080196, Japan
| | - Hirofumi Tanaka
- Research Center for Neuromorphic AI Hardware, Kyushu Institute of Technology (Kyutech), 2-4 Hibikino, Wakamatsu, Kitakyushu 8080196, Japan.
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology (Kyutech), 2-4 Hibikino, Wakamatsu, Kitakyushu 8080196, Japan
| |
Collapse
|
20
|
Huang X, Li L, Zhao X, Zhang J. Highly Salt-Resistant interfacial solar evaporators based on Melamine@Silicone nanoparticles for stable Long-Term desalination and water harvesting. J Colloid Interface Sci 2023; 646:141-149. [PMID: 37187047 DOI: 10.1016/j.jcis.2023.05.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
Interfacial solar-driven evaporation (ISE) is one of the most promising solutions for collecting fresh water, however, poor salt-resistance severely limits the long-term stability of solar evaporators. Here, highly salt-resistant solar evaporators for stable long-term desalination and water harvesting were fabricated by depositing silicone nanoparticles onto melamine sponge, and then modifying the hybrid sponge sequentially with polypyrrole and Au nanoparticles. The solar evaporators have a superhydrophilic hull for water transport and solar desalination, and a superhydrophobic nucleus for reducing heat loss. Spontaneous rapid salt exchange and reduction in salt concentration gradient were achieved due to ultrafast water transport and replenishment in the superhydrophilic hull with a hierachical micro-/nanostructure, which effectively prevents salt deposition during ISE. Consequently, the solar evaporators have long-term stable evaporation performance of 1.65 kg m-2h-1 for 3.5 wt% NaCl solution under 1 sun illumination. Moreover, 12.87 kg m-2 fresh water was collected during consecutive 10 h ISE of 20 wt% brine under 1 sun without any salt precipitation. We believe that this strategy will shed a new light on the design of long-term stable solar evaporators for fresh water harvesting.
Collapse
Affiliation(s)
- Xiaopeng Huang
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China; Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Lingxiao Li
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China; Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Xia Zhao
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Junping Zhang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China; Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| |
Collapse
|
21
|
Lv B, Chao J, Zhao Y, Li Y, Liu J, Zhang Q, Xu L. Zeolitic imidazolate framework-L loaded on melamine foam for removal tetracycline hydrochloride from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66840-66852. [PMID: 37186183 DOI: 10.1007/s11356-023-27013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023]
Abstract
Zeolitic imidazolate framework-L/melamine foam (ZIF-L/MF) is fabricated by an in situ growth method to treat the tetracycline hydrochloride in wastewater. The results show that a large amount of leaf-like ZIF-L is vertically grown on the MF surface. ZIF-L/MF exhibits well adsorption performance with a maximum adsorption ability of 1346 mg/g. The pseudo-second-order kinetic model and the Langmuir isotherm model are used to describe the adsorption process well. In addition, the influences of pH and coexisting ions are studied. According to the experimental data and analysis, the adsorption mechanisms may involve H-bonding, π-π interaction, and weak electrostatic interaction. A dynamic adsorption experiment is also performed, and the results show that the time required to achieve the same removal efficiency as static adsorption is reduced by half. This work shows that the obtained ZIF-L/MF has practical applications in antibiotic adsorption.
Collapse
Affiliation(s)
- Bizhi Lv
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Jiabao Chao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Yongqing Zhao
- Ningbo Key Lab of Polymer Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Yongchao Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Jinhua Liu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Qiaohong Zhang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Linqiong Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China.
| |
Collapse
|
22
|
Chang K, Wu Z, Meng J, Guo M, Yan XP, Qian HL, Ma P, Zhao J, Wang F, Huang Y, Liu T. Cicada-Wing-Inspired Highly Sensitive Tactile Sensors Based on Elastic Carbon Foam with Nanotextured Surfaces. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15976-15985. [PMID: 36917498 DOI: 10.1021/acsami.2c22204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electronic devices with tactile and pressure-sensing capabilities are becoming increasingly popular in the automatic industry, human motion/health monitoring, and artificial intelligence applications. Inspired by the natural nanotopography of the cicada wing, we propose here a straightforward strategy to fabricate a highly sensitive tactile sensor through nanotexturing of erected polyaniline (PANI) nanoneedles on a conductive and elastic three-dimensional (3D) carbon skeleton. The robust and compressible carbon networks offer a resilient and conducting matrix to catering complex scenarios; the biomimetic PANI nanoneedles firmly and densely anchored on a 3D carbon skeleton provide intimate electrical contact under subtle deformation. As a result, a piezoresistive tactile sensor with ultrahigh sensitivity (33.52 kPa-1), fast response/recovery abilities (97/111 ms), and reproducible sensing performance (2500 cycles) is developed, which is capable of distinguishing motions in a wide pressure range from 4.66 Pa to 60 kPa, detecting spatial pressure distribution, and monitoring various gestures in a wireless manner. These excellent performances demonstrate the great potential of nature-inspired tactile sensors for practical human motion monitoring and artificial intelligence applications.
Collapse
Affiliation(s)
- Kangqi Chang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenzhong Wu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jian Meng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Minhao Guo
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Piming Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jianhua Zhao
- Jiangsu Huaxicun Co. Ltd., Jiangyin, 214420, China
| | | | - Yunpeng Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
23
|
Li L, Li Y, Zhang S, Wang T, Hou X. Monolithic and compressible MIL-101(Cr)/cellulose aerogel/melamine sponge based microextraction in packed syringe towards trace nitroimidazoles in water samples prior to UPLC-MS/MS analysis. Talanta 2023; 253:123935. [PMID: 36122434 DOI: 10.1016/j.talanta.2022.123935] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 12/13/2022]
Abstract
In this study, MIL-101(Cr)/cellulose aerogel/melamine sponge composite was fabricated through a simple soaking method. The composite was packed in the syringe barrel and used as the sorbent for microextraction in packed syringe. Coupled to UPLC-MS/MS, the proposed method was employed for the analysis of trace nitroimidazoles in water samples. The parameters affecting the extraction efficiency, including sorbent type, pH value of sample solution, sample solution volume and elution solvent were optimized. Under the optimal conditions, good linearity (r > 0.99 for five analytes), high sensitivity (limit of detection: 8.250-16.33 ng L-1), ideal precision (intra-day precision: 1.1%-5.3%, inter-day precision: 1.8%-6.7%) and satisfactory accuracy (recovery: 70.4%-96.7%) were achieved. The proposed method was proved to be efficient, easily operative and environmentally friendly.
Collapse
Affiliation(s)
- Lin Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, People's Republic of China
| | - Yingying Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, People's Republic of China
| | - Sijia Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, People's Republic of China
| | - Ting Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, People's Republic of China
| | - Xiaohong Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, People's Republic of China.
| |
Collapse
|
24
|
Song B, Zhu X, Wang W, Wang L, Pei X, Qian X, Liu L, Xu Z. Toughening of melamine-formaldehyde foams and advanced applications based on functional design. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Wang J, Li X, Wang X, Zhang Y, Zhang B, Xing Z, Li X, Tian K, Wang H, Guo W. Controlled Synthesis of a Hierarchically Porous N‐Doped Carbon Material with Dominantly Pyrrolic Nitrogen Using a Self‐Sacrificial SBA‐15 Template for Increased Supercapacitance. ChemistrySelect 2022. [DOI: 10.1002/slct.202203398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Junyan Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse School of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 P. R. China
| | - Xinta Li
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse School of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 P. R. China
| | - Xinyu Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse School of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 P. R. China
| | - Yu Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse School of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 P. R. China
| | - Bosen Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse School of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 P. R. China
| | - Zhankun Xing
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse School of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 P. R. China
| | - Xueai Li
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse School of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 P. R. China
| | - Kesong Tian
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse School of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 P. R. China
| | - Haiyan Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse School of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 P. R. China
| | - Wanchun Guo
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse School of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 P. R. China
| |
Collapse
|
26
|
Chen Q, Zhang L, Shan Y, Liu Y, Zhao D. Novel Magnetically Driven Superhydrophobic Sponges Coated with Asphaltene/Kaolin Nanoparticles for Effective Oil Spill Cleanup. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3527. [PMID: 36234658 PMCID: PMC9565408 DOI: 10.3390/nano12193527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Fast and effective cleanup of oil spills remains a global challenge. A modified commercial sponge with superhydrophobicity, strong absorption capacity, outstanding magnetic response, and fire resistance were fabricated by a facile and inexpensive route of dip-coated melamine sponge carbonization. The low-cost petroleum asphaltene and kaolin nanoparticles were used as the dip-coating reagent. High absorption capacity of the fabricated sponges allowed rapid and continuous removal of oil contaminants. Taking advantage of the good refractory property, the sponges can be used in burning conditions and directly reused after burning out of the absorbed oil. Reusability tests showed that the modified sponges still maintained high absorption capacity (>85%) after six regeneration and reuse cycles. These characteristics make the fabricated sponge a promising aid to promote effective in situ burning cleanup of oil spills, contributing as a magnetic oil collector and a fire-resistant flexible boom. An example usage scenario of the sponges applied to in situ burning cleanup of oil spills is described.
Collapse
Affiliation(s)
- Qiang Chen
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Lingling Zhang
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Yuanhang Shan
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yindong Liu
- Petrochemical Research Institute, PetroChina Co., Ltd., Beijing 100195, China
| | - Dongfeng Zhao
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
27
|
Duan C, Xie Y, Ding M, Feng Y, Yao J. Design of carbonized melamine sponge@MOFs composites bearing diverse acid-base properties for boosting thermal and solar-driven CO2 cycloaddition. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
28
|
Wei W, Lu Z, Wu T, Wang H, Han Q, Liang Q. One-step fabrication of COF-coated melamine sponge for in-syringe solid-phase extraction of active ingredients from traditional Chinese medicine in serum samples. Anal Bioanal Chem 2022; 414:8071-8079. [PMID: 36169676 DOI: 10.1007/s00216-022-04340-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022]
Abstract
In this study, a covalent organic framework (COF)-TpBD-supported melamine sponge (MS) was fabricated through a one-step hydrothermal method. The obtained monolithic column was then applied in in-syringe solid-phase extraction (IS-SPE) for the separation of three volatile ingredients from serum samples. Given credit for the superior adsorption capacity of the COF and the homogeneous microporous property of MS, the developed column exhibited satisfactory separation of the targets. And the dominating adsorption mechanism was the hydrophobic interaction forces between TpBD and targets and the high mass transfer efficiency provided by the large pore structure of MS. The results of dynamic adsorption showed that the MS@TpBD column displayed much better adsorption performance than blank MS and TpBD. And it has featured great reusability up to 5 cycles and obtained satisfied recovery values (87.9 ~ 110.3%) in serum samples. As a result of sample clean-up, this column offers low limit of detections (LODs) down to 0.014, 0.010, and 0.020 μg/mL, respectively. In summary, we believe that this convenient separation column has prominent application promise in the fields of separating activity ingredients in biological samples.
Collapse
Affiliation(s)
- Wei Wei
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Tsinghua University, Beijing, 100084, China.,College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116000, China
| | - Zenghui Lu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ting Wu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116000, China
| | - Haibo Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116000, China.
| | - Qiang Han
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
29
|
Li C, DeVor A, Wang J, Valentine SJ, Li P. Rapid and flexible online desalting using Nafion-coated melamine sponge for mass spectrometry analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9341. [PMID: 35729084 PMCID: PMC9357145 DOI: 10.1002/rcm.9341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE The performance of mass spectrometry (MS) analysis is often affected by the presence of salt ions. To achieve optimal MS detection results, desalting is necessary for samples with high salt concentrations. We report a rapid, low-cost and flexible online desalting method using Nafion-coated sponge. This method is easy to perform and can be implemented to a wide range of customized fluidic systems. METHODS Nafion-coated melamine sponge was fabricated by soaking a glass tube containing a melamine sponge in Nafion solution and then drying overnight. The online desalting workflow is comprised of three major parts: (1) Syringe pump, which provides a continuous flow for the online fluid system; (2) Nafion sponge in a glass tube, where the online desalting of sample solution happens; (3) Capillary Vibrating Sharp-Edge Spray Ionization (cVSSI), which is an ionization technique to ionize the desalted analytes. RESULTS Effective online desalting of a 10 mM NaCl solution was demonstrated for a wide range of molecules including small molecules, peptides, DNAs, and proteins using a flow rate of 10 μL/min. By incorporating multiple pieces of the Nafion-coated sponge, effective desalting for ubiquitin and cytochrome c (Cyt-c) from physiological buffers, including phosphate-buffered saline (PBS) and tris-buffered saline (TBS), were also achieved. For molecules that are sensitive to low pH conditions after desalting, a R-SO3 NH4 -type Nafion-coated sponge was fabricated. Desalting of ubiquitin, oligosaccharide, and DNA oligomers from 10 mM NaCl or 10 mM KCl solutions was demonstrated. CONCLUSIONS Flexible, low-cost, and efficient online desalting was achieved by the Nafion-coated sponge. A variety of molecules ranging from small molecules, peptides, proteins to oligosaccharides and DNAs can be desalted for MS analysis. The desalting by Nafion sponge has great potential for desalting applications that require customized fluidic design and rapid analysis.
Collapse
Affiliation(s)
- Chong Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV
| | - Amanda DeVor
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV
| | - Jing Wang
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV
| | - Stephen J. Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV
| |
Collapse
|
30
|
Luke EJ, Potticary J, Terry LR, Doan HV, Hinoplen R, Cross S, Ting VP, Friedemann S, Hall SR. Synthesis of porous high-temperature superconductors via a melamine formaldehyde sacrificial template. NANOSCALE ADVANCES 2022; 4:3101-3108. [PMID: 36133523 PMCID: PMC9418839 DOI: 10.1039/d2na00333c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/16/2022] [Indexed: 06/16/2023]
Abstract
Nanostructured high-temperature superconductors YBa2Cu3O6+δ and Bi2Sr2CaCu2O8+δ were synthesised using a melamine formaldehyde sponge as a sacrificial template, via three solution-based approaches. In the case of YBa2Cu3O6+δ , a modified Pechini method produced a material with a superconducting transition at 92 K and a specific surface area of 4.22 m2 g-1. Further analysis with Hg porosimetry determined that the sponge exhibited a porosity of 82%. In the case of Bi2Sr2CaCu2O8+δ , this method produced a material that exhibited superconductivity at 86 K with a specific surface area of 9.62 m2 g-1. Hg-porosimetry determined that the BSCCO sponge exhibited a porosity of 78%.
Collapse
Affiliation(s)
- Emily J Luke
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Jason Potticary
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Lui R Terry
- Bristol Composites Institute, Department of Mechanical Engineering, University of Bristol Queen's Building Bristol BS8 1TR UK
| | - Huan V Doan
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Roemer Hinoplen
- School of Physics, HH Wills Physics Laboratory Tyndall Avenue Bristol BS8 1TL UK
| | - Sam Cross
- School of Physics, HH Wills Physics Laboratory Tyndall Avenue Bristol BS8 1TL UK
| | - Valeska P Ting
- Bristol Composites Institute, Department of Mechanical Engineering, University of Bristol Queen's Building Bristol BS8 1TR UK
| | - Sven Friedemann
- School of Physics, HH Wills Physics Laboratory Tyndall Avenue Bristol BS8 1TL UK
| | - Simon R Hall
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
31
|
Preparation and characterization of a novel 3D polymer support for the immobilization of cyclodextrin glucanotransferase and efficient biocatalytic synthesis of α-arbutin. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Zhao SW, Zhou Q, Long NB, Zhang RF. Efficient synthesis of N-acetyllactosamine using immobilized β-galactosidase on a novel 3D polymer support. Enzyme Microb Technol 2022; 160:110070. [DOI: 10.1016/j.enzmictec.2022.110070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/09/2022] [Accepted: 05/28/2022] [Indexed: 11/03/2022]
|
33
|
Highly Elastic Melamine Graphene/MWNT Hybrid Sponge for Sensor Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113530. [PMID: 35684470 PMCID: PMC9182109 DOI: 10.3390/molecules27113530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
The rapidly increased interest in multifunctional nanoelectronic devices, such as wearable monitors, smart robots, and electronic skin, motivated many researchers toward the development of several kinds of sensors in recent years. Flexibility, stability, sensitivity, and low cost are the most important demands for exploiting stretchable or compressible strain sensors. This article describes the formation and characteristics of a flexible, low-cost strain sensor by combining a commercial melamine sponge and a graphene/carbon nanotubes hybrid. The composite that emerged by doping the highly elastic melamine sponge with a highly conductive graphene/carbon nanotubes hybrid showed excellent piezoresistive behavior, with low resistivity of 22 kΩ m. Its function as a piezoresistive material exhibited a high sensitivity of 0.050 kPa−1 that combined with a wide detection area ranging between 0 to 50 kPa.
Collapse
|
34
|
Zhou Y, Gu X, Yuan Z, Li Y, Wang B, Yan J, Zhao D, Liu J, Liu X. PDMS mesh with reversible super-wettability for oil/water separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Jhou YR, Wang CH, Tsai HP, Shan YS, Lee GB. An integrated microfluidic platform featuring real-time reverse transcription loop-mediated isothermal amplification for detection of COVID-19. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 358:131447. [PMID: 35095200 DOI: 10.1016/j.snb.2022.131497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 05/24/2023]
Abstract
An integrated microfluidic platform (IMP) utilizing real-time reverse-transcription loop-mediated isothermal amplification (RT-LAMP) was developed here for detection and quantification of three genes of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; i.e., coronavirus diseases 2019 (COVID-19)): RNA-dependent RNA polymerase, the envelope gene, and the nucleocapsid gene for molecular diagnosis. The IMP comprised a microfluidic chip, a temperature control module, a fluidic control module that collectively carried out viral lysis, RNA extraction, RT-LAMP, and the real-time detection within 90 min in an automatic format. A limit of detection of 5 × 103 copies/reaction for each gene was determined with three samples including synthesized RNAs, inactive viruses, and RNAs extracted from clinical samples; this compact platform could be a useful tool for COVID-19 diagnostics.
Collapse
Affiliation(s)
- You-Ru Jhou
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Hung Wang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Huey-Pin Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
- Division of General Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Nano Engineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
36
|
Development of a three-dimensional macroporous sponge biocathode coated with carbon nanotube–MXene composite for high-performance microbial electrosynthesis systems. Bioelectrochemistry 2022; 146:108140. [DOI: 10.1016/j.bioelechem.2022.108140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 11/21/2022]
|
37
|
Polypyrrole-Coated Melamine Sponge as a Precursor for Conducting Macroporous Nitrogen-Containing Carbons. COATINGS 2022. [DOI: 10.3390/coatings12030324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Macroporous open-cell melamine sponges were coated with a conducting polymer, polypyrrole, during in-situ oxidative polymerization of pyrrole. Two samples, differing in polypyrrole content, 8.2 and 27.4 wt%, were prepared. They were exposed to various temperatures up to 700 °C in an inert atmosphere. The macroporous structure and mechanical integrity were preserved after this process. This converted both the polypyrrole coating and the melamine sponge to macroporous nitrogen-containing carbons. The changes in molecular structure in the course of carbonization were followed by elemental analysis and FTIR and Raman spectra. The specific surface area of polypyrrole-coated sponge increased from ca. 90 to ca. 300 m2 g−1 along with accompanying increase in the porosity. The conductivity of the sponges was recorded as a function of compression in a newly developed apparatus. The sponge containing 27.4 wt% pyrrole had conductivity of the order of 10−2 S·cm−1 at 0.1 MPa pressure, which was reduced by four orders of magnitude when exposed to 400–500 °C and nearly recovered after the temperature reached 700 °C. The sponges were tested in electromagnetic radiation shielding and displayed both radiation absorption and, to a lower extent, radiation reflection proportional mainly to the samples’ conductivity.
Collapse
|
38
|
Kong Y, Zhang S, Gao Y, Cheng X, Kong W, Qi Y, Wang S, Yin F, Dai Z, Yue Q, Gao B. Low-temperature carbonization synthesis of carbon-based super-hydrophobic foam for efficient multi-state oil/water separation. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127064. [PMID: 34537651 DOI: 10.1016/j.jhazmat.2021.127064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/06/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
In view of the complexity and diversity of multi-state oils, the development of green and low-cost materials with high selectivity to oils has important ecological significance in the polluted water treatment. Herein, a simple method was proposed to develop large-scale production of superhydrophobic sponges (CPMF200 sponges) for high-efficiency oil/water separation under different complex environments. The as-prepared CPMF200 sponges possessed many superior properties, including high roughness, well-developed porosity, good thermal stability, excellent chemical stability, and superhydrophobic properties (water contact angle is 152°), which is conducive to high oil adsorption capacity (up to 70-179 times of its own weight) and oil-water separation. More importantly, the CPMF400 sponge has an excellent photothermal conversion capability to improve the fluidity of high viscosity oil for oil recovery. Based on a simple synthesis method, it exhibits high-efficiency absorption of multi-state oils and excellent oil-water separation performance and strongly proves their application prospects in treating oily wastewater.
Collapse
Affiliation(s)
- Yan Kong
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Shumei Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China.
| | - Xiaohu Cheng
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Wenjia Kong
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Yuanfeng Qi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | | | | | - Zhenguo Dai
- Shandong Shanda WIT Science and Technology Co., Ltd., Jinan 250061, Shandong, PR China
| | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266000, PR China
| |
Collapse
|
39
|
Melamine sponge-based copper-organic framework (Cu-CPP) as a multi-functional filter for air purifiers. KOREAN J CHEM ENG 2022; 39:954-962. [PMID: 35153359 PMCID: PMC8815390 DOI: 10.1007/s11814-021-1000-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 10/25/2022]
|
40
|
He YJ, Shao YW, Xiao YY, Yang JH, Qi XD, Wang Y. Multifunctional Phase Change Composites Based on Elastic MXene/Silver Nanowire Sponges for Excellent Thermal/Solar/Electric Energy Storage, Shape Memory, and Adjustable Electromagnetic Interference Shielding Functions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6057-6070. [PMID: 35042328 DOI: 10.1021/acsami.1c23303] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Multifunctional phase change materials (PCMs) are highly desirable for the thermal management of miniaturized and integrated electronic devices. However, the development of flexible PCMs possessing heat energy storage, shape memory, and adjustable electromagnetic interference (EMI) shielding properties under complex conditions remains a challenge. Herein, the multifunctional PCM composites were prepared by encapsulating poly(ethylene glycol) (PEG) into porous MXene/silver nanowire (AgNW) hybrid sponges by vacuum impregnation. Melamine foams (MFs) were chosen as a template to coat with MXene/AgNW (MA) to construct a continuous electrical/thermal conductive network. The MF@MA/PEG composites showed a high latent heat (141.3 J/g), high dimension retention ratio (96.8%), good electrical conductivity (75.3 S/m), and largely enhanced thermal conductivity (2.6 times of MF/PEG). Moreover, by triggering the phase change of the PEG, the sponges displayed a significant photoinduced shape memory function with a high shape fixation ratio (∼100%) and recovery ratio (∼100%). Interestingly, the EMI shielding effectiveness (SE) can be adjusted from 12.4 to 30.5 dB by a facile compression-recovery process based on shape memory properties. Furthermore, a finite element simulation was conducted to emphasize the advantage of the MF@MA/PEG composites in the thermal management of chips. Such flexible PCM composites with high latent heat storage, light-actuated shape memory, and adjustable EMI shielding functions exhibit great potential as smart thermal management materials in military and aerospace applications.
Collapse
Affiliation(s)
- Ying-Jie He
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610032, China
| | - Yao-Wen Shao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610032, China
| | - Yuan-Yuan Xiao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610032, China
| | - Jing-Hui Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610032, China
| | - Xiao-Dong Qi
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610032, China
| | - Yong Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education of China, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610032, China
| |
Collapse
|
41
|
Song Q, Zhu J, Niu X, Wang J, Dong G, Shan M, Zhang B, Matsuyama H, Zhang Y. Interfacial assembly of micro/nanoscale nanotube/silica achieves superhydrophobic melamine sponge for water/oil separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119920] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Huang T, Cao S, Luo D, Zhang N, Lei YZ, Wang Y. Polydopamine-assisted polyethylenimine grafting melamine foam and the application in wastewater purification. CHEMOSPHERE 2022; 287:132054. [PMID: 34474377 DOI: 10.1016/j.chemosphere.2021.132054] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Melamine foam (MF) is a widely used commercial product and exhibits wide applications in many fields ranging from building, transportation to daily chemical product. Recent researches confirm that the special three-dimensional (3D) framework structure of MF can be an ideal substrate to prepare functional materials. In this work, the water-soluble polyethylenimine (PEI) was grafted onto the framework of MF to develop the water purification material toward heavy metal ions removal. The grafting of PEI on MF was achieved with the aids of polydopamine (PDA) coating and epoxy chloropropane (ECH) cross-linking successively. The 3D framework of MF could be well reserved and PEI was homogeneously grafted onto the framework surface. The adsorption capacity of the adsorbent was dependent upon the molecular wight of PEI. Lower PEI molecular weight endowed the adsorbent with better adsorption ability. The maximum adsorption capacity reached 328.95 mg/g, and the adsorbent exhibited extremely high adsorption stability with increasing cycling measurement numbers. Further results showed that the adsorbent also exhibited high reduction ability and induced about 62.5% toxic Cr(VI) to be reduced. This work confirms that the PEI-modified MF sample is a promising adsorbent in the removal of heavy metal ions and it can be used in wastewater treatment.
Collapse
Affiliation(s)
- Ting Huang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, China
| | - Sheng Cao
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, China
| | - Dan Luo
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, China
| | - Nan Zhang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, China
| | - Yan-Zhou Lei
- Analytical and Testing Center, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yong Wang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
43
|
Kallenbach P, Bayat E, Ströbele M, Romao CP, Meyer HJ. Tricopper Melaminate, a Metal-Organic Framework Containing Dehydrogenated Melamine and Cu-Cu Bonding. Inorg Chem 2021; 60:16303-16307. [PMID: 34665613 DOI: 10.1021/acs.inorgchem.1c02145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Crystals of Cu3(C3N6H3) are formed by a solid-state reaction of CuCl with melamine to form a layered framework structure with open pores running along the hexagonal axis direction of the P6/mcc structure. The compound contains the hitherto unknown (C3N6H3)3- ion, assigned as melaminate. Bonding interactions within and between Cu-Cu dumbbells, which connect melaminate ions into layers, are analyzed by density functional theory calculations of the electron localization function and directional Young's modulus. Band structure calculations reveal the material to be a semiconductor with a band gap on the order of 2 eV.
Collapse
Affiliation(s)
- Paula Kallenbach
- Section for Solid State and Theoretical Inorganic Chemistry Institute of Inorganic Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Elaheh Bayat
- Section for Solid State and Theoretical Inorganic Chemistry Institute of Inorganic Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Markus Ströbele
- Section for Solid State and Theoretical Inorganic Chemistry Institute of Inorganic Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Carl P Romao
- Section for Solid State and Theoretical Inorganic Chemistry Institute of Inorganic Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Hans-Jürgen Meyer
- Section for Solid State and Theoretical Inorganic Chemistry Institute of Inorganic Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| |
Collapse
|
44
|
ZIF-67 MOF-derived Co nanoparticles supported on N-doped carbon skeletons for the amperometric determination of hydrogen peroxide. Mikrochim Acta 2021; 188:383. [PMID: 34661751 DOI: 10.1007/s00604-021-05020-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/07/2021] [Indexed: 01/08/2023]
Abstract
ZIF-67-derived Co nanoparticles supported on N-doped carbon skeletons have been prepared from melamine foam (Co-NPs/NCs) for non-enzymatic electrochemical H2O2 detection. The synthesis of Co-NPs/NCs was demonstrated via calcination treatment using melamine foam (MF) and ZIF-67 as precursors. The experimental results show that Co-NPs/NCs composites exhibit eminent catalytic activity toward specific determination of H2O2 with high selectivity and sensitivity (252.43 and 203.88 μA mM-1 cm-2), low LOD (0.12 μM), and wide linear ranges (10-2080 and 2080-11,800 μM). The excellent performance might be ascribed to the synergetic effects of MOF and N-doped carbon skeletons. The carbon skeletons serve as a conductive bridge and provide a large specific surface area, which can facilitate electron transfer and well disperse nanoparticles. This non-enzymatic electrochemical sensor based on Co-NPs/NCs can successfully detect H2O2 secreted by living cells, indicating its great potential in the early diagnosis and pathological exploration of disease.
Collapse
|
45
|
Yang J, Yang X, Jia Y, Li B, Shi Q. Facile synthesis of superhydrophobic MS/TiO 2/PDMS sponge for efficient oil-water separation. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:2040-2056. [PMID: 34695029 DOI: 10.2166/wst.2021.426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To obtain a kind of superhydrophobic sponge with high oil and water selectivity, the MS/TiO2/PDMS sponge was prepared via a two-step hydrophobic fabrication based on the melamine sponge (MS), tetrabutyl titanate (TBOT), and polydimethylsiloxane (PDMS). The effects of modification time, the concentrations of TBOT and PDMS on the properties of the MS/TiO2/PDMS sponge were studied, and the separation mechanism was also discussed based on the interaction between the oil and the surface of the MS/TiO2/PDMS sponge. The results suggest that under optimal conditions, the MS/TiO2/PDMS sponge show superhydrophobicity. The contact angle and adsorption capacity for oil of the MS/TiO2/PDMS sponge are 149.2° and 98.5 g·g-1, respectively, and they can be recycled for about 25 cycles after oil-water separation test. This study prepares a new composite material with high oil-water selectivity, which is a good foundation for the development and research of new oil adsorbents.
Collapse
Affiliation(s)
- Juxiang Yang
- School of Chemical Engineering, Xi'an University, Xi'an, Shaanxi 710065, China E-mail:
| | - Xueying Yang
- School of Chemical Engineering, Xi'an University, Xi'an, Shaanxi 710065, China E-mail:
| | - Yuan Jia
- School of Chemical Engineering, Xi'an University, Xi'an, Shaanxi 710065, China E-mail:
| | - Beibei Li
- School of Chemical Engineering, Xi'an University, Xi'an, Shaanxi 710065, China E-mail:
| | - Qi Shi
- School of Chemical Engineering, Xi'an University, Xi'an, Shaanxi 710065, China E-mail:
| |
Collapse
|
46
|
Jiang S, Qian K, Yu K, Zhou H, Weng Y, Zhang Z. Study on ultralight and flexible Fe3O4/melamine derived carbon foam composites for high-efficiency microwave absorption. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Sheng Q, Tian W, Wood CD. Hyper-Cross-Linked Polymer-Decorated Surfaces with Ultrahigh Efficiency for Oil/Water Emulsion Separation and Recovery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39925-39933. [PMID: 34384219 PMCID: PMC8397237 DOI: 10.1021/acsami.1c11302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
A novel superhydrophobic/superoleophilic surface has been developed by direct surface condensation of dichloroxylene that results in a controlled coating of hyper-cross-linked polymers. Specifically, the coating was successfully applied to a melamine formaldehyde sponge and optimized by fine-tuning the reaction variables. The resulting hierarchical porous sorbents stabilized by polydimethylsiloxane exhibited an increased surface area, good physiochemical stability, high selectivity, and adsorption capacities for a variety of oils and solvents. The composite can separate oil in water emulsions with ultrahigh separation efficiency >99% over 10 cycles in liter-scale experiments, wherein the highest separation efficiency was as low as 2 ppm even with a short period of filtration, suggesting strong potential for oil/water separation and recovery.
Collapse
Affiliation(s)
- Qi Sheng
- Energy
Business Unit, Commonwealth Scientific Industrial
Research Organisation (CSIRO), Kensington, Western Australia 6151, Australia
| | - Wendy Tian
- Manufacturing, Commonwealth Scientific Industrial Research Organisation
(CSIRO), Clayton, Victoria 3168, Australia
| | - Colin D. Wood
- Energy
Business Unit, Commonwealth Scientific Industrial
Research Organisation (CSIRO), Kensington, Western Australia 6151, Australia
| |
Collapse
|
48
|
Morandini A, Spadati E, Leonetti B, Sole R, Gatto V, Rizzolio F, Beghetto V. Sustainable triazine-derived quaternary ammonium salts as antimicrobial agents. RSC Adv 2021; 11:28092-28096. [PMID: 35480717 PMCID: PMC9038131 DOI: 10.1039/d1ra03455c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/15/2021] [Indexed: 12/23/2022] Open
Abstract
The first examples of highly efficient antimicrobial triazine-derived bis imidazolium quaternary ammonium salts (TQAS) are reported. TQAS have been prepared with an easy, atom efficient, economically sustainable strategy and tested as antimicrobial agents, reaching MIC values below 10 mg L-1. Distinctively, TQAS have low MIC and low cytotoxicity.
Collapse
Affiliation(s)
- Andrea Morandini
- Università Ca' Foscari di Venezia Via Torino 155 Venezia Mestre 30172 Italy
| | - Emanuele Spadati
- Università Ca' Foscari di Venezia Via Torino 155 Venezia Mestre 30172 Italy
| | - Benedetta Leonetti
- Brenta S.r.l. - Nine Trees Group. Viale Milano, 26 36075 Montecchio Maggiore Vicenza Italy
| | - Roberto Sole
- Università Ca' Foscari di Venezia Via Torino 155 Venezia Mestre 30172 Italy
- Consorzio Interuniversitario per le Reattività Chimiche e Catalisi (CIRCC) Via C. Ulpiani 27 70126 Bari Italy
| | - Vanessa Gatto
- Crossing S.r.l. Viale della Repubblica 193/b Treviso 31100 Italy
| | - Flavio Rizzolio
- Università Ca' Foscari di Venezia Via Torino 155 Venezia Mestre 30172 Italy
| | - Valentina Beghetto
- Università Ca' Foscari di Venezia Via Torino 155 Venezia Mestre 30172 Italy
- Crossing S.r.l. Viale della Repubblica 193/b Treviso 31100 Italy
| |
Collapse
|
49
|
Stejskal J, Sapurina I, Vilčáková J, Humpolíček P, Truong TH, Shishov MA, Trchová M, Kopecký D, Kolská Z, Prokeš J, Křivka I. Conducting polypyrrole-coated macroporous melamine sponges: a simple toy or an advanced material? CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01776-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
50
|
Shomal R, Ogubadejo B, Shittu T, Mahmoud E, Du W, Al-Zuhair S. Advances in Enzyme and Ionic Liquid Immobilization for Enhanced in MOFs for Biodiesel Production. Molecules 2021; 26:3512. [PMID: 34207684 PMCID: PMC8226643 DOI: 10.3390/molecules26123512] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/30/2021] [Accepted: 06/06/2021] [Indexed: 11/16/2022] Open
Abstract
Biodiesel is a promising candidate for sustainable and renewable energy and extensive research is being conducted worldwide to optimize its production process. The employed catalyst is an important parameter in biodiesel production. Metal-organic frameworks (MOFs), which are a set of highly porous materials comprising coordinated bonds between metals and organic ligands, have recently been proposed as catalysts. MOFs exhibit high tunability, possess high crystallinity and surface area, and their order can vary from the atomic to the microscale level. However, their catalytic sites are confined inside their porous structure, limiting their accessibility for biodiesel production. Modification of MOF structure by immobilizing enzymes or ionic liquids (ILs) could be a solution to this challenge and can lead to better performance and provide catalytic systems with higher activities. This review compiles the recent advances in catalytic transesterification for biodiesel production using enzymes or ILs. The available literature clearly indicates that MOFs are the most suitable immobilization supports, leading to higher biodiesel production without affecting the catalytic activity while increasing the catalyst stability and reusability in several cycles.
Collapse
Affiliation(s)
- Reem Shomal
- Chemical and Petroleum Engineering Department, UAE University, Al Ain 15551, United Arab Emirates; (R.S.); (B.O.); (T.S.); (E.M.)
| | - Babatunde Ogubadejo
- Chemical and Petroleum Engineering Department, UAE University, Al Ain 15551, United Arab Emirates; (R.S.); (B.O.); (T.S.); (E.M.)
| | - Toyin Shittu
- Chemical and Petroleum Engineering Department, UAE University, Al Ain 15551, United Arab Emirates; (R.S.); (B.O.); (T.S.); (E.M.)
| | - Eyas Mahmoud
- Chemical and Petroleum Engineering Department, UAE University, Al Ain 15551, United Arab Emirates; (R.S.); (B.O.); (T.S.); (E.M.)
| | - Wei Du
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China;
| | - Sulaiman Al-Zuhair
- Chemical and Petroleum Engineering Department, UAE University, Al Ain 15551, United Arab Emirates; (R.S.); (B.O.); (T.S.); (E.M.)
- National Water and Energy Center, UAE University, Al Ain 15551, United Arab Emirates
| |
Collapse
|