1
|
Mishra DN, Prasad L, Suyal U. Synthesis of zinc oxide nanoparticles using Trichoderma harzianum and its bio-efficacy on Alternaria brassicae. Front Microbiol 2025; 16:1506695. [PMID: 40018670 PMCID: PMC11864937 DOI: 10.3389/fmicb.2025.1506695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025] Open
Abstract
Increasing concerns about chemical fungicides require sustainable alternatives for crop protection. Microbe-mediated synthesis of metal nanoparticles offers a sustainable, eco-friendly and highly effective strategy for plant disease management. This study investigates the mycosynthesis of zinc oxide nanoparticles (ZnO NPs) using the culture filtrate of Trichoderma harzianum and their antifungal activity against Alternaria brassicae. Nanoparticles were synthesized under optimized conditions of cell-free culture filtrate (CFCF) concentration, substrate concentration, pH and temperature. Ultraviolet-visible (UV-Vis) spectroscopy confirmed an absorption peak between 200 and 400 nm, while X-ray diffraction (XRD) confirms the hexagonal crystal structure with an average size of 29 nm. Dynamic light scattering (DLS) and zeta potential analysis revealed a hydrodynamic size of 50.79 nm and a surface charge of -17.49 mV, indicating good stability. Fourier transform infrared (FTIR) spectroscopy analysis identified functional groups (C=O, N-O, and O-H) that are crucial for nanoparticles stabilization. Scanning electron microscopy (SEM) and High-resolution transmission electron microscopy (HR-TEM) analysis revealed spherical, rod-shaped and hexagonal nanoparticles with sizes between 12 and 41 nm. Mycogenic-zinc oxide nanoparticles (M-ZnO NPs) significantly inhibited the mycelial growth of A. brassicae by 91.48% at 200 μg/mL, compared to chemically synthesized ZnO NPs at 200 μg/mL (79.62%) and mancozeb 0.2% (82.96%). SEM-EDX analysis revealed deformations and absorption of M-ZnO NPs in fungal hyphae, while confocal laser scanning microscopy (CLSM) showed increased reactive oxygen species (ROS) formation and impaired membrane integrity in treated fungal cells. Stress enzyme analysis confirmed increased superoxide dismutase (SOD) and catalase (CAT) activity by 44.2 U/mol and 39.6 U/mol at 200 μg/mL M-ZnO NPs. Our studies suggest that the M-ZnO NPs synthesized with T. harzianum culture filtrate have increased antifungal activity even at lower doses and can be used as an alternative to traditional fungicides without affecting environment.
Collapse
Affiliation(s)
- Deep Narayan Mishra
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Lakshman Prasad
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
2
|
Pakdel E, Daoud WA, Wang X. Effect of the Photoreduction Process on the Self-Cleaning and Antibacterial Activity of Au-Doped TiO 2 Colloids on Cotton Fabric. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38688012 DOI: 10.1021/acsami.4c01238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
This study aims at understanding the effect of the photoreduction process during the synthesis of gold (Au)-doped TiO2 colloids on the conferred functionalities on cotton fabrics. TiO2/Au and TiO2/Au/SiO2 colloids were synthesized through the sol-gel method with and without undergoing the photoreduction step based on different molar ratios of Au:Ti (0.001 and 0.01) and TiO2/SiO2 (1:1 and 1:2.3). The colloids were applied to cotton fabrics, and the obtained photocatalytic self-cleaning, wet photocatalytic activity, UV protection, and antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria were investigated. The obtained results demonstrated that the photoreduction of Au weakened the self-cleaning effect and reduced the photocatalytic activity of coated fabrics. Also, an excess amount of Au deteriorated the photocatalytic activity under both UV and visible light. The most efficient self-cleaning effect was obtained on fabrics coated with a ternary TiO2/Au/SiO2 colloid containing ionic Au, where it decomposed coffee and red-wine stains after 3 h of illumination. Adding silica (SiO2) made the fabrics superhydrophilic and led to greater methylene blue (MB) dye adsorption, a faster dye degradation pace, and more efficient stain removal. Moreover, the photoreduction process affected the size of Au nanoparticles (NPs), weakened the antibacterial activity of fabrics against both types of tested bacteria, and modestly increased the UV protection. In general, the photoactivity of Au-doped colloids was influenced by the synthesis method, the ionic and metallic states of the Au dopant, the concentration of the Au dopant, and the presence and concentration of silica.
Collapse
Affiliation(s)
- Esfandiar Pakdel
- The Hong Kong Polytechnic University, School of Fashion and Textiles, Research Centre of Textiles for Future Fashion, JC STEM Lab of Sustainable Fibers and Textiles, Hung Hom 999077, Kowloon, Hong Kong
| | - Walid A Daoud
- Department of Mechanical Engineering, City University of Hong Kong, Hung Hom 999077, Hong Kong
| | - Xungai Wang
- The Hong Kong Polytechnic University, School of Fashion and Textiles, Research Centre of Textiles for Future Fashion, JC STEM Lab of Sustainable Fibers and Textiles, Hung Hom 999077, Kowloon, Hong Kong
| |
Collapse
|
3
|
Montaser AS, Abdelhameed RM, Shaheen TI. Formulating of the sustained release of Tebuconazole pesticide using chitosan aerogel reinforced NFC/CaCO 3 nanocomposite. Int J Biol Macromol 2024; 256:128419. [PMID: 38013080 DOI: 10.1016/j.ijbiomac.2023.128419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
Chitosan-based aerogels were fabricated through utilizing of nanofibrillated cellulose (NFC)/CaCO3 composites. Chitosan aerogel and extra three aerogels loaded different concentrations of NFC/CaCO3 were investigated to explore their release efficiency of Tebuconazole pesticides. Results obtained from ATR-FTIR showed a remarkable decline of the characterized chitosan hydroxyl group peak prolonging with appearance of new peaks assigned to the inclusion of inorganic calcium element. Also, SEM images showed chitosan aerogel with regular porous structure increased by incorporation with of NFC/CaCO3 nanocomposite, while EDS affirmed the presence of calcium element rather pristine chitosan aerogel. In addition to this, the physical characterizations showed significant improvement in swelling properties for aerogels incorporated NFC/CaCO3 nanocomposite at low ratios. Chitosan aerogel reinforced NFC/CaCO3 nanocomposite exhibited benefit on loading and release efficiency of Tebuconazole. All samples showed accessibility to column release method with fastest release at low slow rate 2 mL/min as giving chance for diffusion and solubility of ingredient, while release increase as heat increase as result of pore expansion. In conclusion, chitosan aerogels incorporated calcium carbonate showed better-sustained release of Tebuconazole pesticides than pristine chitosan aerogel. The produced aerogels loaded NFC/CaCO3 nanocomposite could be promising for controlled release of pesticides at water-streams in agriculture sector.
Collapse
Affiliation(s)
- Ahmed S Montaser
- Department of Pretreatment and Finishing of Cellulosic Based Textiles, Textile Research and Technology Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt
| | - Reda M Abdelhameed
- Department of Applied Organic Chemistry, Chemical Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Tharwat I Shaheen
- Department of Pretreatment and Finishing of Cellulosic Based Textiles, Textile Research and Technology Institute, National Research Centre, Scopus Affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt.
| |
Collapse
|
4
|
Meda US, Soundarya VG, Madhu H, Bhat N. Nano-engineered textiles: Development and applications. MATERIALS SCIENCE AND ENGINEERING: B 2023; 296:116636. [DOI: 10.1016/j.mseb.2023.116636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Othman AM, Poulos AS, Torres O, Routh AF. Liquid-Liquid Phase Separation Induced by Vapor Transfer in Evaporative Binary Sessile Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13242-13257. [PMID: 37677134 PMCID: PMC10515642 DOI: 10.1021/acs.langmuir.3c01686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/21/2023] [Indexed: 09/09/2023]
Abstract
Drying of binary sessile droplets consisting of ethanol and octamethyltrisiloxane on a high-energy surface is investigated. During the process of evaporation, the droplets undergo liquid-liquid phase separation, resulting in the appearance of microdroplets at the liquid-air interface, which subsequently violently burst. This phase separation is attributed to water vapor transfer into the droplet, which modifies the solubility and leads to the formation of a ternary mixture. The newly formed ternary mixture may undergo nucleation and growth or spinodal decomposition, depending on the droplet composition path. By control of the relative humidity of air, phase separation can be mitigated or even eliminated. The droplets also display high mobility and complex wetting behavior due to phase separation, with two contracting and two spreading stages. The mass loss experiments reveal that the droplets undergo three distinct drying stages with an enhanced evaporation rate observed during the phase separation stage. A modified diffusion-limited model was employed to predict the evaporation rate, accounting for the physiochemical changes during evaporation and proved to be consistent with experimental observations. The findings of this work enhance our understanding of a coupled fundamental process involving the evaporation of multicomponent mixtures, wetting, and phase separation.
Collapse
Affiliation(s)
- Ahmed M. Othman
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Dr, Cambridge CB3 0AS, U.K.
| | | | - Ophelie Torres
- Unilever
R & D Port Sunlight, Quarry Road East, Wirral CH63 3JW, U.K.
| | - Alexander. F. Routh
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Dr, Cambridge CB3 0AS, U.K.
| |
Collapse
|
6
|
Hameed H, Waheed A, Sharif MS, Saleem M, Afreen A, Tariq M, Kamal A, Al-Onazi WA, Al Farraj DA, Ahmad S, Mahmoud RM. Green Synthesis of Zinc Oxide (ZnO) Nanoparticles from Green Algae and Their Assessment in Various Biological Applications. MICROMACHINES 2023; 14:mi14050928. [PMID: 37241552 DOI: 10.3390/mi14050928] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
The biosynthesis of algal-based zinc oxide (ZnO) nanoparticles has shown several advantages over traditional physico-chemical methods, such as lower cost, less toxicity, and greater sustainability. In the current study, bioactive molecules present in Spirogyra hyalina extract were exploited for the biofabrication and capping of ZnO NPs, using zinc acetate dihydrate and zinc nitrate hexahydrate as precursors. The newly biosynthesized ZnO NPs were characterized for structural and optical changes through UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). A color change in the reaction mixture from light yellow to white indicated the successful biofabrication of ZnO NPs. The UV-Vis absorption spectrum peaks at 358 nm (from zinc acetate) and 363 nm (from zinc nitrate) of ZnO NPs confirmed that optical changes were caused by a blue shift near the band edges. The extremely crystalline and hexagonal Wurtzite structure of ZnO NPs was confirmed by XRD. The involvement of bioactive metabolites from algae in the bioreduction and capping of NPs was demonstrated by FTIR investigation. The SEM results revealed spherical-shaped ZnO NPs. In addition to this, the antibacterial and antioxidant activity of the ZnO NPs was investigated. ZnO NPs showed remarkable antibacterial efficacy against both Gram-positive and Gram-negative bacteria. The DPPH test revealed the strong antioxidant activity of ZnO NPs.
Collapse
Affiliation(s)
- Hajra Hameed
- Department of Biotechnology, Mirpur University of Science and Technology, New Mirpur City 10250, Pakistan
| | - Abdul Waheed
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Muhammad Shakeeb Sharif
- Department of Biotechnology, Mirpur University of Science and Technology, New Mirpur City 10250, Pakistan
| | - Muhammad Saleem
- Department of Biotechnology, Mirpur University of Science and Technology, New Mirpur City 10250, Pakistan
| | - Afshan Afreen
- Department of Biotechnology, Mirpur University of Science and Technology, New Mirpur City 10250, Pakistan
| | - Muhammad Tariq
- Department of Biotechnology, Mirpur University of Science and Technology, New Mirpur City 10250, Pakistan
| | - Asif Kamal
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Wedad A Al-Onazi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Dunia A Al Farraj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Shabir Ahmad
- Department of Botany and Biodiversity Research, University of Vienna, 1010 Vienna, Austria
| | - Rania M Mahmoud
- Department of Botany, Faculty of Science, University of Fayoum, Fayoum 63514, Egypt
| |
Collapse
|
7
|
Salem SS. A mini review on green nanotechnology and its development in biological effects. Arch Microbiol 2023; 205:128. [PMID: 36944830 PMCID: PMC10030434 DOI: 10.1007/s00203-023-03467-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/23/2023]
Abstract
The utilization of living organisms for the creation of inorganic nanoscale particles is a potential new development in the realm of biotechnology. An essential milestone in the realm of nanotechnology is the process of creating dependable and environmentally acceptable metallic nanoparticles. Due to its increasing popularity and ease, use of ambient biological resources is quickly becoming more significant in this field of study. The phrase "green nanotechnology" has gained a lot of attention and refers to a variety of procedures that eliminate or do away with hazardous compounds to repair the environment. Green nanomaterials can be used in a variety of biotechnological sectors such as medicine and biology, as well as in the food and textile industries, wastewater treatment and agriculture field. The construction of an updated level of knowledge with utilization and a study of the ambient biological systems that might support and revolutionize the creation of nanoparticles (NPs) are presented in this article.
Collapse
Affiliation(s)
- Salem S Salem
- Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
8
|
Cosma DV, Tudoran C, Coroș M, Socaci C, Urda A, Turza A, Roșu MC, Barbu-Tudoran L, Stanculescu I. Modification of Cotton and Leather Surfaces Using Cold Atmospheric Pressure Plasma and TiO 2-SiO 2-Reduced Graphene Oxide Nanopowders. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1397. [PMID: 36837027 PMCID: PMC9967795 DOI: 10.3390/ma16041397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Surface modification of textile fabrics and leathers is very versatile and allows the products quality improvement. In this work, cotton and leather substrates were pre-treated with cold atmospheric pressure plasma (CAPP) and further coated with TiO2-SiO2-reduced graphene oxide composites in dispersion form. By using a Taguchi scheme, this research evaluated the effect of three significant parameters, i.e., the pre-treatment with CAPP, organic dispersion coating and TiO2-SiO2-reduced graphene oxide (TS/GR) composites, that may affect the morpho-structural properties and photocatalytic activity of modified cotton and leather surfaces. The characteristics of cotton/leather surfaces were evaluated by morphological, structural, optical and self-cleaning ability using scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX), X-ray powder diffraction (XRD), attenuated total reflection-Fourier Transform Infrared spectroscopy (ATR-FTIR) and UV-Vis spectroscopy. The self-cleaning performance of the obtained cotton and leather samples was evaluated by photocatalytic discoloration of berry juice surface stains under UV light irradiation for 12 h. The successfulness of coating formulations was proven by the SEM analysis and UV-Vis spectroscopy. The XRD patterns and ATR-FTIR spectra revealed the cellulose and collagen structures as dominant components of cotton and leather substrates. The CAPP treatment did not damage the cotton and leather structures. The photocatalytic results highlighted the potential of TiO2-SiO2-reduced graphene oxide composites in organic dispersion media, as coating formulations, for further use in the fabrication of innovative self-cleaning photocatalytic cotton and leather products.
Collapse
Affiliation(s)
- Dragoș-Viorel Cosma
- Department of Mass Spectrometry, Chromatography and Applied Physics, National Institute for Research and Development of Isotopic and Molecular Technologies (INCDTIM), 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Cristian Tudoran
- Cetatea, National Institute for Research and Development of Isotopic and Molecular Technologies (INCDTIM), 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Maria Coroș
- Department of Mass Spectrometry, Chromatography and Applied Physics, National Institute for Research and Development of Isotopic and Molecular Technologies (INCDTIM), 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Crina Socaci
- Department of Mass Spectrometry, Chromatography and Applied Physics, National Institute for Research and Development of Isotopic and Molecular Technologies (INCDTIM), 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Alexandra Urda
- Department of Mass Spectrometry, Chromatography and Applied Physics, National Institute for Research and Development of Isotopic and Molecular Technologies (INCDTIM), 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Alexandru Turza
- Department of Mass Spectrometry, Chromatography and Applied Physics, National Institute for Research and Development of Isotopic and Molecular Technologies (INCDTIM), 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Marcela-Corina Roșu
- Department of Mass Spectrometry, Chromatography and Applied Physics, National Institute for Research and Development of Isotopic and Molecular Technologies (INCDTIM), 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- Electron Microscopy Center “Prof. C. Crăciun”, Faculty of Biology & Geology, “Babeș-Bolyai” University, 5-7 Clinicilor Street, 400006 Cluj-Napoca, Romania
- Electron Microscopy Integrated Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania
| | - Ioana Stanculescu
- Analytical Chemistry and Physical Chemistry Department, Faculty of Chemistry, University of Bucharest, Regina Elisabeta, no. 4-12, 030018 Bucharest, Romania
- Horia Hulubei National Institute of Research and Development for Physics and Nuclear Engineering, 30 Reactorului Str., 077125 Magurele, Romania
| |
Collapse
|
9
|
In-Situ Functionalization of Cotton Fabric by TiO2: The Influence of Application Routes. Catalysts 2022. [DOI: 10.3390/catal12111330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The desirable chemical, physical, electronic, and optical properties of TiO2, as well as its high availability, non-toxicity, and low price, make it very popular in the modern functional textile industry. Here, TiO2 from titanium tetraisopropoxide (TTIP) precursors at concentrations of 2, 4, and 6% and commercial TiO2 nanoparticles (NPs) in dispersion form were applied to cotton textiles using low-temperature application methods (i.e., sol–gel pad–dry–cure, pad–hydrothermal, and exhaustion–hydrothermal methods) to provide a systematic study of the influence of low-temperature application processes and TIIP concentration and on the overall properties of TiO2-functionalized textile materials. The treated cotton fabric samples were characterized using scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDS), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction spectroscopy (XRD) to determine their surface morphology, chemical composition, and crystal structure, while the optical properties of the synthesized TiO2 were determined using the absorption method and Tauc plotting. Afterwards, corresponding UV protection properties and photocatalytic self-cleaning activity were evaluated. In contrast to commercial TiO2, a relatively thin TiO2 deposition with an amorphous structure and a blue-shifted band gap between 3.18 and 3.28 eV was formed when applied at low temperatures. A sol with a TIIP concentrations of 2 and 4% applied using the exhaustion–hydrothermal and sol–gel dry-cure method, respectively, proved to be optimal. Both applied sol concentrations provided good UV protection and excellent photocatalytic performance, which exceeded that of commercial TiO2, even though the Ti contents in the samples were two- to three-times lower and the synthesized TiO2 exhibited an amorphous structure.
Collapse
|
10
|
Chruściel JJ. Modifications of Textile Materials with Functional Silanes, Liquid Silicone Softeners, and Silicone Rubbers-A Review. Polymers (Basel) 2022; 14:4382. [PMID: 36297958 PMCID: PMC9611165 DOI: 10.3390/polym14204382] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022] Open
Abstract
General information concerning different kinds of chemical additives used in the textile industry has been described in this paper. The properties and applications of organofunctional silanes and polysiloxanes (silicones) for chemical and physical modifications of textile materials have been reviewed, with a focus on silicone softeners, silane, and silicones-based superhydrophobic finishes and coatings on textiles composed of silicone elastomers and rubbers. The properties of textile materials modified with silanes and silicones and their practical and potential applications, mainly in the textile industry, have been discussed.
Collapse
Affiliation(s)
- Jerzy J Chruściel
- ŁUKASIEWICZ Research Network-Lodz Institute of Technology, Brzezińska Str. 5/15, 92-103 Łódź, Poland
| |
Collapse
|
11
|
Green Synthesis and Antibacterial Activity of Ag/Fe2O3 Nanocomposite Using Buddleja lindleyana Extract. Bioengineering (Basel) 2022; 9:bioengineering9090452. [PMID: 36134998 PMCID: PMC9495838 DOI: 10.3390/bioengineering9090452] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 12/11/2022] Open
Abstract
In the study reported in this manuscript, silver/iron oxide nanocomposites (Ag/Fe2O3) were phytosynthesized using the extract of Buddleja lindleyana via a green, economical and eco-friendly strategy. The biosynthesized Ag/Fe2O3 nanocomposites were characterized using UV-Vis spectrophotometry, FTIR, XRD, TEM, DLS and SEM-EDX analyses. The particulates showed a triangular and spherical morphology having sizes between 25 and 174 nm. FTIR studies on the nanoparticles showed functional groups corresponding to organic metabolites, which reduce and stabilize the Ag/Fe2O3 nanocomposite. The antimicrobial efficacy of the phytosynthesized Ag/Fe2O3 against bacterial pathogens was assessed. In addition, Ag/Fe2O3 exhibited broad spectrum activities against B. subtilis, S. aureus, E. coli, and P. aeruginosa with inhibition zones of 23.4 ± 0.75, 22.3 ± 0.57, 20.8 ± 1.6, and 19.5 ± 0.5 mm, respectively. The Ag/Fe2O3 composites obtained showed promising antibacterial action against human bacterial pathogens (S. aureus, E. coli, B. subtilis and P. aeruginosa), making them candidates for medical applications.
Collapse
|
12
|
Hammad EN, Salem SS, Mohamed AA, El-Dougdoug W. Environmental Impacts of Ecofriendly Iron Oxide Nanoparticles on Dyes Removal and Antibacterial Activity. Appl Biochem Biotechnol 2022; 194:6053-6067. [PMID: 35881227 DOI: 10.1007/s12010-022-04105-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 12/13/2022]
Abstract
Biosynthesized nanoparticles have a promising future since they are a more environmentally friendly, cost-effective, repeatable, and energy-efficient technique than physical or chemical synthesis. In this work, Purpureocillium lilacinum was used to synthesize iron oxide nanoparticles (Fe2O3-NPs). Characterization of mycosynthesized Fe2O3-NPs was done by using UV-vis spectroscopy, transmission electron microscope (TEM), dynamic light scattering (DLS), and X-ray diffraction (XRD) analysis. UV-vis gave characteristic surface plasmon resonance (SPR) peak for Fe2O3-NPs at 380 nm. TEM image reveals that the morphology of biosynthesized Fe2O3-NPs was hexagonal, and their size range between 13.13 and 24.93 nm. From the XRD analysis, it was confirmed the crystalline nature of Fe2O3 with average size 57.9 nm. Further comparative study of photocatalytic decolorization of navy blue (NB) and safranin (S) using Fe2O3-NPs was done. Fe2O3-NPs exhibited potential catalytic activity with a reduction of 49.3% and 66% of navy blue and safranin, respectively. Further, the antimicrobial activity of Fe2O3-NPs was analyzed against pathogenic bacteria (Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis, and Staphylococcus aureus). The Fe2O3-NPs were clearly more effective on gram-positive bacteria (S. aureus and B. subtilis) than gram-negative bacteria (E. coli and P. aeruginosa). Thus, the mycosynthesized Fe2O3-NPs exhibited an ecofriendly, sustainable, and effective route for decolorization of navy blue and safranin dyes and antibacterial activity.
Collapse
Affiliation(s)
- Eman N Hammad
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Division, National Research Centre, Dokki, 12622, Giza, Egypt.,Department of Chemistry, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Salem S Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Asem A Mohamed
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Division, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Wagdi El-Dougdoug
- Department of Chemistry, Faculty of Science, Benha University, Benha, 13518, Egypt
| |
Collapse
|
13
|
Chen W, Feng X, Zhang D, Lu F, Wang H, Tan J, Xu Q, Liu Y, Cao Z, Su X. In situ synthesis of TiO 2/NC on cotton fibers with antibacterial properties and recyclable photocatalytic degradation of dyes. RSC Adv 2022; 12:19974-19980. [PMID: 35865212 PMCID: PMC9264131 DOI: 10.1039/d2ra00992g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/18/2022] [Indexed: 01/14/2023] Open
Abstract
A cotton fabric/titanium dioxide-nanocellulose (TiO2-Cot.) flexible and recyclable composite material with highly photocatalytic degradation of dyes and antibacterial properties was synthesized. During the preparation process, nano-TiO2 particles were synthesized through an in situ strategy and grown on cotton fiber, and were wrapped with cellulose nanocrystals (NC). The prepared TiO2-Cot. was characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The SEM and EDS results showed that nano-TiO2 particles were evenly distributed on the fiber surface. The prepared TiO2@Cot. has excellent photocatalytic efficiency of 95.68% for MB and 92.77% for AR under weak ultraviolet irradiation over 6 h. At the same time, it has excellent antibacterial activity against S. aureus and E. coli. The stability and reusability of the materials were also investigated.
Collapse
Affiliation(s)
- Wei Chen
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Xiaolin Feng
- Shaoxing University Yuanpei College Shaoxing Zhejiang 312000 China
| | - Danyin Zhang
- Shaoxing University Yuanpei College Shaoxing Zhejiang 312000 China
| | - Fangfang Lu
- Zhoushan Institute of Calibration and Testing for Quality and Technology Supervision Zhoushan Zhejiang 316000 China
| | - Hairong Wang
- Zhoushan Institute of Calibration and Testing for Quality and Technology Supervision Zhoushan Zhejiang 316000 China
| | - Jiacheng Tan
- Shaoxing University Yuanpei College Shaoxing Zhejiang 312000 China
| | - Qiao Xu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University Hangzhou 310018 China
- Shaoxing University Yuanpei College Shaoxing Zhejiang 312000 China
| | - Yongkun Liu
- Shaoxing University Yuanpei College Shaoxing Zhejiang 312000 China
| | - Zhihai Cao
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Xiuping Su
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University Hangzhou 310018 China
- Shaoxing University Yuanpei College Shaoxing Zhejiang 312000 China
| |
Collapse
|
14
|
Shaheen TI, El-Shahat M, Abdelhameed RM. Size-tunable effect of CaCO 3/nanocellulose hybrid composites on the removal of paracetamol from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43287-43299. [PMID: 35091930 DOI: 10.1007/s11356-021-18312-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Paracetamol is a ubiquitous drug used by animals and humans but is not fully metabolized within their bodies, and thus often finds its way into raw wastewater. This study represents a new class of adsorbent nanocomposite with high adsorption capacity towards paracetamol removal. Herein, both the kinetic study and the removal of paracetamol from aqueous solutions were investigated in terms of diverse CaCO3/nanocellulose composites with different surface charges and different particle sizes. To fine-tune these parameters, the latter was hydrothermally synthesized by manipulating of three nanocelluloses types. Precisely, micro-crystalline cellulose (MCC), nano-crystalline cellulose (CNC), and nano-fibrillated cellulose (NFC) were used as templates for precipitating CaCO3 particles from CaCl2 solution with the aid of Na2CO3. Results revealed the successful in situ deposition of calcite form of CaCO3 with size varied relying on the base of nanocellulose. For MCC, CNC, and NFC, the size of CaCO3 was disclosed in the range of 850-1200 nm, 350-600 nm, and 150-200 nm, respectively, regarding their surface charge. While the process of paracetamol adsorption was described by Freundlich and Langmuir isotherms, it was observed that, for MCC, the best fit of the experimental data was achieved with the Freundlich model, while the Langmuir model was the most appropriate for CNC and NFC. Also, the highest max adsorption capacities of paracetamol varied respectively to both size and surface charge of hybrid composite used. Among them, MCC/CaCO3 composite exhibited the highest max adsorption capacity at 428 mg g-1, clarifying that the low surface zeta potential of the latter hybrid nanocomposite is responsible for the accumulation of CaCO3 at a bigger size with a higher affinity to adsorb paracetamol with the highest capacity due to its weak repulsion. Results also demonstrated that the material is highly effective and economical for removal of paracetamol and reusability with marginal diminishing in adsorption capacity up to 10% after five reuse cycles.
Collapse
Affiliation(s)
- Tharwat I Shaheen
- Department of Pretreatment and Finishing of Cellulosic Based Textiles, Institute of Textile Research and Technology, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, 12622, Giza, Egypt.
| | - Mahmoud El-Shahat
- Photochemistry Department, Chemical Industries Research Division, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Division, National Research Centre, Dokki, 12622, Giza, Egypt.
| |
Collapse
|
15
|
Shaheen TI, Abdelhameed MF, Zaghloul S, Montaser AS. In vivo assessment of the durable, green and in situ bio-functional cotton fabrics based carboxymethyl chitosan nanohybrid for wound healing application. Int J Biol Macromol 2022; 209:485-497. [PMID: 35398385 DOI: 10.1016/j.ijbiomac.2022.04.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023]
Abstract
Herein, a newly developed approach for durable antibacterial cotton fabrics coated carboxymethyl chitosan (CMCs) via ionic crosslinking driven by cationization of cotton surface (CC) with 3-chloro-2-hydroxyl propyl-trimethyl ammonium chloride (CHTAC). In this regard, the novelty was extended to impart a highly antibacterial activity through harnessing of the as-functionalized CMCs/CC in situ preparation of AgNPs, without using of hazardous reductants. The antibacterial activity of the in situ prepared AgNPs onto CMCs/CC as well as the in vivo study on the rat lab were investigated to evaluate their healing efficiency, pathological tissues and biomarkers. Results affirmed that the treatment of CC with 10% of CMCs was adequate to achieve the highest swelling ratio which, in turns, is able to in situ deposition of AgNPs with a size range of 2-10 nm onto CC/CMCs rendering them a highly durable antibacterial activity against both Gram +Ve and Gram -Ve bacteria, which had a bacterial reduction of 98% to 86% after 20 washing cycles. Furthermore, the in vivo study revealed effectively the advantageous uses of the cotton functionalized with AgNPs compared to CC/CMCs in wound healing via alleviating the oxidative stress and promoting hyaluronic acid in wounded skin as well as increasing RUNX2 in healed skin tissues.
Collapse
Affiliation(s)
- Tharwat I Shaheen
- Institute of Textile Research and Technology, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt.
| | - Mohamed F Abdelhameed
- Department of Pharmacology, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt.
| | - Saad Zaghloul
- Institute of Textile Research and Technology, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt
| | - A S Montaser
- Institute of Textile Research and Technology, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
16
|
Bio-fabrication of Selenium Nanoparticles Using Baker’s Yeast Extract and Its Antimicrobial Efficacy on Food Borne Pathogens. Appl Biochem Biotechnol 2022; 194:1898-1910. [DOI: 10.1007/s12010-022-03809-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2021] [Indexed: 02/06/2023]
|
17
|
Antimicrobial properties and applications of metal nanoparticles biosynthesized by green methods. Biotechnol Adv 2022; 58:107905. [DOI: 10.1016/j.biotechadv.2022.107905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022]
|
18
|
Hashem AH, Salem SS. Green and ecofriendly biosynthesis of selenium nanoparticles using Urtica dioica (stinging nettle) leaf extract: Antimicrobial and anticancer activity. Biotechnol J 2021; 17:e2100432. [PMID: 34747563 DOI: 10.1002/biot.202100432] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 01/16/2023]
Abstract
BACKGROUND/GOAL/AIM Plant extract is affordable and does not require any particular conditions; rapid production of nanoparticles using plants offers more advantages than other approaches. Selenium nanoparticles (SeNPs) have received much attention in the last decade due to SeNPs diverse and different applications. Herein, this study aimed to biosynthesize SeNPs using aqueous extract of Urtica dioica leaf through green and ecofriendly method. Moreover to fully characterize SeNPs using different techniques, and to evaluate it for antimicrobial activity as well as anticancer activity. MAIN METHODS AND MAJOR RESULTS SeNPs were biosynthesis using aqueous leaf extract of U. dioica (stinging nettle). The biosynthesized SeNPs were characterized using UV-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive electron spectroscopy (EDX), transmission electron microscopy (TEM), and thermal-gravimetric analysis (TGA). Antimicrobial and anticancer activities of biosynthesized SeNPs were assessed. Results illustrated that SeNPs exhibited promising antibacterial activity against Gram-positive and Gram-negative bacteria, as well as unicellular and multi-cellular fungi. Moreover, minimal-inhibitory concentration (MIC) of SeNPs against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus were 250, 31.25, and 500 μg mL-1 , respectively, while were 62.5, 15.62, 31.25, and 7.81 μg mL-1 against Candida albicans, Aspergillus fumigatus, Aspergillus niger, and Aspergillus flavus, respectively. The cytotoxicity of SeNPs was performed on Vero normal-cell line CCL-81, where IC50 was 173.2 μg mL-1 . CONCLUSIONS AND IMPLICATIONS For the first time, aqueous stinging nettle leaf extract was utilized to biosynthesize SeNPs in a green method. SeNPs have outstanding antimicrobial-activity against pathogenic bacterial and fungal strains. Moreover, SeNPs have promising anticancer activity against HepG2 cancerous cell line without cytotoxicity on Vero normal cell line. Finally, the biosynthesized SeNPs via aqueous extract of stinging nettle leaf exhibited potential antibacterial, antifungal, and anticancer action, making them useful in the medical field.
Collapse
Affiliation(s)
- Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Salem S Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| |
Collapse
|
19
|
Benign Production of AgNPs/Bacterial Nanocellulose for Wound Healing Dress: Antioxidant, Cytotoxicity and In Vitro Studies. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02190-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Hashem AH, Khalil AMA, Reyad AM, Salem SS. Biomedical Applications of Mycosynthesized Selenium Nanoparticles Using Penicillium expansum ATTC 36200. Biol Trace Elem Res 2021; 199:3998-4008. [PMID: 33387272 DOI: 10.1007/s12011-020-02506-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/17/2020] [Indexed: 02/05/2023]
Abstract
In this study, green and eco-friendly biosynthesis of selenium nanoparticles (Se-NPs) were performed using Penicillium expansum ATTC 36200 for multiple biomedical applications. Mycosynthesized Se-NPs were completely characterized using UV, FT-IR, XRD, SEM, and TEM techniques. Se-NPs biosynthesized by P. expansum was characterized as a spherical shape with average size 4 to 12.7 nm. Moreover, Se-NPs were evaluated for multiple biomedical applications as antimicrobial, antioxidant, and anticancer activities and hemocompatibility. Results illustrated that Se-NPs have potential antimicrobial activity against Gram-positive (Bacillus subtilis ATCC6051 and Staphylococcus aureus ATCC23235), Gram-negative bacteria (Escherichia coli ATCC8739and Pseudomonas aeruginosa ATCC9027), fungi (Candida albicans ATCC90028, Aspergillus niger RCMB 02724 and Aspergillus fumigatus RCMB 02568), and antioxidant activity. Additionally, Se-NPs exhibited anticancer activity against PC3 cell line; IC50 was 99.25 μg/mL. Meanwhile, they showed non-hemolytic activity on human RBCs at concentration up to 250 μg/mL. In conclusion, biosynthetic Se-NPs by P. expansum are promising for many safe-use biomedical applications.
Collapse
Affiliation(s)
- Amr Hosny Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Ahmed Mohamed Aly Khalil
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
- Biology Department, College of Science, Taibah University, Yanbu, 41911, Kingdom of Saudi Arabia
| | - Ahmed M Reyad
- Department of Botany & Microbiology, Faculty of Science, Beni Suef University, Beni Suef, Egypt
| | - Salem S Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
21
|
Preparation of Zinc Oxide Nanoparticles using Aspergillus niger as Antimicrobial and Anticancer Agents. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.49] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the current study, zinc oxide nanoparticles (ZnO-NP) were prepared using extracellular extracts of Aspergillus niger. Hence, the morphological structure, optical, and surface features of the synthesized nanoparticles were studied by X-ray diffraction, transmission electron microscopy, ultraviolet-visible and infrared absorption by Fourier transform. Use dynamic light scattering and zeta potential measurements to assess colloidal stability. The mean size of the synthetic particles is approximately 20 ± 5 nm and they have a hexagonal crystal structure. In addition, the prepared nanoparticles have strong light absorption in the ultraviolet region of λ = 265 and 370 nm. To achieve the goal of this study, the efficiency of ZnO-NP was determined as an antibacterial and antifungal against different bacterial and fungal strains. It was found that ZnO-NP showed significant antibacterial activity, where the inhibition zones were varied from 21 to 35mm in diameter against six bacterial species (i.e. K. pneumoniae, E. coli, A. baumannii, P. aeruginosa, S. aureus, and S. haemolyticus). In such a case, the minimal inhibitory concentration of zinc oxide nanoparticles against bacterial strains were 50, 12.5, 12.5, 50, 12.5, and 12.5μg/ml for K. pneumoniae, E. coli, A. baumannii, P. aeruginosa, S. aureus, and S. haemolyticus, respectively. Furthermore, ZnO-NP exhibits an antifungal behaviour against four fungal species (i.e., A. niger, P. marneffei, C. glabrata, and C. parapsilosis) with inhibition zone from 18 to 35mm in diameter. Whereas, the MICs for fungal isolates were 12.5μg/ml except A. niger was at 25μg/ml. Wi-38 cells were treated with ZnO-NPs exhibited different levels of cytotoxicity dependent upon the concentration of ZnO NPs using the MTT assay with IC50~800.42. Therefore, the present study introduces a facile and cost-effective extracellular green-synthesis of ZnO-NP to be used as antimicrobial and anticancer agents.
Collapse
|
22
|
Mohamed AA, Abu-Elghait M, Ahmed NE, Salem SS. Eco-friendly Mycogenic Synthesis of ZnO and CuO Nanoparticles for In Vitro Antibacterial, Antibiofilm, and Antifungal Applications. Biol Trace Elem Res 2021; 199:2788-2799. [PMID: 32895893 DOI: 10.1007/s12011-020-02369-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/01/2020] [Indexed: 11/30/2022]
Abstract
Mycogenic synthesis of medically applied zinc oxide (ZnO) and copper oxide (CuO) nanoparticles (NPs) were exploited using Penicillium chrysogenum. The biogenesis and capping processes of the produced nano-metals were conducted by functional fungal extracellular enzymes and proteins. The obtained ZnO-NPs and CuO-NPs were characterized. Also, the antibacterial activity and minimum inhibitory concentration (MIC) values of ZnO-NPs and CuO-NPs were determined. Also, antibiofilm and antifungal activities were investigated. Results have demonstrated the ability of the bio-secreted proteins to cape and reduce ZnO and CuO to hexagonal and spherical ZnO-NPs and CuO-NPs with particle size at 9.0-35.0 nm and 10.5-59.7 nm, respectively. Both ZnO-NPs and CuO-NPs showed high antimicrobial activities not only against Gram-positive and Gram-negative bacteria but also against some phytopathogenic fungal strains. Besides this, those NPs showed varied antibiofilm effects against different microorganisms. Quantitative and qualitative analyses indicated that CuO-NPs had an effective antibiofilm activity against Staphylococcus aureus and therefore can be applied in diverse medical devices. Thus, the mycogenic green synthesized ZnO-NPs and CuO-NPs have the potential as smart nano-materials to be used in the medical field to limit the spread of some pathogenic microbes.
Collapse
Affiliation(s)
- Asem A Mohamed
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Division, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Mohammed Abu-Elghait
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Nehad E Ahmed
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Research Division, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Salem S Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
23
|
Elsawy M, Faheim AA, Salem SS, Owda M, Abd El‐Wahab ZH, Abd El‐Wahab H. Cu (II), Zn (II), and Ce (III) metal complexes as antimicrobial pigments for surface coating and flexographic ink. Appl Organomet Chem 2021; 35. [DOI: 10.1002/aoc.6196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/28/2021] [Indexed: 09/01/2023]
Affiliation(s)
- M.M. Elsawy
- Chemistry Department, Faculty of Science (Girls) Al‐Azhar University Cairo Egypt
| | - Abeer A. Faheim
- Chemistry Department, Faculty of Science (Girls) Al‐Azhar University Cairo Egypt
| | - Salem S. Salem
- Botany and Microbiology Department, Faculty of Science (Boys) Al‐Azhar University Cairo Egypt
| | - M.E. Owda
- Chemistry Department, Faculty of Science (Boys) Al‐Azhar University Cairo Egypt
| | | | - H. Abd El‐Wahab
- Chemistry Department, Faculty of Science (Boys) Al‐Azhar University Cairo Egypt
| |
Collapse
|
24
|
|
25
|
Ecofriendly novel synthesis of tertiary composite based on cellulose and myco-synthesized selenium nanoparticles: Characterization, antibiofilm and biocompatibility. Int J Biol Macromol 2021; 175:294-303. [PMID: 33571585 DOI: 10.1016/j.ijbiomac.2021.02.040] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
Microbial infections are considered common and dangerous for humans among other infections; therefore the synthesis of high efficacy antimicrobial and anti-biofilm composites is continuous to fight microbial resistance. In our study, a new and novel tertiary composite (TC) was synthesized, it composed of TEMPO cellulose (TOC), chitosan, starch, and myco-synthesized Se-NPs. Myco-synthesized Se-NPs and TC were fully characterized using UV, FT-IR, XRD, SEM with EDX, particle distribution, and mapping. The antimicrobial and anti-biofilm properties of selenium nanoparticles (Se-NPs) were effectively established for Pseudomonas aeruginosa and Staphylococcus aureus biofilms. The possible impact of myco-synthesized novel cellulose-based selenium nanoparticles tertiary composite on the biofilm formation of P. aeruginosa, S. aureus, and Candida albicans was evaluated in this study. TC exhibited constant biofilm inhibition against P. aeruginosa, S. aureus, and C. albicans, while the results obtained from cytotoxicity of Se-NPs and TC showed that, alteration occurred in the normal cell line of lung fibroblast cells (Wi-38) was shown as loss of their typical cell shape, granulation, loss of monolayer, shrinking or rounding of Wi-38 cell with an IC50 value of where 461 and 550 ppm respectively.
Collapse
|
26
|
Faheim AA, Elsawy M, Salem SS, Abd El-Wahab H. Novel antimicrobial paint based on binary and ternary dioxouranium (VI) complexes for surface coating applications. PROGRESS IN ORGANIC COATINGS 2021; 151:106027. [DOI: 10.1016/j.porgcoat.2020.106027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
27
|
Soliman AM, Abdel-Latif W, Shehata IH, Fouda A, Abdo AM, Ahmed YM. Green Approach to Overcome the Resistance Pattern of Candida spp. Using Biosynthesized Silver Nanoparticles Fabricated by Penicillium chrysogenum F9. Biol Trace Elem Res 2021; 199:800-811. [PMID: 32451695 DOI: 10.1007/s12011-020-02188-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022]
Abstract
Candida species are the most common causative agents responsible for the majority of morbidity as well as mortality rates due to invasive fungal infections worldwide. In this study, a green approach was developed to control the pathogenic Candida spp. isolated from clinical samples, and prior data collections, ethics approval was obtained. Sixty candida isolates were obtained from the different device-associated infections and identified as Candida albicans, Candida tropicalis, Candida krusei, Candida parapsilosis, and Candida glabrata with prevalence rates 41.6, 38.3, 8.3, 6.6, and 5%, respectively. On the other hand, silver nanoparticles (Ag-NPs) were extra-cellular synthesized by biomass filtrate of previously identified Penicillium chrysogenum strain F9. The physico-chemical characterizations of biosynthesized Ag-NPs were assessed by using UV-Vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) patterns, transmission electron microscope (TEM), dynamic light scattering (DIS), and zeta potential (ζ) analysis. Data revealed successful synthesis of crystallographic spherical Ag-NPs with average size 18 to 60 nm at maximum absorption peak 415 nm. FT-IR analysis confirmed the presence of functional groups related to reduction, capping, and stabilizing Ag-NPs. The DLS analysis showed that NPs were homogenous and stable with poly-dispersity index (PDI) and ζ value 0.008 and - 21 mV, respectively. Susceptibility pattern analysis revealed that sixty Candida isolates (100%) were susceptible to Ag-NPs as compared to 25 isolates (41.6%), and 30 isolates (50%) were susceptible to fluconazole and amphotericin B, respectively. Interestingly, 30 Candida isolates (50%) were resistant to amphotericin B, which are more than those recorded for fluconazole (17 isolates with percent 28.3%), while 18 candida isolates (30%) were susceptible dose-dependent to fluconazole. The recorded minimum inhibitory concentration 50/90 (MIC50/90) was 62.5/125, 16/64, and 1/4 for Ag-NPs, fluconazole, and amphotericin B, respectively. However, green synthesized Ag-NPs can be used to overcome the resistance pattern of Candida spp., and recommended as an anti-candida agent.
Collapse
Affiliation(s)
- Amal M Soliman
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Walaa Abdel-Latif
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Iman H Shehata
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, 11884, Nasr City, Cairo, Egypt.
| | - Abdullah M Abdo
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, 11884, Nasr City, Cairo, Egypt
| | - Yasmin M Ahmed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
28
|
El-Belely EF, Farag MMS, Said HA, Amin AS, Azab E, Gobouri AA, Fouda A. Green Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) Using Arthrospira platensis (Class: Cyanophyceae) and Evaluation of their Biomedical Activities. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E95. [PMID: 33406606 PMCID: PMC7823323 DOI: 10.3390/nano11010095] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 12/28/2022]
Abstract
In this study, zinc oxide nanoparticles (ZnO-NPs) were successfully fabricated through the harnessing of metabolites present in the cell filtrate of a newly isolated and identified microalga Arthrospira platensis (Class: Cyanophyceae). The formed ZnO-NPs were characterized by UV-Vis spectroscopy, Fourier transform infrared (FT-IR), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Data showed the efficacy of cyanobacterial metabolites in fabricating spherical, crystallographic ZnO-NPs with a size ≈30.0 to 55.0 nm at a wavelength of 370 nm. Moreover, FT-IR analysis showed varied absorption peaks related to nanoparticle formation. XPS analysis confirms the presence of Zn(II)O at different varied bending energies. Data analyses exhibit that the activities of biosynthesized ZnO-NPs were dose-dependent. Their application as an antimicrobial agent was examined and formed clear zones, 24.1 ± 0.3, 21.1 ± 0.06, 19.1 ± 0.3, 19.9 ± 0.1, and 21.6 ± 0.6 mm, at 200 ppm against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans, respectively, and these activities were reduced as the NPs concentration decreased. The minimum inhibitory concentration (MIC) values were determined as 50 ppm for S. aureus, 25 ppm for P. aeruginosa, and 12.5 ppm for B. subtilis, E. coli, and C. albicans. More interestingly, ZnO-NPs exhibit high in vitro cytotoxic efficacy against cancerous (Caco-2) (IC50 = 9.95 ppm) as compared with normal (WI38) cell line (IC50 = 53.34 ppm).
Collapse
Affiliation(s)
- Ehab F. El-Belely
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (E.F.E.-B.); (M.M.S.F.)
| | - Mohamed M. S. Farag
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (E.F.E.-B.); (M.M.S.F.)
| | - Hanan A. Said
- Botany Department, Faculty of Science, Fayoum University, Fayoum 63511, Egypt;
| | - Abeer S. Amin
- Botany Department, Faculty of Science, Suez Canal University Ismailia, Ismailia 41522, Egypt;
| | - Ehab Azab
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Adil A. Gobouri
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (E.F.E.-B.); (M.M.S.F.)
| |
Collapse
|
29
|
Salem SS, Fouda A. Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: an Overview. Biol Trace Elem Res 2021; 199:344-370. [PMID: 32377944 DOI: 10.1007/s12011-020-02138-3] [Citation(s) in RCA: 416] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
Abstract
The green synthesis of nanoparticles (NPs) using living cells is a promising and novelty tool in bionanotechnology. Chemical and physical methods are used to synthesize NPs; however, biological methods are preferred due to its eco-friendly, clean, safe, cost-effective, easy, and effective sources for high productivity and purity. High pressure or temperature is not required for the green synthesis of NPs, and the use of toxic and hazardous substances and the addition of external reducing, stabilizing, or capping agents are avoided. Intra- or extracellular biosynthesis of NPs can be achieved by numerous biological entities including bacteria, fungi, yeast, algae, actinomycetes, and plant extracts. Recently, numerous methods are used to increase the productivity of nanoparticles with variable size, shape, and stability. The different mechanical, optical, magnetic, and chemical properties of NPs have been related to their shape, size, surface charge, and surface area. Detection and characterization of biosynthesized NPs are conducted using different techniques such as UV-vis spectroscopy, FT-IR, TEM, SEM, AFM, DLS, XRD, zeta potential analyses, etc. NPs synthesized by the green approach can be incorporated into different biotechnological fields as antimicrobial, antitumor, and antioxidant agents; as a control for phytopathogens; and as bioremediative factors, and they are also used in the food and textile industries, in smart agriculture, and in wastewater treatment. This review will address biological entities that can be used for the green synthesis of NPs and their prospects for biotechnological applications.
Collapse
Affiliation(s)
- Salem S Salem
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt.
| |
Collapse
|
30
|
Bactericidal and In-Vitro Cytotoxic Efficacy of Silver Nanoparticles (Ag-NPs) Fabricated by Endophytic Actinomycetes and Their Use as Coating for the Textile Fabrics. NANOMATERIALS 2020; 10:nano10102082. [PMID: 33096854 PMCID: PMC7589671 DOI: 10.3390/nano10102082] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 02/02/2023]
Abstract
An endophytic strain of Streptomyces antimycoticus L-1 was isolated from healthy medicinal plant leaves of Mentha longifolia L. and used for the green synthesis of silver nanoparticles (Ag-NPs), through the use of secreted enzymes and proteins. UV-vis spectroscopy, Fourier-transform infrared (FT-IR), transmission electron microscopy (TEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) analyses of the Ag-NPs were carried out. The XRD, TEM, and FT-IR analysis results demonstrated the successful biosynthesis of crystalline, spherical Ag-NPs with a particle size of 13-40 nm. Further, the stability of the Ag-NPs was assessed by detecting the surface Plasmon resonance (SPR) at 415 nm for one month or by measuring the NPs surface charge (-19.2 mV) by zeta potential analysis (ζ). The green-synthesized Ag-NPs exhibited broad-spectrum antibacterial activity at different concentrations (6.25-100 ppm) against the pathogens Staphylococcus aureus, Bacillus subtilis Pseudomonas aeruginosa, Escherichia coli, and Salmonella typhimurium with a clear inhibition zone ranging from (9.5 ± 0.4) nm to (21.7 ± 1.0) mm. Furthermore, the green-synthesized Ag-NPs displayed high efficacy against the Caco-2 cancerous cell line (the half maximal inhibitory concentration (IC50) = 5.7 ± 0.2 ppm). With respect to antibacterial and in-vitro cytotoxicity analyses, the Ag-NPs concentration of 100 ppm was selected as a safe dose for loading onto cotton fabrics. The scanning electron microscopy connected with energy-dispersive X-ray spectroscopy (SEM-EDX) for the nano-finished fabrics showed the distribution of Ag-NPs as 2% of the total fabric elements. Moreover, the nano-finished fabrics exhibited more activity against pathogenic Gram-positive and Gram-negative bacteria, even after 10 washing cycles, indicating the stability of the treated fabrics.
Collapse
|
31
|
El Sayed MT, El-Sayed ASA. Bioremediation and tolerance of zinc ions using Fusarium solani. Heliyon 2020; 6:e05048. [PMID: 33024860 PMCID: PMC7527588 DOI: 10.1016/j.heliyon.2020.e05048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/28/2020] [Accepted: 09/21/2020] [Indexed: 11/26/2022] Open
Abstract
Evaluating the mechanism of tolerance and biotransformation Zn(II) ions by Fusarium solani based on the different physiological was the objective of this work. The physical properties of synthesized ZnONPs was determined by UV-spectroscopy, transmission electron microscope, and X-ray powder diffraction. The structural and anatomical changes of F. solani in response to Zn(II) was examined by TEM and SEM. From the HPLC profile, oxalic acid by F. solani was strongly increased by about 10.5 folds in response to 200 mg/l Zn(II) comparing to control cultures. The highest biosorption potential were reported at pH 4.0 (alkali-treated biomass) and 5.0 (native biomass), at 600 mg/l Zn(II) concentration, incubation temperature 30 °C, and contact time 40 min (alkali-treated biomass) and 6 h (native biomass). From the FT-IR spectroscopy, the main functional groups implemented on this remediation were C-S stretching, C=O C=N, C-H bending, C-N stretching and N-H bending. From the EDX spectra, fungal cellular sulfur and phosphorus compounds were the mainly compartments involved on ZN(II) binding.
Collapse
Affiliation(s)
- Manal T El Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Egypt
| | - Ashraf S A El-Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, 44519, Egypt
| |
Collapse
|
32
|
Eid AM, Fouda A, Niedbała G, Hassan SED, Salem SS, Abdo AM, F. Hetta H, Shaheen TI. Endophytic Streptomyces laurentii Mediated Green Synthesis of Ag-NPs with Antibacterial and Anticancer Properties for Developing Functional Textile Fabric Properties. Antibiotics (Basel) 2020; 9:E641. [PMID: 32987922 PMCID: PMC7599702 DOI: 10.3390/antibiotics9100641] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022] Open
Abstract
Improvement of the medical textile industry has received more attention recently, especially with widespread of microbial and viral infections. Medical textiles with new properties, such as bacterial pathogens self-cleaning, have been explored with nanotechnology. In this study, an endophytic actinomycetes strain of Streptomyces laurentii R-1 was isolated from the roots of the medicinal plant Achillea fragrantissima. This is used as a catalyst for the mediated biosynthesis of silver nanoparticles (Ag-NPs) for applications in the textile industry. The biosynthesized Ag-NPs were characterized using UV-vis spectroscopy, Fourier transform infrared (FT-IR), transmission electron microscopy (TEM), and X-ray Diffraction (XRD), which confirmed the successful formation of crystalline, spherical metal nanoparticles. The biosynthesized Ag-NPs exhibited broad-spectrum antibacterial activity. Our data elucidated that the biosynthesized Ag-NPs had a highly cytotoxic effect against the cancerous caco-2 cell line. The selected safe dose of Ag-NPs for loading on cotton fabrics was 100 ppm, regarding their antibacterial activity and safe cytotoxic efficacy. Interestingly, scanning electron microscope connected with energy dispersive X-ray spectroscopy (SEM-EDX) of loaded cotton fabrics demonstrated the smooth distribution of Ag-NPs on treated fabrics. The obtained results highlighted the broad-spectrum activity of nano-finished fabrics against pathogenic bacteria, even after 5 and 10 washing cycles. This study contributes a suitable guide for the performance of green synthesized NPs for utilization in different biotechnological sectors.
Collapse
Affiliation(s)
- Ahmed M. Eid
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (S.E.-D.H.); (S.S.S.); (A.M.A.)
| | - Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (S.E.-D.H.); (S.S.S.); (A.M.A.)
| | - Gniewko Niedbała
- Department of Biosystems Engineering, Faculty of Environmental Engineering and Mechanical Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznań, Poland;
| | - Saad El-Din Hassan
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (S.E.-D.H.); (S.S.S.); (A.M.A.)
| | - Salem S. Salem
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (S.E.-D.H.); (S.S.S.); (A.M.A.)
| | - Abdullah M. Abdo
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (S.E.-D.H.); (S.S.S.); (A.M.A.)
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt; or
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0595, USA
| | - Tharwat I. Shaheen
- National Research Centre, El-Behouth St., Dokki, P.O. Giza 12622, Egypt;
| |
Collapse
|
33
|
Fouda A, Salem SS, Wassel AR, Hamza MF, Shaheen T. Optimization of green biosynthesized visible light active CuO/ZnO nano-photocatalysts for the degradation of organic methylene blue dye. Heliyon 2020; 6:e04896. [PMID: 32995606 PMCID: PMC7511830 DOI: 10.1016/j.heliyon.2020.e04896] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/26/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
Herein, CuO/ZnO nanocomposites at different ratios were successfully synthesized through a green biosynthesis approach. This was performed by harnessing the fungal-secreted enzymes and proteins during the sol-gel process for nanocomposites seed growth. All fabricated nanoparticles/nanocomposites were characterized using Fourier Transform Infra-Red (FT-IR) Spectroscopy, X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM-EDX) and X-ray Photoelectron Spectroscopy (XPS) analyses. The photocatalytic degradation efficacy of the synthesized nanocomposites was evaluated using a cationic methylene blue (MB) dye as a model of reaction. Results obtained from the FT-IR and EDX analyses revealed that CuO-NPs, ZnO-NPs, CuO/ZnO50/50, CuO/ZnO80/20, and CuO/ZnO20/80 were successfully prepared by harnessing the biomass filtrate of Penicillium corylophilum As-1. Furthermore, XRD and TEM revealed the variation in the particle size of the nanocomposites (10-55 nm) with the ratio of the nanoparticles. Notably, the size of the nanocomposites was proportionally increased with an increasing ratio of ZnO-NPs. XPS analysis affirmed the presence of both Cu and Zn in the nanocomposites with varying binding energies compared with individual nanoparticles. Furthermore, a high photo-degradation efficacy was achieved by increasing the ratio of ZnO-NPs in the nanocomposite formulation, and 97% of organic MB dye was removed after 85 min of irradiation using the CuO/ZnO20/80 nanocomposite.
Collapse
Affiliation(s)
- Amr Fouda
- Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Salem S. Salem
- Botany and Microbiology Department, Faculty of Science, AL-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Ahmed R. Wassel
- Electron Microscope and Thin Films Department, Physics Research Division, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Mohammed F. Hamza
- Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- Nuclear Materials Authority, POB 530, El-Maadi, Cairo, Egypt
| | - Th.I. Shaheen
- National Research Centre (Scopus affiliation ID 60014618), Textile Research Division, (former El-Tahrir str.), Dokki, P.O. 1C2622, Giza, Egypt
| |
Collapse
|
34
|
Aref MS, Salem SS. Bio-callus synthesis of silver nanoparticles, characterization, and antibacterial activities via Cinnamomum camphora callus culture. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101689] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Alsharif SM, Salem SS, Abdel-Rahman MA, Fouda A, Eid AM, El-Din Hassan S, Awad MA, Mohamed AA. Multifunctional properties of spherical silver nanoparticles fabricated by different microbial taxa. Heliyon 2020; 6:e03943. [PMID: 32518846 PMCID: PMC7268287 DOI: 10.1016/j.heliyon.2020.e03943] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/22/2020] [Accepted: 05/05/2020] [Indexed: 12/20/2022] Open
Abstract
This study addresses the impacts of metabolites from different microbial taxa on the fabrication and multifunctional biological properties of spherical silver nanoparticles (Ag-NPs). Three microbial taxa, a bacterial (Bacillus cereus A1-5), actinomycetes (Streptomyces noursei H1-1), and fungal (Rhizopus stolonifer A6-2) strains were used for Ag-NPs biosynthesis, whereas Streptomyces noursei is demonstrated for the first time. These isolates were identified using either 16S rRNA or ITS gene sequencing. Characterization of Ag-NPs was done using color change analysis, Uv-Vis spectroscopy, FT-IR spectroscopy, XRD, TEM, SEM-EDX, DLS, and Zeta potential analysis. All biosynthesized NPs exhibited spherical shape with different sizes ranged from 6‒50 nm, 6-30 nm and 6-40 nm for NPs obtained by A1-5, H1-1 and A6-2, respectively. The crystalline center cubic face of Ag-NPs was confirmed using XRD at 2θ values 38.08o, 44.27o, 64.41o and 77.36o. FT-IR analysis revealed varied intense absorption peaks for biomolecules required for NPs synthesize by each microbial strain. The stability of spherical Ag-NPs was confirmed due to highly DLS negative surface charge of ‒17.5mV, ‒18.9mV, and ‒15.6mV for NPs synthesized by strains A1-5, H1-1, and A6-2, respectively. Ag-NPs exhibited a broadspectrum of antibacterial activity against Gram-positive and Gram-negative bacteria with varied effectiveness. They also exhibited a cytotoxic effect against cancer cell line (caco-2) in a dose-dependent pattern with IC50 of 8.9 ± 0.5, 5.6 ± 3.0, 11.2 ± 0.5 μg/ml for NPs synthesized by strains A1-5, H1-1, and A6-2, respectively. Moreover, these spherical Ag-NPs showed larvicidal activity against the 3rd instar larvae of the dengue vector Aedes aegypti.
Collapse
Affiliation(s)
- Sultan M. Alsharif
- Biology Department, Faculty of Science, Taibah University, Al Madinah, KSA
| | - Salem S. Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884, Nasr City, Cairo, Egypt
| | - Mohamed Ali Abdel-Rahman
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884, Nasr City, Cairo, Egypt
| | - Amr Fouda
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884, Nasr City, Cairo, Egypt
| | - Ahmed Mohamed Eid
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884, Nasr City, Cairo, Egypt
| | - Saad El-Din Hassan
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, 11884, Nasr City, Cairo, Egypt
| | - Mohamed A. Awad
- Department of Zoology and Entomology, Faculty of Science, Al-Azhar University, 11884, Nasr City, Cairo, Egypt
| | - Asem A. Mohamed
- National Research Centre, El-Behouth St., Dokki, P.O. 12622, Giza, Egypt
| |
Collapse
|
36
|
Salem SS, Fouda MMG, Fouda A, Awad MA, Al-Olayan EM, Allam AA, Shaheen TI. Antibacterial, Cytotoxicity and Larvicidal Activity of Green Synthesized Selenium Nanoparticles Using Penicillium corylophilum. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01794-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Multifunctional cellulose nanocrystal /metal oxide hybrid, photo-degradation, antibacterial and larvicidal activities. Carbohydr Polym 2020; 230:115711. [DOI: 10.1016/j.carbpol.2019.115711] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/21/2019] [Accepted: 12/05/2019] [Indexed: 01/25/2023]
|