1
|
Liu J, Chen M, Li MJ. Mitochondria-targeted and near-infrared phosphorescent Ir(III) complexes for specific detection of Hg 2+ and photodynamic therapy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 337:126098. [PMID: 40154145 DOI: 10.1016/j.saa.2025.126098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/04/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
S: Mercury ions (Hg2+) are highly toxic and prone to bioaccumulation, showing a strong attraction to proteins and enzymes that contain sulfur. Even minute quantities of Hg2+ can lead to severe health issues. Given that mitochondria are a primary target organelle of Hg2+, it is essential to create a probe that can accurately detect Hg2+ within intracellular mitochondria. In this study, we developed two innovative Ir(III) complex probes that emit near-infrared light. The crystal structure of Ir2 was determined using X-ray techniques, which reveals that Ir2 contains a pyridine group capable of recognizing Hg2+ and targeting mitochondria, allowing for the precise identification of Hg2+ both in vitro and within the mitochondria of living cells. Additionally, these two novel near-infrared phosphorescent Ir(III) complexes demonstrate significant capabilities in producing ROS including singlet oxygen, ·O2- and ·OH, which renders them effective photosensitizers under visible light exposure for photodynamic therapy (PDT). This research offers a promising approach for detecting Hg2+ in vitro and in the mitochondrial microenvironment of living cells, which have some implications for the future development of pertinent transition metal complexes for mitochondria-targeted photodynamic therapy in cancer cells.
Collapse
Affiliation(s)
- Jie Liu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, PR China
| | - Meihua Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, PR China
| | - Mei-Jin Li
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Department of Chemistry, Fuzhou University, Fuzhou, PR China.
| |
Collapse
|
2
|
Orwat B, Shi ZE, Ma CH, Jankowska K, Nawrocik J, Singh A, Zheng YH, Tu WC, Ling Z, Dąbczyński P, Rogala M, Krukowski P, Kowalczyk PJ, Data P, Łuszczyńska B, Kownacki I, Chen CP. Highly Efficient Indoor Perovskite Solar Cells with 40% Efficiency Using Perylene Diimide-Based Zwitterionic Cathode Interlayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411623. [PMID: 40079109 DOI: 10.1002/smll.202411623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/28/2025] [Indexed: 03/14/2025]
Abstract
Metal halide perovskites are ideal candidates for indoor photovoltaics (IPVs) due to their tunable bandgaps, which allow the active layers to be optimized for artificial light sources. However, significant non-radiative carrier recombination under low-light conditions has limited the full potential of perovskite-based IPVs. To address this challenge, an integration of perylene diimide (PDI)-based sulfobetaines as cathode interlayers (CILs) is proposed and the impact of varying alkyl chain length (from 1,2-ethylene to 1,5-pentylene) between the cationic and the anionic moieties is examined. The respective four PDI materials are synthesized almost qualitatively using a one-step microwave-assisted process. All of them show adequate thermal stability and energy levels suitable for the desired application as CILs. Moreover, their degradation temperature, LUMO level, conductivity, and performance in model devices are found to change positively along with the alkyl chain length increase. Among the tested derivatives, the compound equipped with the longest alkyl chain (PDI-C5-S3) stands out for its superior electrical conductivity and enhanced ability to lower the silver cathode work function. When incorporated into Cs0.18FA0.82Pb(I0.8Br0.2)-based wide-bandgap perovskite solar cells (PSCs), the PDI-C5-S3 interlayer lead to an outstanding power conversion efficiency (PCE) of 19.04% under one-sun illumination and a remarkable 40.72% under 3000K LED (1000 lux) conditions.
Collapse
Affiliation(s)
- Bartosz Orwat
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Lodz, 90-924, Poland
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, Poznan, 61-614, Poland
- Center for Advanced Technologies, Uniwersytetu Poznanskiego 10, Poznan, 61-614, Poland
| | - Zhong-En Shi
- Department of Materials Engineering and Organic Electronics Research Center, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Cian-Huei Ma
- Department of Electrical Engineering, Institute of Microelectronics, National Cheng Kung University, Tainan, 701, Taiwan
| | - Kamila Jankowska
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, Poznan, 61-614, Poland
- Center for Advanced Technologies, Uniwersytetu Poznanskiego 10, Poznan, 61-614, Poland
| | - Julita Nawrocik
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, Poznan, 61-614, Poland
- Center for Advanced Technologies, Uniwersytetu Poznanskiego 10, Poznan, 61-614, Poland
| | - Abhimanyu Singh
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Lodz, 90-924, Poland
| | - Yi-Han Zheng
- Department of Materials Engineering and Organic Electronics Research Center, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Wei-Chen Tu
- Department of Electrical Engineering, Institute of Microelectronics, National Cheng Kung University, Tainan, 701, Taiwan
| | - Zhitian Ling
- Molecular Electronics Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Paweł Dąbczyński
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, PL 30-348, Poland
| | - Maciej Rogala
- Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, Pomorska 149/153, Lodz, 90-236, Poland
| | - Paweł Krukowski
- Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, Pomorska 149/153, Lodz, 90-236, Poland
| | - Paweł J Kowalczyk
- Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, Pomorska 149/153, Lodz, 90-236, Poland
| | - Przemysław Data
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Lodz, 90-924, Poland
| | - Beata Łuszczyńska
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Lodz, 90-924, Poland
| | - Ireneusz Kownacki
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, Poznan, 61-614, Poland
- Center for Advanced Technologies, Uniwersytetu Poznanskiego 10, Poznan, 61-614, Poland
| | - Chih-Ping Chen
- Department of Materials Engineering and Organic Electronics Research Center, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
- Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan City, 33302, Taiwan
| |
Collapse
|
3
|
Kench T, Sultana Chowdhury N, Rahman KM, Vilar R. Discovery of Phototoxic Metal Complexes with Antibacterial Properties via a Combinatorial Approach. Inorg Chem 2025; 64:5113-5121. [PMID: 40021484 PMCID: PMC11920948 DOI: 10.1021/acs.inorgchem.4c05414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Antimicrobial resistance is one of the biggest global healthcare challenges. Therefore, there is an urgent need to develop new molecules that display distinct antibacterial properties to overcome resistance. With this aim, we have developed a combinatorial and semiautomated platform to synthesize and screen a library of 78 compounds against Gram-positive and Gram-negative bacteria. This library is based on octahedral iridium(III) complexes with general formula [Ir(CN)2(NN)]Cl (where CN are cyclometallating polyaromatic ligands and NN are phenanthroline-imidazole or dipyridophenazine derivatives) which are known to generate reactive oxygen species (ROS) upon light irradiation. From the initial screen of the entire library (in the dark and under light irradiation) against Escherichia coli and Staphylococcus aureus, we show that this scaffold is highly effective at inhibiting growth of Gram-positive bacteria at an intermediate dose (16 μg/mL), displaying a hit rate of >30% in the dark and rising to 56% under light irradiation. Six complexes were selected for further studies against a panel of five Gram-positive strains, allowing us to identify two lead complexes with MICs as low as 2 μg/mL. These complexes were studied in more detail to establish their mode of action using a time-kill study against the S. aureus USA300 strain.
Collapse
Affiliation(s)
- Timothy Kench
- Department
of Chemistry, Imperial College London, White City Campus, 82 Wood Lane, London W12 OBZ, U.K.
| | - Nasima Sultana Chowdhury
- Institute
of Pharmaceutical Science, King’s
College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K.
| | - Khondaker Miraz Rahman
- Institute
of Pharmaceutical Science, King’s
College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, U.K.
| | - Ramon Vilar
- Department
of Chemistry, Imperial College London, White City Campus, 82 Wood Lane, London W12 OBZ, U.K.
| |
Collapse
|
4
|
Nykhrikova EV, Kiseleva MA, Kalle P, Mariasina SS, Kozyukhin SA, Tatarin SV, Bezzubov SI. Stimuli-Responsive Multifunctional Iridium(III) Complex Exhibiting Thermo-, Vapochromism, and Double Catalytic Activity. Inorg Chem 2025; 64:5210-5220. [PMID: 39991920 DOI: 10.1021/acs.inorgchem.5c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Multifunctional compounds with properties that may be triggered by different external stimuli are highly desirable yet challenging in their design and synthesis. Herein, we report a cyclometalated iridium(III) complex based on bulky 1,2-diphenylphenanthroimidazole (C^N) that can easily change its molecular geometry from trigonal-bipyramidal to octahedral or from a monomeric to dimeric state in response to external stimuli (temperature and solvent variations). The extensive characterization including variable-temperature 1H NMR, single-crystal and powder X-ray diffraction corroborated by density functional theory calculations strongly indicates that the thermochromic behavior of the complex is attributed to the dimer-monomer transformations both in solution and in the solid state. The five-coordinated monomer instantaneously reacts with coordinating solvents (L = CH3CN, CH3OH, pyridine) affording octahedral complexes [Ir(C^N)2(L)Cl]. Binding constants for the formation of the complexes with acetonitrile and methanol were estimated by UV-vis titration. Enabled by the ability to switch between the alternative structural states depending on the medium, the monomer exhibits an unprecedented combination of properties, including a reversible vapochromic behavior and switchable catalytic activity. As illustrative examples, transfer hydrogenation and photoinduced reductive debromination were successfully performed by using the monomer as a catalyst.
Collapse
Affiliation(s)
- Ekaterina V Nykhrikova
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia
- Department of Chemistry, M.V. Lomonosov Moscow State University, Lenin's Hills 1, Moscow 119991, Russia
| | - Marina A Kiseleva
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia
| | - Paulina Kalle
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia
| | - Sofia S Mariasina
- Laboratory for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Lenin's Hills 1, Moscow 119991, Russia
- Institute of Pharmacy and Biotechnology, RUDN University, Moscow 117198, Russian Federation
| | - Sergey A Kozyukhin
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia
| | - Sergei V Tatarin
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia
| | - Stanislav I Bezzubov
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia
| |
Collapse
|
5
|
Welsh A, Husbands D, Frei A. High-Throughput Combinatorial Metal Complex Synthesis. Angew Chem Int Ed Engl 2025; 64:e202420204. [PMID: 39714355 DOI: 10.1002/anie.202420204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
High-throughput combinatorial metal complex synthesis has emerged as a powerful tool for rapidly generating and screening diverse libraries of metal complexes, enabling accelerated discovery in fields such as catalysis, medicinal chemistry, and materials science. By systematically combining building blocks under mild and efficient conditions, researchers can explore broad chemical spaces, increasing the likelihood of identifying complexes with desired properties. This method streamlines hit identification and optimisation, especially when integrated with high-throughput screening and data-driven approaches like machine learning. Despite challenges such as scalability and purity control, recent advancements in automation and predictive modelling are enhancing the efficiency of combinatorial synthesis, opening new avenues for the development of metal-based catalysts, therapeutic agents, and functional materials.
Collapse
Affiliation(s)
- A Welsh
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
- Department of Chemistry, University of York, York, YO10 5DD, U.K
| | - D Husbands
- Department of Chemistry, University of York, York, YO10 5DD, U.K
| | - A Frei
- Department of Chemistry, Biochemistry & Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
- Department of Chemistry, University of York, York, YO10 5DD, U.K
| |
Collapse
|
6
|
Tatarin SV, Bezzubov SI. Synthesis, Structure, and Properties of Nontrivial Iridium(III) Complexes Based on Anthracene-Decorated Benzimidazole Ligand. Inorg Chem 2024; 63:18642-18654. [PMID: 39321335 DOI: 10.1021/acs.inorgchem.4c02414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Reactions of iridium trichloride hydrate with bulky 2-(9-anthracenyl)-1-phenyl-benzimidazole (anbi) in the presence of N-donor ligands afforded a number of unique noncyclometalated complexes, while attempts to prepare a common μ-chloro-bridged bis-cyclometalated dimer systematically gave a monocyclometalated complex cis-[Ir(C,N-anbi)(N-anbi)Cl2] instead. The obtained complexes were characterized by 1H NMR, high-resolution mass spectrometry, single-crystal and powder X-ray diffraction, UV-vis spectroscopy, and cyclic voltammetry. The noncyclometalated complexes fac-[Ir(N-anbi)(N^N)Cl3)], where N^N are 4,4'-disubstituted 2,2'-bipyridines, are octahedral and contain the anthracene and 2,2'-bipyridine units in a close cofacial arrangement. These complexes were found to be exceptionally inert to the chloride ligand exchange even in the presence of silver triflate, forming a rare trinuclear Ir-μ-Cl3-Ag-μ-Cl3-Ir structure instead. In the monocyclometalated complex, the Ir(III) ion is pentacoordinated in a rare square-pyramidal geometry, where the bulky anthracene fragment is involved in the steric shielding of the metal center. This is in line with the results of gas-phase density functional theory calculations, demonstrating that the experimentally observed structure is energetically most preferable. The monocyclometalated complex is deeply colored due to intense charge-transfer absorption bands in the range 450-650 nm with ε = 2000-5000 M-1 cm-1, superior to the noncyclometalated complexes. The synthesis, structures, and properties of the new complexes are discussed in the context of the related mono-, bis-, and noncyclometalated iridium(III) compounds.
Collapse
Affiliation(s)
- Sergei V Tatarin
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Stanislav I Bezzubov
- N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
7
|
Liu Y, Li Y, Qian M, Wu Y, Li M, Zhang C, Qi H. Iridium(III) solvent complex-based electrogenerated chemiluminescence method for the detection of 3-methylhistidine in urine. Anal Bioanal Chem 2024; 416:4705-4715. [PMID: 38937290 DOI: 10.1007/s00216-024-05402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
3-Methylhistidine (3-MeHis) is increasingly used as an indicator of muscle protein breakdown. The development of a sensitive, simple, and non-invasive method for 3-MeHis assay is important in clinical practice. Herein, a sensitive, simple, and non-invasive electrogenerated chemiluminescence (ECL) method was proposed for the quantitation of 3-MeHis in urine by using an iridium(III) solvent complex ([Ir(dfppy)2(DMSO)Cl], dfppy = 2-(2,4-difluorophenyl)pyridine, Ir-DMSO) as a signal reagent. The photoluminescence (PL) and ECL responses of Ir-DMSO to 3-MeHis were studied. The ECL intensity of Ir-DMSO was enhanced in the presence of 3-MeHis because of the coordination recognition between Ir-DMSO and the imidazole group of 3-MeHis. Based on the enhancement of ECL intensity, 3-MeHis can be sensitively detected in the range of 5 to 25 μM. The detection limit was 0.4 μM. This is the first report of an ECL method for the quantitation of 3-MeHis. Further, to investigate the feasibility of the Ir-DMSO-based ECL method in practical applications, the developed ECL method was applied for 3-MeHis assay in urine samples of 28 healthy volunteers and 2 patients. The urine samples from patients hospitalized with obesity and kidney disease and healthy individuals were distinguished by the ECL responses of Ir-DMSO. The proposed ECL method based on the coordination recognition between iridium(III) solvent complex and the imidazole group of 3-MeHis allows inexpensive, fast, non-invasive, and sensitive detection of 3-MeHis in urine, which is promising for assessing large volumes of patients for routine analysis in clinical practices.
Collapse
Affiliation(s)
- Yu Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Yue Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Manping Qian
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Yang Wu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Meng Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China.
| |
Collapse
|
8
|
Kench T, Rahardjo A, Terrones GG, Bellamkonda A, Maher TE, Storch M, Kulik HJ, Vilar R. A Semi-Automated, High-Throughput Approach for the Synthesis and Identification of Highly Photo-Cytotoxic Iridium Complexes. Angew Chem Int Ed Engl 2024; 63:e202401808. [PMID: 38404222 DOI: 10.1002/anie.202401808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
The discovery of new compounds with pharmacological properties is usually a lengthy, laborious and expensive process. Thus, there is increasing interest in developing workflows that allow for the rapid synthesis and evaluation of libraries of compounds with the aim of identifying leads for further drug development. Herein, we apply combinatorial synthesis to build a library of 90 iridium(III) complexes (81 of which are new) over two synthesise-and-test cycles, with the aim of identifying potential agents for photodynamic therapy. We demonstrate the power of this approach by identifying highly active complexes that are well-tolerated in the dark but display very low nM phototoxicity against cancer cells. To build a detailed structure-activity relationship for this class of compounds we have used density functional theory (DFT) calculations to determine some key electronic parameters and study correlations with the experimental data. Finally, we present an optimised semi-automated synthesise-and-test protocol to obtain multiplex data within 72 hours.
Collapse
Affiliation(s)
- Timothy Kench
- Department of Chemistry, Imperial College London, White City Campus, W12 0BZ, London, UK
| | - Arielle Rahardjo
- Department of Chemistry, Imperial College London, White City Campus, W12 0BZ, London, UK
| | - Gianmarco G Terrones
- Department of Chemical Engineering, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
| | | | - Thomas E Maher
- Department of Chemistry, Imperial College London, White City Campus, W12 0BZ, London, UK
- Institute of Chemical Biology, Imperial College London, White City Campus, W12 0BZ, London, UK
| | - Marko Storch
- Department of Infectious Disease, Imperial College London, South Kensington Campus, SW7 2AZ, London, UK
- London Biofoundry, Imperial College Translation and Innovation Hub, W12 0BZ, London, UK
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
| | - Ramon Vilar
- Department of Chemistry, Imperial College London, White City Campus, W12 0BZ, London, UK
- Institute of Chemical Biology, Imperial College London, White City Campus, W12 0BZ, London, UK
| |
Collapse
|
9
|
Takimoto K, Shimada T, Nagura K, Hill JP, Nakanishi T, Yuge H, Ishihara S, Labuta J, Sato H. Thermo-/Mechano-Chromic Chiral Coordination Dimer: Formation of Switchable and Metastable Discrete Structure through Chiral Self-Sorting. J Am Chem Soc 2023; 145:25160-25169. [PMID: 37943955 DOI: 10.1021/jacs.3c05866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Although strong chiral self-sorting often emerges in extended covalent or supramolecular polymers, the phenomenon is generally weak in discrete assemblies (e.g., dimers and oligomers) of small molecules due to the lack of a cooperative growth mechanism. Consequently, chiral self-sorting has been overlooked in the design of switchable and metastable discrete supramolecular structures. Here, we report a butyl-benzo[h]quinoline-based iridium(III) complex (Bu-Ir) with helical chirality at its metal center, which forms preferentially a homochiral dimer and exhibits thermo-/mechano-chromism based on a monomer-dimer transformation. While a five-coordinate monomer is formed in a racemic or an enantiopure Bu-Ir solution at 25 °C, a six-coordinate homochiral dimer complex is formed almost exclusively at low temperatures, with a higher degree of dimerization in enantiopure Bu-Ir solution. Estimation of apparent dimerization binding constants (K) and thermodynamic parameters (ΔH and ΔS) based on variable temperature ultraviolet-visible (UV-vis) and 1H NMR spectra reveals a strong preference for homochiral dimerization (largest known value for the coordination complex, Khomo/Khetero > 50). Notably, crystals of the homochiral dimer are metastable, undergoing a distinct color change upon grinding (from yellow to red) due to mechanical cleavage of coordination bonds (i.e., a dimer to monomer transformation). A comparison with control compounds having different substituents (proton, methyl, isopropyl, and phenyl groups) reveals that Bu-Ir dimerization involves both strong homochiral self-sorting preference and connected thermo-/mechano-chromic behavior, which is based on matched propeller-shaped chirality and subtle steric repulsion between alkyl substituents that render the homochiral dimer switchable and metastable. These findings provide substantial insights into the emergence of dynamic functionality based on the rational design of discrete chiral assemblies.
Collapse
Affiliation(s)
- Kazuyoshi Takimoto
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Takumi Shimada
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Kazuhiko Nagura
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jonathan P Hill
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Takashi Nakanishi
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Hidetaka Yuge
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Shinsuke Ishihara
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jan Labuta
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Hisako Sato
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
10
|
Tatarin SV, Smirnov DE, Taydakov IV, Metlin MT, Emets VV, Bezzubov SI. Tailoring the π-system of benzimidazole ligands towards stable light-harvesting cyclometalated iridium(III) complexes. Dalton Trans 2023; 52:6435-6450. [PMID: 37092600 DOI: 10.1039/d3dt00200d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The synthesis, structure, optical and redox properties as well as photovoltaic studies of iridium(III) complexes with cyclometalated 2-arylbenzimidazoles decorated with various polyaromatic fragments and an ancillary aromatic β-diketone are reported. Despite the strong preference of the iridium(III) ion to form bis- or tris-cyclometalated complexes in which the metal participates in five-membered metallacycles, the cyclometalation of the benzimidazole ligands containing rigid π-extended systems yields dimeric complexes containing strained five- or six-membered metallacycles and allows for generating an extremely rare monocyclometalated complex. X-ray crystallography shows that the steric strain observed in the dimers is retained in heteroleptic diketonate complexes which is also corroborated by gas-phase DFT calculations. While emission maxima and redox potentials of the heteroleptic complexes exhibit just a moderate variation upon the change of the cyclometalated ligands, the extension of the π-system of the benzimidazole ligands give the complexes remarkable light absorption in the visible spectral range, which meets the requirements for application in dye-sensitized solar cells. At the titania photoanodes, these iridium dyes retain their optical properties and exhibit power conversion efficiencies under standard AM 1.5 G conditions comparable to those of other iridium-based sensitizers. These results demonstrate that the size and position of the π-extended fragment in cyclometalated ligands can modulate not only the electronic structure of the corresponding iridium(III) complexes, but also affect their composition, structure and reactivity that may find implications in future design of emerging iridium dyes, emitters and catalysts.
Collapse
Affiliation(s)
- Sergei V Tatarin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia.
| | - Daniil E Smirnov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia.
| | - Ilya V Taydakov
- P.N. Lebedev Physical Institute, Russian Academy of Sciences, 53 Leninsky Prospect, Moscow 119991, Russia
| | - Mikhail T Metlin
- P.N. Lebedev Physical Institute, Russian Academy of Sciences, 53 Leninsky Prospect, Moscow 119991, Russia
- Bauman Moscow State Technical University, 2-ya Baumanskaya Str. 5/1, 105005, Moscow, Russia
| | - Victor V Emets
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119071, Russia
| | - Stanislav I Bezzubov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia.
| |
Collapse
|
11
|
Huang H, Wu Y, Qian M, Yang X, Qi H. Iridium(III) solvent complex-based electrogenerated chemiluminescence and photoluminescence sensor array for the discrimination of bases in oligonucleotides. Bioelectrochemistry 2023; 150:108368. [PMID: 36634465 DOI: 10.1016/j.bioelechem.2023.108368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/24/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Development of rapid and sensitive method for the discrimination of bases in oligonucleotides is of great importance in clinical diagnosis. Here, we demonstrate the first case of single iridium(III) solvent complex-based electrogenerated chemiluminescence (ECL) and photoluminescence (PL) sensor array for the discrimination of bases in oligonucleotides. One iridium (III) solvent complex ([Ir(ppy)2(DMSO)Cl], ppy = 2-phenylpyridine, probe 1) was designed as both ECL and PL probe while five bases (guanine, adenine, cytosine, thymine and uracil) were chosen as analytes. Two-element sensor array was built for the discrimination of five bases based on the fingerprint response of probe 1 to bases via coordination interactions. The combination of unique ECL and PL variations with principal component analysis was applied for the quantitative analysis of five bases in a linear range of 1.0 μM-10 μM and for the effective discrimination of individual base, the mixture of bases and oligonucleotides. Moreover, the sensor array was successfully applied to discriminate different mismatched ss-DNAs from HIV gene (a fully-matched ss-DNA), even at single-base difference. This work demonstrates that the sensor array using single iridium (III) solvent complex is a promising approach for the discrimination of bases with good sensitivity and simpleness in clinical diagnosis.
Collapse
Affiliation(s)
- Hong Huang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Yang Wu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Manping Qian
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Xiaolin Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China.
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China.
| |
Collapse
|
12
|
Yu Gitlina A, Fadaei-Tirani F, Ruggi A, Plaice C, Severin K. Acid-base-induced fac → mer isomerization of luminescent iridium(iii) complexes. Chem Sci 2022; 13:10370-10374. [PMID: 36277648 PMCID: PMC9473533 DOI: 10.1039/d2sc02808e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Luminescent Ir(C^N)3 complexes (C^N = cyclometalated arylpyridine ligand) exist in the form of two stable isomers with distinct photophysical and electrochemical properties: fac and mer. Herein, we show that fac-Ir(C^N)3 complexes can be converted into the thermodynamically less stable mer forms by a consecutive reaction with first acid and then base. The chemically induced isomerization is fast, quantitative, and stereoselective, and it can be inversed by light. The new isomerization process opens the possibility to use highly luminescent Ir(C^N)3 complexes as molecular switches.
Collapse
Affiliation(s)
- Anastasia Yu Gitlina
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Albert Ruggi
- Département de Chimie, Université de Fribourg 1700 Fribourg Switzerland
| | - Carolina Plaice
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
13
|
Lorenzo-Aparicio C, Gómez Gallego M, Ramírez de Arellano C, Sierra MA. Phosphorescent Ir(III) complexes derived from purine nucleobases. Dalton Trans 2022; 51:5138-5150. [PMID: 35266928 DOI: 10.1039/d1dt04148g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the preparation and the study of new types of neutral and cationic phosphorescent heteroleptic Ir(III) complexes derived from 6-phenylpurine nucleosides and nucleotides. Neutral complexes of general formula Ir(C^N)2(acac) 7, and 8a-c (HC^N = 9-substituted-6-phenyl purine) are orange-red emissive upon photoexcitation, with short lifetimes and good quantum yields (0.42-0.65) in both PMMA films and 2-MeTHF at room temperature. In turn, cationic complexes [Ir(C^N)2(dtb-bpy)][PF6] 9, 12a and 12c (dtb-bpy = 4,4'-di-tert-butyl-2,2'-dipyridine) are yellow-green emitters with moderate quantum yields (0.24-0.32).
Collapse
Affiliation(s)
- Carmen Lorenzo-Aparicio
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain. .,Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| | - Mar Gómez Gallego
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain. .,Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| | - Carmen Ramírez de Arellano
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain.,Departamento de Química Orgánica, Universidad de Valencia, 46100-Valencia, Spain
| | - Miguel A Sierra
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid, Spain. .,Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| |
Collapse
|
14
|
Dipyridylmethane Ethers as Ligands for Luminescent Ir Complexes. Molecules 2021; 26:molecules26237161. [PMID: 34885742 PMCID: PMC8659258 DOI: 10.3390/molecules26237161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
This work reports two new cationic heteroleptic cyclometalated iridium complexes, containing ether derivatives of di(pyridin-2-yl)methanol. The new ligands are based on dipyridin-2-ylmethane and are designed to obtain ether-based intermediates with extended electronic conjugation by insertion of π system such as phenyl, allyl and ethynyl. Different synthetic strategies were employed to introduce these units, as molecular wires, between the dipyridin-2-ylmethane chelating portion and the terminal N-containing functional group, such as amine and carbamide. The corresponding complexes show luminescence in the blue region of the spectrum, lifetimes between 0.6 and 2.1 μs, high quantum yield and good electrochemical behavior. The computational description (DFT) of the electronic structure highlights the key role of the conjugated π systems on optical and electrochemical properties of the final products.
Collapse
|
15
|
Takimoto K, Watanabe Y, Yoshida J, Sato H. Five-coordinate iridium(III) complex with ΔΛ chirality. Dalton Trans 2021; 50:13256-13263. [PMID: 34608912 DOI: 10.1039/d1dt01960k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The coordinatively unsaturated bis-chelated iridium(III) complex, [Ir(2-Bubzq)2Cl] (2-BubzqH = 2-butyl-benzo[h]quinoline), denoted as complex 1, was obtained by reacting iridium(III) trichloride with 2-BubzqH in a 1 : 2 molar ratio. The results were in contrast to the common view that a chlorine-bridged dimer, [Ir(L)2Cl]2 (L = bis-chelate ligand), is formed under the corresponding conditions. A single-crystal X-ray diffraction structural analysis revealed that complex 1 has a five-coordinate geometry with a distorted square pyramidal configuration. The optical resolution of complex 1 was measured chromatographically on a chiral column, yielding Δ and Λ as enantiomers. The resolved enantiomers were stable enough against racemization in CDCl3 as confirmed by the vibrational circular dichroism measurements. Complex 1 reacted with carbon monoxide (CO) to give [Ir(2-Bubzq)2(CO)Cl] and with 1,10-phenanthroline (phen) to give [Ir(2-Bubzq)2(phen)]Cl within a minute with its absolute configuration (ΔΛ chirality) maintained.
Collapse
Affiliation(s)
- Kazuyoshi Takimoto
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-chou, Matsuyama, Ehime 790-8577, Japan.
| | - Yutaka Watanabe
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-chou, Matsuyama, Ehime 790-8577, Japan.
| | - Jun Yoshida
- Department of Chemistry, College of Humanities & Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Hisako Sato
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-chou, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
16
|
Gon M, Tanaka K, Chujo Y. Vapochromic Luminescent π-Conjugated Systems with Reversible Coordination-Number Control of Hypervalent Tin(IV)-Fused Azobenzene Complexes. Chemistry 2021; 27:7561-7571. [PMID: 33780065 DOI: 10.1002/chem.202100571] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Indexed: 02/02/2023]
Abstract
The dynamic and reversible changes of coordination numbers between five and six in solution and solid states, based on hypervalent tin(IV)-fused azobenzene (TAz) complexes, are reported. It was found that the TAz complexes showed deep-red emission owing to the hypervalent bond composed of an electron-donating three-center four-electron (3c-4e) bond and an electron-accepting nitrogen-tin (N-Sn) coordination. Furthermore, hypsochromic shifts in optical spectra were observed in Lewis basic solvents because of alteration of the coordination number from five to six. In particular, vapochromic luminescence was induced by attachment of dimethyl sulfoxide (DMSO) vapor to the coordination point at the tin atom accompanied with a crystal-crystal phase transition. Additionally, the color-change mechanism and degree of binding constants were well explained by theoretical calculation. To the best of our knowledge, this is the first example of vapochromic luminescence by using stable and variable coordination numbers of hypervalent bonds.
Collapse
Affiliation(s)
- Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
17
|
Tatarin SV, Kalle P, Taydakov IV, Varaksina EA, Korshunov VM, Bezzubov SI. Sterically hindered phenanthroimidazole ligands drive the structural flexibility and facile ligand exchange in cyclometalated iridium(III) complexes. Dalton Trans 2021; 50:6889-6900. [PMID: 33913992 DOI: 10.1039/d1dt00820j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of bis-cyclometalated iridium(iii) complexes with 2-arylphenanthroimidazole "antenna" ligands containing electron-donor or withdrawing substituents and a more flexible ancillary aromatic β-diketone bearing the "anchoring" carboxymethyl function has been prepared. Thorough X-ray study of the complexes revealed significant structural strains caused by bulky cyclometalated 2-arylphenanthroimidazoles resulting in dramatic distortions of the iridium octahedron and even in twist of the phenanthrene fragment. The crystal data were corroborated by gas-phase DFT calculations whereby the geometry of the complexes was distorted in the same way. While redox potentials, absorption and emission maxima of the complexes displayed expected change upon the variation of the electron-donating ability of the cyclometalated ligands, the complexes readily exchanged the bidentate ancillary ligand in the presence of a negligible amount of protons that was inspected in solution by UV-Vis spectroscopy. Moreover, after hydrolysis of the carboxymethyl group the resulting complexes readily react with the surface of titanium dioxide giving unique binuclear structures in which the deprotonated carboxy group of the coordinated β-diketonate binds the second bis-cyclometalated unit by forming a four-membered metallacycle. Though the enhanced reactivity of the complexes is contrary to the common idea of the high inertness of iridium(iii) compounds it can be seen as a consequence of the interplay between the steric hindrance induced by the ligands and the strong preference of the iridium(iii) ion for octahedral geometry. This study demonstrates that the use of bulky ligands provides access to light-harvesting iridium(iii) complexes with required extent of lability which may be promising as photocatalysts and biologically active molecules.
Collapse
Affiliation(s)
- Sergei V Tatarin
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr. 31, Moscow 119991, Russia. and Lomonosov Moscow State University, Lenin's Hills, 1-3, Moscow, 119991, Russia
| | - Paulina Kalle
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr. 31, Moscow 119991, Russia. and Lomonosov Moscow State University, Lenin's Hills, 1-3, Moscow, 119991, Russia
| | - Ilya V Taydakov
- P.N. Lebedev Physical Institute, Russian Academy of Sciences, 53 Leninsky Prospect, Moscow 119991, Russia and G.V. Plekhanov Russian University of Economics, 36 Stremyanny Per., Moscow, 117997 Russian Federation
| | - Evgenia A Varaksina
- P.N. Lebedev Physical Institute, Russian Academy of Sciences, 53 Leninsky Prospect, Moscow 119991, Russia
| | - Vladislav M Korshunov
- P.N. Lebedev Physical Institute, Russian Academy of Sciences, 53 Leninsky Prospect, Moscow 119991, Russia and Bauman Moscow State Technical University, 2-ya Baumanskaya Str. 5/1, 105005, Moscow, Russia
| | - Stanislav I Bezzubov
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky pr. 31, Moscow 119991, Russia.
| |
Collapse
|