1
|
Alanís-Manzano EI, León-Pimentel CI, Maron L, Ramírez-Solís A, Saint-Martin H. Exploring the Dynamic Coordination Sphere of Lanthanide Aqua Ions: Insights from r 2SCAN-3c Composite-DFT Born-Oppenheimer Molecular Dynamics Studies. ACS OMEGA 2024; 9:50978-50991. [PMID: 39758678 PMCID: PMC11696431 DOI: 10.1021/acsomega.4c04947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 01/07/2025]
Abstract
Born-Oppenheimer molecular dynamics (BOMD) simulations were performed to investigate the structure and dynamics of the first hydration shells of five trivalent lanthanide ions (Ln3+) at room temperature. These ions are relevant in various environments, including the bulk aqueous solution. Despite numerous studies, accurately classifying the molecular geometry of the first hydration sphere remains a challenge. To addres this, a cluster microsolvation approach was employed to study the interaction of Ln3+ ions (La, Nd, Gd, Er, and Lu) with up to 27 explicit water molecules. Electronic structure calculations were performed with the composite r2SCAN-3c method. The results demonstrate that this method offers an optimal balance between precision and computational efficiency. Specifically, it accurately predicts average Ln-O distances (MAE = 0.02 Å) of the first hydration sphere and preferred coordination numbers (CN) for the different lanthanide cations as compared to reported data in bulk. Highly dynamic first hydration shells for the examined Ln3+ ions were found, with noticeable and rapid rearrangements in their coordination geometries, some of which can be recognized as the tricapped trigonal prism (TTP) and the capped square antiprism (CSAP) for CN = 9, and as the square antiprism (SAP), the bicapped trigonal prism (BTP), and the trigonal dodecahedron (DDH) for CN = 8. However, ca. 70% of the nonacoordinated configurations did not meet the criteria of TTP or CSAP structures. For CN = 8, the percentage of configurations that could not be assigned to SAP, BTP, or DDH was lower, around 30%. The theoretical EXAFS spectra obtained from the BOMD simulations are in good agreement with the experimental data and confirm that model microsolvated environments accurately represent the near-solvation structure of these trivalent rare-earth ions. Moreover, this demonstrates that the faster dynamics of the first hydration shell can be studied separately from the dynamics of water exchange in the bulk aqueous solution.
Collapse
Affiliation(s)
| | - C. I. León-Pimentel
- Departamento
de Matemáticas/Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, México
| | - Laurent Maron
- INSA
Laboratoire de Physicochimie de Nano-Objets, Université de Toulouse, 135 Avenue de Rangueil, F31077 Toulouse, France
| | - Alejandro Ramírez-Solís
- Depto.
de Física, Centro de Investigación
en Ciencias-IICBA Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, México
| | - Humberto Saint-Martin
- Instituto
de Ciencias Físicas, Universidad
Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| |
Collapse
|
2
|
Hunger J, Buchner R, Hefter G. Ion Association and Hydration of Some Heavy-Metal Nitrate Salts in Aqueous Solution. J Phys Chem B 2024; 128:10238-10246. [PMID: 39361423 PMCID: PMC11492267 DOI: 10.1021/acs.jpcb.4c05441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
Aqueous solutions of four heavy-metal nitrate salts (AgNO3, TlNO3, Cd(NO3)2 and Pb(NO3)2) have been studied at 25 °C using broadband dielectric relaxation spectroscopy (DRS) at frequencies 0.27 ≤ ν/GHz ≤ 115 over the approximate concentration range 0.2 ≲ c/mol L-1 ≲ 2.0 (0.08 ≲ c/mol L-1 ≲ 0.4 for the less-soluble TlNO3). The spectra for AgNO3, TlNO3, and Pb(NO3)2 were best described by assuming the presence of three relaxation processes. These consisted of one solute-related Debye mode centered at ∼2 GHz and two higher-frequency solvent-related modes: one an intense Cole-Cole mode centered at ∼18 GHz and the other a small-amplitude Debye mode at ∼500 GHz. These modes can be assigned, respectively, to the rotational diffusion of contact ion pairs (CIPs), the cooperative relaxation of solvent water molecules, and its preceding fast H-bond flip. For Cd(NO3)2 solutions an additional solute-related Debye mode of small-amplitude, centered at ∼0.5 GHz, was required to adequately fit the spectra. This mode was consistent with the presence of small amounts of solvent-shared ion pairs. Detailed analysis of the solvent modes indicated that all the cations are strongly solvated with, at infinite dilution, effective total hydration numbers (Zt0 values) of irrotationally bound water molecules of ∼5 for both Ag+ and Tl+, ∼10 for Pb2+, and ∼20 for Cd2+. These results clearly indicate the presence of a partial second hydration shell for Pb2+(aq) and an almost complete second shell for Cd2+(aq). However, the hydration numbers decline considerably with increasing solute concentration due to ion-ion interactions. Association constants for the formation of contact ion pairs indicated weak complexation that varies in the order: Tl+ < Ag+ < Pb2+ < Cd2+, consistent with the charge/radius ratios of the cations and their Gibbs energies of hydration. Where comparisons were possible the present constants mostly agreed well with the rather uncertain literature values.
Collapse
Affiliation(s)
- Johannes Hunger
- Department
for Molecular Spectroscopy, Max Planck Institute
for Polymer Research, D-55128 Mainz, Germany
| | - Richard Buchner
- Institut
für Physikalische und Theoretische Chemie, Universität Regensburg, D-93040 Regensburg, Germany
| | - Glenn Hefter
- Chemistry
Department, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
3
|
Persson I. Structure and size of complete hydration shells of metal ions and inorganic anions in aqueous solution. Dalton Trans 2024; 53:15517-15538. [PMID: 39211949 DOI: 10.1039/d4dt01449a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The structures of nine hydrated metal ions in aqueous solution have been redetermined by large angle X-ray scattering to obtain experimental data of better quality than those reported 40-50 years ago. Accurate M-OI and M-(OI-H)⋯OII distances and M-OI(H)⋯OII bond angles are reported for the hydrated magnesium(II), aluminium(III), manganese(II), iron(II), iron(III), cobalt(II), nickel(II), copper(II) and zinc(II) ions; the subscripts I and II denote oxygen atoms in the first and second hydration sphere, respectively. Reported structures of hydrated metal ions in aqueous solution are summarized and evaluated with emphasis on a possible relationship between M-OI-OII bond angles and bonding character. Metal ions with high charge density have M-OI-OII bond angles close to 120°, indicative of a mainly electrostatic interaction with the oxygen atom in the water molecule in the first hydration shell. Metal ions forming bonds with a significant covalent contribution, as e.g. mercury(II) and tin(II), have M-OI-OII bond angles close to 109.5°. This implies that they bind to one of the free electron pairs in the water molecule. Comparison of M-O bond distances of hydrated metal ions in the solid state with one hydration shell, and in aqueous solution with in most cases at least two hydration shells, shows no significant differences. On the other hand, the X-O bond distance in hydrated oxoanions increases by ca. 0.02 Å in aqueous solution in comparison with the corresponding X-O distance in the solid state. A linear correlation is observed between volume, calculated from the van der Waals radius of the hydrated ion, and the ionic diffusion coefficient in aqueous solution. This correlation strongly indicates that monovalent metal ions, except lithium and silver(I), and singly-charged monovalent oxoanions have a single hydration shell. Divalent metal ions, bismuth(III) and the lanthanoid(III) and actinoid(III) ions have two hydration shells. Trivalent transition and tetravalent metal ions have two full hydration shells and portion of a third one. Doubly charged oxoanions have one well-defined hydration shell and an ill-defined second one.
Collapse
Affiliation(s)
- Ingmar Persson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden.
| |
Collapse
|
4
|
Tofoni A, Busato M, Colella A, Melchior A, D'Angelo P. In-Depth XANES and EXAFS Characterization of the Ag + Ion Coordination in Dimethyl Sulfoxide Solution. J Phys Chem B 2024; 128:8065-8073. [PMID: 39134514 DOI: 10.1021/acs.jpcb.4c04001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
X-ray absorption near-edge structure (XANES) spectroscopy has been used, in conjunction with extended X-ray absorption fine structure (EXAFS), to determine the coordination structure of the Ag+ ion in a dimethyl sulfoxide (DMSO) solution. From the EXAFS data analysis, the Ag-O first shell distance in DMSO was found to be 2.31(3) Å, with 4.1(5) oxygen atoms surrounding the Ag+ ion, in fair agreement with previous results. This technique did not allow us to determine the geometry of the 4-fold coordination complex and a quantitative analysis of the XANES region was carried out to shed light on this issue. The XANES data analysis confirmed the presence of a four-coordinated complex, unambiguously showing that a regular tetrahedral [Ag(DMSO)4]+ complex is formed when silver triflate is dissolved in DMSO solution.
Collapse
Affiliation(s)
- Alessandro Tofoni
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, I-00185 Rome, Italy
| | - Matteo Busato
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, I-00185 Rome, Italy
| | - Andrea Colella
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, I-00185 Rome, Italy
| | - Andrea Melchior
- Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Paola D'Angelo
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, I-00185 Rome, Italy
| |
Collapse
|
5
|
Hütter M, Schöpfer G, Salzburger M, Beyer MK, Ončák M. Master equation modeling of water dissociation in small ionic water clusters: Ag +(H 2O) n , n = 4-6. RSC Adv 2024; 14:22185-22194. [PMID: 39005253 PMCID: PMC11244579 DOI: 10.1039/d4ra03518f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
We model temperature-dependent blackbody infrared radiative dissociation (BIRD) rate coefficients of Ag+(H2O) n , n = 4-6, a system with loosely bound water molecules. We employ a master equation modeling (MEM) approach with consideration of absorption and emission of blackbody radiation, comparing single and multiple-well descriptions. The unimolecular dissociation rate coefficients are obtained using the Rice-Ramsperger-Kassel-Marcus (RRKM) theory, employing two approaches to model the sum of states in the transition state, the rigid activated complex (RAC) and the phase space limit (PSL) approach. A genetic algorithm is used to find structures of low-lying isomers for the kinetic modeling. We show that the multiple-well MEM approach with PSL RRKM in the All Wells and Transition States Are Relevant (AWATAR) variant provides a reliable description of Ag+(H2O) n BIRD, in agreement with previously published experimental data. Higher-lying isomers contribute significantly to the overall dissociation rate coefficient, underlying the importance of the multiple-well ansatz in which all isomers are treated on the same footing.
Collapse
Affiliation(s)
- Michael Hütter
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck Technikerstraße 25 6020 Innsbruck Austria
| | - Gabriel Schöpfer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck Technikerstraße 25 6020 Innsbruck Austria
| | - Magdalena Salzburger
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck Technikerstraße 25 6020 Innsbruck Austria
| | - Martin K Beyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck Technikerstraße 25 6020 Innsbruck Austria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck Technikerstraße 25 6020 Innsbruck Austria
| |
Collapse
|
6
|
Song W, He K, Li C, Yin R, Guo Y, Nie A, Li Y, Yang K, Zhou M, Lin X, Wang ZJ, Ren Q, Zhu S, Xu T, Liu S, Jin H, Lv JJ, Wang S, Yuan Y. Seeding Atomic Silver into Internal Lattice Sites of Transition Metal Oxide for Advanced Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312566. [PMID: 38630368 DOI: 10.1002/adma.202312566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/14/2024] [Indexed: 05/04/2024]
Abstract
Transition metal oxides (TMOs) are widely studied for loading of various catalysts due to their low cost and high structure flexibility. However, the prevailing close-packed nature of most TMOs crystals has restricted the available loading sites to surface only, while their internal bulk lattice remains unactuated due to the inaccessible narrow space that blocks out most key reactants and/or particulate catalysts. Herein, using tunnel-structured MnO2, this study demonstrates how TMO's internal lattice space can be activated as extra loading sites for atomic Ag in addition to the conventional surface-only loading, via which a dual-form Ag catalyst within MnO2 skeleton is established. In this design, not only faceted Ag nanoparticles are confined onto MnO2 surface by coherent lattice-sharing, Ag atomic strings are also seeded deep into the sub-nanoscale MnO2 tunnel lattice, enriching the catalytically active sites. Tested for electrochemical CO2 reduction reaction (eCO2RR), such dual-form catalyst exhibits a high Faradaic efficiency (94%), yield (67.3 mol g-1 h-1) and durability (≈48 h) for CO production, exceeding commercial Ag nanoparticles and most Ag-based electrocatalysts. Theoretical calculations further reveal the concurrent effect of such dual-form catalyst featuring facet-dependent eCO2RR for Ag nanoparticles and lattice-confined eCO2RR for Ag atomic strings, inspiring the future design of catalyst-substrate configuration.
Collapse
Affiliation(s)
- Wenjun Song
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Kun He
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Chenghang Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Ruonan Yin
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Yaqing Guo
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Anmin Nie
- Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Yanshuai Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Keqin Yang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Mengting Zhou
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Xiaoruizhuo Lin
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Zheng-Jun Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Qingqing Ren
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Shaojun Zhu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Ting Xu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Suya Liu
- Thermo Fisher Scientific, Jinke Road No. 2517, Shanghai, Nanoport, 200120, China
| | - Huile Jin
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Jing-Jing Lv
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Shun Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Yifei Yuan
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| |
Collapse
|
7
|
Jaros SW, Florek M, Bażanów B, Panek J, Krogul-Sobczak A, Oliveira MC, Król J, Śliwińska-Hill U, Nesterov DS, Kirillov AM, Smoleński P. Silver Coordination Polymers Driven by Adamantoid Blocks for Advanced Antiviral and Antibacterial Biomaterials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13411-13421. [PMID: 38456838 PMCID: PMC10958451 DOI: 10.1021/acsami.3c15606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
The development of sustainable biomaterials and surfaces to prevent the accumulation and proliferation of viruses and bacteria is highly demanded in healthcare areas. This study describes the assembly and full characterization of two new bioactive silver(I) coordination polymers (CPs) formulated as [Ag(aca)(μ-PTA)]n·5nH2O (1) and [Ag2(μ-ada)(μ3-PTA)2]n·4nH2O (2). These products were generated by exploiting a heteroleptic approach based on the use of two different adamantoid building blocks, namely 1,3,5-triaza-7-phosphaadamantane (PTA) and 1-adamantanecarboxylic (Haca) or 1,3-adamantanedicarboxylic (H2ada) acids, resulting in the assembly of 1D (1) and 3D (2). Antiviral, antibacterial, and antifungal properties of the obtained compounds were investigated in detail, followed by their incorporation as bioactive dopants (1 wt %) into hybrid biopolymers based on acid-hydrolyzed starch polymer (AHSP). The resulting materials, formulated as 1@AHSP and 2@AHSP, also featured (i) an exceptional antiviral activity against herpes simplex virus type 1 and human adenovirus (HAd-5) and (ii) a remarkable antibacterial activity against Gram-negative bacteria. Docking experiments, interaction with human serum albumin, mass spectrometry, and antioxidation studies provided insights into the mechanism of antimicrobial action. By reporting these new silver CPs driven by adamantoid building blocks and the derived starch-based materials, this study endows a facile approach to access biopolymers and interfaces capable of preventing and reducing the proliferation of a broad spectrum of different microorganisms, including bacteria, fungi, and viruses.
Collapse
Affiliation(s)
- Sabina W. Jaros
- Faculty
of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Magdalena Florek
- Department
of Veterinary Microbiology, Wrocław
University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland
| | - Barbara Bażanów
- Department
of Veterinary Microbiology, Wrocław
University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland
| | - Jarosław Panek
- Faculty
of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | | | - M. Conceição Oliveira
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Jarosław Król
- Department
of Veterinary Microbiology, Wrocław
University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland
| | - Urszula Śliwińska-Hill
- Faculty
of Pharmacy, Department of Basic Chemical Sciences, Wrocław Medical University, Borowska 211, 50-566 Wrocław, Poland
| | - Dmytro S. Nesterov
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Alexander M. Kirillov
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Piotr Smoleński
- Faculty
of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
8
|
McElhany SJ, Summers TJ, Shiery RC, Cantu DC. Analysis of the First Ion Coordination Sphere: A Toolkit to Analyze the Coordination Sphere of Ions. J Chem Inf Model 2023; 63:2699-2706. [PMID: 37083437 DOI: 10.1021/acs.jcim.3c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Rapid and accurate approaches to characterizing the coordination structure of an ion are important for designing ligands and quantifying structure-property trends. Here, we introduce AFICS (Analysis of the First Ion Coordination Sphere), a tool written in Python 3 for analyzing the structural and geometric features of the first coordination sphere of an ion over the course of molecular dynamics simulations. The principal feature of AFICS is its ability to quantify the distortion a coordination geometry undergoes compared to uniform polyhedra. This work applies the toolkit to analyze molecular dynamics simulations of the well-defined coordination structure of aqueous Cr3+ along with the more ambiguous structure of aqueous Eu3+ chelated to ethylenediaminetetraacetic acid. The tool is targeted for analyzing ions with fluxional or irregular coordination structures (e.g., solution structures of f-block elements) but is generalized such that it may be applied to other systems.
Collapse
Affiliation(s)
- Stuart J McElhany
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Thomas J Summers
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Richard C Shiery
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - David C Cantu
- Department of Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, United States
| |
Collapse
|
9
|
Kircheva N, Angelova S, Dobrev S, Petkova V, Nikolova V, Dudev T. Cu +/Ag + Competition in Type I Copper Proteins (T1Cu). Biomolecules 2023; 13:biom13040681. [PMID: 37189429 DOI: 10.3390/biom13040681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Due to the similarity in the basic coordination behavior of their mono-charged cations, silver biochemistry is known to be linked to that of copper in biological systems. Still, Cu+/2+ is an essential micronutrient in many organisms, while no known biological process requires silver. In human cells, copper regulation and trafficking is strictly controlled by complex systems including many cytosolic copper chaperones, whereas some bacteria exploit the so-called "blue copper" proteins. Therefore, evaluating the controlling factors of the competition between these two metal cations is of enormous interest. By employing the tools of computational chemistry, we aim to delineate the extent to which Ag+ might be able to compete with the endogenous copper in its Type I (T1Cu) proteins, and where and if, alternatively, it is handled uniquely. The effect of the surrounding media (dielectric constant) and the type, number, and composition of amino acid residues are taken into account when modelling the reactions in the present study. The obtained results clearly indicate the susceptibility of the T1Cu proteins to a silver attack due to the favorable composition and geometry of the metal-binding centers, along with the similarity between the Ag+/Cu+-containing structures. Furthermore, by exploring intriguing questions of both metals' coordination chemistry, an important background for understanding the metabolism and biotransformation of silver in organisms is provided.
Collapse
Affiliation(s)
- Nikoleta Kircheva
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Silvia Angelova
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Stefan Dobrev
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Vladislava Petkova
- Institute of Optical Materials and Technologies "Acad. J. Malinowski", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Valya Nikolova
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1164 Sofia, Bulgaria
| |
Collapse
|
10
|
D'Angelo P, Migliorati V, Gibiino A, Busato M. Direct Observation of Contact Ion-Pair Formation in La 3+ Methanol Solution. Inorg Chem 2022; 61:17313-17321. [PMID: 36255362 PMCID: PMC9627567 DOI: 10.1021/acs.inorgchem.2c02932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
An approach combining molecular dynamics (MD) simulations
and X-ray
absorption spectroscopy (XAS) has been used to carry out a comparative
study about the solvation properties of dilute La(NO3)3 solutions in water and methanol, with the aim of elucidating
the still elusive coordination of the La3+ ion in the latter
medium. The comparison between these two systems enlightened a different
behavior of the nitrate counterions in the two environments: while
in water the La(NO3)3 salt is fully dissociated
and the La3+ ion is coordinated by water molecules only,
the nitrate anions are able to enter the metal first solvation shell
to form inner-sphere complexes in methanol solution. The speciation
of the formed complexes showed that the 10-fold coordination is preferential
in methanol solution, where the nitrate anions coordinate the La3+ cations in a monodentate fashion and the methanol molecules
complete the solvation shell to form an overall bicapped square antiprism
geometry. This is at variance with the aqueous solution where a more
balanced situation is observed between the 9- and 10-fold coordination.
An experimental confirmation of the MD results was obtained by La
K-edge XAS measurements carried out on 0.1 M La(NO3)3 solutions in the two solvents, showing the distinct presence
of the nitrate counterions in the La3+ ion first solvation
sphere of the methanol solution. The analysis of the extended X-ray
absorption fine structure (EXAFS) part of the absorption spectrum
collected on the methanol solution was carried out starting from the
MD results and confirmed the structural arrangement observed by the
simulations. The formation of contact ion pairs between
the La3+ ions and the nitrate anions has been demonstrated
in diluted methanol
solution using a combined approach using Molecular Dynamics simulations
and X-ray absorption spectroscpy.
Collapse
Affiliation(s)
- Paola D'Angelo
- Department of Chemistry, University of Rome "La Sapienza", P.le Aldo Moro 5, 00185 Rome, Italy
| | - Valentina Migliorati
- Department of Chemistry, University of Rome "La Sapienza", P.le Aldo Moro 5, 00185 Rome, Italy
| | - Alice Gibiino
- Department of Chemistry, University of Rome "La Sapienza", P.le Aldo Moro 5, 00185 Rome, Italy
| | - Matteo Busato
- Department of Chemistry, University of Rome "La Sapienza", P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
11
|
Migliorati V, Busato M, D’Angelo P. Solvation structure of the Hg(NO3)2 and Hg(TfO)2 salts in dilute aqueous and methanol solutions: An insight into the Hg2+ coordination chemistry. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Ribeiro LK, Gouveia AF, Silva FDCM, Noleto LFG, Assis M, Batista AM, Cavalcante LS, Guillamón E, Rosa ILV, Longo E, Andrés J, Luz Júnior GE. Tug-of-War Driven by the Structure of Carboxylic Acids: Tuning the Size, Morphology, and Photocatalytic Activity of α-Ag 2WO 4. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193316. [PMID: 36234445 PMCID: PMC9565223 DOI: 10.3390/nano12193316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/11/2022] [Accepted: 09/19/2022] [Indexed: 05/17/2023]
Abstract
Size and morphology control during the synthesis of materials requires a molecular-level understanding of how the addition of surface ligands regulates nucleation and growth. In this work, this control is achieved by using three carboxylic acids (tartaric, benzoic, and citric) during sonochemical syntheses. The presence of carboxylic acids affects the kinetics of the nucleation process, alters the growth rate, and governs the size and morphology. Samples synthesized with citric acid revealed excellent photocatalytic activity for the degradation process of Rhodamine B, and recyclability experiments demonstrate that it retains 91% of its photocatalytic activity after four recycles. Scavenger experiments indicate that both the hydroxyl radical and the hole are key species for the success of the transformation. A reaction pathway is proposed that involves a series of dissolution-hydration-dehydration and precipitation processes, mediated by the complexation of Ag+. We believe these studies contribute to a fundamental understanding of the crystallization process and provide guidance as to how carboxylic acids can influence the synthesis of materials with controlled size and morphology, which is promising for multiple other scientific fields, such as sensor and catalysis fields.
Collapse
Affiliation(s)
- Lara Kelly Ribeiro
- Postgraduate Program in Chemistry, Department of Chemistry, Federal University of Piaui, 64049-550, Brazil
- LIEC/CDMF, Department of Chemistry, Federal University of São Carlos, P.O. Box 676, 13565-905, Brazil
- Department of Physical and Analytical Chemistry, University Jaume I (UJI), 12071 Castellon de La Plana, Spain
| | - Amanda Fernandes Gouveia
- Department of Physical and Analytical Chemistry, University Jaume I (UJI), 12071 Castellon de La Plana, Spain
| | | | - Luís F. G. Noleto
- Postgraduate Program in Chemistry, Department of Chemistry, Federal University of Piaui, 64049-550, Brazil
| | - Marcelo Assis
- LIEC/CDMF, Department of Chemistry, Federal University of São Carlos, P.O. Box 676, 13565-905, Brazil
- Department of Physical and Analytical Chemistry, University Jaume I (UJI), 12071 Castellon de La Plana, Spain
| | - André M. Batista
- Postgraduate Program in Nanoscience in Advanced Materials, Department of Chemistry, Federal University of ABC, 09210-580, Brazil
| | - Laécio S. Cavalcante
- Postgraduate Program in Chemistry, Department of Chemistry, State University of Piaui, P.O. Box 381, 64002-150, Brazil
| | - Eva Guillamón
- Department of Physical and Analytical Chemistry, University Jaume I (UJI), 12071 Castellon de La Plana, Spain
| | - Ieda L. V. Rosa
- LIEC/CDMF, Department of Chemistry, Federal University of São Carlos, P.O. Box 676, 13565-905, Brazil
| | - Elson Longo
- LIEC/CDMF, Department of Chemistry, Federal University of São Carlos, P.O. Box 676, 13565-905, Brazil
| | - Juan Andrés
- Department of Physical and Analytical Chemistry, University Jaume I (UJI), 12071 Castellon de La Plana, Spain
- Correspondence: ; Tel.: +34-669-36-94-11
| | - Geraldo E. Luz Júnior
- Postgraduate Program in Chemistry, Department of Chemistry, Federal University of Piaui, 64049-550, Brazil
- Postgraduate Program in Nanoscience in Advanced Materials, Department of Chemistry, Federal University of ABC, 09210-580, Brazil
| |
Collapse
|
13
|
Melchior A, Sanadar M, Cappai R, Tolazzi M. Entropy and Enthalpy Effects on Metal Complex Formation in Non-Aqueous Solvents: The Case of Silver(I) and Monoamines. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1253. [PMID: 36141139 PMCID: PMC9498076 DOI: 10.3390/e24091253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Access to the enthalpy and entropy of the formation of metal complexes in solution is essential for understanding the factors determining their thermodynamic stability and speciation. As a case study, in this report we systematically examine the complexation of silver(I) in acetonitrile (AN) with the following monoamines: n-propylamine (n-pr), n-butylamine (n-but), hexylamine (hexyl), diethylamine (di-et), dipropylamine (di-pr), dibutylamine (di-but), triethylamine (tri-et) and tripropylamine (tri-pr). The study shows that the complex stabilities are quite independent of the length of the substitution chain on the N atom and demonstrates that, in general, the overall enthalpy terms associated with the complex formation are strongly exothermic, whereas the entropy values oppose the complex formations. In addition, we examined the similarity of the formation constants of AgL complexes of the primary monoamines in AN, dimethylsulfoxide (DMSO) and water, which were unexpected on the basis of the difference between the donor properties of solvents.
Collapse
Affiliation(s)
- Andrea Melchior
- Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Laboratori di Chimica, via del Cotonificio 108, 33100 Udine, Italy
| | - Martina Sanadar
- Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Laboratori di Chimica, via del Cotonificio 108, 33100 Udine, Italy
| | - Rosita Cappai
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università di Sassari, via Vienna 2, 07100 Sassari, Italy
| | - Marilena Tolazzi
- Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Laboratori di Chimica, via del Cotonificio 108, 33100 Udine, Italy
| |
Collapse
|
14
|
Irregular structure of the hydrated Ag+ in aqueous solution and its Dynamics: An insight from perturbation theory hybrid forces molecular dynamics simulation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Tavani F, Busato M, Braglia L, Mauri S, Torelli P, D’Angelo P. Caught while Dissolving: Revealing the Interfacial Solvation of the Mg 2+ Ions on the MgO Surface. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38370-38378. [PMID: 35968677 PMCID: PMC9412945 DOI: 10.1021/acsami.2c10005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Interfaces between water and materials are ubiquitous and are crucial in materials sciences and in biology, where investigating the interaction of water with the surface under ambient conditions is key to shedding light on the main processes occurring at the interface. Magnesium oxide is a popular model system to study the metal oxide-water interface, where, for sufficient water loadings, theoretical models have suggested that reconstructed surfaces involving hydrated Mg2+ metal ions may be energetically favored. In this work, by combining experimental and theoretical surface-selective ambient pressure X-ray absorption spectroscopy with multivariate curve resolution and molecular dynamics, we evidence in real time the occurrence of Mg2+ solvation at the interphase between MgO and solvating media such as water and methanol (MeOH). Further, we show that the Mg2+ surface ions undergo a reversible solvation process, we prove the dissolution/redeposition of the Mg2+ ions belonging to the MgO surface, and we demonstrate the formation of octahedral [Mg(H2O)6]2+ and [Mg(MeOH)6]2+ intermediate solvated species. The unique surface, electronic, and structural sensitivity of the developed technique may be beneficial to access often elusive properties of low-Z metal ion intermediates involved in interfacial processes of chemical and biological interest.
Collapse
Affiliation(s)
- Francesco Tavani
- Dipartimento
di Chimica, Università di Roma “La
Sapienza”, P.le A. Moro 5, 00185 Roma, Italy
| | - Matteo Busato
- Dipartimento
di Chimica, Università di Roma “La
Sapienza”, P.le A. Moro 5, 00185 Roma, Italy
| | - Luca Braglia
- CNR
- Istituto Officina dei Materiali, TASC, I-34149 Trieste, Italy
| | - Silvia Mauri
- CNR
- Istituto Officina dei Materiali, TASC, I-34149 Trieste, Italy
- Dipartimento
di Fisica, Università di Trieste, Via A. Valerio 2, 34127 Trieste, Italy
| | - Piero Torelli
- CNR
- Istituto Officina dei Materiali, TASC, I-34149 Trieste, Italy
| | - Paola D’Angelo
- Dipartimento
di Chimica, Università di Roma “La
Sapienza”, P.le A. Moro 5, 00185 Roma, Italy
| |
Collapse
|
16
|
Busato M, Fazio G, Tavani F, Pollastri S, D'Angelo P. Solubilization and coordination of the HgCl 2 molecule in water, methanol, acetone, and acetonitrile: an X-ray absorption investigation. Phys Chem Chem Phys 2022; 24:18094-18102. [PMID: 35880669 DOI: 10.1039/d2cp02106d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
X-ray absorption spectroscopy (XAS) has been employed to carry out structural characterization of the local environment around mercury after the dissolution of the HgCl2 molecule. A combined EXAFS (extended X-ray absorption fine structure) and XANES (X-ray absorption near edge structure) data analysis has been performed on the Hg L3-edge absorption spectra recorded on 0.1 M HgCl2 solutions in water, methanol (MeOH), acetone and acetonitrile. The Hg-Cl distance determined by EXAFS (2.29(2)-2.31(2) Å) is always comparable to that found in the HgCl2 crystal (2.31(2) Å), demonstrating that the HgCl2 molecule dissolves in these solvents without dissociating. A small sensitivity of EXAFS to the solvent molecules interacting with HgCl2 has been detected and indicates a high degree of configurational disorder associated with this contribution. XANES data analysis, which is less affected by the disorder, was therefore carried out for the first time on these systems to shed light into the still elusive structural arrangement of the solvent molecules around HgCl2. The obtained results show that, in aqueous and MeOH solutions, the XANES data are compatible with three solvent molecules arranged around the HgCl2 unit to form a trigonal bipyramidal structure. The determination of the three-body Cl-Hg-Cl distribution shows a certain degree of uncertainty around the average 180° bond angle value, suggesting that the HgCl2 molecule probably vibrates in the solution around a linear configuration.
Collapse
Affiliation(s)
- Matteo Busato
- Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy.
| | - Giuseppe Fazio
- Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy.
| | - Francesco Tavani
- Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy.
| | - Simone Pollastri
- Elettra-Sincrotrone Trieste S.C.p.A, s.s. 14, km 163.5, I-34149, Basovizza, Trieste, Italy
| | - Paola D'Angelo
- Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, 00185, Rome, Italy.
| |
Collapse
|
17
|
Kircheva N, Dobrev S, Nikolova V, Angelova S, Dudev T. Theoretical Insight into the Phosphate-Targeted Silver's Antibacterial Action: Differentiation between Gram (+) and Gram (-) Bacteria. Inorg Chem 2022; 61:10089-10100. [PMID: 35724666 DOI: 10.1021/acs.inorgchem.2c01085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although silver is one of the first metals finding broad applications in everyday life, specific key points of the intimate mechanism of its bacteriostatic/bactericidal activity lack explanation. It is widely accepted that the antimicrobial potential of the silver cation depends on the composition and thickness of the bacterial external envelope: the outer membrane in Gram-negative bacteria is more prone to Ag+ attack than the cell wall in Gram-positive bacteria. The major cellular components able to interact strongly with Ag+ (teichoic acids, phospholipids, and lipopolysaccharides) contain mono/diesterified phosphate moieties. By applying a reliable DFT/SMD methodology, we modeled the reactions between the aforementioned constituents in typical Gram-positive and Gram-negative bacteria and hydrated Ag+ species, thus disclosing the factors that govern the process of metal-model ligand complexation. The conducted research indicates thermodynamically possible reactions in all cases but still a greater preference of the Ag+ toward the constituents in Gram-negative bacteria in comparison with their counterparts in Gram-positive bacteria. The observed tendencies shed light on the specific interactions of the silver cation with the modeled phosphate-containing units at the atomic level.
Collapse
Affiliation(s)
- Nikoleta Kircheva
- Institute of Optical Materials and Technologies ″Acad. J. Malinowski″, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Stefan Dobrev
- Institute of Optical Materials and Technologies ″Acad. J. Malinowski″, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Valya Nikolova
- Faculty of Chemistry and Pharmacy, Sofia University ″St. Kl. Ohridski″, 1164 Sofia, Bulgaria
| | - Silvia Angelova
- Institute of Optical Materials and Technologies ″Acad. J. Malinowski″, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University ″St. Kl. Ohridski″, 1164 Sofia, Bulgaria
| |
Collapse
|
18
|
Corinti D, Maccelli A, Chiavarino B, Schütz M, Bouchet A, Dopfer O, Crestoni ME, Fornarini S. Cation-π Interactions between a Noble Metal and a Polyfunctional Aromatic Ligand: Ag + (benzylamine). Chemistry 2022; 28:e202200300. [PMID: 35412692 PMCID: PMC9325466 DOI: 10.1002/chem.202200300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Indexed: 12/21/2022]
Abstract
The structure of an isolated Ag+ (benzylamine) complex is investigated by infrared multiple photon dissociation (IRMPD) spectroscopy complemented with quantum chemical calculations of candidate geometries and their vibrational spectra, aiming to ascertain the role of competing cation-N and cation-π interactions potentially offered by the polyfunctional ligand. The IRMPD spectrum has been recorded in the 800-1800 cm-1 fingerprint range using the IR free electron laser beamline coupled with an FT-ICR mass spectrometer at the Centre Laser Infrarouge d'Orsay (CLIO). The resulting IRMPD pattern points toward a chelate coordination (N-Ag+ -π) involving both the amino nitrogen atom and the aromatic π-system of the phenyl ring. The gas-phase reactivity of Ag+ (benzylamine) with a neutral molecular ligand (L) possessing either an amino/aza functionality or an aryl group confirms N- and π-binding affinity and suggests an augmented silver coordination in the product adduct ionAg + ( benzylamine ) ( L ) .
Collapse
Affiliation(s)
- Davide Corinti
- Dipartimento di Chimica e Tecnologie del FarmacoUniversità degli studi di Roma La SapienzaP.le A. Moro 5I-00185RomaItaly
| | - Alessandro Maccelli
- Dipartimento di Chimica e Tecnologie del FarmacoUniversità degli studi di Roma La SapienzaP.le A. Moro 5I-00185RomaItaly
| | - Barbara Chiavarino
- Dipartimento di Chimica e Tecnologie del FarmacoUniversità degli studi di Roma La SapienzaP.le A. Moro 5I-00185RomaItaly
| | - Markus Schütz
- Institut für Optik und Atomare PhysikTechnische Universität BerlinHardenbergstr. 3610623BerlinGermany
- present address: Eagleyard Photonics GmbHRudower Chaussee 2912489BerlinGermany
| | - Aude Bouchet
- Institut für Optik und Atomare PhysikTechnische Universität BerlinHardenbergstr. 3610623BerlinGermany
- present address: Université Lille LASIRE Lab Adv Spect Interact React & Environm Cite Sci, CNRS, UMR 851659000LilleFrance
| | - Otto Dopfer
- Institut für Optik und Atomare PhysikTechnische Universität BerlinHardenbergstr. 3610623BerlinGermany
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del FarmacoUniversità degli studi di Roma La SapienzaP.le A. Moro 5I-00185RomaItaly
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del FarmacoUniversità degli studi di Roma La SapienzaP.le A. Moro 5I-00185RomaItaly
| |
Collapse
|
19
|
Busato M, Tofoni A, Mannucci G, Tavani F, Del Giudice A, Colella A, Giustini M, D'Angelo P. On the Role of Water in the Formation of a Deep Eutectic Solvent Based on NiCl 2·6H 2O and Urea. Inorg Chem 2022; 61:8843-8853. [PMID: 35616906 PMCID: PMC9199011 DOI: 10.1021/acs.inorgchem.2c00864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The metal-based deep
eutectic solvent (MDES) formed by NiCl2·6H2O and urea in 1:3.5 molar ratio has been
prepared for the first time and characterized from a structural point
of view. Particular accent has been put on the role of water in the
MDES formation, since the eutectic could not be obtained with the
anhydrous form of the metal salt. To this end, mixtures at different
water/MDES molar ratios (W) have been studied with
a combined approach exploiting molecular dynamics and ab initio simulations, UV–vis and near-infra-red spectroscopies, small-
and wide-angle X-ray scattering, and X-ray absorption spectroscopy
measurements. In the pure MDES, a close packing of Ni2+ ion clusters forming oligomeric agglomerates is present thanks to
the mediation of bridging chloride anions and water molecules. Conversely,
urea poorly coordinates the metal ion and is mostly found in the interstitial
regions among the Ni2+ ion oligomers. This nanostructure
is disrupted upon the introduction of additional water, which enlarges
the Ni–Ni distances and dilutes the system up to an aqueous
solution of the MDES constituents. In the NiCl2·6H2O 1:3.5 MDES, the Ni2+ ion is coordinated on average
by one chloride anion and five water molecules, while water easily
saturates the metal solvation sphere to provide a hexa-aquo coordination
for increasing W values. This multidisciplinary study
allowed us to reconstruct the structural arrangement of the MDES and
its aqueous mixtures on both short- and intermediate-scale levels,
clarifying the fundamental role of water in the eutectic formation
and challenging the definition at the base of these complex systems. The metal-based deep eutectic solvent
formed by NiCl2·6H2O and urea in 1:3.5
a molar ratio was
prepared for the first time, and its aqueous mixtures were characterized
from a structural point of view, highlighting the fundamental role
of water in the eutectic formation.
Collapse
Affiliation(s)
- Matteo Busato
- Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, Rome 00185, Italy
| | - Alessandro Tofoni
- Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, Rome 00185, Italy
| | - Giorgia Mannucci
- Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, Rome 00185, Italy
| | - Francesco Tavani
- Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, Rome 00185, Italy
| | - Alessandra Del Giudice
- Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, Rome 00185, Italy
| | - Andrea Colella
- Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, Rome 00185, Italy
| | - Mauro Giustini
- Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, Rome 00185, Italy
| | - Paola D'Angelo
- Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, Rome 00185, Italy
| |
Collapse
|
20
|
Kuz'mina IA, Kovanova MA. The effect of reagents solvation on change in the stability of coordination compounds of silver(I) ion with pyridine in mixed methanol–acetonitrile solvents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Prasetyo N, Hidayat Y. Lability of the first solvation shell of silver cations in liquid ammonia: A quantum mechanical charge field molecular dynamics simulation study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Busato M, Del Giudice A, Di Lisio V, Tomai P, Migliorati V, Gentili A, Martinelli A, D’Angelo P. Fate of a Deep Eutectic Solvent upon Cosolvent Addition: Choline Chloride-Sesamol 1:3 Mixtures with Methanol. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:12252-12261. [PMID: 34552826 PMCID: PMC8442355 DOI: 10.1021/acssuschemeng.1c03809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/07/2021] [Indexed: 06/13/2023]
Abstract
The changes upon methanol (MeOH) addition in the structural arrangement of the highly eco-friendly deep eutectic solvent (DES) formed by choline chloride (ChCl) and sesamol in 1:3 molar ratio have been studied by means of attenuated total reflection Fourier transform infrared spectroscopy, small- and wide-angle X-ray scattering (SWAXS), and molecular dynamics simulations. The introduction of MeOH into the DES promotes the increase of the number of Cl-MeOH hydrogen bonds (HBs) through the replacement of sesamol and choline molecules from the chloride anion coordination sphere. This effect does not promote the sesamol-sesamol, choline-choline, and sesamol-choline interactions, which remain as negligible as in the pure DES. Differently, the displaced sesamol and choline molecules are solvated by MeOH, which also forms HBs with other MeOH molecules, so that the system arranges itself to keep the overall amount of HBs maximized. SWAXS measurements show that this mechanism is predominant up to MeOH/DES molar ratios of 20-24, while after this ratio value, the scattering profile is progressively diluted in the cosolvent background and decreases toward the signal of pure MeOH. The ability of MeOH to interplay with all of the DES components produces mixtures with neither segregation of the components at nanoscale lengths nor macroscopic phase separation even for high MeOH contents. These findings have important implications for application purposes since the understanding of the pseudophase aggregates formed by a DES with a dispersing cosolvent can help in addressing an efficient extraction procedure.
Collapse
Affiliation(s)
- Matteo Busato
- Department of Chemistry, University of Rome ”La Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessandra Del Giudice
- Department of Chemistry, University of Rome ”La Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| | - Valerio Di Lisio
- Department of Chemistry, University of Rome ”La Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| | - Pierpaolo Tomai
- Department of Chemistry, University of Rome ”La Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| | - Valentina Migliorati
- Department of Chemistry, University of Rome ”La Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessandra Gentili
- Department of Chemistry, University of Rome ”La Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| | - Andrea Martinelli
- Department of Chemistry, University of Rome ”La Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| | - Paola D’Angelo
- Department of Chemistry, University of Rome ”La Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
23
|
Smirnov PR, Grechin OV. STRUCTURE OF THE IMMEDIATE ENVIRONMENT OF IONS IN ZINC CHLORIDE AQUEOUS SOLUTIONS ACCORDING TO XRD DATA. J STRUCT CHEM+ 2021. [DOI: 10.1134/s0022476621070052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Busato M, Lapi A, D’Angelo P, Melchior A. Coordination of the Co 2+ and Ni 2+ Ions in Tf 2N - Based Ionic Liquids: A Combined X-ray Absorption and Molecular Dynamics Study. J Phys Chem B 2021; 125:6639-6648. [PMID: 34109780 PMCID: PMC8279557 DOI: 10.1021/acs.jpcb.1c03395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/30/2021] [Indexed: 11/29/2022]
Abstract
Molecular dynamics (MD) simulations and X-ray absorption spectroscopy (XAS) have been combined to study the coordination of the Co2+ and Ni2+ ions in ionic liquids (ILs) based on the bis(trifluoromethylsulfonyl)imide ([Tf2N]-) anion and having different organic cations, namely, 1-butyl-3-methylimidazolium ([C4mim]+), 1,8-bis(3-methylimidazolium-1-yl)octane ([C8(mim)2]2+), N,N,N-trimethyl-N-(2-hydroxyethyl)ammonium ([choline]+), and butyltrimethylammonium ([BTMA]+). Co and Ni K-edge XAS data have been collected on 0.1 mol L-1 Co(Tf2N)2 and Ni(Tf2N)2 solutions and on the metallic salts. MD simulations have been carried out to obtain structural information on the metal ion coordination. The analysis of the extended X-ray absorption fine structure (EXAFS) spectra of the solutions has been carried out based on the atomistic description provided by MD, and the studied ILs have been found to be able to dissolve both the Co(Tf2N)2 and Ni(Tf2N)2 salts giving rise to a different structural arrangement around the metal ions as compared to the solid state. The combined EXAFS and MD results showed that the Co2+ and Ni2+ ions are surrounded by a first solvation shell formed by six [Tf2N]- anions, each coordinating in a monodentate fashion by means of the oxygen atoms. The nature of the IL organic cation has little or no influence on the overall spatial arrangement of the [Tf2N]- anions, so that stable octahedral complexes of the type [M(Tf2N)6]4- (M = Co, Ni) have been observed in all the investigated ILs.
Collapse
Affiliation(s)
- Matteo Busato
- Dipartimento
di Chimica, Università di Roma “La
Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy
- DPIA,
Laboratorio di Scienze e Tecnologie Chimiche, Università di Udine, Via del Cotonificio 108, 33100 Udine, Italy
| | - Andrea Lapi
- Dipartimento
di Chimica, Università di Roma “La
Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Paola D’Angelo
- Dipartimento
di Chimica, Università di Roma “La
Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Andrea Melchior
- DPIA,
Laboratorio di Scienze e Tecnologie Chimiche, Università di Udine, Via del Cotonificio 108, 33100 Udine, Italy
| |
Collapse
|