1
|
Paschai Darian LK, Ballmann J, Gade LH. T-shaped 14 Electron Rhodium Complexes: Potential Active Species in C-H Activation. Angew Chem Int Ed Engl 2024; 63:e202416814. [PMID: 39545723 DOI: 10.1002/anie.202416814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Two T-shaped 14-electron rhodium complexes 2 a and 2 b, "framed" and thus stabilized by PNP pincer ligands have been synthesized. The bis(t-butyl)phosphine derived PNPtBu-rhodium complex 2 a was isolated from pentane as the more stable cyclometalated Rh(III) hydrido complex and found to be in equilibrium with the T-shaped 14e- Rh(I) complex 2 aT which itself could be directly crystallized upon change of the solvent. The cyclometallation is suppressed using an adamantyl substituted PNPAd ligand to give the analogous T-shaped Rh(I) species 2 b, stabilized through an agostic interaction with one of the adamantyl C-Hs. Depending on the solvent, complex 2 a reacted with ethylene either by π-coordination (4 a) or C-H activation giving a hydrido-vinyl Rh(III) species 4 b, both isomers being in equilibrium in solution. Complex 2 b was found to reversibly C-H activate arenes to form the hydrido-aryl Rh(III) complexes.
Collapse
Affiliation(s)
- Leon K Paschai Darian
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Joachim Ballmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Lutz H Gade
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
2
|
Braun F, Bruckhoff T, Ott JC, Ballmann J, Gade LH. Carbon-Carbon Bond Activation at Chromium(I): An 11-Electron Complex Cleaving Dialkynes. Angew Chem Int Ed Engl 2024; 63:e202418646. [PMID: 39467298 DOI: 10.1002/anie.202418646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 10/30/2024]
Abstract
An 11-electron T-shaped chromium(I) complex was obtained by reduction of a PNP-supported chromium(II) iodide complex. Its d5 high-spin electronic structure was characterized employing paramagnetic NMR, EPR, UV/Vis and magnetic measurements (SQUID). The complex readily reacts with conjugated dialkynes to cleave the internal C-C bond, forming the respective acetylide complexes. Varying the alkyne substituents enabled the isolation and characterization of dinuclear dialkynedichromium intermediates which thermally convert to the products.
Collapse
Affiliation(s)
- Felix Braun
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 276, 69120, Heidelberg, Germany
| | - Tim Bruckhoff
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 276, 69120, Heidelberg, Germany
| | - Jonas C Ott
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 276, 69120, Heidelberg, Germany
| | - Joachim Ballmann
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 276, 69120, Heidelberg, Germany
| | - Lutz H Gade
- Anorganisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 276, 69120, Heidelberg, Germany
| |
Collapse
|
3
|
Gravogl L, Keilwerth M, Körber E, Heinemann FW, Meyer K. From d 8 to d 1: Iron(0) and Iron(I) Complexes Complete the Series of Eight Fe Oxidation States within the TIMMN Mes Ligand Framework. Inorg Chem 2024; 63:15888-15905. [PMID: 39145894 DOI: 10.1021/acs.inorgchem.4c02129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Reduction of the ferrous precursor [(TIMMNMes)Fe(Cl)]+ (1) (TIMMNMes = tris-[(3-mesitylimidazol-2-ylidene)methyl]amine) to the low-valent iron(0) complex [(TIMMNMes)Fe(CO)3] (2) is presented, where the tris(N-heterocyclic carbene) (NHC) ligand framework remains intact, yet the coordination mode changed from 3-fold to 2-fold coordination of the carbene arms. Further, the corresponding iron(I) complexes [(TIMMNMes)Fe(L)]+ (L = free site, η1-N2, CO, py) (3) are synthesized and fully characterized. Complexes 1-3 demonstrate the notable steric and electronic flexibility of the TIMMNMes ligand framework by variation of the Fe-N anchor and Fe-carbene distances and the variable size of the axial cavity occupation. This is further underpinned by the oxidation of 3-N2 in a reaction with benzophenone to yield the corresponding, charge-separated iron(II) radical complex [(TIMMNMes)Fe(OCPh2)]+ (4). We found rather surprising similarities in the reactivity behavior when going to low- or high-valent oxidation states of the central iron ion. This is demonstrated by the closely related reactivity of 3-N2, where H atom abstraction with TEMPO triggers the formation of the metallacycle [(TIMMNMes*)Fe(py)]+ (5), and the reactivity of the highly unstable Fe(VII) nitride complex [(TIMMNMes)Fe(N)(F)]3+ to give the metallacyclic Fe(V) imido complex [(TIMMNMesN)Fe(NMes)(MeCN)]3+ (6) upon warming. Thus, the employed tris(carbene) chelate is not only capable of stabilizing the superoxidized Fe(VI) and Fe(VII) nitrides but equally supports the iron center in its low oxidation states 0 and +1. Isolation and characterization of these zero- and monovalent iron complexes demonstrate the extraordinary capability of the tris(carbene) chelate TIMMN to support iron in eight different oxidation states within the very same ligand platform.
Collapse
Affiliation(s)
- Lisa Gravogl
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Martin Keilwerth
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Eva Körber
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
4
|
Werncke CG, Müller I, Weißer K, Limberg C. Divergent Interaction of (Iso)nitriles with a Linear Iron(I) Silylamide─A Combined Structural, Spectroscopic, and Computational Study. Inorg Chem 2024; 63:15236-15246. [PMID: 39066707 DOI: 10.1021/acs.inorgchem.4c02882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Nitriles and isonitriles are important σ-donor ligands in coordination chemistry. Isonitriles also function in low-valent complexes as π-acceptor ligands similar to CO. Herein we present the unusual behavior of the highly reducing, high-spin iron(I) complex [Fe(hmds)2]- toward these compound classes. Rare examples of side-on coordination of nitriles to the metal center are observed. Insights gained by 57Fe Mössbauer spectroscopy as well as DFT and CASSCF calculations give an interplay between the resonance structures of not only an iron(I) π-complex and an iron(III) metallacycle but also point to the importance of an iron(II) nitrile radical anion. For an aromatic isonitrile end-on coordination is observed, which is best described as an iron(I) complex with only minor unpaired spin transfer onto the isonitrile. For aliphatic isonitriles, the selective R-CN bond cleavage occurs and yields stoichiometric mixtures of alkyl iron(II) and cyanido iron(II) complexes. Attempts to isolate presumed (iso)nitrile radical anions void of 3d-metal coordination give for the reaction of an aromatic isonitrile with KC8 facile reductive coupling to the corresponding diamido acetylene.
Collapse
Affiliation(s)
- C Gunnar Werncke
- Chemistry Department, Philipps-University Marburg, Hans-Meerwein-Straße 4, D-35043 Marburg, Germany
| | - Igor Müller
- Chemistry Department, Philipps-University Marburg, Hans-Meerwein-Straße 4, D-35043 Marburg, Germany
| | - Kilian Weißer
- Institute of Chemistry, Humboldt-University Berlin, Brook-Taylor-Str. 2, D-13089 Berlin, Germany
| | - Christian Limberg
- Institute of Chemistry, Humboldt-University Berlin, Brook-Taylor-Str. 2, D-13089 Berlin, Germany
| |
Collapse
|
5
|
Arnosti NA, Wyss V, Delley MF. Controlled Surface Modification of Cobalt Phosphide with Sulfur Tunes Hydrogenation Catalysis. J Am Chem Soc 2023; 145:23556-23567. [PMID: 37873976 PMCID: PMC10623574 DOI: 10.1021/jacs.3c07312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
Transition metal phosphides have shown promise as catalysts for water splitting and hydrotreating, especially when a small amount of sulfur is incorporated into the phosphides. However, the effect of sulfur on catalysis is not well understood. In part, this is because conventional preparation methods of sulfur-doped transition metal phosphides lead to sulfur both inside and at the surface of the material. Here, we present an alternative method of modifying cobalt phosphide (CoP) with sulfur using molecular S-transfer reagents, namely, phosphine sulfides (SPR3). SPR3 added sulfur to the surface of CoP and using a series of SPR3 reagents having different P═S bond strengths enabled control over the amount and type of sulfur transferred. Our results show that there is a distribution of different sulfur sites possible on the CoP surface with S-binding strengths in the range of 69 to 84 kcal/mol. This provides fundamental information on how sulfur binds to an amorphous CoP surface and provides a basis to assess how number and type of sulfur on CoP influences catalysis. For the catalytic hydrogenation of cinnamaldehyde, intermediate amounts of sulfur with intermediate binding strengths at the surface of CoP were optimal. With some but not too much sulfur, CoP exhibited a higher hydrogenation productivity and a decreased formation of secondary reaction products. Our work provides important insight into the S-effect on the catalysis by transition metal phosphides and opens new avenues for catalyst design.
Collapse
Affiliation(s)
- Nina A. Arnosti
- Department of Chemistry, University
of Basel, 4058 Basel, Switzerland
| | - Vanessa Wyss
- Department of Chemistry, University
of Basel, 4058 Basel, Switzerland
| | | |
Collapse
|
6
|
Lewine H, Teigen AG, Trausch AM, Lindblom KM, Seda T, Reinheimer EW, Kowalczyk T, Gilbertson JD. Sequential Deoxygenation of CO 2 and NO 2- via Redox-Control of a Pyridinediimine Ligand with a Hemilabile Phosphine. Inorg Chem 2023; 62:15173-15179. [PMID: 37669231 PMCID: PMC10520972 DOI: 10.1021/acs.inorgchem.3c02323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Indexed: 09/07/2023]
Abstract
The deoxygenation of environmental pollutants CO2 and NO2- to form value-added products is reported. CO2 reduction with subsequent CO release and NO2- conversion to NO are achieved via the starting complex Fe(PPhPDI)Cl2 (1). 1 contains the redox-active pyridinediimine (PDI) ligand with a hemilabile phosphine located in the secondary coordination sphere. 1 was reduced with SmI2 under a CO2 atmosphere to form the direduced monocarbonyl Fe(PPhPDI)(CO) (2). Subsequent CO release was achieved via oxidation of 2 using the NOx- source, NO2-. The resulting [Fe(PPhPDI)(NO)]+ (3) mononitrosyl iron complex (MNIC) is formed as the exclusive reduction product due to the hemilabile phosphine. 3 was investigated computationally to be characterized as {FeNO}7, an unusual intermediate-spin Fe(III) coupled to triplet NO- and a singly reduced PDI ligand.
Collapse
Affiliation(s)
- Hanalei
R. Lewine
- Department
of Chemistry, Western Washington University, Bellingham, Washington98225, United States
| | - Allison G. Teigen
- Department
of Chemistry, Western Washington University, Bellingham, Washington98225, United States
| | - April M. Trausch
- Department
of Chemistry, Western Washington University, Bellingham, Washington98225, United States
| | - Kaitlyn M. Lindblom
- Department
of Chemistry, Western Washington University, Bellingham, Washington98225, United States
| | - Takele Seda
- Department
of Physics, Western Washington University, Bellingham, Washington98225, United States
| | | | - Tim Kowalczyk
- Department
of Chemistry, Western Washington University, Bellingham, Washington98225, United States
| | - John D. Gilbertson
- Department
of Chemistry, Western Washington University, Bellingham, Washington98225, United States
| |
Collapse
|
7
|
Gajecki L, Sawicka B, Berg DJ, Oliver AG. Synthesis and Magnetic Studies of Two Neutral, Bis-Ligand Fe(II) Complexes Containing Carbazole- Bis(tetrazole) Ligands. Inorg Chem 2023. [PMID: 37478316 DOI: 10.1021/acs.inorgchem.3c01167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Previously reported carbazole-bis(tetrazole) (CzTR) ligands (where R = iPr and CH2-2,4,6-C6H2Me3) were used to synthesize air-stable, six-coordinate, octahedral bis-ligand Fe(II) complexes (CzTR)2Fe. The synthesis and characterization of these complexes using 1H nuclear magnetic resonance (NMR), X-ray crystallography, Mössbauer spectroscopy, and density functional theory (DFT) calculations are reported. Analysis of the magnetic properties revealed that the isopropyl derivative displays thermally induced spin crossover (SCO) over a temperature range of 150-350 K. This transition appears as an abrupt two-step transition in the solid state but simplifies to a smooth one-step transition in solution. The two-step transition in the solid state has been postulated to be due to lattice and solvation effects. In contrast, the slightly bulkier substituted CH2-2,4,6-C6H2Me3 (CH2Mes) Fe complex displays dramatically different magnetic behavior with no SCO and magnetic data suggesting low-spin Fe(II) with a possible TIP contribution. DFT calculations support the postulate that the change in magnetic behavior is primarily due to the nature of the ligand substituents.
Collapse
Affiliation(s)
- Leah Gajecki
- Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, British Columbia, Canada V8W 3V6
| | - Barbara Sawicka
- Department of Mechanical Engineering, University of Victoria, P.O. Box 1700 STN CSC, Victoria, British Columbia, Canada V8W 2Y2
| | - David J Berg
- Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, British Columbia, Canada V8W 3V6
| | - Allen G Oliver
- Department of Chemistry & Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
8
|
Zars E, Gravogl L, Gau MR, Carroll PJ, Meyer K, Mindiola DJ. Isostructural bridging diferrous chalcogenide cores [Fe II(μ-E)Fe II] (E = O, S, Se, Te) with decreasing antiferromagnetic coupling down the chalcogenide series. Chem Sci 2023; 14:6770-6779. [PMID: 37350823 PMCID: PMC10283490 DOI: 10.1039/d3sc01094e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/24/2023] [Indexed: 06/24/2023] Open
Abstract
Iron compounds containing a bridging oxo or sulfido moiety are ubiquitous in biological systems, but substitution with the heavier chalcogenides selenium and tellurium, however, is much rarer, with only a few examples reported to date. Here we show that treatment of the ferrous starting material [(tBupyrpyrr2)Fe(OEt2)] (1-OEt2) (tBupyrpyrr2 = 3,5-tBu2-bis(pyrrolyl)pyridine) with phosphine chalcogenide reagents E = PR3 results in the neutral phosphine chalcogenide adduct series [(tBupyrpyrr2)Fe(EPR3)] (E = O, S, Se; R = Ph; E = Te; R = tBu) (1-E) without any electron transfer, whereas treatment of the anionic starting material [K]2[(tBupyrpyrr2)Fe2(μ-N2)] (2-N2) with the appropriate chalcogenide transfer source yields cleanly the isostructural ferrous bridging mono-chalcogenide ate complexes [K]2[(tBupyrpyrr2)Fe2(μ-E)] (2-E) (E = O, S, Se, and Te) having significant deviation in the Fe-E-Fe bridge from linear in the case of E = O to more acute for the heaviest chalcogenide. All bridging chalcogenide complexes were analyzed using a variety of spectroscopic techniques, including 1H NMR, UV-Vis electronic absorbtion, and 57Fe Mössbauer. The spin-state and degree of communication between the two ferrous ions were probed via SQUID magnetometry, where it was found that all iron centers were high-spin (S = 2) FeII, with magnetic exchange coupling between the FeII ions. Magnetic studies established that antiferromagnetic coupling between the ferrous ions decreases as the identity of the chalcogen is tuned from O to the heaviest congener Te.
Collapse
Affiliation(s)
- Ethan Zars
- Department of Chemistry, University of Pennsylvania 231 S 34th St Philadelphia PA 19104 USA
| | - Lisa Gravogl
- Department of Chemistry & Pharmacy, Friedrich-Alexander-Universität Erlangen - Nürnberg (FAU) Egerlandstr. 1 91058 Erlangen Bavaria Germany
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania 231 S 34th St Philadelphia PA 19104 USA
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania 231 S 34th St Philadelphia PA 19104 USA
| | - Karsten Meyer
- Department of Chemistry & Pharmacy, Friedrich-Alexander-Universität Erlangen - Nürnberg (FAU) Egerlandstr. 1 91058 Erlangen Bavaria Germany
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania 231 S 34th St Philadelphia PA 19104 USA
| |
Collapse
|
9
|
Brown AC, Suess DLM. Valence Localization in Alkyne and Alkene Adducts of Synthetic [Fe 4S 4] + Clusters. Inorg Chem 2023; 62:1911-1918. [PMID: 35704768 PMCID: PMC9751231 DOI: 10.1021/acs.inorgchem.2c01353] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reported herein are alkyne and alkene adducts of synthetic [Fe4S4]+ clusters that model intermediates and inhibitor-bound states in enzymes involved in isoprenoid biosynthesis. Treatment of the N-heterocyclic carbene-ligated cluster [(IMes)3Fe4S4(OEt2)][BArF4] (IMes = 1,3-dimesitylimidazol-2-ylidene; [BArF4]- = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate) with phenylacetylene (PhCCH) or cis-cyclooctene (COE) results in displacement of the Et2O ligand to yield the corresponding π complexes, [(IMes)3Fe4S4(PhCCH)][BArF4] and [(IMes)3Fe4S4(COE)][BArF4]. EPR spectroscopic analysis demonstrates that both clusters are doublets with giso > 2 and thus are spectroscopically faithful models of the analogous species characterized in the isoprenoid biosynthetic enzymes IspG and IspH. Structural and Mössbauer spectroscopic analysis reveals that both complexes are best described as [Fe4S4]+ clusters in which the unique Fe site engages in modest back-bonding to the π-acidic ligand. Paramagnetic NMR studies show that, even at room temperature, the alkyne/alkene-bound Fe centers harbor minority spin and therefore adopt an Fe2+ valence. We propose that such valence localization could likewise occur in Fe-S enzymes that interact with π-acidic molecules.
Collapse
|
10
|
Sieg G, Müller I, Weißer K, Werncke CG. Taming the stilbene radical anion. Chem Sci 2022; 13:13872-13878. [PMID: 36544743 PMCID: PMC9710230 DOI: 10.1039/d2sc04451j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
Radical anions appear as intermediates in a variety of organic reductions and have recently garnered interest for their role as mediators for electron-driven catalysis as well as for organic electron conductor materials. Due to their unstable nature, the isolation of such organic radical anions is usually only possible by using extended aromatic systems, whereas non-aromatic unsaturated hydrocarbons have so far only been observed in situ. We herein report the first isolation, structure and spectroscopic characterization of a simple aryl substituted alkene radical anion, namely that of stilbene (1,2-diphenyl ethylene), achieved by encapsulation between two [K{18c6}] cations. The formation of the radical anion is accompanied by Z → E isomerization of the involved double bond, also on a catalytic scale. Employing the linear iron(i) complex [Fe(NR2)2]- as a reductant and coordination site also allows for this transformation, via formation of an iron(ii) bound radical anion. The use of the iron complex now also allows for Z → E isomerization of electron richer, simple alkenes bearing either mixed alkyl/aryl or even bis(alkyl) substitution.
Collapse
Affiliation(s)
- Grégoire Sieg
- Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Straße 4 35037 Marburg Germany
| | - Igor Müller
- Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Straße 4 35037 Marburg Germany
| | - Kilian Weißer
- Institut für Chemie, Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - C Gunnar Werncke
- Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Straße 4 35037 Marburg Germany
| |
Collapse
|
11
|
Ott JC, Bürgy D, Guan H, Gade LH. 3d Metal Complexes in T-shaped Geometry as a Gateway to Metalloradical Reactivity. Acc Chem Res 2022; 55:857-868. [PMID: 35164502 DOI: 10.1021/acs.accounts.1c00737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
ConspectusLow-valent, low-coordinate 3d metal complexes represent a class of extraordinarily reactive compounds that can act as reagents and catalysts for challenging bond-activation reactions. The pursuit of these electron-deficient metal complexes in low oxidation states demands ancillary ligands capable of providing not only energetic stabilization but also sufficiently high steric bulk at the metal center. From this perspective, pincer ligands are particularly advantageous, as their prearranged, meridional coordination mode scaffolds the active center while the substituents of the peripheral donor atoms provide effective steric shielding for the coordination sphere. In a T-shaped geometry, the transition metal complexes possess a precisely defined vacant coordination site, which, combined with the often observed high-spin electron configuration, exhibits unusually high selectivity of these compounds with respect to one-electron redox chemistry. In light of the intractable reaction pathways typically observed with related electronically unsaturated 3d transition metal complexes, the pincer coordination mode enables the isolation of low-valent compounds with more controlled and unique reactivity. We have thus investigated a series of T-shaped metal(I) complexes using three different types of pincer ligands, which may be regarded as "metalloradicals" due to their selectively exposed unpaired electrons.These compounds display remarkably high thermal stability and represent rarely observed "naked" monovalent metal species featuring both monomeric and dimeric structures. Extensive reactivity studies using various organic substrates highlight a strong tendency of these paramagnetic compounds to undergo one-electron oxidation, leading to the isolation of a plethora of metal(II) species with reduced organic ligands as unusual structural elements. The exploration of C2 symmetric T-shaped Ni(I) complexes as asymmetric catalysts also shows success in enantioselective hydrodehalogenation of geminal dihalogenides. In addition, this specific class of low-valent, low-coordinate complexes can be further diversified by introducing redox-active pincer ligands or building homobimetallic systems with two T-shaped units.This Account focuses on the discussion of selected examples of iron, cobalt, and nickel pincer complexes bearing a [P,N,P] or [N,N,N] donor set; however, their electronic structure and radical-type reactivity can be broadly extended to other pincer systems. The availability of various types of pincer ligands should allow fine-tuning of the reactivity of the T-shaped complexes. Given the unprecedented reactivity observed with these compounds, we expect the studies of T-shaped 3d metal complexes to be a fertile field for advancing base metal catalysis.
Collapse
Affiliation(s)
- Jonas C. Ott
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - David Bürgy
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Hairong Guan
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, Ohio 45221-0172, United States
| | - Lutz H. Gade
- Anorganisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
12
|
Estrada AL, Wititsuwannakul T, Kromm K, Hampel F, Hall MB, Gladysz J. Syntheses, Rearrangements, and Structural Analyses of Unsaturated Nitrogen Donor Ligands Derived from Diphenyldiazomethane and the Chiral Rhenium Lewis Acid [(η5-C5H5)Re(NO)(PPh3)]+. Dalton Trans 2022; 51:7305-7320. [DOI: 10.1039/d2dt00890d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diphenyldiazomethane and a labile chlorobenzene complex of [(η5-C5H5)Re(NO)(PPh3)]+ BF4– react to give the η1 adduct [(η5-C5H5)Re(NO)(PPh3)(NNCPh2)]+ BF4– (73%). When this is con-ducted in the presence of copper powder, a 3-phenyl-1H-indazole...
Collapse
|
13
|
Ott JC, Suturina EA, Kuprov I, Nehrkorn J, Schnegg A, Enders M, Gade LH. Observability of Paramagnetic NMR Signals at over 10 000 ppm Chemical Shifts. Angew Chem Int Ed Engl 2021; 60:22856-22864. [PMID: 34351041 PMCID: PMC8518043 DOI: 10.1002/anie.202107944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 12/27/2022]
Abstract
We report an experimental observation of 31 P NMR resonances shifted by over 10 000 ppm (meaning percent range, and a new record for solutions), and similar 1 H chemical shifts, in an intermediate-spin square planar ferrous complex [tBu (PNP)Fe-H], where PNP is a carbazole-based pincer ligand. Using a combination of electronic structure theory, nuclear magnetic resonance, magnetometry, and terahertz electron paramagnetic resonance, the influence of magnetic anisotropy and zero-field splitting on the paramagnetic shift and relaxation enhancement is investigated. Detailed spin dynamics simulations indicate that, even with relatively slow electron spin relaxation (T1 ≈10-11 s), it remains possible to observe NMR signals of directly metal-bonded atoms because pronounced rhombicity in the electron zero-field splitting reduces nuclear paramagnetic relaxation enhancement.
Collapse
Affiliation(s)
- Jonas C. Ott
- Anorganisch-Chemisches InstitutUniversität HeidelbergIm Neuenheimer Feld 27669120HeidelbergGermany
| | | | - Ilya Kuprov
- School of ChemistryUniversity of SouthamptonSouthamptonSO17 1BJUK
| | - Joscha Nehrkorn
- EPR Research GroupMPI for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim RuhrGermany
| | - Alexander Schnegg
- EPR Research GroupMPI for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim RuhrGermany
| | - Markus Enders
- Anorganisch-Chemisches InstitutUniversität HeidelbergIm Neuenheimer Feld 27669120HeidelbergGermany
| | - Lutz H. Gade
- Anorganisch-Chemisches InstitutUniversität HeidelbergIm Neuenheimer Feld 27669120HeidelbergGermany
| |
Collapse
|
14
|
Ott JC, Suturina EA, Kuprov I, Nehrkorn J, Schnegg A, Enders M, Gade LH. Observability of Paramagnetic NMR Signals at over 10 000 ppm Chemical Shifts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jonas C. Ott
- Anorganisch-Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 276 69120 Heidelberg Germany
| | | | - Ilya Kuprov
- School of Chemistry University of Southampton Southampton SO17 1BJ UK
| | - Joscha Nehrkorn
- EPR Research Group MPI for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim Ruhr Germany
| | - Alexander Schnegg
- EPR Research Group MPI for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim Ruhr Germany
| | - Markus Enders
- Anorganisch-Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 276 69120 Heidelberg Germany
| | - Lutz H. Gade
- Anorganisch-Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 276 69120 Heidelberg Germany
| |
Collapse
|
15
|
Sun R, Yang X, Ge Y, Song J, Zheng X, Yuan M, Li R, Chen H, Fu H. Visible-Light-Induced Oxazoline Formations from N-Vinyl Amides Catalyzed by an Ion-Pair Charge-Transfer Complex. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rui Sun
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Xiao Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Yicen Ge
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, No.1 3rd Road, Erxian Bridge East, Chengdu, Sichuan 610059, P. R. China
| | - Jintong Song
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Xueli Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Maolin Yuan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Ruixiang Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Hua Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Haiyan Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
16
|
Weller R, Ruppach L, Shlyaykher A, Tambornino F, Werncke CG. Homoleptic quasilinear metal(i/ii) silylamides of Cr-Co with phenyl and allyl functions - impact of the oxidation state on secondary ligand interactions. Dalton Trans 2021; 50:10947-10963. [PMID: 34318833 DOI: 10.1039/d1dt01543e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein we describe the synthesis and characterization of a variety of new quasilinear metal(i/ii) silylamides of the type [M(N(Dipp)SiR3)2]0,- (M = Cr-Co) with different silyl substituents (SiR3 = SiPh3-nMen (n = 1-3), SiMe2(allyl)). By comparison of the solid state structures we show that in the case of phenyl substituents secondary metal-ligand interactions are suppressed upon reduction of the metal. Introduction of an allyl substituted silylamide gives divalent complexes with additional metal-π-alkene interactions with only weak activation of the C[double bond, length as m-dash]C bond but substantial bending of the principal N-M-N axis. 1e--reduction makes cobalt a more strongly bound alkene substituent, whereas for chromium, reduction and intermolecular dimerisation of the allyl unit are observed. It thus indicates that the general view of low-coordinate 3d-metal ions as electron deficient seems not to apply to anionic metal(i) complexes. Additionally, the obtained cobalt(i) complexes are reacted with an aryl azide giving trigonal imido metal complexes. These can be regarded as rare examples of high-spin imido cobalt compounds from their structural and solution magnetic features.
Collapse
Affiliation(s)
- Ruth Weller
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, D-35032 Marburg, Germany.
| | - Lutz Ruppach
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, D-35032 Marburg, Germany.
| | - Alena Shlyaykher
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, D-35032 Marburg, Germany.
| | - Frank Tambornino
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, D-35032 Marburg, Germany.
| | - C Gunnar Werncke
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, D-35032 Marburg, Germany.
| |
Collapse
|
17
|
Jesse KA, Chang MC, Filatov AS, Anderson JS. Iron(II) Complexes Featuring a Redox-Active Dihydrazonopyrrole Ligand. Z Anorg Allg Chem 2021; 647:1415-1420. [PMID: 36059917 PMCID: PMC9435867 DOI: 10.1002/zaac.202100097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 09/04/2024]
Abstract
Nature uses control of the secondary coordination sphere to facilitate an astounding variety of transformations. Similarly, synthetic chemists have found metal-ligand cooperativity to be a powerful strategy for designing complexes that can mediate challenging reactivity. In particular, this strategy has been used to facilitate two electron reactions with first row transition metals that more typically engage in one electron redox processes. While NNN pincer ligands feature prominently in this area, examples which can potentially engage in both proton and electron transfer are less common. Dihydrazonopyrrole (DHP) ligands have been isolated in a variety of redox and protonation states when complexed to Ni. However, the redox-state of this ligand scaffold is less obvious when complexed to metal centers with more accessible redox couples. Here, we synthesize a new series of Fe-DHP complexes in two distinct oxidation states. Detailed characterization supports that the redox-chemistry in this set is still primarily ligand based. Finally, these complexes exist as 5-coordinate species with an open coordination site offering the possibility of enhanced reactivity.
Collapse
Affiliation(s)
- Kate A Jesse
- University of Chicago Department of Chemistry, 929 E 57 St. Chicago, IL, 60637
| | - Mu-Chieh Chang
- National Taiwan University Department of Chemistry, No. 1, Section 4, Roosevelt Rd, Da'an District, Taipei City, Taiwan 10
| | - Alexander S Filatov
- University of Chicago Department of Chemistry, 929 E 57 St. Chicago, IL, 60637
| | - John S Anderson
- University of Chicago Department of Chemistry, 929 E 57 St. Chicago, IL, 60637
| |
Collapse
|