1
|
Borkar RL, Putta CL, Shankar B, Bhattacharjee B, Rengan AK, Sathiyendiran M. Fluorine-Substituted Rhenium(I) Metallocycle: A New Class of Potent Anticancer Agent. Chem Asian J 2025:e202401656. [PMID: 40229171 DOI: 10.1002/asia.202401656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/11/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025]
Abstract
Fluorine and nonfluorine substituted rhenium(I) metallocycles, fac-[{Re(CO)3}2(μ-SO4)(L1)2] (C1) and fac-[{Re(CO)3}2(μ-SO4)(L2)2] (C2), respectively, were synthesized using Re2(CO)10, sodium bisulfite, fluorobenzimidazolyl/benzimidazolyl-based ditopic nitrogen-donor ligands (L1/L2), and toluene-acetone via coordination-driven one-pot solvothermal approach. The metallocycles were characterized using elemental analysis, ESI-TOF-MS, ATR-IR, NMR, and PXRD methods. The molecular structures of C1·9(DMSO), C1·(toluene)(acetone), and C2·(toluene) were determined using SCXRD analysis. The in vitro cytotoxicity study of C1 and C2 was performed against cervical (HeLa) and skin (B16) cancer cells. Murine fibroblast (L929) and mouse myoblast (C2C12) cells were used as noncarcinogenic model cell lines for biocompatibility determination. The metallocycles exhibited potent anticancer activity against both cancer cell lines, showing greater efficacy than the commonly used cisplatin. Moreover, fluorine-substituted C1 metallocycle exhibited significantly higher anticancer activity than nonfluorinated C2 metallocycle, indicating a fluorine effect. Further, in-depth studies of C1 on HeLa cells showed elevated intracellular ROS generation, disruption of mitochondrial membrane potential, and antiproliferative properties. The in vitro studies also revealed its ability to bind with DNA and induce changes in cellular morphology, thus leading to DNA damage and cancer cell death by apoptosis. Molecular docking studies of the metallocycles with B-DNA macromolecule revealed the binding sites, binding affinity, and type of noncovalent interactions.
Collapse
Affiliation(s)
- Reema L Borkar
- School of Chemistry, University of Hyderabad, Hyderabad, 500 046, India
| | - Chandra Lekha Putta
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, 502 284, India
| | - Bhaskaran Shankar
- Department of Chemistry, Thiagarajar College of Engineering, Madurai, 625 015, India
| | - Basu Bhattacharjee
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, 502 284, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, 502 284, India
| | | |
Collapse
|
2
|
Yang J, Wang F, Huang S, Feng T, Xiong K, Chen Y, Chao H. A Ruthenium(II) Complex Inhibits BRD4 for Synergistic Seno- and Chemo-Immunotherapy in Cisplatin-Resistant Tumor Cells. Angew Chem Int Ed Engl 2025:e202505689. [PMID: 40151095 DOI: 10.1002/anie.202505689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 03/27/2025] [Indexed: 03/29/2025]
Abstract
Drug resistance is a significant challenge for tumor therapy. Activating immunity is an effective method to combat drug-resistant tumors. Utilizing metallic chemotherapeutic agents to induce nonapoptotic programmed cell death is a practical approach to stimulate immunity. Besides, triggering tumor cell senescence, named senotherapy, is also an effective but often ignored method to induce immune responses. Despite some progress, reports on metallic immunotherapeutic stimuli are sparse and mainly delve into the level of organelle targeting, with vague drug-target mechanisms. Here, we report a Ru(II) complex (Ru2c) inhibits BRD4 with high affinity at a nanomolar constant. After encapsulation into biotin-DNA cage, Ru2c@biotin-DNA cage was demonstrated to kill drug-resistant cancer cells through a synergistic apoptosis-ferroptosis-senescence pathway, exhibiting 51-fold anticancer activity compared to the commercial inhibitor JQ-1. Ru2c effectively erased drug-resistant tumors and activated innate and acquired immunity in vivo. To the best of our knowledge, Ru2c is the first metal-based BRD4 inhibitor to achieve synergistic seno-immunotherapy and chemo-immunotherapy.
Collapse
Affiliation(s)
- Jinrong Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P.R. China
| | - Fa Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P.R. China
| | - Shuqi Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P.R. China
| | - Tao Feng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P.R. China
| | - Kai Xiong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P.R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P.R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P.R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 400201, P.R. China
| |
Collapse
|
3
|
Choroba K, Palion-Gazda J, Kryczka A, Malicka E, Machura B. Push-pull effect - how to effectively control photoinduced intramolecular charge transfer processes in rhenium(I) chromophores with ligands of D-A or D-π-A structure. Dalton Trans 2025; 54:2209-2223. [PMID: 39801429 DOI: 10.1039/d4dt03237c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Over the last five decades, diimine rhenium(I) tricarbonyl complexes have been extensively investigated due to their remarkable and widely tuned photophysical properties. These systems are regarded as attractive targets for design functional luminescent materials and performing fundamental studies of photoinduced processes in transition metal complexes. This review summarizes the latest developments concerning Re(I) tricarbonyl complexes bearing donor-acceptor (D-A) and donor-π-acceptor (D-π-A) ligands. Such compounds can be treated as bichromophoric systems with two close-lying excited states, metal-to-ligand charge transfer (MLCT) and intraligand-charge-transfer (ILCT). A role of ILCT transitions in controlling photobehaviour was discussed for Re(I) tricarbonyls with six different diimine cores decorated by various electron-rich amine, sulphur-based and π-conjugated aryl groups. It was evidenced that this approach is an effective tool for enhancement of the visible absorptivity, bathochromic emission shift and significant prolongation of the excited-state, opening up new possibilities in the development of more efficient materials and expand the range of their applications.
Collapse
Affiliation(s)
- Katarzyna Choroba
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Joanna Palion-Gazda
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Anna Kryczka
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Ewa Malicka
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Barbara Machura
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| |
Collapse
|
4
|
Kar B, Paira P. Photostimulated Anticancer Activity of Mitochondria Localized Rhenium(I) Tricarbonyl Complexes Bearing 1H-imidazo[4,5-f][1,10]phenanthroline Ligands Against MDA-MB-231 Cancer Cells. Chemistry 2025; 31:e202401720. [PMID: 39269736 DOI: 10.1002/chem.202401720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/15/2024]
Abstract
We have introduced Re(I) tricarbonyl complexes (ReL1 - ReL6) [Re(CO)3(N^N)Cl] where N^N=extensive π conjugated imidazo-[4,5-f][1,10]-phenanthroline derivatives that helps in strong DNA intercalation, enhanced photophysical behavior, increase the 3π-π* character of T1 state for PDT and high value of lipophilicity for cell membrane penetration. These complexes exhibited prominent intraligand/ligand-centered (π-π*/1LC) absorption bands at λ 260-350 nm and relatively weak metal-to-ligand charge-transfer (1MLCT) bands within the λ 350-550 nm range. Among the six synthesized complexes, [(CO)3ReICl(K2-N,N-2-(4-(1-benzyl-1H-tetrazol-5-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline] (ReL6) exhibited outstanding potency (IC50~6 μM, PI>9) under yellow light irradiation compared to dark conditions. Importantly, extremely lipophilic complex ReL6 showed effective penetration through the cell membrane and localized primarily in mitochondria (Pearson's correlation coefficient, PCC=0.918) of MDA-MB-231 cells. Complex ReL6 exhibited more than 9 times higher photo-toxicity in normoxic and hypoxic environment of tumor by inducing 1O2 generation (type II PDT), radical generation triggered by NADH oxidation (type I PDT). This complex is a promising candidate for TNBC treatment in hypoxic tumors, with efficacy comparable to photofrin and have demonstrated CO release ability under UV light irradiation.
Collapse
Affiliation(s)
- Binoy Kar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
5
|
Schleisiek J, Michaltsis E, Mayer S, Montesdeoca N, Karges J. Necrosis inducing tetranuclear Ru(II)-Re(I) metal complex for anticancer therapy. Dalton Trans 2025; 54:942-950. [PMID: 39714107 DOI: 10.1039/d4dt02992e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Chemotherapy is one of the most widely used anticancer treatments worldwide. However, despite its clinical effectiveness, most chemotherapeutic agents are associated with severe side effects. To address this limitation, there is an urgent need for the development of novel anticancer agents. Among the promising alternatives, Ruthenium and Rhenium complexes have garnered significant attention in the scientific literature. This study proposes combining these two metal moieties into a single tetranuclear complex, bridged by a 2,2'-bipyrimidine ligand. Cytotoxicity tests revealed broad activity of the novel metal complex against multiple cancer cell lines. Mechanistic studies suggested that the complex induces cell death by necrosis. Further analyses demonstrated its ability to eradicate colon carcinoma tumor spheroids at micromolar concentrations. To the best of our knowledge, this represents the first example of a Ru(II)-Re(I) tetranuclear metal complex as an anticancer agent.
Collapse
Affiliation(s)
- Julia Schleisiek
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| | - Eleni Michaltsis
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| | - Stephan Mayer
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| | - Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany.
| |
Collapse
|
6
|
Mitchell RJ, Havrylyuk D, Hachey AC, Heidary DK, Glazer EC. Photodynamic therapy photosensitizers and photoactivated chemotherapeutics exhibit distinct bioenergetic profiles to impact ATP metabolism. Chem Sci 2025; 16:721-734. [PMID: 39629492 PMCID: PMC11609979 DOI: 10.1039/d4sc05393a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
Energy is essential for all life, and mammalian cells generate and store energy in the form of ATP by mitochondrial (oxidative phosphorylation) and non-mitochondrial (glycolysis) metabolism. These processes can now be evaluated by extracellular flux analysis (EFA), which has proven to be an indispensable tool in cell biology, providing previously inaccessible information regarding the bioenergetic landscape of cell lines, complex tissues, and in vivo models. Recently, EFA demonstrated its utility as a screening tool in drug development, both by providing insights into small molecule-organelle interactions, and by revealing the peripheral and potentially undesired off-target effects small molecules have within cells. Surprisingly, technologies to quantify cellular bioenergetics have not been systematically applied in phototherapy development, leaving open several questions about how the mechanism of action of a compound can impact essential cellular functions. Here, we utilized the Seahorse analyzer to address this question for photosensitizers (PSs) for photodynamic therapy (PDT) and contrast these systems to molecules that photo-release a ligand and thus act as photocages or photoactivated chemotherapeutics (PACT), intending to understand the influence these two classes of compounds have on cellular bioenergetics. EFA results show that acute treatment of A549 lung adenocarcinoma cells with PDT agents induces a quiescent bioenergetic response as a result of mitochondrial respiration shutdown. The loss of oxidative phosphorylation is followed by disruption of glycolysis, which occurs after an initial increase in glycolytic respiration is unable to compensate for the interruption of the electron transport chain (ETC). In contrast, the PACT agents tested had little impact on cellular respiration, and the minor inhibition of these metabolic processes was not related to the mechanism of action, as reflected by a lack of correlation with photoejection efficiency. Notably, a system capable of both generating 1O2 and photo-releasing a ligand exhibited the dominant profile of a PDT agent and induced the quiescent bioenergetic state, indicating potential implications on cellular bioenergetics for so-called dual-action agents. These findings are presented with the aim to provide the necessary groundwork for expanding the application and utility of EFA to phototherapeutics and to highlight the role of metabolic alterations in PDT.
Collapse
|
7
|
Piškor M, Ćorić I, Perić B, Špoljarić KM, Kirin SI, Glavaš-Obrovac L, Raić-Malić S. Quinoline- and coumarin-based ligands and their rhenium(I) tricarbonyl complexes: synthesis, spectral characterization and antiproliferative activity on T-cell lymphoma. J Inorg Biochem 2025; 262:112770. [PMID: 39541780 DOI: 10.1016/j.jinorgbio.2024.112770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Novel 6-substituted 2-(trifluoromethyl)quinoline 5a-5e and coumarin 6a-6d ligands with aldoxime ether linked pyridine moiety were synthesized by O-alkylation of quinoline and coumarin with (E)-picolinaldehyde oxime and subsequently with [Re(CO)5Cl] gave rhenium(I) tricarbonyl complexes 5aRe-5eRe and 6aRe-6dRe that were fully characterized by NMR, single-crystal X-ray diffraction, IR and UV-Vis spectroscopy. The results of antiproliferative evaluation of quinoline and coumarin ligands and their rhenium(I) tricarbonyl complexes on various human tumor cell lines, including acute lymphoblastic leukemia (CCRF-CEM), acute monocytic leukemia (THP1), cervical adenocarcinoma (HeLa), colon adenocarcinoma (CaCo-2), T-cell lymphoma (HuT78), and non-tumor human fibroblasts (BJ) showed that the quinoline complexes 5aRe-5eRe had higher inhibitory activity than coumarin complexes 6aRe-6dRe, particularly against T-cell lymphoma (HuT78) cells. 6-Methoxy-2-(trifluoromethyl)quinoline 5e and 6-methylcoumarin 6d, and their rhenium(I) tricarbonyl complexes 5eRe and 6dRe were found to arrest the cell cycle of HuT78 cells by causing a significant accumulation of cells in the G0/G1 phase and a marked decrease in the number of cells in the G2/M phase. These rhenium(I) tricarbonyl complexes also slightly increased ROS production and significantly decreased the mitochondrial membrane potential by 50 % (5eRe) and 45 % (6dRe) compared to untreated cells and cells treated with 5e and 6d. These results suggest that the cytotoxic effects of these compounds are mediated by their effects on mitochondrial membrane potential and the subsequent increase in ROS production.
Collapse
Affiliation(s)
- Martina Piškor
- Department of Organic Chemistry, University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Ivan Ćorić
- Department of Medicinal Chemistry, Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Biochemistry and Clinical Chemistry, J. Huttlera 4, 31000 Osijek, Croatia
| | - Berislav Perić
- Laboratory for Solid State and Complex Compounds Chemistry, Ruđer Bošković Institute, Division of Materials Chemistry, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Katarina Mišković Špoljarić
- Department of Medicinal Chemistry, Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Biochemistry and Clinical Chemistry, J. Huttlera 4, 31000 Osijek, Croatia
| | - Srećko I Kirin
- Laboratory for Solid State and Complex Compounds Chemistry, Ruđer Bošković Institute, Division of Materials Chemistry, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Ljubica Glavaš-Obrovac
- Department of Medicinal Chemistry, Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Biochemistry and Clinical Chemistry, J. Huttlera 4, 31000 Osijek, Croatia.
| | - Silvana Raić-Malić
- Department of Organic Chemistry, University of Zagreb, Faculty of Chemical Engineering and Technology, Marulićev trg 19, 10000 Zagreb, Croatia.
| |
Collapse
|
8
|
Dixit T, Negi M, Venkatesh V. Mitochondria Localized Anticancer Iridium(III) Prodrugs for Targeted Delivery of Myeloid Cell Leukemia-1 (Mcl-1) Inhibitors and Cytotoxic Iridium(III) Complex. Inorg Chem 2024; 63:24709-24723. [PMID: 39667040 DOI: 10.1021/acs.inorgchem.4c03950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Myeloid cell leukemia-1 (Mcl-1) is an antiapoptotic oncoprotein overexpressed in several malignancies and acts as one of the promising therapeutic targets for cancer. Even though there are several small molecule based Mcl-1 inhibitors reported, the delivery of Mcl-1 inhibitor at the target site is quite challenging. In this regard, we developed a series of mitochondria targeting luminescent cyclometalated iridium(III) prodrugs bearing Mcl-1 inhibitors via ester linkage due to the presence of Mcl-1 protein in the outer mitochondrial membrane. Among the synthesized prodrugs, IrThpy@L2 was found to exhibit the potent cytotoxicity (IC50 = 30.93 nM) against HCT116 cell line when compared with bare Mcl-1 inhibitors (IC50 > 100 μM). Mechanistic studies further revealed that IrThpy@L2 quickly gets internalized inside the mitochondria of HCT116 cells and undergoes activation in the presence of overexpressed esterase which leads to the release of two cytotoxic species i.e. Mcl-1 inhibitors (I-2) and cytotoxic iridium(III) complex (IrThpy@OH). The improved cytotoxicity of IrThpy@L2 is due to the mitochondria targeting ability of iridium(III) prodrug, subsequent esterase activated release of I-2 to inhibit Mcl-1 protein and IrThpy@OH to generate reactive oxygen species (ROS). After prodrug activation, the released cytotoxic species cause mitochondrial membrane depolarization, activate a cascade of mitochondria-mediated cell death events, and arrest the cell cycle in S-phase which leads to apoptosis. The potent anticancer activity of IrThpy@L2 was further evident from the drastic morphological changes, size reduction in the solid tumor mimicking 3D multicellular tumor spheroids (MCTS) of HCT116.
Collapse
Affiliation(s)
- Tejal Dixit
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Monika Negi
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - V Venkatesh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
9
|
Liao AQ, Wen J, Wei JC, Xu BB, Jin N, Lin HY, Qin XY. Syntheses, crystal structures of copper (II)-based complexes of sulfonamide derivatives and their anticancer effects through the synergistic effect of anti-angiogenesis, anti-inflammation, pro-apoptosis and cuproptosis. Eur J Med Chem 2024; 280:116954. [PMID: 39406115 DOI: 10.1016/j.ejmech.2024.116954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/25/2024]
Abstract
Three novel copper(II)-based complexes Cu-1, Cu-2, and Cu-3 containing sulfamethoxazole or sulfamethazine ligand were obtained, and their single structures were characterized. Both Cu-1 and Cu-3 show a broad spectrum of cytotoxicity than Cu-2, and Cu-1 is more cytotoxic than Cu-3. What's interesting is that Cu-1 can exhibit obvious inhibitory effect on the growth of human triple-negative breast cancer in vivo and vitro through anti-proliferative, anti-angiogenic, anti-inflammatory, pro-apoptotic and cuproptotic synergistic effects. Though Cu-3 shows no significant cytotoxicity against MDA-MB-231 cells, it can significantly inhibit the growth of SKOV3 cells in vitro by down-regulating the expression of some key proteins in the VEGF/VEGFR2 signaling pathway and the expression of some pro-inflammatory cytokines, and by disrupting the balance of intracellular reactive oxygen species levels.
Collapse
Affiliation(s)
- Ai-Qiu Liao
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China
| | - Juan Wen
- Department of Pharmacy, The Affiliated Hospital of Guilin Medical University, Guangxi, Guilin, 541001, China
| | - Jing-Chen Wei
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China
| | - Bing-Bing Xu
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China
| | - Nan Jin
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China
| | - Hong-Yu Lin
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China
| | - Xiu-Ying Qin
- College of Pharmacy, Guilin Medical University, Guangxi, Guilin, 541004, China.
| |
Collapse
|
10
|
Kunst C, Tümen D, Ernst M, Tews HC, Müller M, Gülow K. Paraptosis-A Distinct Pathway to Cell Death. Int J Mol Sci 2024; 25:11478. [PMID: 39519031 PMCID: PMC11546839 DOI: 10.3390/ijms252111478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Cell death is a critical biological process necessary for development, tissue maintenance, and defense against diseases. To date, more than 20 forms of cell death have been identified, each defined by unique molecular pathways. Understanding these different forms of cell death is essential for investigating the pathogenesis of diseases such as cancer, neurodegenerative disorders, and autoimmune conditions and developing appropriate therapies. Paraptosis is a distinct form of regulated cell death characterized by cytoplasmic vacuolation and dilatation of cellular organelles like the mitochondria and endoplasmic reticulum (ER). It is regulated by several signaling pathways, for instance, those associated with ER stress, calcium overload, oxidative stress, and specific cascades such as insulin-like growth factor I receptor (IGF-IR) and its downstream signaling pathways comprising mitogen-activated protein kinases (MAPKs) and Jun N-terminal kinase (JNK). Paraptosis has been observed in diverse biological contexts, including development and cellular stress responses in neuronal, retinal, endothelial, and muscle cells. The induction of paraptosis is increasingly important in anticancer therapy, as it targets non-apoptotic stress responses in tumor cells, which can be utilized to induce cell death. This approach enhances treatment efficacy and addresses drug resistance, particularly in cases where cancer cells are resistant to apoptosis. Combining paraptosis-inducing agents with traditional therapies holds promise for enhancing treatment efficacy and overcoming drug resistance, suggesting a valuable strategy in anticancer therapy.
Collapse
Affiliation(s)
- Claudia Kunst
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, Immunology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (D.T.); (M.E.); (H.C.T.); (M.M.); (K.G.)
| | | | | | | | | | | |
Collapse
|
11
|
Kushwaha R, Upadhyay A, Saha S, Yadav AK, Bera A, Dutta A, Banerjee S. Cancer phototherapy by CO releasing terpyridine-based Re(I) tricarbonyl complexes via ROS generation and NADH oxidation. Dalton Trans 2024; 53:13591-13601. [PMID: 39078263 DOI: 10.1039/d4dt01309c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Here, we have synthesized and characterized three visible light responsive terpyridine based-Re(I)-tricarbonyl complexes; [Re(CO)3(ph-tpy)Cl] (Retp1), [Re(CO)3(an-tpy)Cl] (Retp2), and [Re(CO)3(py-tpy)Cl] (Retp3) where ph-tpy = 4'-phenyl-2,2':6',2″-terpyridine; an-tpy = 4'-anthracenyl-2,2':6',2″-terpyridine, py-tpy = 4'-pyrenyl-2,2':6',2″-terpyridine. The structures of Retp1 and Retp2 were confirmed from the SC-XRD data, indicating distorted octahedral structures. Unlike traditional PDT agents, these complexes generated reactive oxygen species (ROS) via type I and type II pathways and oxidized redox crucial NADH (reduced nicotinamide adenine dinucleotide) upon visible light exposure. Retp3 showed significant mitochondrial localization and demonstrated photoactivated anticancer activity (IC50 ∼ 2 µM) by inducing ROS-mediated cell death in cancer cells selectively (photocytotoxicity Index, PI > 28) upon compromising mitochondrial function in A549 cells. Their diagnostic capabilities were ultimately assessed using clinically relevant 3D multicellular tumor spheroids (MCTs).
Collapse
Affiliation(s)
- Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India.
| | - Aarti Upadhyay
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India.
| | - Sukanta Saha
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
| | - Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India.
| | - Arpan Bera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India.
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
12
|
de Lavor TS, Teixeira MHS, de Matos PA, Lino RC, Silva CMF, do Carmo MEG, Beletti ME, Patrocinio AOT, de Oliveira Júnior RJ, Tsubone TM. The impact of biomolecule interactions on the cytotoxic effects of rhenium(I) tricarbonyl complexes. J Inorg Biochem 2024; 257:112600. [PMID: 38759261 DOI: 10.1016/j.jinorgbio.2024.112600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
Rhenium complexes show great promise as anticancer drug candidates. Specifically, compounds with a Re(CO)3(NN)(py)+ core in their architecture have shown cytotoxicity equal to or greater than that of well-established anticancer drugs based on platinum or organic molecules. This study aimed to evaluate how the strength of the interaction between rhenium(I) tricarbonyl complexes fac-[Re(CO)3(NN)(py)]+, NN = 1,10-phenanthroline (phen), dipyrido[3,2-f:2',3'-h]quinoxaline (dpq) or dipyrido[3,2-a:2'3'-c]phenazine (dppz) and biomolecules (protein, lipid and DNA) impacted the corresponding cytotoxic effect in cells. Results showed that fac-[Re(CO)3(dppz)(py)]+ has higher Log Po/w and binding constant (Kb) with biomolecules (protein, lipid and DNA) compared to complexes of fac-[Re(CO)3(phen)(py)]+ and fac-[Re(CO)3(dpq)(py)]+. As consequence, fac-[Re(CO)3(dppz)(py)]+ exhibited the highest cytotoxicity (IC50 = 8.5 μM for HeLa cells) for fac-[Re(CO)3(dppz)(py)]+ among the studied compounds (IC50 > 15 μM). This highest cytotoxicity of fac-[Re(CO)3(dppz)(py)]+ are probably related to its lipophilicity, higher permeation of the lipid bilayers of cells, and a more potent interaction of the dppz ligand with biomolecules (protein and DNA). Our findings open novel avenues for rational drug design and highlight the importance of considering the chemical structures of rhenium complexes that strongly interact with biomolecules (proteins, lipids, and DNA).
Collapse
Affiliation(s)
- Tayná Saraiva de Lavor
- Laboratório Interdisciplinar de Fototerapia e Biomoléculas (LIFeBio), Instituto de Química (IQ), Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | | | - Patrícia Alves de Matos
- Laboratório Interdisciplinar de Fototerapia e Biomoléculas (LIFeBio), Instituto de Química (IQ), Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Ricardo Campos Lino
- Laboratório de Citogenética, Instituto de Biotecnologia (IBTEC), Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Clara Maria Faria Silva
- Laboratório de Citogenética, Instituto de Biotecnologia (IBTEC), Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Marcos Eduardo Gomes do Carmo
- Laboratory of Photochemistry and Materials Science, Chemistry Institute, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Marcelo Emílio Beletti
- Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil
| | - Antonio Otavio T Patrocinio
- Laboratory of Photochemistry and Materials Science, Chemistry Institute, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Robson José de Oliveira Júnior
- Laboratório de Citogenética, Instituto de Biotecnologia (IBTEC), Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil.
| | - Tayana Mazin Tsubone
- Laboratório Interdisciplinar de Fototerapia e Biomoléculas (LIFeBio), Instituto de Química (IQ), Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
13
|
Łyczko K, Pogorzelska A, Częścik U, Koronkiewicz M, Rode JE, Bednarek E, Kawęcki R, Węgrzyńska K, Baraniak A, Milczarek M, Dobrowolski JC. Tricarbonyl rhenium(i) complexes with 8-hydroxyquinolines: structural, chemical, antibacterial, and anticancer characteristics. RSC Adv 2024; 14:18080-18092. [PMID: 38841398 PMCID: PMC11152041 DOI: 10.1039/d4ra03141e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
Twelve tricarbonyl rhenium(i) complexes in the '2 + 1' system with the anionic bidentate N,O-donor ligand (deprotonated 8-hydroxyquinoline (HQ) or its 2-methyl (MeHQ) or 5-chloro (ClHQ) derivative) and neutral N-donor diazoles (imidazole (Him), 2-methylimidazole (MeHim), 3,5-dimethylpyrazole (Hdmpz), and 3-phenylpyrazole (HPhpz)) were synthesized: [Re(CO)3(LN,O)LN] (LN,O = Q-, MeQ-, ClQ-; LN = Him, MeHim, Hdmpz, HPhpz). Their crystal structures were determined by the scXRD method, compared with the DFT-calculated ones, and characterized by analytical (EA) and spectroscopic techniques (FT-IR, NMR, and UV-Vis) interpreted with DFT and TD-DFT calculations. Most of the Re(i) complexes did not show relevant antibacterial activity against Gram-negative and Gram-positive bacterial strains. Only [Re(CO)3(MeQ)Him] demonstrated significant action 4-fold better against Gram-negative Pseudomonas aeruginosa than the free MeHQ ligand. The cytotoxicity of the compounds was estimated using human acute promyelocytic leukemia (HL-60), ovarian (SKOV-3), prostate (PC-3), and breast (MCF-7) cancer, and breast non-cancerous (MCF-10A) cell lines. Only HQ and ClHQ ligands and [Re(CO)3(Q)Hdmpz] complex had good selectivity toward MCF-7 cell line. HL-60 cells were sensitive to all complexes (IC50 = 1.5-14 μM). Still, pure HQ and ClHQ ligands were slightly more active than the complexes.
Collapse
Affiliation(s)
- Krzysztof Łyczko
- Institute of Nuclear Chemistry and Technology Dorodna 16 03-195 Warsaw Poland
| | - Anna Pogorzelska
- National Medicines Institute Chełmska 30/34 00-725 Warsaw Poland
| | - Urszula Częścik
- National Medicines Institute Chełmska 30/34 00-725 Warsaw Poland
| | | | - Joanna E Rode
- Institute of Nuclear Chemistry and Technology Dorodna 16 03-195 Warsaw Poland
| | | | - Robert Kawęcki
- Faculty of Science, University of Siedlce 3 Maja 54 08-110 Siedlce Poland
| | | | - Anna Baraniak
- National Medicines Institute Chełmska 30/34 00-725 Warsaw Poland
| | | | | |
Collapse
|
14
|
Marco A, Ashoo P, Hernández-García S, Martínez-Rodríguez P, Cutillas N, Vollrath A, Jordan D, Janiak C, Gandía-Herrero F, Ruiz J. Novel Re(I) Complexes as Potential Selective Theranostic Agents in Cancer Cells and In Vivo in Caenorhabditis elegans Tumoral Strains. J Med Chem 2024; 67:7891-7910. [PMID: 38451016 PMCID: PMC11129195 DOI: 10.1021/acs.jmedchem.3c01869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
A series of rhenium(I) complexes of the type fac-[Re(CO)3(N^N)L]0/+, Re1-Re9, was synthesized, where N^N = benzimidazole-derived bidentate ligand with an ester functionality and L = chloride or pyridine-type ligand. The new compounds demonstrated potent activity toward ovarian A2780 cancer cells. The most active complexes, Re7-Re9, incorporating 4-NMe2py, exhibited remarkable activity in 3D HeLa spheroids. The emission in the red region of Re9, which contains an electron-deficient benzothiazole moiety, allowed its operability as a bioimaging tool for in vitro and in vivo visualization. Re9 effectivity was tested in two different C. elegans tumoral strains, JK1466 and MT2124, to broaden the oncogenic pathways studied. The results showed that Re9 was able to reduce the tumor growth in both strains by increasing the ROS production inside the cells. Moreover, the selectivity of the compound toward cancerous cells was remarkable as it did not affect neither the development nor the progeny of the nematodes.
Collapse
Affiliation(s)
- Alicia Marco
- Departamento
de Química Inorgánica, Universidad
de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Pezhman Ashoo
- Departamento
de Química Inorgánica, Universidad
de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Samanta Hernández-García
- Departamento
de Bioquímica y Biología Molecular A. Unidad Docente
de Biología, Facultad de Veterinaria, Universidad de Murcia, E-30100 Murcia, Spain
| | - Pedro Martínez-Rodríguez
- Departamento
de Bioquímica y Biología Molecular A. Unidad Docente
de Biología, Facultad de Veterinaria, Universidad de Murcia, E-30100 Murcia, Spain
| | - Natalia Cutillas
- Departamento
de Química Inorgánica, Universidad
de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| | - Annette Vollrath
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Dustin Jordan
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Christoph Janiak
- Institut
für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Fernando Gandía-Herrero
- Departamento
de Bioquímica y Biología Molecular A. Unidad Docente
de Biología, Facultad de Veterinaria, Universidad de Murcia, E-30100 Murcia, Spain
| | - José Ruiz
- Departamento
de Química Inorgánica, Universidad
de Murcia, and Institute for Bio-Health Research of Murcia (IMIB-Arrixaca), E-30100 Murcia, Spain
| |
Collapse
|
15
|
Levina A, Wardhani K, Stephens LJ, Werrett MV, Caporale C, Dallerba E, Blair VL, Massi M, Lay PA, Andrews PC. Neutral rhenium(I) tricarbonyl complexes with sulfur-donor ligands: anti-proliferative activity and cellular localization. Dalton Trans 2024; 53:7866-7879. [PMID: 38632950 DOI: 10.1039/d4dt00149d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Rhenium(I) tricarbonyl complexes are widely studied for their cell imaging properties and anti-cancer and anti-microbial activities, but the complexes with S-donor ligands remain relatively unexplored. A series of six fac-[Re(NN)(CO)3(SR)] complexes, where (NN) is 2,2'-bipyridyl (bipy) or 1,10-phenanthroline (phen), and RSH is a series of thiocarboxylic acid methyl esters, have been synthesized and characterized. Cellular uptake and anti-proliferative activities of these complexes in human breast cancer cell lines (MDA-MB-231 and MCF-7) were generally lower than those of the previously described fac-[Re(NN)(CO)3(OH2)]+ complexes; however, one of the complexes, fac-[Re(CO)3(phen)(SC(Ph)CH2C(O)OMe)] (3b), was active (IC50 ∼ 10 μM at 72 h treatment) in thiol-depleted MDA-MB-231 cells. Moreover, unlike fac-[Re(CO)3(phen)(OH2)]+, this complex did not lose activity in the presence of extracellular glutathione. Taken together these properties show promise for further development of 3b and its analogues as potential anti-cancer drugs for co-treatment with thiol-depleting agents. Conversely, the stable and non-toxic complex, fac-[Re(bipy)(CO)3(SC(Me)C(O)OMe)] (1a), predominantly localized in the lysosomes of MDA-MB-231 cells, as shown by live cell confocal microscopy (λex = 405 nm, λem = 470-570 nm). It is strongly localized in a subset of lysosomes (25 μM Re, 4 h treatment), as shown by co-localization with a Lysotracker dye. Longer treatment times with 1a (25 μM Re for 48 h) resulted in partial migration of the probe into the mitochondria, as shown by co-localization with a Mitotracker dye. These properties make complex 1a an attractive target for further development as an organelle probe for multimodal imaging, including phosphorescence, carbonyl tag for vibrational spectroscopy, and Re tag for X-ray fluorescence microscopy.
Collapse
Affiliation(s)
- Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Kartika Wardhani
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Liam J Stephens
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| | - Melissa V Werrett
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| | - Chiara Caporale
- Department of Chemistry, Curtin University, Bentley, WA 6102, Australia
| | - Elena Dallerba
- Department of Chemistry, Curtin University, Bentley, WA 6102, Australia
| | - Victoria L Blair
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| | | | - Peter A Lay
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Philip C Andrews
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
16
|
Kushwaha R, Singh V, Peters S, Yadav AK, Sadhukhan T, Koch B, Banerjee S. Comparative Study of Sonodynamic and Photoactivated Cancer Therapies with Re(I)-Tricarbonyl Complexes Comprising Phenanthroline Ligands. J Med Chem 2024; 67:6537-6548. [PMID: 38603561 DOI: 10.1021/acs.jmedchem.3c02485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Herein, we have compared the effectivity of light-based photoactivated cancer therapy and ultrasound-based sonodynamic therapy with Re(I)-tricarbonyl complexes (Re1-Re3) against cancer cells. The observed photophysical and TD-DFT calculations indicated the potential of Re1-Re3 to act as good anticancer agents under visible light/ultrasound exposure. Re1 did not display any dark- or light- or ultrasound-triggered anticancer activity. However, Re2 and Re3 displayed concentration-dependent anticancer activity upon light and ultrasound exposure. Interestingly, Re3 produced 1O2 and OH• on light/ultrasound exposure. Moreover, Re3 induced NADH photo-oxidation in PBS and produced H2O2. To the best of our knowledge, NADH photo-oxidation has been achieved here with the Re(I) complex for the first time in PBS. Additionally, Re3 released CO upon light/ultrasound exposure. The cell death mechanism revealed that Re3 produced an apoptotic cell death response in HeLa cells via ROS generation. Interestingly, Re3 showed slightly better anticancer activity under light exposure compared to ultrasound exposure.
Collapse
Affiliation(s)
- Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Virendra Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Silda Peters
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Tumpa Sadhukhan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Biplob Koch
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
17
|
Huynh M, Vinck R, Gibert B, Gasser G. Strategies for the Nuclear Delivery of Metal Complexes to Cancer Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311437. [PMID: 38174785 DOI: 10.1002/adma.202311437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2023] [Indexed: 01/05/2024]
Abstract
The nucleus is an essential organelle for the function of cells. It holds most of the genetic material and plays a crucial role in the regulation of cell growth and proliferation. Since many antitumoral therapies target nucleic acids to induce cell death, tumor-specific nuclear drug delivery could potentiate therapeutic effects and prevent potential off-target side effects on healthy tissue. Due to their great structural variety, good biocompatibility, and unique physico-chemical properties, organometallic complexes and other metal-based compounds have sparked great interest as promising anticancer agents. In this review, strategies for specific nuclear delivery of metal complexes are summarized and discussed to highlight crucial parameters to consider for the design of new metal complexes as anticancer drug candidates. Moreover, the existing opportunities and challenges of tumor-specific, nucleus-targeting metal complexes are emphasized to outline some new perspectives and help in the design of new cancer treatments.
Collapse
Affiliation(s)
- Marie Huynh
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for Inorganic Chemistry, Paris, F-75005, France
- Gastroenterology and technologies for Health, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, Lyon, 69008, France
| | - Robin Vinck
- Orano, 125 avenue de Paris, Châtillon, 92320, France
| | - Benjamin Gibert
- Gastroenterology and technologies for Health, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, Lyon, 69008, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry of Life and Health Sciences, Laboratory for Inorganic Chemistry, Paris, F-75005, France
| |
Collapse
|
18
|
Deka B, Sarkar T, Bhattacharyya A, Butcher RJ, Banerjee S, Deka S, Saikia KK, Hussain A. Synthesis, characterization, and cancer cell-selective cytotoxicity of mixed-ligand cobalt(III) complexes of 8-hydroxyquinolines and phenanthroline bases. Dalton Trans 2024; 53:4952-4961. [PMID: 38275106 DOI: 10.1039/d3dt04045c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Transition metal complexes exhibiting selective toxicity towards a broad range of cancer types are highly desirable as potential anticancer agents. Herein, we report the synthesis, characterization, and cytotoxicity studies of six new mixed-ligand cobalt(III) complexes of general formula [Co(B)2(L)](ClO4)2 (1-6), where B is a N,N-donor phenanthroline base, namely, 1,10-phenanthroline (phen in 1, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 3, 4), and dipyrido[3,2-a:2',3'-c]phenazine (dppz in 5, 6), and L is the monoanion of 8-hydroxyquinoline (HQ in 1, 3, 5) and 5-chloro-7-iodo-8-hydroxyquinoline (CQ in 2, 4, 6). The X-ray single crystal structures of complexes 1 and 2 as PF6- salts revealed a distorted octahedral CoN5O coordination environment. Complexes demonstrated good stability in an aqueous buffer medium and in the presence of ascorbic acid as a reductant. Cytotoxicity studies using a panel of nine cancer cell lines showed that complex 6, with the dppz and CQ ligands, was significantly toxic against most cancer cell types, yielding IC50 values in the range of 2 to 14 μM. Complexes 1, 3, and 5, containing the HQ ligand, displayed lower toxicity compared to their CQ counterparts. The phenanthroline complexes demonstrated marginal toxicity towards the tested cell lines, while the dpq complexes exhibited moderate toxicity. Interestingly, all complexes demonstrated negligible toxicity towards normal HEK-293 kidney cells (IC50 > 100 μM). The observed cytotoxicity of the complexes correlated well with their lipophilicities (dppz > dpq > phen). The cytotoxicity of complex 6 was comparable to that of the clinical drug cisplatin under similar conditions. Notably, neither the HQ nor the CQ ligands alone demonstrated noticeable toxicity against any of the tested cell lines. The Annexin-V-FITC and DCFDA assays revealed that the cell death mechanism induced by the complexes involved apoptosis, which could be attributed to the metal-assisted generation of reactive oxygen species. Overall, the dppz complex 6, with its remarkable cytotoxicity against a broad range of cancer cells and negligible toxicity toward normal cells, holds significant potential for cancer chemotherapeutic applications.
Collapse
Affiliation(s)
- Banashree Deka
- Department of Chemistry, Handique Girls' College, Guwahati 781001, Assam, India.
| | - Tukki Sarkar
- Department of Chemistry, Handique Girls' College, Guwahati 781001, Assam, India.
| | - Arnab Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India.
| | - Ray J Butcher
- Department of Chemistry, Howard University, 525 College Street, NW 20059, USA.
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP 221005, India.
| | - Sasanka Deka
- Department of Chemistry, University of Delhi, New Delhi 110024, India.
| | - Kandarpa K Saikia
- Department of Bioengineering and Technology, GUIST, Gauhati University, Guwahati 781014, Assam, India.
| | - Akhtar Hussain
- Department of Chemistry, Handique Girls' College, Guwahati 781001, Assam, India.
| |
Collapse
|
19
|
Collery P, Desmaële D, Harikrishnan A, Veena V. Remarkable Effects of a Rhenium(I)-diselenoether Drug on the Production of Cathepsins B and S by Macrophages and their Polarizations. Curr Pharm Des 2023; 29:2396-2407. [PMID: 37859327 DOI: 10.2174/0113816128268963231013074433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND/OBJECTIVE Tumor-associated macrophages (TAMs) produce an excessive amount of cysteine proteases, and we aimed to study the effects of anticancer rhenium(I)-diselenoether (Re-diSe) on the production of cathepsins B and S by macrophages. We investigated the effect of Re-diSe on lipopolysaccharides (LPS) induced M1 macrophages, or by interleukin 6 (IL-6) induced M2 macrophages. METHODS Non-stimulated or prestimulated murine Raw 264 or human THP-1 macrophages were exposed to increasing concentrations of the drug (5, 10, 20, 50 and 100 μM) and viability was assayed by the MTT assay. The amount of cysteine proteases was evaluated by ELISA tests, the number of M1 and M2 macrophages by the expression of CD80 or CD206 biomarkers. The binding of Re-diSe with GSH as a model thiol-containing protein was studied by mass spectrometry. RESULTS A dose-dependent decrease in cathepsins B and S was observed in M1 macrophages. There was no effect in non-stimulated cells. The drug induced a dramatic dose-dependent increase in M1 expression in both cells, significantly decreased the M2 expression in Raw 264 and had no effect in non-stimulated macrophages. The binding of the Re atom with the thiols was clearly demonstrated. CONCLUSION The increase in the number of M1 and a decrease in M2 macrophages treated by Re-diSe could be related to the decrease in cysteine proteases upon binding of their thiol residues with the Re atom.
Collapse
Affiliation(s)
- Philippe Collery
- Society for the Coordination of Therapeutic Researches, 20220 Algajola, France
| | - Didier Desmaële
- Department of Chemistry, Institut Galien, Université Paris-Saclay, 91400 Orsay, France
| | - Adhikesavan Harikrishnan
- Department of Chemistry, School of Arts and Science, Vinayaka Mission Research Foundation- AV Campus, Chennai 560064, India
| | - Vijay Veena
- School of Allied Healthcare and Sciences, Jain University, Bangalore 560066, India
| |
Collapse
|