1
|
Maldonado T, Gómez-Arteaga B, Lodeiro L, Aravena A, Jara G, Vega A, Ferraudi G, Gómez A, Gallardo-Fuentes S. Exploring Bonding Properties and Photophysical Behavior of Naphthoquinone-Based Rhenium(I) Tricarbonyl Complexes: A Combined Experimental and Theoretical Approach. Inorg Chem 2025; 64:3403-3417. [PMID: 39932854 DOI: 10.1021/acs.inorgchem.4c04987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
In this work, we describe the synthesis, characterization, and spectroscopic properties of four new rhenium(I) tricarbonyl complexes bearing a pyridyl imidazole-naphthoquinone (Py-Im-Nq) ligand. The spectroscopic, X-ray, and electrochemical analyses confirm the formation of neutral complexes in all cases. Although the Py-Im-Nq ligand possesses two distinct chelating fragments, we observed a selective formation of the N,N-isomer rather than the N,O-coordination. EDA calculations revealed that the origin of the N,N-linkage isomerism results from more favorable electrostatic interactions present in the N,N-coordination. Furthermore, EDA-NOCV analysis indicated that the bonding situation in these complexes can be described by the Dewar-Chatt-Duncanson model, providing a quantitative characterization of the donation and back-donation interaction components in these complexes. Finally, we examined the spectroscopic behavior (UV-vis and photoluminescence) of these new rhenium(I) complexes in solution. The characterization of the excited states was performed using TD-DFT and density difference isosurfaces. It was found that, in contrast to typical fac-[Re(NN)(CO)3L]0/+ systems, the low-lying transitions exhibit intraligand (IL) character, with charge transfer predominantly occurring from the imidazole ring to the carbonyl group in the quinone moiety. In contrast, a mixed metal-to-ligand charge transfer (MLCT)/IL transition is assigned to the electronic excitation at shorter wavelengths.
Collapse
Affiliation(s)
- Tamara Maldonado
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso 2373223, Chile
| | - Belén Gómez-Arteaga
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso 2373223, Chile
| | - Lucas Lodeiro
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile
| | - Alberto Aravena
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso 2373223, Chile
| | - Geraldine Jara
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Santiago 8370146, Chile
| | - Andrés Vega
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Quillota, 980, Viña del Mar 2520000, Chile
| | - Guillermo Ferraudi
- Notre Dame Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Alejandra Gómez
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Santiago 8370146, Chile
| | - Sebastián Gallardo-Fuentes
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso 2373223, Chile
| |
Collapse
|
2
|
Kar B, Paira P. Photostimulated Anticancer Activity of Mitochondria Localized Rhenium(I) Tricarbonyl Complexes Bearing 1H-imidazo[4,5-f][1,10]phenanthroline Ligands Against MDA-MB-231 Cancer Cells. Chemistry 2025; 31:e202401720. [PMID: 39269736 DOI: 10.1002/chem.202401720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/15/2024]
Abstract
We have introduced Re(I) tricarbonyl complexes (ReL1 - ReL6) [Re(CO)3(N^N)Cl] where N^N=extensive π conjugated imidazo-[4,5-f][1,10]-phenanthroline derivatives that helps in strong DNA intercalation, enhanced photophysical behavior, increase the 3π-π* character of T1 state for PDT and high value of lipophilicity for cell membrane penetration. These complexes exhibited prominent intraligand/ligand-centered (π-π*/1LC) absorption bands at λ 260-350 nm and relatively weak metal-to-ligand charge-transfer (1MLCT) bands within the λ 350-550 nm range. Among the six synthesized complexes, [(CO)3ReICl(K2-N,N-2-(4-(1-benzyl-1H-tetrazol-5-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline] (ReL6) exhibited outstanding potency (IC50~6 μM, PI>9) under yellow light irradiation compared to dark conditions. Importantly, extremely lipophilic complex ReL6 showed effective penetration through the cell membrane and localized primarily in mitochondria (Pearson's correlation coefficient, PCC=0.918) of MDA-MB-231 cells. Complex ReL6 exhibited more than 9 times higher photo-toxicity in normoxic and hypoxic environment of tumor by inducing 1O2 generation (type II PDT), radical generation triggered by NADH oxidation (type I PDT). This complex is a promising candidate for TNBC treatment in hypoxic tumors, with efficacy comparable to photofrin and have demonstrated CO release ability under UV light irradiation.
Collapse
Affiliation(s)
- Binoy Kar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
3
|
Behera KC, Chauhan P, Tiwari S, Ravikanth M. Synthesis, structure, and spectral and electrochemical properties of new visible to NIR absorbing 3-pyrrolyl BODIPY derivatives. Org Biomol Chem 2025; 23:935-947. [PMID: 39665411 DOI: 10.1039/d4ob01735h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
We report the synthesis, characterization, and studies of novel 3-pyrrolyl BODIPY-based Schiff base products 3-6 and 3-pyrrolyl BODIPY-based benzo[d]thiazol-2-yl derivatives 7-8. The Schiff base compounds 3-6 were synthesized via condensation of α-formyl 3-pyrrolyl BODIPY with various amine derivatives, while the Knoevenagel condensation products 7-8 were obtained by reacting α-formyl 3-pyrrolyl BODIPY with 2-(benzo[d]thiazol-2-yl) acetonitrile and bis(benzo[d]thiazol-2-yl) methane, respectively. The compounds were thoroughly characterized by using HR-MS, 1D and 2D NMR spectroscopy, and X-ray crystallography for two compounds. The crystal structures revealed distinct conformational differences between the Schiff base product 3 and the Knoevenagel condensation product 8. In compound 3, the appended pyrrole was oriented towards the BF2-dipyrrin core and placed almost in the same plane, while in 8, the pyrrole was inverted, deviated from the BF2-dipyrrin plane, and aligned with the bis(benzothiazolyl) moiety, which adopted a transoid configuration. The Schiff base compounds 3-6 exhibited absorption bands in the region of 610-665 nm, whereas the benzo[d]thiazol-2-yl derivatives (7 and 8) showed enhanced optical properties with a red shifted absorption band that extended into the NIR region. These structural modifications of the 3-pyrrolyl BODIPY chromophore enable precise tuning of their electronic, absorption, and emission properties from the red to the NIR region. Furthermore, we also synthesized a 3-pyrrolyl BODIPY-Re(I) complex 8-Re(I) using bis(benzo[d]thiazol-2-yl)-3-pyrrolyl BODIPY 8. In the 8-Re(I) complex, the bis(benzothiazolyl) moiety adopted a cisoid configuration with a bite angle of 41.60°, and the Re(I) center exhibited a distorted octahedral geometry with a boat-like conformation. In the 8-Re(I) complex, the Re(I) was coordinated to three axial CO ligands, two nitrogen atoms from the bis(benzothiazolyl) units, and one chloride atom. DFT and TD-DFT studies corroborated our experimental findings, providing deeper insights into these compounds' structural, photophysical, and electronic properties. Overall, this study demonstrates the versatility of 3-pyrrolyl BODIPY derivatives in tuning absorption properties from the visible to the NIR region and their potential in forming stable Re(I) chelates, highlighting their potential in the development of NIR fluorophores and coordination chemistry.
Collapse
Affiliation(s)
| | - Pinky Chauhan
- Department of Chemistry, IIT Bombay, Powai-400076, Mumbai, India.
| | - Shubham Tiwari
- Department of Chemistry, IIT Bombay, Powai-400076, Mumbai, India.
| | | |
Collapse
|
4
|
Triantopoulou S, Roupa I, Shegani A, Pirmettis NN, Terzoudi GI, Chiotellis A, Tolia M, Damilakis J, Pirmettis I, Paravatou-Petsota M. Synthesis and Biological Evaluation of Novel Cationic Rhenium and Technetium-99m Complexes Bearing Quinazoline Derivative for Epidermal Growth Factor Receptor Targeting. Pharmaceutics 2024; 16:1213. [PMID: 39339249 PMCID: PMC11434983 DOI: 10.3390/pharmaceutics16091213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Epidermal growth factor receptor (EGFR) plays a vital role in cell proliferation and survival, with its overexpression linked to various malignancies, including non-small cell lung cancer (NSCLC). Although EGFR tyrosine kinase inhibitors (TKIs) are a key therapeutic strategy, acquired resistance and relapse remain challenges. This study aimed to synthesize and evaluate novel rhenium-based complexes incorporating EGFR TKIs to enhance anticancer efficacy, particularly in radiosensitization. Methods: We synthesized a rhenium tricarbonyl complex (Complex 2) and its 99mTc analog (Complex 2') by incorporating triphenylphosphine instead of bromine as the monodentate ligand and PF6- as the counter-ion, resulting in a positively charged compound that forms cationic structures. Cytotoxicity and EGFR inhibition were evaluated in A431 cells overexpressing EGFR using MTT assays, Western blotting, and flow cytometry. Radiosensitization was tested through MTT and clonogenic assays. The 99mTc complex's radiochemical yield, stability, and lipophilicity were also assessed. Results: Complex 2 exhibited significant cytotoxicity with an IC50 of 2.6 μM and EGFR phosphorylation inhibition with an IC50 of 130.6 nM. Both complex 1 and 2 induced G0/G1 cell cycle arrest, with Complex 2 causing apoptosis. Radiosensitization was observed at doses above 2 Gy. Complex 2' demonstrated high stability and favorable lipophilicity (LogD7.4 3.2), showing 12% cellular uptake after 30 min. Conclusions: Complexes 2 and 2' show promise as dual-function anticancer agents, offering EGFR inhibition, apoptosis induction, and radiosensitization. Their potential as radiopharmaceuticals warrants further in-depth investigation in preclinical models.
Collapse
Affiliation(s)
- Sotiria Triantopoulou
- Department of Medical Physics, School of Medicine, University of Crete, P.O. Box 2208, 71003 Heraklion, Greece; (S.T.); (J.D.)
- Institute of Nuclear and Radiological Sciences and Technology, Energy & Safety, NCSR “Demokritos”, P.O. Box 60037, 15310 Athens, Greece; (I.R.); (A.S.); (N.N.P.); (G.I.T.); (A.C.)
| | - Ioanna Roupa
- Institute of Nuclear and Radiological Sciences and Technology, Energy & Safety, NCSR “Demokritos”, P.O. Box 60037, 15310 Athens, Greece; (I.R.); (A.S.); (N.N.P.); (G.I.T.); (A.C.)
| | - Antonio Shegani
- Institute of Nuclear and Radiological Sciences and Technology, Energy & Safety, NCSR “Demokritos”, P.O. Box 60037, 15310 Athens, Greece; (I.R.); (A.S.); (N.N.P.); (G.I.T.); (A.C.)
| | - Nektarios N. Pirmettis
- Institute of Nuclear and Radiological Sciences and Technology, Energy & Safety, NCSR “Demokritos”, P.O. Box 60037, 15310 Athens, Greece; (I.R.); (A.S.); (N.N.P.); (G.I.T.); (A.C.)
| | - Georgia I. Terzoudi
- Institute of Nuclear and Radiological Sciences and Technology, Energy & Safety, NCSR “Demokritos”, P.O. Box 60037, 15310 Athens, Greece; (I.R.); (A.S.); (N.N.P.); (G.I.T.); (A.C.)
| | - Aristeidis Chiotellis
- Institute of Nuclear and Radiological Sciences and Technology, Energy & Safety, NCSR “Demokritos”, P.O. Box 60037, 15310 Athens, Greece; (I.R.); (A.S.); (N.N.P.); (G.I.T.); (A.C.)
| | - Maria Tolia
- Department of Radiation Oncology, University Hospital of Iraklion, 71110 Iraklion, Greece;
| | - John Damilakis
- Department of Medical Physics, School of Medicine, University of Crete, P.O. Box 2208, 71003 Heraklion, Greece; (S.T.); (J.D.)
| | - Ioannis Pirmettis
- Institute of Nuclear and Radiological Sciences and Technology, Energy & Safety, NCSR “Demokritos”, P.O. Box 60037, 15310 Athens, Greece; (I.R.); (A.S.); (N.N.P.); (G.I.T.); (A.C.)
| | - Maria Paravatou-Petsota
- Institute of Nuclear and Radiological Sciences and Technology, Energy & Safety, NCSR “Demokritos”, P.O. Box 60037, 15310 Athens, Greece; (I.R.); (A.S.); (N.N.P.); (G.I.T.); (A.C.)
| |
Collapse
|
5
|
Kushwaha R, Upadhyay A, Saha S, Yadav AK, Bera A, Dutta A, Banerjee S. Cancer phototherapy by CO releasing terpyridine-based Re(I) tricarbonyl complexes via ROS generation and NADH oxidation. Dalton Trans 2024; 53:13591-13601. [PMID: 39078263 DOI: 10.1039/d4dt01309c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Here, we have synthesized and characterized three visible light responsive terpyridine based-Re(I)-tricarbonyl complexes; [Re(CO)3(ph-tpy)Cl] (Retp1), [Re(CO)3(an-tpy)Cl] (Retp2), and [Re(CO)3(py-tpy)Cl] (Retp3) where ph-tpy = 4'-phenyl-2,2':6',2″-terpyridine; an-tpy = 4'-anthracenyl-2,2':6',2″-terpyridine, py-tpy = 4'-pyrenyl-2,2':6',2″-terpyridine. The structures of Retp1 and Retp2 were confirmed from the SC-XRD data, indicating distorted octahedral structures. Unlike traditional PDT agents, these complexes generated reactive oxygen species (ROS) via type I and type II pathways and oxidized redox crucial NADH (reduced nicotinamide adenine dinucleotide) upon visible light exposure. Retp3 showed significant mitochondrial localization and demonstrated photoactivated anticancer activity (IC50 ∼ 2 µM) by inducing ROS-mediated cell death in cancer cells selectively (photocytotoxicity Index, PI > 28) upon compromising mitochondrial function in A549 cells. Their diagnostic capabilities were ultimately assessed using clinically relevant 3D multicellular tumor spheroids (MCTs).
Collapse
Affiliation(s)
- Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India.
| | - Aarti Upadhyay
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India.
| | - Sukanta Saha
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
| | - Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India.
| | - Arpan Bera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India.
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
6
|
Romão CC, Mendes SS, Rebelo C, Carvalho SM, Saraiva LM. Antimicrobial and anticancer properties of carbon monoxide releasing molecules of the fac-[Re(CO) 3(N-N)L] + family. Dalton Trans 2024; 53:11009-11020. [PMID: 38874948 DOI: 10.1039/d4dt00978a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The toxicity profile of fac-[Re(CO)3(N-N)L]+ complexes against microbial and tumoral cells has been extensively studied, primarily focusing on modifications to the bidentate diimine (N-N) ligand. However, less attention has been paid to modifications of the axial ligand L, which is perpendicular to the Re-N-N plane. This study reveals that the high toxicity of the fac-[Re(CO)3(bpy)(Ctz)]+ complex may be attributed to the structural effect of the trityl (CPh3) group present in clotrimazole, as removal of phenyl rings causes a significant decrease in the activity against Staphylococcus aureus (S. aureus). Moreover, substitution of the 1-tritylimidazole ligand by the structurally related ligands PPh3 and PCy3 maintains similarly high activity levels. These findings contribute to understanding the interactions of toxic complexes with bacterial membranes, suggesting that the ligand structures play a crucial role in inhibiting cell wall synthesis processes, potentially including Lipid II synthesis. Compounds with Ph3E (E = C-imidazole; P) groups also showed to be 10 times more toxic than cisplatin against three mammalian cell lines (IC50: 2-4 μM). In contrast, the analogue 1-benzylimidazole and 1-tert-butylimidazole derivatives were as toxic as cisplatin. We observed that the decomposition of the [Re(I)(CO)3] fragment inside mammalian cell lines liberates CO, which is expected to exert biological effects. Therefore, compounds of this family possessing the structural motif Ph3E seem to combine high antimicrobial and antitumoral activities, the latter being much higher than that of cisplatin.
Collapse
Affiliation(s)
- Carlos C Romão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal.
| | - Sofia S Mendes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal.
| | - Cátia Rebelo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal.
| | - Sandra M Carvalho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal.
| | - Lígia M Saraiva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras, Portugal.
| |
Collapse
|
7
|
Guerriero A, Ienco A, Hicks T, Cilibrizzi A. Beyond transition block metals: exploring the reactivity of phosphine PTA and its oxide [PTA(O)] towards gallium(iii). RSC Adv 2024; 14:21139-21150. [PMID: 38966814 PMCID: PMC11223513 DOI: 10.1039/d4ra02877e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024] Open
Abstract
The water-soluble cage-like phosphine PTA (1,3,5-triaza-7-phosphaadamantane) and its phosphine oxide derivative [PTA(O)] (1,3,5-triaza-7-phosphaadamantane-7-oxide) were used to explore their reactivity towards two gallium(iii)-halide precursors, namely GaCl3 and GaI3, for the first time. By using various reaction conditions, a series of N-mono-protonated phosphine salts with [GaCl4]- or [I]- as counterions were obtained in all cases, while the formation of coordinated Ga-PTA and Ga-[PTA(O)] complexes was not observed. All compounds were characterized in solution using multinuclear NMR spectroscopy (1H, 13C{1H}, 31P{1H} and 71Ga) and in the solid state using FT-IR spectroscopy and X-ray crystal diffraction. The new Ga-phosphine salts resulted stable and highly soluble in aqueous solution at room temperature. Density functional theory (DFT) calculations were also performed to further rationalize the coordination features of PTA with Ga3+ metal ion, highlighting that the phosphorus-gallium bond is about twice weaker than the phosphorus-metal bond commonly established by PTA with transition metals such as gold. Furthermore, the mono-protonation of PTA (or [PTA(O)]) makes the formation of ionic gallium-PTA coordination complexes thermodynamically unstable, as confirmed experimentally by the formation of Ga-phosphine salts reported herein.
Collapse
Affiliation(s)
- Antonella Guerriero
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti OrganoMetallici (ICCOM) Via Madonna del Piano 10 50019 Sesto Fiorentino (Florence) Italy
| | - Andrea Ienco
- Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti OrganoMetallici (ICCOM) Via Madonna del Piano 10 50019 Sesto Fiorentino (Florence) Italy
| | - Thomas Hicks
- Department of Chemistry, King's College London 7 Trinity Street London SE1 1DB UK
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King's College London Franklin Wilkins Building London SE1 9NH UK
| |
Collapse
|
8
|
Kushwaha R, Upadhyay A, Peters S, Yadav AK, Mishra A, Bera A, Sadhukhan T, Banerjee S. Visible and Red Light-Triggered Anticancer Profile of a Ferrocene-Re(I)-Tricarbonyl Conjugate: Experimental and Theoretical Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12226-12238. [PMID: 38814099 DOI: 10.1021/acs.langmuir.4c01296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
We have red-shifted the light absorbance property of a Re(I)-tricarbonyl complex via distant conjugation of a ferrocene moiety and developed a novel complex ReFctp, [Re(Fctp)(CO)3Cl], where Fctp = 4'-ferrocenyl-2,2':6',2″-terpyridine. ReFctp showed green to red light absorption ability and blue emission, indicating its potential for photodynamic therapy (PDT) application. The conjugation of ferrocene introduced ferrocene-based transitions, which lie at a higher wavelength within the PDT therapeutic window. The time-dependent density functional theory and excited state calculations revealed an efficient intersystem crossing for ReFctp, which is helpful for PDT. ReFctp elicited both PDT type I and type II pathways for reactive oxygen species (ROS) generation and facilitated NADH (1,4-dihydro-nicotinamide adenine dinucleotide) oxidation upon exposure to visible light. Importantly, ReFctp showed effective penetration through the layers of clinically relevant 3D multicellular tumor spheroids and localized primarily in mitochondria (Pearson's correlation coefficient, PCC = 0.65) of A549 cancer cells. ReFctp produced more than 20 times higher phototoxicity (IC50 ∼1.5 μM) by inducing ROS generation and altering mitochondrial membrane potential in A549 cancer cells than the nonferrocene analogue Retp, [Re(CO)3(tp)Cl], where tp = 2,2':6',2″-terpyridine. ReFctp induced apoptotic mode of cell death with a notable photocytotoxicity index (PI, PI = IC50dark/IC50light) and selectivity index (SI, SI = normal cell's IC50dark/cancer cell's IC50light) in the range of 25-33.
Collapse
Affiliation(s)
- Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Aarti Upadhyay
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Silda Peters
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Arya Mishra
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Arpan Bera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Tumpa Sadhukhan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
9
|
Kushwaha R, Singh V, Peters S, Yadav AK, Sadhukhan T, Koch B, Banerjee S. Comparative Study of Sonodynamic and Photoactivated Cancer Therapies with Re(I)-Tricarbonyl Complexes Comprising Phenanthroline Ligands. J Med Chem 2024; 67:6537-6548. [PMID: 38603561 DOI: 10.1021/acs.jmedchem.3c02485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Herein, we have compared the effectivity of light-based photoactivated cancer therapy and ultrasound-based sonodynamic therapy with Re(I)-tricarbonyl complexes (Re1-Re3) against cancer cells. The observed photophysical and TD-DFT calculations indicated the potential of Re1-Re3 to act as good anticancer agents under visible light/ultrasound exposure. Re1 did not display any dark- or light- or ultrasound-triggered anticancer activity. However, Re2 and Re3 displayed concentration-dependent anticancer activity upon light and ultrasound exposure. Interestingly, Re3 produced 1O2 and OH• on light/ultrasound exposure. Moreover, Re3 induced NADH photo-oxidation in PBS and produced H2O2. To the best of our knowledge, NADH photo-oxidation has been achieved here with the Re(I) complex for the first time in PBS. Additionally, Re3 released CO upon light/ultrasound exposure. The cell death mechanism revealed that Re3 produced an apoptotic cell death response in HeLa cells via ROS generation. Interestingly, Re3 showed slightly better anticancer activity under light exposure compared to ultrasound exposure.
Collapse
Affiliation(s)
- Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Virendra Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Silda Peters
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Tumpa Sadhukhan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Biplob Koch
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
10
|
Ragone F, Yañuk JG, Cabrerizo FM, Prieto E, Wolcan E, Ruiz GT. DNA structural changes (photo)induced by tricarbonyl (pterin)rhenium(I) complex. J Inorg Biochem 2024; 252:112471. [PMID: 38181612 DOI: 10.1016/j.jinorgbio.2023.112471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/07/2024]
Abstract
We report on interactions of different types of DNA molecules including double-stranded and plasmid DNA as well as polynucleotides (poly[dGdC]2 and poly[dAdT]2) with fac-[ReI(CO)3(pterin)(H2O)] (or Reptr) complex. The interaction was characterized spectroscopically and changes in the plasmid structure were verified by both electrophoresis and AFM microscopy. For comparative reasons, two others related tricarbonyl rhenium(I) complexes, fac-[(4,4'-bpy)ReI(CO)3(dppz)]+ (or Redppz) and fac-[(CF3SO3)ReI(CO)3(2,2'-bpy)] (or Rebpy) were also studied to further explore the influence of the different co-ligands on the interaction and DNA (photo)damage. Data reported herein suggests that DNA molecules can be structurally modified either by direct interaction with Re(I) complexes in their ground states inducing DNA relaxation, and/or through photoinduced cross-linking processes. The chemical nature of the co-ligands modulates the extent of the damage observed.
Collapse
Affiliation(s)
- F Ragone
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, UNLP, CCT La Plata-CONICET), Diag. 113 y 64, Sucursal 4, C.C. 16, (B1906ZAA) La Plata, Argentina
| | - J G Yañuk
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, CC 164 (B7130IWA), Chascomús, Argentina; Escuela de Bio y Nanotecnologías (UNSAM), Argentina
| | - F M Cabrerizo
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Av. Intendente Marino Km 8.2, CC 164 (B7130IWA), Chascomús, Argentina; Escuela de Bio y Nanotecnologías (UNSAM), Argentina.
| | - E Prieto
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, UNLP, CCT La Plata-CONICET), Diag. 113 y 64, Sucursal 4, C.C. 16, (B1906ZAA) La Plata, Argentina; ICS-UNAJ, Avenida Calchaqui 6200 Florencio Varela, Argentina
| | - E Wolcan
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, UNLP, CCT La Plata-CONICET), Diag. 113 y 64, Sucursal 4, C.C. 16, (B1906ZAA) La Plata, Argentina
| | - G T Ruiz
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, UNLP, CCT La Plata-CONICET), Diag. 113 y 64, Sucursal 4, C.C. 16, (B1906ZAA) La Plata, Argentina.
| |
Collapse
|
11
|
Kostova I. Anticancer Metallocenes and Metal Complexes of Transition Elements from Groups 4 to 7. Molecules 2024; 29:824. [PMID: 38398576 PMCID: PMC10891901 DOI: 10.3390/molecules29040824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
With the progression in the field of bioinorganic chemistry, the role of transition metal complexes as the most widely used therapeutics is becoming a more and more attractive research area. The complexes of transition metals possess a great variety of attractive pharmacological properties, including anticancer, anti-inflammatory, antioxidant, anti-infective, etc., activities. Transition metal complexes have proven to be potential alternatives to biologically active organic compounds, especially as antitumor agents. The performance of metal coordination compounds in living systems is anticipated to differ generally from the action of non-metal-containing drugs and may offer unique diagnostic and/or therapeutic opportunities. In this review, the rapid development and application of metallocenes and metal complexes of elements from Groups 4 to 7 in cancer diagnostics and therapy have been summarized. Most of the heavy metals discussed in the current review are newly discovered metals. That is why the use of their metal-based compounds has attracted a lot of attention concerning their organometallic and coordination chemistry. All of this imposes more systematic studies on their biological activity, biocompatibility, and toxicity and presupposes further investigations.
Collapse
Affiliation(s)
- Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| |
Collapse
|
12
|
Palominos F, Mella P, Guajardo K, Günther G, Vega A, Pizarro N. Photoinduced behaviour of N,N-bidentate manganese(I) and rhenium(I) tricarbonyl complexes for singlet oxygen generation and CO release. Photochem Photobiol Sci 2024; 23:119-132. [PMID: 38082202 DOI: 10.1007/s43630-023-00507-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/07/2023] [Indexed: 02/02/2024]
Abstract
The combined action of singlet oxygen (1O2) and photoinduced carbon monoxide (CO) released by tricarbonyl metal complexes is a promising synergic treatment against multi-resistant bacterial infections. In this work, we explore the use of a polydentate ligand (bpm = 2,2-bipyrimidine) that offers the opportunity to accommodate two metal centers exhibiting both singlet oxygen generation and carbon monoxide releasing properties in a single molecule. A series of monometallic ([(bpm)M(CO)3Br]; M = Mn, Re) and homo or hetero bimetallic ([Br(CO)3M(bpm)M'(CO)3Br]; M = Mn, Re) compounds were synthesized in moderate to good yields by modulating the metal precursor or the stoichiometry, also the syn:anti isomers ratio for the bimetallic complexes was dependent on the experimental conditions used. DFT modelling shows the anti-isomer is more stable than the syn-isomer by less than 8 kJ mol-1, which is consistent with those experimentally observed in terms of majority product and the effect of experimental conditions over the anti-syn ratio. The HOMO-LUMO gap is lower for the mono and bimetallic rhenium(I) compounds compared to the values for the manganese(I) analogues, while the heterometallic complex shows intermediate values for the anti-isomer. The photophysical characterization shows typical absorption and emission bands with MLCT character. In addition, CO-release and 1O2 generation quantum yields were evaluated for the monometallic Mnbpm and Rebpm homologues and compared with values obtained for the homo- and hetero-bimetallic complexes. Interestingly the replacement of a Mn(CO)3Br moiety in MnbpmMn by a Re(CO)3Br one makes the heterometallic MnbpmRe molecule a molecular oxygen sensitizer and partially retaining its carbon monoxide releasing ability.
Collapse
Affiliation(s)
- Franco Palominos
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Viña del Mar, Chile
- Programa de Doctorado en Fisicoquímica Molecular, Universidad Andrés Bello, Santiago, Chile
| | - Pablo Mella
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Viña del Mar, Chile
| | - Kevin Guajardo
- Facultad de Ciencias de la Vida, Carrera de Ingeniería en Biotecnología, Universidad Andres Bello, Viña del Mar, Chile
| | - Germán Günther
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Andrés Vega
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Viña del Mar, Chile
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Santiago, Chile
| | - Nancy Pizarro
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Viña del Mar, Chile.
| |
Collapse
|
13
|
Das R, Paira P. GSH resistant, luminescent 2-(pyren-1-yl)-1 H-imidazo[4,5- f][1,10]phenanthroline-based Ru(II)/Ir(III)/Re(I) complexes for phototoxicity in triple-negative breast cancer cells. Dalton Trans 2023; 52:15365-15376. [PMID: 37493615 DOI: 10.1039/d3dt01667f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Selective chemotherapeutic strategies necessitate the emergence of a photosensitive scaffold to abate the nuisance of cancer. In the current context, photo-activated chemotherapy (PACT) has, therefore, appeared to be very effective to vanquish the vehemence of triple-negative breast cancer (TNBC). Metal complexes have been identified to act well against cancer cell microenvironment (high GSH content, low pH, and hypoxia), and thus they have been employed in the treatment of various types of cancer. As TNBC is very challenging to treat owing to its poor prognosis, lack of a specific target, high chance of relapse, and strong metastatic ability, herein we have aspired to design GSH-resistant phototoxic Ru(II)/Ir(III)/Re(I) based pyrene imidazophenathroline complexes to selectively avert the triple-negative breast cancer. The application of complexes, [RuL], [IrL], and [ReL] in the absence and in the presence of GSH against MDA-MB-231TNBC cells, has revealed that they are very active upon irradiation of visible light compared to dark due to the creation of copious singlet oxygen (1O2) as reactive oxygen species (ROS). Among three synthesized complexes, [IrL] has shown outstanding potency (IC50 = 3.70 in the absence of GSH and IC50 = 3.90 in the presence of GSH). Also, the complex, [IrL] is capable of interacting with DNA with the highest binding constant (Kb = 0.023 × 106 M-1) along with higher protein binding affinity (KBSA = 0.0321 × 106 M-1). Here, it has been unveiled that all the complexes have been entitled to involve DNA covalent interaction through the available sites of both adenine and guanine bases.
Collapse
Affiliation(s)
- Rishav Das
- Department of Chemistry, School of advanced sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Priyankar Paira
- Department of Chemistry, School of advanced sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| |
Collapse
|
14
|
Seth R, Singh A. Rational design of co-ordination compounds in combination of bipyridine type of ligands and group 7 metal (M = Mn, Re) for photoCORM: a DFT study. J Mol Model 2023; 29:306. [PMID: 37676553 DOI: 10.1007/s00894-023-05712-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
CONTEXT A large number of manganese and rhenium tricarbonyl complexes are known in literature along with various applications in different fields. CO-releasing molecules (CORMs) got recent research attention because CO can act as a prodrug for different diseases. CORMs offer the promising prospect of a safe and controllable amount of CO release. In this research work, we have explored the electronic properties of compounds such as bipyridine-related [Mn(CO)3] and [Re(CO)3] and we have compared the electronic properties of both manganese and rhenium tricarbonyl complexes in the light of carbon monoxide releasing tendency. The chosen Mn and Re metals have enough possibility to vary or play with ligands and design a new and novel CORM molecule. In this context, we have taken a range of 4,4'-disubstituted 2,2' bipyridyl ligands (Rbpy, where R = NH2, tBu, OCH3, H, CF3, CN, NO2) to investigate CO's liberation ability to identify and study such molecules. The calculated absorbance of designed complexes (1-14) shows visible/near-IR region (350-850 nm). The HOMO-LUMO energy gap of 7 (ΔE=2.40 eV) complex and for complex 14 (ΔE=2.28 eV) which is lesser in all complexes but the MLCT percentage is greater in Mn tricarbonyl complexes in comparison to Re tricarbonyl complexes. The calculated results of the FMO approach revealed that complex 7 and 14 have the lowest energy gap which is also in good agreement with DOSs and TDM results. The theoretically calculated results revealed that the both Mn and Re tricarbonyl complexes have a tendency for labialization of CO, but Mn tricarbonyl complexes are more prone to CO release because they have higher MLCT percentage. METHODS In this research work, we have performed density functional theory (DFT) calculations to explore the physical properties of compounds such as bipyridine-related [Mn(CO)3] and [Re(CO)3] and we have compared the physical properties of both manganese and rhenium tricarbonyl complexes in the light of carbon monoxide releasing tendency. DFT-based calculations were performed by using B3LYP/LANL2DZ basis set followed by acetonitrile solvent using the conductor-like polarizable continuum model (CPCM) for different calculations. Various geometrical calculations were performed using the Gaussian16 suite of programs and the output results obtained from Gaussian16 were visualized using GaussView 5.0.16. The same level of theory was used for various calculations, including frontier molecular orbital (FMO) analysis, metal to ligand charge transfer (MLCT), density of state (DOS) calculations, and transition density of matrix (TDM) calculations. For specific calculations, GaussSum 2.2 software package was used to calculate the density of states, and the Multiwfn 3.8 program was used to analyze the transition density matrix, which is presented using heat maps for both electrons and holes.
Collapse
Affiliation(s)
- Ritu Seth
- Department of Chemistry, Prof. Rajendra Singh (Rajju Bhaiya) Institute of Physical Sciences for Study and Research, V. B. S. Purvanchal University Jaunpur, UP, Jaunpur, 222003, India
| | - Ajeet Singh
- Department of Chemistry, Prof. Rajendra Singh (Rajju Bhaiya) Institute of Physical Sciences for Study and Research, V. B. S. Purvanchal University Jaunpur, UP, Jaunpur, 222003, India.
| |
Collapse
|
15
|
Jakopec S, Gourdon-Grünewaldt L, Čipor I, Meščić Macan A, Perić B, Piantanida I, Cariou K, Gasser G, Kirin SI, Raić-Malić S. Synthesis, characterisation and biological evaluation of monometallic Re(I) and heterobimetallic Re(I)/Fe(II) complexes with a 1,2,3-triazolyl pyridine chelating moiety. Dalton Trans 2023. [PMID: 37366535 DOI: 10.1039/d3dt01070h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Bioorganometallic complexes have attracted considerable interest and have shown promise for potential application in the treatment and diagnosis of cancer, as well as bioimaging agents, some acting as theranostic agents. The series of novel ferrocene, benzimidazo[1,2-a]quinoline and fluorescein derivatives with bidentate pyridyl-1,2,3-triazole and 2,2'-dipyridylamine and their tricarbonylrhenium(I) complexes was prepared and fully characterised by NMR, single-crystal X-ray diffraction, UV-Vis and fluorescence spectroscopy in biorelevant conditions. The fluorescein and benzimidazo[1,2-a]quinoline ligands and their complexes with Re(I) showed interactions with ds-DNA/RNA and HSA, characterised by thermal denaturation measurements, fluorimetric and circular dichroism titrations. The binding constants revealed that addition of Re(I) increases the affinity of fluorescein but decreases the affinity of benzimidazo[1,2-a]quinoline. The complexation of Re(I) had the opposite effect on fluorescein and benzimidazo[1,2-a]quinoline ligands' fluorimetric sensitivity upon biomacromolecule binding, Re(I) fluorescein complex emission being strongly quenched by DNA/RNA or HSA, while emission of Re(I) benzimidazo[1,2-a]quinolone complex was enhanced, particularly for HSA, making it a promising fluorescent probe. Some mono- and heterobimetallic complexes showed considerable antiproliferative activity on colon cancer cells (CT26 and HT29), with ferrocene dipyridylamine complexes exhibiting the best inhibitory activity, comparable to cisplatin. The correlation of the cytotoxicity data with the linker type between the ferrocene and the 1,2,3-triazole ring suggests that direct binding of the metallocene to the 1,2,3-triazole is favourable for antitumor activity. The Re(I) benzimidazo[1,2-a]quinolone complex showed moderate antiproliferative activity, in contrast to the Re(I) fluorescein complex, which exhibited weak activity on CT26 cells and no activity on HT29 cells. The accumulation of the Re(I) benzimidazo[1,2-a]quinolone complex in the lysosomes of CT26 cells indicates the site of its bioactivity, thus making this complex a potential theranostic agent.
Collapse
Affiliation(s)
- Silvio Jakopec
- University of Zagreb, Faculty of Chemical Engineering and Technology, Department of Organic Chemistry, Marulićev trg 20, 10 000 Zagreb, Croatia.
| | - Lisa Gourdon-Grünewaldt
- Chimie ParisTech, PSL University, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, France.
| | - Ivona Čipor
- Ruđer Bošković Institute, Division of Organic Chemistry and Biochemistry, Laboratory for Biomolecular Interactions and Spectroscopy, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Andrijana Meščić Macan
- University of Zagreb, Faculty of Chemical Engineering and Technology, Department of Organic Chemistry, Marulićev trg 20, 10 000 Zagreb, Croatia.
| | - Berislav Perić
- Ruđer Bošković Institute, Division of Materials Chemistry, Laboratory for Solid State and Complex Compounds Chemistry, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| | - Ivo Piantanida
- Ruđer Bošković Institute, Division of Organic Chemistry and Biochemistry, Laboratory for Biomolecular Interactions and Spectroscopy, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Kevin Cariou
- Chimie ParisTech, PSL University, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, France.
| | - Gilles Gasser
- Chimie ParisTech, PSL University, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, France.
| | - Srećko I Kirin
- Ruđer Bošković Institute, Division of Materials Chemistry, Laboratory for Solid State and Complex Compounds Chemistry, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| | - Silvana Raić-Malić
- University of Zagreb, Faculty of Chemical Engineering and Technology, Department of Organic Chemistry, Marulićev trg 20, 10 000 Zagreb, Croatia.
| |
Collapse
|
16
|
Qi Q, Wang Q, Li Y, Silva DZ, Ruiz MEL, Ouyang R, Liu B, Miao Y. Recent Development of Rhenium-Based Materials in the Application of Diagnosis and Tumor Therapy. Molecules 2023; 28:molecules28062733. [PMID: 36985704 PMCID: PMC10051626 DOI: 10.3390/molecules28062733] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Rhenium (Re) is widely used in the diagnosis and treatment of cancer due to its unique physical and chemical properties. Re has more valence electrons in its outer shell, allowing it to exist in a variety of oxidation states and to form different geometric configurations with many different ligands. The luminescence properties, lipophilicity, and cytotoxicity of complexes can be adjusted by changing the ligand of Re. This article mainly reviews the development of radionuclide 188Re in radiotherapy and some innovative applications of Re as well as the different therapeutic approaches and imaging techniques used in cancer therapy. In addition, the current application and future challenges and opportunities of Re are also discussed.
Collapse
Affiliation(s)
- Qingwen Qi
- School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.Q.); (Q.W.); (R.O.)
| | - Qian Wang
- School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.Q.); (Q.W.); (R.O.)
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.Q.); (Q.W.); (R.O.)
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.E.L.R.); (B.L.)
- Correspondence: (Y.L.); (D.Z.S.); (Y.M.)
| | - Dionisio Zaldivar Silva
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.E.L.R.); (B.L.)
- Faculty of Biology, University of Havana, Havana 10400, Cuba
- Correspondence: (Y.L.); (D.Z.S.); (Y.M.)
| | - Maria Eliana Lanio Ruiz
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.E.L.R.); (B.L.)
- Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Ruizhuo Ouyang
- School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.Q.); (Q.W.); (R.O.)
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.E.L.R.); (B.L.)
| | - Baolin Liu
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.E.L.R.); (B.L.)
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.Q.); (Q.W.); (R.O.)
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.E.L.R.); (B.L.)
- Correspondence: (Y.L.); (D.Z.S.); (Y.M.)
| |
Collapse
|
17
|
Rhenium(I)-tricarbonyl complexes with methimazole and its selenium analogue: Syntheses, characterization and cell toxicity. J Inorg Biochem 2023; 240:112092. [PMID: 36549168 DOI: 10.1016/j.jinorgbio.2022.112092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
This study explores the effect of a thione/selone ligand on the cell toxicity (in vitro) and light activity of diimine Re(CO)3+ complexes. Six rhenium(I) complexes with general formula fac-[Re(CO)3(N,N')X]+ were prepared, where X = 2-mercapto-1-methylimidazole (methimazole; MMI), and 1-methylimidazole-2-selone (MSeI); N,N' = 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen) and 2,9-dimethyl-1,10-phenanthroline (dmphen). Their triflate salts were characterized using single-crystal X-ray diffraction, 1H, 13C and 2D NMR, UV-vis and vibrational spectroscopy. Their cytotoxic properties were tested, showing significant cytotoxicity (IC50 = 8.0-55 μM) towards the human breast cancer cell line MDA-MB-231. The half-inhibitory concentration (IC50) for fac-[Re(CO)3(dmphen)(MMI)]+, the most toxic complex in this series (8.0 ± 0.2 μM), was comparable to that of the corresponding aqua complex fac-[Re(CO)3(dmphen)(H2O)]+ with IC50 = 6.0 ± 0.1 μM. The fac-[Re(CO)3(bpy)(MMI/MSeI)]+ complexes were somewhat less toxic towards the human embryonic kidney cell line HEK-293 T after 48 h of exposure. The stability of the complexes upon irradiation was monitored using UV-vis spectroscopy, with no CO released when exposed to UV-A light (λ = 365 nm).
Collapse
|
18
|
Hu M, Zhou H, Wang Z, Du Y, Wang Y, Eerdun C, Zhu B. Synthesis, structure, CO releasing, and biological activities of new 1-D chain Mn(I)/Mn(II) visible light activated CO-releasing molecules (CORMs). J COORD CHEM 2023. [DOI: 10.1080/00958972.2023.2165070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mixia Hu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Hohhot, China
| | - Haofei Zhou
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Hohhot, China
| | - Zhexu Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Hohhot, China
| | - Yanqing Du
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Yuewu Wang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Chaolu Eerdun
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Baohua Zhu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Hohhot, China
| |
Collapse
|
19
|
Synthesis, structural characterization and study of antioxidant and anti-PrP Sc properties of flavonoids and their rhenium(I)-tricarbonyl complexes. J Biol Inorg Chem 2023; 28:235-247. [PMID: 36695886 PMCID: PMC9981504 DOI: 10.1007/s00775-022-01986-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 12/08/2022] [Indexed: 01/26/2023]
Abstract
This study aims at the synthesis and initial biological evaluation of novel rhenium-tricarbonyl complexes of 3,3',4',5,7-pentahydroxyflavone (quercetin), 3,7,4΄-trihydroxyflavone (resokaempferol), 5,7-dihydroxyflavone (chrysin) and 4΄,5,7-trihydroxyflavonone (naringenin) as neuroprotective and anti-PrP agents. Resokaempferol was synthesized from 2,2΄,4-trihydroxychalcone by H2O2/NaOH. The rhenium-tricarbonyl complexes of the type fac-[Re(CO)3(Fl)(sol)] were synthesized by reacting the precursor fac-[Re(CO)3(sol)3]+ with an equimolar amount of the flavonoids (Fl) quercetin, resokaempferol, chrysin and naringenin and the solvent (sol) was methanol or water. The respective Re-flavonoid complexes were purified by semi-preparative HPLC and characterized by spectroscopic methods. Furthermore, the structure of Re-chrysin was elucidated by X-ray crystallography. Initial screening of the neuroprotective properties of these compounds included the in vitro assessment of the antioxidant properties by the DPPH assay as well as the anti-lipid peroxidation of linoleic acid in the presence of AAPH and their ability to inhibit soybean lipoxygenase. From the above studies, it was concluded that the complexes' properties are mainly correlated with the structural characteristics and the presence of the flavonoids. The flavonoids and their respective Re-complexes were also tested in vitro for their ability to inhibit the formation and aggregation of the amyloid-like abnormal prion protein, PrPSc, by employing the real-time quaking-induced conversion assay with recombinant PrP seeded with cerebrospinal fluid from patients with Creutzfeldt-Jakob disease. All the compounds blocked de novo abnormal PrP formation and aggregation.
Collapse
|
20
|
Kisel KS, Baigildin VA, Solomatina AI, Gostev AI, Sivtsov EV, Shakirova JR, Tunik SP. Rhenium(I) Block Copolymers Based on Polyvinylpyrrolidone: A Successful Strategy to Water-Solubility and Biocompatibility. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010348. [PMID: 36615546 PMCID: PMC9822124 DOI: 10.3390/molecules28010348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023]
Abstract
A series of diphosphine Re(I) complexes Re1-Re4 have been designed via decoration of the archetypal core {Re(CO)2(N^N)} through the installations of the phosphines P0 and P1 bearing the terminal double bond, where N^N = 2,2'-bipyridine (N^N1), 4,4'-di-tert-butyl-2,2'-bipyridine (N^N2) or 2,9-dimethyl-1,10-phenanthroline (N^N3) and P0 = diphenylvinylphosphine, and P1 = 4-(diphenylphosphino)styrene. These complexes were copolymerized with the corresponding N-vinylpyrrolidone-based Macro-RAFT agents of different polymer chain lengths to give water-soluble copolymers of low-molecular p(VP-l-Re) and high-molecular p(VP-h-Re) block-copolymers containing rhenium complexes. Compounds Re1-Re4, as well as the copolymers p(VP-l-Re) and p(VP-h-Re), demonstrate phosphorescence from a 3MLCT excited state typical for this type of chromophores. The copolymers p(VP-l-Re#) and p(VP-h-Re#) display weak sensitivity to molecular oxygen in aqueous and buffered media, which becomes almost negligible in the model physiological media. In cell experiments with CHO-K1 cell line, p(VP-l-Re2) and p(VP-h-Re2) displayed significantly reduced toxicity compared to the initial Re2 complex and internalized into cells presumably by endocytic pathways, being eventually accumulated in endosomes. The sensitivity of the copolymers to oxygen examined in CHO-K1 cells via phosphorescence lifetime imaging microscopy (PLIM) proved to be inessential.
Collapse
Affiliation(s)
- Kristina S. Kisel
- Institute of Chemistry, Saint-Petersburg State University, Universitetskii pr., 26, 198504 St. Petersburg, Russia
| | - Vadim A. Baigildin
- Institute of Chemistry, Saint-Petersburg State University, Universitetskii pr., 26, 198504 St. Petersburg, Russia
| | - Anastasia I. Solomatina
- Institute of Chemistry, Saint-Petersburg State University, Universitetskii pr., 26, 198504 St. Petersburg, Russia
| | - Alexey I. Gostev
- Department of Physical Chemistry, Saint-Petersburg State Institute of Technology, Technical University, Moskovskiy pr. 26, 190013 St. Petersburg, Russia
| | - Eugene V. Sivtsov
- Department of Physical Chemistry, Saint-Petersburg State Institute of Technology, Technical University, Moskovskiy pr. 26, 190013 St. Petersburg, Russia
| | - Julia R. Shakirova
- Institute of Chemistry, Saint-Petersburg State University, Universitetskii pr., 26, 198504 St. Petersburg, Russia
- Correspondence: (J.R.S.); (S.P.T.)
| | - Sergey P. Tunik
- Institute of Chemistry, Saint-Petersburg State University, Universitetskii pr., 26, 198504 St. Petersburg, Russia
- Correspondence: (J.R.S.); (S.P.T.)
| |
Collapse
|
21
|
Morales-Guevara R, Fuentes JA, Páez-Hernández D, Carreño A. Intramolecular Hydrogen Bond in Pyridine Schiff Bases as Ancillary Ligands of Re(I) Complexes Is a Switcher between Visible and NIR Emissions: A Relativistic Quantum Chemistry Study. J Phys Chem A 2022; 126:8997-9007. [PMID: 36413983 DOI: 10.1021/acs.jpca.2c06435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Rhenium(I) tricarbonyl complexes have been described as suitable fluorophores, particularly for biological applications. fac-[Re(CO)3(N,N)L](0 or 1+) complexes, where N,N is a substituted dinitrogenated ligand (bipyridine or derivatives with relatively small substituents) and L the ancillary ligand [a pyridine Schiff base (PSB) harboring an intramolecular hydrogen bond (IHB)], have presented promissory results concerning their use as fluorophores, especially for walled cells (i.e., bacteria and fungi). In this work, we present a relativistic theoretical analysis of two series of fac-[Re(CO)3(N,N)PSB]1+ complexes to predict the role of the IHB in the ancillary ligand concerning their photophysical behavior. N,N corresponds to 2,2'-bipyridine (bpy) (series A) or 4,4'-bis(ethoxycarbonyl)-2,2'-bipyridine (deeb) (series B). We found that all the complexes present absorption in the visible light range. In addition, complexes presenting a PSB with an IHB exhibit luminescent emission suitable for biological purposes: large Stokes shift, emission in the range of 600-700 nm, and τ in the order of 10-2 to 10-3 s. By contrast, complexes with PSB lacking the IHB show a predicted emission with the lowest triplet excited-state energy entering the NIR region. These results suggest a role of the IHB as an important switcher between visible and NIR emissions in this kind of complexes. Since the PSB can be substituted to modulate the properties of the whole Re(I) complex, it will be interesting to explore whether other substitutions can also affect the photophysical properties, mainly the emission range.
Collapse
Affiliation(s)
- Rosaly Morales-Guevara
- Programa de Doctorado en Físicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago 8370146, Chile.,Laboratory of Organometallic Synthesis, Center of Applied NanoSciences (CANS), Facultad de Ciencias Exactas, Universidad Andrés Bello, República 330, Santiago 8370186, Chile
| | - Juan A Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago 8370186, Chile
| | - Dayán Páez-Hernández
- Programa de Doctorado en Físicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago 8370146, Chile.,Laboratory of Organometallic Synthesis, Center of Applied NanoSciences (CANS), Facultad de Ciencias Exactas, Universidad Andrés Bello, República 330, Santiago 8370186, Chile
| | - Alexander Carreño
- Programa de Doctorado en Físicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago 8370146, Chile.,Laboratory of Organometallic Synthesis, Center of Applied NanoSciences (CANS), Facultad de Ciencias Exactas, Universidad Andrés Bello, República 330, Santiago 8370186, Chile
| |
Collapse
|
22
|
Polypyridyl coordinated rhenium(I) tricarbonyl complexes as model devices for cancer diagnosis and treatment. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Mansour AM, Ibrahim NM, Farag AM, Abo-Elfadl MT. Evaluation of cytotoxic properties of two fluorescent fac-Re(CO) 3 complexes bearing an N, N-bidentate benzimidazole coligand. RSC Adv 2022; 12:30829-30837. [PMID: 36349156 PMCID: PMC9608107 DOI: 10.1039/d2ra05992d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/19/2022] [Indexed: 01/24/2023] Open
Abstract
The reaction between 1H-benzimidazol-2-ylmethyl-(N-aryl)amine derivatives (LR) and [ReBr(CO)5] afforded octahedral Re(i) complexes of the general formula of [ReBr(CO)3LR] (R = 4-Cl and 4-COOCH3). The Re(i) complexes were screened for their potential cytotoxicity against three malignant cell lines and one normal cell line of different origins. The solvatochromic characteristics of the complexes were examined by UV/vis. spectroscopy with the aid of time-dependent density functional theory calculations. Strong autofluorescence emission can be seen in the two Re(i) complexes between 460 and 488 nm. They appeared to accumulate inside intercellular connections and surrounding cellular membranes. The substances gathered also, along the cell membrane, waiting for their entry. The mode of cell death staining and the DNA fragmentation analysis revealed that the 4-Cl complex showed increased apoptotic changes in the MCF-7, and the Caco-2 cell line, while the HepG2 cell line showed little apoptotic changes.
Collapse
Affiliation(s)
- Ahmed M. Mansour
- Department of Chemistry, Faculty of Science, Cairo UniversityGamma StreetGizaCairo 12613Egypt
| | - Nourhan M. Ibrahim
- Department of Chemistry, Faculty of Science, Cairo UniversityGamma StreetGizaCairo 12613Egypt
| | - Ahmad M. Farag
- Department of Chemistry, Faculty of Science, Cairo UniversityGamma StreetGizaCairo 12613Egypt
| | - Mahmoud T. Abo-Elfadl
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research CentreDokkiCairo 12622Egypt,Biochemistry Department, Biotechnology Research Institute, National Research CentreDokkiCairo 12622Egypt
| |
Collapse
|
24
|
Steric and electronic influence of Re(I) tricarbonyl complexes with various coordinated β-diketones. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Synthesis and Characterization of Novel [2 + 1] Tricarbonyl Rhenium Complexes with the Hydrophilic Phosphine Ligands PTA and CAP. Bioinorg Chem Appl 2022; 2022:3117661. [PMID: 35734344 PMCID: PMC9208990 DOI: 10.1155/2022/3117661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 11/23/2022] Open
Abstract
In the pursuit of hydrophilic model fac-[Re(CO)3]+ complexes for (radio) pharmaceutical applications, six novel [2 + 1] mixed-ligand complexes of the general type fac-[Re(CO)3(bid)P] were synthesized and characterized, where bid is a bidentate ligand bearing either (N, O) or (S, S′) donor atom sets and P is the hydrophilic phosphine 1,3,5-triaza-7-phosphoadamantane (PTA) or its macrocyclic homologue 1,4,7-triaza-9-phosphatricyclo[5.3.2.1]tridecane (CAP). The (N, O) ligands used in this study were picolinic and quinaldic acid, while the (S, S′) ligand was diethyldithiocarbamate. The complexes were synthesized in generally high yields and purity and the characterization was performed by spectroscopic methods, IR, NMR, and elemental analysis. Detailed X-ray crystallographic study of molecular packing by using Hirshfeld analysis tools revealed a plethora of intermolecular interactions such as hydrogen bond, π⋯π, C-H⋯π, and carbonyl-carbonyl interactions. To our knowledge, the CAP complexes reported herein are the first example of [2 + 1] mixed-ligand fac-[Re(CO)3]+ complexes with CAP. The new complexes might have the potential to serve as platforms for the design of target-specific complexes with favorable pharmacokinetics.
Collapse
|
26
|
Sono-ReCORMs for synergetic sonodynamic-gas therapy of hypoxic tumor. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Shahzad K, Asad M, Asiri AM, Irfan M, Iqbal MA. In-vitro anticancer profile of recent ruthenium complexes against liver cancer. REV INORG CHEM 2022. [DOI: 10.1515/revic-2021-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Ruthenium complexes are considered as the most favorable alternatives to traditional platinum-based cancer drugs owing to their acceptable toxicity level, selectivity, variant oxidation states and ability to treat platinum-resistant cancer cells. They have similar ligand exchange kinetics as platinum drugs but can be tailored according to our desire by ligands influence. In the current study, we illustrate the in-vitro anticancer profile of some ruthenium complexes (2016–2021) against human hepatocellular carcinoma (HepG2). The anticancer activity of ruthenium complexes is determined by comparing their IC50 values with one another and positive controls. Fortunately, some ruthenium complexes including 3, 4, 6, 14, 15, 20, 42, and 48 exhibit surpassed in-vitro anticancer profile than that of positive controls promising as potential candidates against liver cancer. We also explored the structure-activity relationship (SAR) which is a key factor in the rational designing and synthesis of new ruthenium drugs. It covers the factors affecting anticancer activity including lipophilicity, planarity, area and bulkiness, the steric influence of different ligands, and electronic effects induced by ligands, stability, aqueous solubility and bioavailability to the target sites. The data reported here will provide strong support in the plausible design and synthesis of ruthenium anticancer drugs in the upcoming days.
Collapse
Affiliation(s)
- Khurram Shahzad
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
| | - Mohammad Asad
- Center of Excellence for Advanced Materials Research (CEAMR) , King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
- Chemistry Department , Faculty of Science, King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research (CEAMR) , King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
- Chemistry Department , Faculty of Science, King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
| | - Muhammad Irfan
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry , University of Agriculture , Faisalabad , 38000 , Pakistan
- Organometallic and Coordination Chemistry Laboratory , University of Agriculture , Faisalabad , 38000 , Pakistan
| |
Collapse
|
28
|
Zhu J, Ouyang A, He J, Xie J, Banerjee S, Zhang Q, Zhang P. An ultrasound activated cyanine-rhenium(I) complex for sonodynamic and gas synergistic therapy. Chem Commun (Camb) 2022; 58:3314-3317. [PMID: 35179153 DOI: 10.1039/d1cc06769a] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A novel cyanine-rhenium(I) tricarbonyl complex is developed as a potent sonosensitizer and sono-activatable CO-releasing agent for synergistic sonodynamic therapy and CO gas therapy of cancer. The complex induced ferroptosis as the mode of cell death.
Collapse
Affiliation(s)
- Jiayi Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China. .,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ai Ouyang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Jiaqi He
- School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Juan Xie
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP-221005, India.
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
29
|
He SF, Liao JX, Huang MY, Zhang YQ, Zou YM, Wu CL, Lin WY, Chen JX, Sun J. Rhenium-guanidine complex as photosensitizer: trigger HeLa cell apoptosis through death receptor-mediated, mitochondria-mediated and cell cycle arrest pathways. Metallomics 2022; 14:6527583. [PMID: 35150263 DOI: 10.1093/mtomcs/mfac008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/27/2022] [Indexed: 11/12/2022]
Abstract
During the last decades, growing evidence indicates that the photodynamic antitumor activity of transition metal complexes, and Re(I) compounds are potential candidates for photodynamic therapy (PDT). This study reports the synthesis, characterization, and anti-tumor activity of three new Re(I)-guadinium complexes. Cytotoxicity tests reveal that complex Re1 increased cytotoxicity by 145-fold from IC50 > 180 μM in the dark to 1.3 ± 0.7 μM following 10 min of light irradiation (425 nm) in HeLa cells. Further, the mechanism by which Re1 induces apoptosis in the presence or absence of light irradiation was investigated, and results indicate that cell death was caused through different pathways. Upon irradiation, Re1 first accumulates on the cell membrane and interacts with death receptors to activate the extrinsic death receptor-mediated signaling pathway, then is transported into the cell cytoplasm. Most of the intracellular Re1 locates within mitochondria, improving the ROS level, and decreasing MMP and ATP levels, and inducing the activation of caspase-9 and, thus, apoptosis. Subsequently, the residual Re1 can translocate into the cell nucleus, and activates the p53 pathway, causing cell-cycle arrest and eventually cell death.
Collapse
Affiliation(s)
- Shu-Fen He
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.,Department of Pharmacy, Dongguan Peaple's Hospital, Dongguan, 523059, China
| | - Jia-Xin Liao
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Min-Ying Huang
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yu-Qing Zhang
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yi-Min Zou
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Ci-Ling Wu
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Wen-Yuan Lin
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Jia-Xi Chen
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Jing Sun
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| |
Collapse
|
30
|
Paprocka R, Wiese-Szadkowska M, Janciauskiene S, Kosmalski T, Kulik M, Helmin-Basa A. Latest developments in metal complexes as anticancer agents. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214307] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
31
|
Schindler K, Zobi F. Anticancer and Antibiotic Rhenium Tri- and Dicarbonyl Complexes: Current Research and Future Perspectives. Molecules 2022; 27:539. [PMID: 35056856 PMCID: PMC8777860 DOI: 10.3390/molecules27020539] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 01/12/2022] [Indexed: 12/20/2022] Open
Abstract
Organometallic compounds are increasingly recognized as promising anticancer and antibiotic drug candidates. Among the transition metal ions investigated for these purposes, rhenium occupies a special role. Its tri- and dicarbonyl complexes, in particular, attract continuous attention due to their relative ease of preparation, stability and unique photophysical and luminescent properties that allow the combination of diagnostic and therapeutic purposes, thereby permitting, e.g., molecules to be tracked within cells. In this review, we discuss the anticancer and antibiotic properties of rhenium tri- and dicarbonyl complexes described in the last seven years, mainly in terms of their structural variations and in vitro efficacy. Given the abundant literature available, the focus is initially directed on tricarbonyl complexes of rhenium. Dicarbonyl species of the metal ion, which are slowly gaining momentum, are discussed in the second part in terms of future perspective for the possible developments in the field.
Collapse
Affiliation(s)
| | - Fabio Zobi
- Department of Chemistry, Fribourg University, Chemin du Musée 9, 1700 Fribourg, Switzerland;
| |
Collapse
|
32
|
Álvarez D, Menéndez MI, López R. Computational Design of Rhenium(I) Carbonyl Complexes for Anticancer Photodynamic Therapy. Inorg Chem 2022; 61:439-455. [PMID: 34913679 PMCID: PMC8753654 DOI: 10.1021/acs.inorgchem.1c03130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 11/28/2022]
Abstract
New Re(I) carbonyl complexes are proposed as candidates for photodynamic therapy after investigating the effects of the pyridocarbazole-type ligand conjugation, addition of substituents to this ligand, and replacement of one CO by phosphines in [Re(pyridocarbazole)(CO)3(pyridine)] complexes by means of the density functional theory (DFT) and time-dependent DFT. We have found, first, that increasing the conjugation in the bidentate ligand reduces the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gap of the complex, so its absorption wavelength red-shifts. When the enlargement of this ligand is carried out by merging the electron-withdrawing 1H-pyrrole-2,5-dione heterocycle, it enhances even more the stabilization of the LUMO due to its electron-acceptor character. Second, the analysis of the shape and composition of the orbitals involved in the band of interest indicates which substituents of the bidentate ligand and which positions are optimal for reducing the HOMO-LUMO energy gap. The introduction of electron-withdrawing substituents into the pyridine ring of the pyridocarbazole ligand mainly stabilizes the LUMO, whereas the HOMO energy increases primarily when electron-donating substituents are introduced into its indole moiety. Each type of substituents results in a bathochromic shift of the lowest-lying absorption band, which is even larger if they are combined in the same complex. Finally, the removal of the π-backbonding interaction between Re and the CO trans to the monodentate pyridine when it is replaced by phosphines PMe3, 1,4-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane (DAPTA), and 1,4,7-triaza-9-phosphatricyclo[5.3.2.1]tridecane (CAP) causes another extra bathochromic shift due to the destabilization of the HOMO, which is low with DAPTA, moderate with PMe3, but especially large with CAP. Through the combination of the PMe3 or CAP ligands with adequate electron-withdrawing and/or electron-donating substituents at the pyridocarbazole ligand, we have found several complexes with significant absorption at the therapeutic window. In addition, according to our results on the singlet-triplet energy gap, all of them should be able to produce cytotoxic singlet oxygen.
Collapse
Affiliation(s)
- Daniel Álvarez
- Departamento de Química Física
y Analítica, Facultad de Química, Universidad de Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain
| | - M. Isabel Menéndez
- Departamento de Química Física
y Analítica, Facultad de Química, Universidad de Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain
| | - Ramón López
- Departamento de Química Física
y Analítica, Facultad de Química, Universidad de Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain
| |
Collapse
|
33
|
Zhang H, Liao X, Wu X, Shi C, Zhang Y, Yuan Y, Li W, Wang J, Liu Y. Iridium(III) complexes entrapped in liposomes trigger mitochondria-mediated apoptosis and GSDME-mediated pyroptosis. J Inorg Biochem 2022; 228:111706. [PMID: 35033830 DOI: 10.1016/j.jinorgbio.2021.111706] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/08/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023]
Abstract
In this report, a new ligand TFBIP (TFBIP = 2-(4'-trifluoromethyl)-[1,1'-biphenyl]-4-yl)-1H-imidazo[4,5-f][1,10]phenanthroline) and its three iridium (III) complexes [Ir(ppy)2(TFBIP)](PF6) (Ir1, ppy = 2-phenylpyridine), [Ir(bzq)2(TFBIP)](PF6) (Ir2, bzq = benzo[h]quinolone) and [Ir(piq)2(TFBIP)](PF6) (Ir3, piq = 1-phenylisoquinoline) were synthesized and characterized. The cytotoxicity in vitro of the complexes toward several cancer cells was evaluated by 3-(4,5-dimethylthiazole-2-yl)-2,5-biphenyl tetrazolium bromide (MTT) methods. The complexes show no cytotoxicity (IC50 > 100 μM) against these cancer cells. To enhance anticancer activity, these complexes were trapped in liposomes to form Ir1Lipo, Ir2Lipo and Ir3Lipo. The liposomes Ir1Lipo, Ir2Lipo and Ir3Lipo exhibit high or moderate cytotoxic activity. In particular, Ir1Lipo can effectively inhibit the cell growth with a low IC50 value (< 10 μM) toward A549, HepG2, BEL-7402, B16, HeLa and SGC-7901 cells. Surprisingly, Ir1Lipo has no cytotoxic activity against the normal cell LO2 (IC50 > 100 μM). The apoptosis and pyroptosis were investigated. Ir3Lipo induces apoptosis with a high early apoptotic number of 37%. The reactive oxygen species (ROS) levels, mitochondrial permeability transition pore open and mitochondrial membrane potential were detected. The intracellular Ca2+ concentration and release of cytochrome c were investigated. The expression of Bcl-2 (B-cell lymphoma-2) family proteins was explored by western blot. The antitumor activity in vivo of Ir1Lipo was evaluated with an inhibitory rate of 53%.
Collapse
Affiliation(s)
- Huiwen Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiaofei Liao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiaoyun Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Chuanling Shi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuanyuan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuhan Yuan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wenlong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jiawen Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
34
|
Rajagopal A, Biddulph J, Tabrizi L, Fitzgerald-Hughes D, Pryce MT. Photoactive organometallic compounds as antimicrobial agents. ADVANCES IN INORGANIC CHEMISTRY 2022. [DOI: 10.1016/bs.adioch.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Sharma S. A, N. V, Kar B, Das U, Paira P. Target-specific mononuclear and binuclear rhenium( i) tricarbonyl complexes as upcoming anticancer drugs. RSC Adv 2022; 12:20264-20295. [PMID: 35919594 PMCID: PMC9281374 DOI: 10.1039/d2ra03434d] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022] Open
Abstract
Metal complexes have gradually been attracting interest from researchers worldwide as potential cancer therapeutics. Driven by the many side effects of the popular platinum-based anticancer drug cisplatin, the tireless endeavours of researchers have afforded strategies for the design of appropriate metal complexes with minimal side effects compared to cisplatin and its congeners to limit the unrestricted propagation of cancer. In this regard, transition metal complexes, especially rhenium-based complexes are being identified and highlighted as promising cancer theranostics, which are endowed with the ability to detect and annihilate cancer cells in the body. This is attributed the amazing photophysical properties of rhenium complexes together with their ability to selectively attack different organelles in cancer cells. Therefore, this review presents the properties of different rhenium-based complexes to highlight their recent advances as anticancer agents based on their cytotoxicity results. In this review, rhenium-based complexes are highlighted as promising cancer theranostics, which are endowed with the ability to detect and annihilate cancer cells in the body.![]()
Collapse
Affiliation(s)
- Ajay Sharma S.
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Vaibhavi N.
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Binoy Kar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Utpal Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| |
Collapse
|
36
|
Alizadeh H, Mirzaei M, Saljooghi AS, Jodaian V, Bazargan M, Mague JT, Gomila RM, Frontera A. Coordination complexes of zinc and manganese based on pyridine-2,5-dicarboxylic acid N-oxide: DFT studies and antiproliferative activities consideration. RSC Adv 2021; 11:37403-37412. [PMID: 35496427 PMCID: PMC9043818 DOI: 10.1039/d1ra08258b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
We report here the design, synthesis, and antiproliferative activity of three coordination complexes [Mn2(pydco)2(bpy)2(H2O)2]·2H2O (1), [Zn(bpy)(Hpydco)2] (2), and [Zn(bpy)Cl(Hpydco)]·2H2O (3) (H2pydco = pyridine-2,5-dicarboxylic acid N-oxide, bpy = 2,2'-bipyridine). Molecular structures of these complexes have been characterized by elemental analysis, Fourier transform infrared spectroscopy, thermogravimetric analysis, and powder and single-crystal X-ray diffraction. According to the structural analysis, 1-3 are discrete complexes containing N- and O-donor ligands (bpy and pydco2-) in which pydco2- can be coordinated to the metal centres via the N-oxide oxygen and one carboxylate oxygen to generate a six-membered chelate ring. Also, these structures benefit from extensive intermolecular interactions such as hydrogen bonds and π-interactions which are the major forces to make them more stable in the solid state. The energetic features of the π-stacking interactions observed in compounds 1-3 have been computed and compared to the H-bonds. The interactions in the solid state have been also studied using the independent gradient model approach (IGM plot). The IGM-δg approach uses a new descriptor (δg) that locally represents the difference between a virtual upper limit of the electron density gradient and the true electron density gradient. This newly developed IGM methodology automatically extracts the signature of interactions between two given fragments. Finally, the antiproliferative properties of these complexes were tested on several cancer cell lines by MTT assay and flow cytometry. Also, to compare the antiproliferative activities of these complexes with common chemotherapy drugs, the antiproliferative property of cisplatin was evaluated as a reference and positive control.
Collapse
Affiliation(s)
- Hanie Alizadeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad Mashhad 9177948974 Iran
| | - Masoud Mirzaei
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad Mashhad 9177948974 Iran
| | - Amir Sh Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad Mashhad 9177948974 Iran
| | - Vida Jodaian
- Department of Chemistry, Islamshahr Branch, Islamic Azad University Islamshahr 3317843154 Iran
| | - Maryam Bazargan
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad Mashhad 9177948974 Iran
| | - Joel T Mague
- Department of Chemistry, Tulane University New Orleans LA 70118 USA
| | - Rosa M Gomila
- Departament de Química, Universitat de les Illes Balears Crta de Valldemossa km 7.5 07122 Palma de Mallorca (Baleares) SPAIN
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears Crta de Valldemossa km 7.5 07122 Palma de Mallorca (Baleares) SPAIN
| |
Collapse
|
37
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 774] [Impact Index Per Article: 193.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
38
|
Priyatharsini M, Mishra I, Shankar B, Srinivasan N, Krishnakumar RV, Sathiyendiran M. fac-Re(CO)3 core-based complex featuring benzimidazole as pendant motif from hydroxyquinoline and pyridylbenzimidazole. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Huang Z, King AP, Lovett J, Lai B, Woods JJ, Harris HH, Wilson JJ. Photochemistry and in vitro anticancer activity of Pt(IV)Re(I) conjugates. Chem Commun (Camb) 2021; 57:11189-11192. [PMID: 34622255 DOI: 10.1039/d1cc04669a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The photophysical and photochemical properties of two Pt(IV)Re(I) conjugates were studied via both experimental and computational methods. Both conjugates exhibit modest photocytotoxicity against ovarian cancer cells. X-ray fluorescence microscopy showed that Pt and Re colocalize in cells whether they had been irradiated or not. This work demonstrates the potential of photoactivated multilimetallic agents for combating cancer.
Collapse
Affiliation(s)
- Zhouyang Huang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | - A Paden King
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | - James Lovett
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia
| | - Barry Lai
- Advanced Photon Source, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Joshua J Woods
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA. .,Robert F. Smith School for Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Hugh H Harris
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
40
|
Wu C, Kisel KS, Thangavel MK, Chen Y, Chang K, Tsai M, Chu C, Shen Y, Wu P, Zhang Z, Liu T, Jänis J, Grachova EV, Shakirova JR, Tunik SP, Koshevoy IO, Chou P. Functionalizing Collagen with Vessel-Penetrating Two-Photon Phosphorescence Probes: A New In Vivo Strategy to Map Oxygen Concentration in Tumor Microenvironment and Tissue Ischemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102788. [PMID: 34414696 PMCID: PMC8529487 DOI: 10.1002/advs.202102788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Indexed: 06/13/2023]
Abstract
The encapsulation and/or surface modification can stabilize and protect the phosphorescence bio-probes but impede their intravenous delivery across biological barriers. Here, a new class of biocompatible rhenium (ReI ) diimine carbonyl complexes is developed, which can efficaciously permeate normal vessel walls and then functionalize the extravascular collagen matrixes as in situ oxygen sensor. Without protective agents, ReI -diimine complex already exhibits excellent emission yield (34%, λem = 583 nm) and large two-photon absorption cross-sections (σ2 = 300 GM @ 800 nm) in water (pH 7.4). After extravasation, remarkably, the collagen-bound probes further enhanced their excitation efficiency by increasing the deoxygenated lifetime from 4.0 to 7.5 µs, paving a way to visualize tumor hypoxia and tissue ischemia in vivo. The post-extravasation functionalization of extracellular matrixes demonstrates a new methodology for biomaterial-empowered phosphorescence sensing and imaging.
Collapse
Affiliation(s)
- Cheng‐Ham Wu
- Department of ChemistryNational Taiwan UniversityTaipei10617Taiwan
| | - Kristina S. Kisel
- Department of ChemistryUniversity of Eastern FinlandJoensuu80101Finland
- St.‐Petersburg State University7/9 Universitetskaya nabSt.‐Petersburg199034Russia
| | | | - Yi‐Ting Chen
- Department of ChemistryNational Taiwan UniversityTaipei10617Taiwan
| | - Kai‐Hsin Chang
- Department of ChemistryNational Taiwan UniversityTaipei10617Taiwan
| | - Ming‐Rung Tsai
- Department of ChemistryNational Taiwan UniversityTaipei10617Taiwan
| | - Chia‐Yu Chu
- Department of DermatologyNational Taiwan University Hospital and National Taiwan University College of MedicineTaipei10002Taiwan
| | - Yu‐Fang Shen
- Department of Bioinformatics and Medical EngineeringAsia UniversityTaichung City41354Taiwan
- 3D Printing Medical Research InstituteAsia UniversityTaichung City41354Taiwan
| | - Pei‐Chun Wu
- Institute of Translational Medicine, Faculty of Health SciencesMinistry of Education Frontiers Science Center for Precision OncologyUniversity of MacauTaipaMacau999078China
| | - Zhiming Zhang
- Institute of Translational Medicine, Faculty of Health SciencesMinistry of Education Frontiers Science Center for Precision OncologyUniversity of MacauTaipaMacau999078China
| | - Tzu‐Ming Liu
- Institute of Translational Medicine, Faculty of Health SciencesMinistry of Education Frontiers Science Center for Precision OncologyUniversity of MacauTaipaMacau999078China
| | - Janne Jänis
- Department of ChemistryUniversity of Eastern FinlandJoensuu80101Finland
| | - Elena V. Grachova
- St.‐Petersburg State University7/9 Universitetskaya nabSt.‐Petersburg199034Russia
| | - Julia R. Shakirova
- St.‐Petersburg State University7/9 Universitetskaya nabSt.‐Petersburg199034Russia
| | - Sergey P. Tunik
- St.‐Petersburg State University7/9 Universitetskaya nabSt.‐Petersburg199034Russia
| | - Igor O. Koshevoy
- Department of ChemistryUniversity of Eastern FinlandJoensuu80101Finland
| | - Pi‐Tai Chou
- Department of ChemistryNational Taiwan UniversityTaipei10617Taiwan
| |
Collapse
|
41
|
Acosta A, Antipán J, Fernández M, Prado G, Sandoval-Altamirano C, Günther G, Gutiérrez-Urrutia I, Poblete-Castro I, Vega A, Pizarro N. Photochemistry of P,N-bidentate rhenium(i) tricarbonyl complexes: reactive species generation and potential application for antibacterial photodynamic therapy. RSC Adv 2021; 11:31959-31966. [PMID: 35495525 PMCID: PMC9041655 DOI: 10.1039/d1ra06416a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022] Open
Abstract
In this work, we describe the photoisomerization of facial rhenium(i) tricarbonyl complexes bearing P,N-bidentate pyridyl/phosphine ligands with different chelating rings and anions: RePNBr, RePNTfO, and RePNNBr, which are triggered under irradiation at 365 nm in solutions. The apparent photodegradation rate constants (k app) depend on the coordinating ability of the solvent, being lowest in acetonitrile. The k app value increases as the temperature rises, suggesting a reactive IL excited state thermally populated from the MLCT excited state involved. Using the Eyring equation, positive activation enthalpies (ΔH ≠) accompanied by high negative values for the activation entropy (ΔS ≠) were obtained. These results suggest whatever the P,N-ligand or anion, the reaction proceeds through a strongly solvated or a compact transition state, which is compatible with an associative mechanism for the photoisomerization. A 100-fold decrease in the log10 CFU value is observed for E. coli and S. aureus in irradiated solutions of the compounds, which follows the same tendency as their singlet oxygen generation quantum yield: RePNBr > RePNTfO > RePNNBr, while no antibacterial activity is observed in the darkness. This result indicates that the generation of singlet oxygen plays a key role in the antibacterial capacity of these complexes.
Collapse
Affiliation(s)
- Alison Acosta
- Universidad Técnica Federico Santa María, Centro de Biotecnología Avenida España 1680 Valparaíso Chile
| | - Javier Antipán
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas Viña del Mar Chile
| | - Mariano Fernández
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas Viña del Mar Chile
| | - Gaspar Prado
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas Viña del Mar Chile
| | - Catalina Sandoval-Altamirano
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Departamento de Ciencias del Ambiente Chile
| | - Germán Günther
- Universidad de Chile, Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Orgánica y Fisicoquímica Santiago Chile
| | - Izabook Gutiérrez-Urrutia
- Universidad Andrés Bello, Facultad de Ciencias de la Vida, Center for Bioinformatics and Integrative Biology (CBIB), Biosystems Engineering Laboratory Santiago Chile
| | - Ignacio Poblete-Castro
- Universidad Andrés Bello, Facultad de Ciencias de la Vida, Center for Bioinformatics and Integrative Biology (CBIB), Biosystems Engineering Laboratory Santiago Chile
| | - Andrés Vega
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas Viña del Mar Chile
| | - Nancy Pizarro
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas Viña del Mar Chile
| |
Collapse
|
42
|
Xu G, Lee LC, Kwok CW, Leung PK, Zhu J, Lo KK. Utilization of Rhenium(I) Polypyridine Complexes Featuring a Dinitrophenylsulfonamide Moiety as Biothiol‐Selective Phosphorogenic Bioimaging Reagents and Photocytotoxic Agents. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Guang‐Xi Xu
- Department of Chemistry City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong P. R. China
| | - Lawrence Cho‐Cheung Lee
- Department of Chemistry City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong P. R. China
| | - Cyrus Wing‐Ching Kwok
- Department of Chemistry City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong P. R. China
| | - Peter Kam‐Keung Leung
- Department of Chemistry City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong P. R. China
| | - Jing‐Hui Zhu
- Department of Chemistry City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong P. R. China
| | - Kenneth Kam‐Wing Lo
- Department of Chemistry City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong P. R. China
- Center of Functional Photonics City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong P. R. China
| |
Collapse
|
43
|
Nasiri Sovari S, Kolly I, Schindler K, Cortat Y, Liu SC, Crochet A, Pavic A, Zobi F. Efficient Direct Nitrosylation of α-Diimine Rhenium Tricarbonyl Complexes to Structurally Nearly Identical Higher Charge Congeners Activable towards Photo-CO Release. Molecules 2021; 26:5302. [PMID: 34500734 PMCID: PMC8434269 DOI: 10.3390/molecules26175302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 11/17/2022] Open
Abstract
The reaction of rhenium α-diimine (N-N) tricarbonyl complexes with nitrosonium tetrafluoroborate yields the corresponding dicarbonyl-nitrosyl [Re(CO)2(NO)(N-N)X]+ species (where X = halide). The complexes, accessible in a single step in good yield, are structurally nearly identical higher charge congeners of the tricarbonyl molecules. Substitution chemistry aimed at the realization of equivalent dicationic species (intended for applications as potential antimicrobial agents), revealed that the reactivity of metal ion in [Re(CO)2(NO)(N-N)X]+ is that of a hard Re acid, probably due to the stronger π-acceptor properties of NO+ as compared to those of CO. The metal ion thus shows great affinity for π-basic ligands, which are consequently difficult to replace by, e.g., σ-donor or weak π-acids like pyridine. Attempts of direct nitrosylation of α-diimine fac-[Re(CO)3]+ complexes bearing π-basic OR-type ligands gave the [Re(CO)2(NO)(N-N)(BF4)][BF4] salt as the only product in good yield, featuring a stable Re-FBF3 bond. The solid state crystal structure of nearly all molecules presented could be elucidated. A fundamental consequence of the chemistry of [Re(CO)2(NO)(N-N)X]+ complexes, it that the same can be photo-activated towards CO release and represent an entirely new class of photoCORMs.
Collapse
Affiliation(s)
- Sara Nasiri Sovari
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland; (S.N.S.); (I.K.); (K.S.); (Y.C.); (S.-C.L.); (A.C.)
| | - Isabelle Kolly
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland; (S.N.S.); (I.K.); (K.S.); (Y.C.); (S.-C.L.); (A.C.)
| | - Kevin Schindler
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland; (S.N.S.); (I.K.); (K.S.); (Y.C.); (S.-C.L.); (A.C.)
| | - Youri Cortat
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland; (S.N.S.); (I.K.); (K.S.); (Y.C.); (S.-C.L.); (A.C.)
| | - Shing-Chi Liu
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland; (S.N.S.); (I.K.); (K.S.); (Y.C.); (S.-C.L.); (A.C.)
| | - Aurelien Crochet
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland; (S.N.S.); (I.K.); (K.S.); (Y.C.); (S.-C.L.); (A.C.)
| | - Aleksandar Pavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia;
| | - Fabio Zobi
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland; (S.N.S.); (I.K.); (K.S.); (Y.C.); (S.-C.L.); (A.C.)
| |
Collapse
|
44
|
Ramos LD, de Macedo LH, Gobo NRS, de Oliveira KT, Cerchiaro G, Morelli Frin KP. Understanding the photophysical properties of rhenium(I) compounds coordinated to 4,7-diamine-1,10-phenanthroline: synthetic, luminescence and biological studies. Dalton Trans 2021; 49:16154-16165. [PMID: 32270852 DOI: 10.1039/d0dt00436g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the present study, the photophysical properties and preliminary time-dependent density functional theory (TD-DFT) data of new rhenium(i) polypyridyl compounds, fac-[Re(L)(Am2phen)(CO)3]0/+, where Am2phen = 4,7-diamine-1,10-phenanthroline and L = Cl and ethyl isonicotinate (et-isonic), provided new insights into excited-state deactivation through an unusual inversion between two metal-to-ligand charge-transfer excited states. In addition, their cellular uptake using breast cancer (MCF-7) and melanoma (SkMel-147 and SkMel-29) cell lines and bioactivity were investigated and their cell-killing mechanism and protein expression were also studied. Preliminary TD-DFT results showed that both compounds exhibited a strong and broad absorption band around 300-400 nm which corresponds to a combination of ILAm2phen and MLCTRe→Am2phen transitions, and a strong contribution of charge transfer transition MLCTRe→et-isonic for fac-[Re(et-isonic)(Am2phen)(CO)3]+ is also observed. In contrast to typical Re(i) polypyridyl complexes, the substitution of Cl with the et-isonic ligand showed a bathochromic shift of the emission maxima, relatively low emission quantum yield and fast lifetime. Photophysical investigation of the fac-[ReCl(et-isonic)2(CO)3] compound provided meaningful information on the excited state manifold of the fac-[Re(L)(Am2phen)(CO)3]0/+ complexes. As shown in the absorption profile, a remarkable inversion of the lowest-lying excited state takes place from the usually observed MLCTRe→Am2phen to the unusual MLCTRe→et-isonic. The lipophilicity of the positive-complex was higher than that of the non-charge compound and the same trend for the activity against cells was observed, in the absence of light. In addition, flow cytometry and Western Blot analyses showed an overexpression of pro-caspase-9, suggesting a caspase proteolytic cascade through an intrinsic-pathway apoptosis mechanism. The photophysical properties of these compounds reported herein provide new fundamental insights into the understanding of substituent groups on polypyridyl ligands which are relevant to practical development.
Collapse
Affiliation(s)
- Luiz D Ramos
- Federal University of ABC - UFABC, Av. dos Estados 5001, Santo Andre, SP, Brazil
| | | | | | | | | | | |
Collapse
|
45
|
Mukherjee A, Bhattacharya S, Chakravarty M. An unprecedented pyridine-based dinuclear mixed-valent Re I/VII oxo-bridged complex: a solvatochromic and AIE-active probe for nanomolar detection of picric acid and trinitrotoluene. Dalton Trans 2021; 50:9144-9157. [PMID: 34115088 DOI: 10.1039/d1dt01002f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper describes the synthesis of an unprecedented oxo-bridged rheniumI/VII (Re) complex by treating Re2(CO)10 with a pyridyl-linked anthracene-based twisted π-conjugated ligand. The molecular structures of both the ligand and the complex are determined by analyzing IR, NMR, and HR-MS spectra and unequivocally determined using single-crystal X-ray diffraction studies. Unlike previous observations, the complexation occurs uniquely to yield an unprecedented oxo-bridged ReI/VII complex. Such a complex is uncommon, and in most cases, Re(vii) appears as the ReO4- counter ion. The aggregation-induced emission (AIE) feature could have been achieved from this conformationally twisted ligand, but the emission of the ligand was quenched in the aggregated state. The complex exhibited solvatofluorochromic properties with a faint emission. The emission intensity significantly (∼6 times) increased in DMF after the addition of a water fraction of 90%, resulting in a bright orange emission. The AIE is mainly caused by restricted intramolecular rotation (RIR) and is supported by the polarity and viscosity effects. The nanoaggregate formation is captured by SEM, and DLS studies were used to determine the average particle size. After the complexation, the ligand becomes more rigid, and the RIR effect becomes prominent facilitating the AIE effect. The electron-rich aggregate's intense orange emission was used for the selective and sensitive detection of picric acid (PA) and 2,4,6-trinitrotoluene (TNT) at nanomolar levels amongst other nitroaromatics through emission quenching. The detailed mechanistic studies reveal the active role of dynamic quenching and complementary photo-induced electron transfer between the probe and TNT or PA. The easy electron transfer process from the electron-rich to the electron-poor system is confirmed by calculating the lowest unoccupied molecular orbital energy of the associated levels. The application is further extended for on-site PA and TNT detection by permeating the probe on a paper and detected at 10-3 M concentration with the naked eye. The PA/TNT detection efficiency is also confirmed by mixing PA or TNT with soil.
Collapse
Affiliation(s)
- Atasi Mukherjee
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Hyderabad-500078, India.
| | | | - Manab Chakravarty
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Hyderabad-500078, India.
| |
Collapse
|
46
|
Mkhatshwa M, Moremi JM, Makgopa K, Manicum ALE. Nanoparticles Functionalised with Re(I) Tricarbonyl Complexes for Cancer Theranostics. Int J Mol Sci 2021; 22:6546. [PMID: 34207182 PMCID: PMC8235741 DOI: 10.3390/ijms22126546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/22/2022] Open
Abstract
Globally, cancer is the second (to cardiovascular diseases) leading cause of death. Regardless of various efforts (i.e., finance, research, and workforce) to advance novel cancer theranostics (diagnosis and therapy), there have been few successful attempts towards ongoing clinical treatment options as a result of the complications posed by cancerous tumors. In recent years, the application of magnetic nanomedicine as theranostic devices has garnered enormous attention in cancer treatment research. Magnetic nanoparticles (MNPs) are capable of tuning the magnetic field in their environment, which positively impacts theranostic applications in nanomedicine significantly. MNPs are utilized as contrasting agents for cancer diagnosis, molecular imaging, hyperfusion region visualization, and T cell-based radiotherapy because of their interesting features of small size, high reactive surface area, target ability to cells, and functionalization capability. Radiolabelling of NPs is a powerful diagnostic approach in nuclear medicine imaging and therapy. The use of luminescent radioactive rhenium(I), 188/186Re, tricarbonyl complexes functionalised with magnetite Fe3O4 NPs in nanomedicine has improved the diagnosis and therapy of cancer tumors. This is because the combination of Re(I) with MNPs can improve low distribution and cell penetration into deeper tissues.
Collapse
Affiliation(s)
| | | | - Katlego Makgopa
- Department of Chemistry, Faculty of Science, Tshwane University of Technology (Arcadia Campus), Pretoria 0001, South Africa; (M.M.); (J.M.M.)
| | - Amanda-Lee Ezra Manicum
- Department of Chemistry, Faculty of Science, Tshwane University of Technology (Arcadia Campus), Pretoria 0001, South Africa; (M.M.); (J.M.M.)
| |
Collapse
|
47
|
Hao L, Zhong YM, Tan CP, Mao ZW. Acidity-responsive phosphorescent metal complexes for cancer imaging and theranostic applications. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Huang Z, Wilson JJ. Therapeutic and Diagnostic Applications of Multimetallic Rhenium(I) Tricarbonyl Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhouyang Huang
- Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
| |
Collapse
|
49
|
Rohwer EJ, Geng Y, Akbarimoosavi M, Daku LML, Aleveque O, Levillain E, Hauser J, Cannizzo A, Häner R, Decurtins S, Stanley RJ, Feurer T, Liu SX. Optically Controlled Electron Transfer in a Re I Complex. Chemistry 2021; 27:5399-5403. [PMID: 33524171 DOI: 10.1002/chem.202005125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Indexed: 11/09/2022]
Abstract
Ultrafast optical control of intramolecular charge flow was demonstrated, which paves the way for photocurrent modulation and switching with a highly wavelength-selective ON/OFF ratio. The system that was explored is a fac-[Re(CO)3 (TTF-DPPZ)Cl] complex, where TTF-DPPZ=4',5'-bis(propylthio)tetrathiafulvenyl[i]dipyrido[3,2-a:2',3'-c]phenazine. DFT calculations and AC-Stark spectroscopy confirmed the presence of two distinct optically active charge-transfer processes, namely a metal-to-ligand charge transfer (MLCT) and an intra-ligand charge transfer (ILCT). Ultrafast transient absorption measurements showed that the ILCT state decays in the ps regime. Upon excitation to the MLCT state, only a long-lived 3 MLCT state was observed after 80 ps. Remarkably, however, the bleaching of the ILCT absorption band remained as a result of the effective inhibition of the HOMO-LUMO transition.
Collapse
Affiliation(s)
- Egmont J Rohwer
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
| | - Yan Geng
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.,Present address: College of Chemistry, Chemical Engineering and Material Science, Shandong Normal University, Jinan, 250014, P. R. China
| | - Maryam Akbarimoosavi
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
| | - Latévi M Lawson Daku
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest Ansermet, 1211, Geneva, Switzerland
| | | | - Eric Levillain
- CNRS, MOLTECH-ANJOU, UNIV Angers, Angers, F-49000, France
| | - Jürg Hauser
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Andrea Cannizzo
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
| | - Robert Häner
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Silvio Decurtins
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Robert J Stanley
- Department of Chemistry, Temple University, Pennsylvania, Philadelphia, Pennsylvania, 19122, USA
| | - Thomas Feurer
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012, Bern, Switzerland
| | - Shi-Xia Liu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
50
|
Schindler K, Crochet A, Zobi F. Aerobically stable and substitutionally labile α-diimine rhenium dicarbonyl complexes. RSC Adv 2021; 11:7511-7520. [PMID: 35423250 PMCID: PMC8694950 DOI: 10.1039/d1ra00514f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
New synthetic routes to aerobically stable and substitutionally labile α-diimine rhenium(i) dicarbonyl complexes are described. The molecules are prepared in high yield from the cis–cis–trans-[Re(CO)2(tBu2bpy)Br2]− anion (2, where tBu2bpy is 4,4′-di-tert-butyl-2,2′-bipyridine), which can be isolated from the one electron reduction of the corresponding 17-electron complex (1). Compound 2 is stable in the solid state, but in solution it is oxidized by molecular oxygen back to 1. Replacement of a single bromide of 2 by σ-donor monodentate ligands (Ls) yields stable neutral 18-electron cis–cis–trans-[Re(CO)2(tBu2bpy)Br(L)] species. In coordinating solvents like methanol the halide is replaced giving the corresponding solvated cations. [Re(CO)2(tBu2bpy)Br(L)] species can be further reacted with Ls to prepare stable cis–cis–trans-[Re(CO)2(tBu2bpy)(L)2]+ complexes in good yield. Ligand substitution of Re(i) complexes proceeds via pentacoordinate intermediates capable of Berry pseudorotation. In addition to the cis–cis–trans-complexes, cis–cis–cis- (all cis) isomers are also formed. In particular, cis–cis–trans-[Re(CO)2(tBu2bpy)(L)2]+ complexes establish an equilibrium with all cis isomers in solution. The solid state crystal structure of nearly all molecules presented could be elucidated. The molecules adopt a slightly distorted octahedral geometry. In comparison to similar fac-[Re(CO)3]+complexes, Re(i) diacarbonyl species are characterized by a bend (ca. 7°) of the axial ligands towards the α-diimine unit. [Re(CO)2(tBu2bpy)Br2]− and [Re(CO)2(tBu2bpy)Br(L)] complexes may be considered as synthons for the preparation of a variety of new stable diamagnetic dicarbonyl rhenium cis-[Re(CO)2]+ complexes, offering a convenient entry in the chemistry of the core. New synthetic routes to aerobically stable and substitutionally labile α-diimine rhenium(i) dicarbonyl complexes offer a convenient entry in the chemistry of the cis-[Re(CO)2]+ core.![]()
Collapse
Affiliation(s)
- Kevin Schindler
- Department of Chemistry, Fribourg University Chemin Du Musée 9 1700 Fribourg Switzerland
| | - Aurélien Crochet
- Department of Chemistry, Fribourg University Chemin Du Musée 9 1700 Fribourg Switzerland
| | - Fabio Zobi
- Department of Chemistry, Fribourg University Chemin Du Musée 9 1700 Fribourg Switzerland
| |
Collapse
|