1
|
Guo M, Temperton R, D'Acunto G, Johansson N, Jones R, Handrup K, Ringelband S, Prakash O, Fan H, de Groot LHM, Hlynsson VF, Kaufhold S, Gordivska O, Velásquez González N, Wärnmark K, Schnadt J, Persson P, Uhlig J. Using Iron L-Edge and Nitrogen K-Edge X-ray Absorption Spectroscopy to Improve the Understanding of the Electronic Structure of Iron Carbene Complexes. Inorg Chem 2024; 63:12457-12468. [PMID: 38934422 PMCID: PMC11234367 DOI: 10.1021/acs.inorgchem.4c01026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Iron-centered N-heterocyclic carbene compounds have attracted much attention in recent years due to their long-lived excited states with charge transfer (CT) character. Understanding the orbital interactions between the metal and ligand orbitals is of great importance for the rational tuning of the transition metal compound properties, e.g., for future photovoltaic and photocatalytic applications. Here, we investigate a series of iron-centered N-heterocyclic carbene complexes with +2, + 3, and +4 oxidation states of the central iron ion using iron L-edge and nitrogen K-edge X-ray absorption spectroscopy (XAS). The experimental Fe L-edge XAS data were simulated and interpreted through restricted-active space (RAS) and multiplet calculations. The experimental N K-edge XAS is simulated and compared with time-dependent density functional theory (TDDFT) calculations. Through the combination of the complementary Fe L-edge and N K-edge XAS, direct probing of the complex interplay of the metal and ligand character orbitals was possible. The σ-donating and π-accepting capabilities of different ligands are compared, evaluated, and discussed. The results show how X-ray spectroscopy, together with advanced modeling, can be a powerful tool for understanding the complex interplay of metal and ligand.
Collapse
Affiliation(s)
- Meiyuan Guo
- Division of Chemical Physics, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | | | - Giulio D'Acunto
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, 22100 Lund, Sweden
- NanoLund, Lund University, 22100 Lund, Sweden
- Department of Chemical Engineering, Stanford University, 94305 Stanford, California, United States
| | | | - Rosemary Jones
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, 22100 Lund, Sweden
- NanoLund, Lund University, 22100 Lund, Sweden
| | | | - Sven Ringelband
- Division of Chemical Physics, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Om Prakash
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Hao Fan
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Lisa H M de Groot
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Valtýr Freyr Hlynsson
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Simon Kaufhold
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Olga Gordivska
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, 22100 Lund, Sweden
| | | | - Kenneth Wärnmark
- NanoLund, Lund University, 22100 Lund, Sweden
- Centre for Analysis and Synthesis (CAS), Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Joachim Schnadt
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, 22100 Lund, Sweden
- NanoLund, Lund University, 22100 Lund, Sweden
| | - Petter Persson
- NanoLund, Lund University, 22100 Lund, Sweden
- Division of Computational Chemistry, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Jens Uhlig
- Division of Chemical Physics, Department of Chemistry, Lund University, 22100 Lund, Sweden
- NanoLund, Lund University, 22100 Lund, Sweden
- LINXS Institute of Advanced Neutron and X-Ray Science, Lund University, 22370 Lund, Sweden
| |
Collapse
|
2
|
Rice DB, Wong D, Weyhermüller T, Neese F, DeBeer S. The spin-forbidden transition in iron(IV)-oxo catalysts relevant to two-state reactivity. SCIENCE ADVANCES 2024; 10:eado1603. [PMID: 38941457 PMCID: PMC11212722 DOI: 10.1126/sciadv.ado1603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/23/2024] [Indexed: 06/30/2024]
Abstract
Quintet oxoiron(IV) intermediates are often invoked in nonheme iron enzymes capable of performing selective oxidation, while most well-characterized synthetic model oxoiron(IV) complexes have a triplet ground state. These differing spin states lead to the proposal of a two-state reactivity model, where the complexes cross from the triplet to an excited quintet state. However, the energy of this quintet state has never been measured experimentally. Here, magnetic circular dichroism is used to assign the singlet and triplet excited states in a series of triplet oxoiron(IV) complexes. These transition energies are used to determine the energies of the quintet state via constrained fitting of 2p3d resonant inelastic x-ray scattering. This allowed for a direct correlation between the quintet energies and substrate C─H oxidation rates.
Collapse
Affiliation(s)
- Derek B. Rice
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| | - Deniz Wong
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
| | - Thomas Weyhermüller
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
3
|
Cagan D, Bím D, Kazmierczak NP, Hadt RG. Mechanisms of Photoredox Catalysis Featuring Nickel-Bipyridine Complexes. ACS Catal 2024; 14:9055-9076. [PMID: 38868098 PMCID: PMC11165457 DOI: 10.1021/acscatal.4c02036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
Metallaphotoredox catalysis can unlock useful pathways for transforming organic reactants into desirable products, largely due to the conversion of photon energy into chemical potential to drive redox and bond transformation processes. Despite the importance of these processes for cross-coupling reactions and other transformations, their mechanistic details are only superficially understood. In this review, we have provided a detailed summary of various photoredox mechanisms that have been proposed to date for Ni-bipyridine (bpy) complexes, focusing separately on photosensitized and direct excitation reaction processes. By highlighting multiple bond transformation pathways and key findings, we depict how photoredox reaction mechanisms, which ultimately define substrate scope, are themselves defined by the ground- and excited-state geometric and electronic structures of key Ni-based intermediates. We further identify knowledge gaps to motivate future mechanistic studies and the development of synergistic research approaches spanning the physical, organic, and inorganic chemistry communities.
Collapse
Affiliation(s)
- David
A. Cagan
- Division
of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute
of Technology, Pasadena, California 91125, United States
| | - Daniel Bím
- Institute
of Organic Chemistry and Biochemistry, The
Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 166 10, Czech Republic
| | - Nathanael P. Kazmierczak
- Division
of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute
of Technology, Pasadena, California 91125, United States
| | - Ryan G. Hadt
- Division
of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute
of Technology, Pasadena, California 91125, United States
| |
Collapse
|
4
|
Hahn AW, Zsombor-Pindera J, Kennepohl P, DeBeer S. Introducing SpectraFit: An Open-Source Tool for Interactive Spectral Analysis. ACS OMEGA 2024; 9:23252-23265. [PMID: 38854548 PMCID: PMC11155667 DOI: 10.1021/acsomega.3c09262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 06/11/2024]
Abstract
In chemistry, analyzing spectra through peak fitting is a crucial task that helps scientists extract useful quantitative information about a sample's chemical composition or electronic structure. To make this process more efficient, we have developed a new open-source software tool called SpectraFit. This tool allows users to perform quick data fitting using expressions of distribution and linear functions through the command line interface (CLI) or Jupyter Notebook, which can run on Linux, Windows, and MacOS, as well as in a Docker container. As part of our commitment to good scientific practice, we have introduced an output file-locking system to ensure the accuracy and consistency of information. This system collects input data, results data, and the initial fitting model in a single file, promoting transparency, reproducibility, collaboration, and innovation. To demonstrate SpectraFit's user-friendly interface and the advantages of its output file-locking system, we are focusing on a series of previously published iron-sulfur dimers and their XAS spectra. We will show how to analyze the XAS spectra via CLI and in a Jupyter Notebook by simultaneously fitting multiple data sets using SpectraFit. Additionally, we will demonstrate how SpectraFit can be used as a black box and white box solution, allowing users to apply their own algorithms to engineer the data further. This publication, along with its Supporting Information and the Jupyter Notebook, serves as a tutorial to guide users through each step of the process. SpectraFit will streamline the peak fitting process and provide a convenient, standardized platform for users to share fitting models, which we hope will improve transparency and reproducibility in the field of spectroscopy.
Collapse
Affiliation(s)
- Anselm W. Hahn
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany
| | - Joseph Zsombor-Pindera
- Department
of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department
of Chemistry, The University of British
Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Pierre Kennepohl
- Department
of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Serena DeBeer
- Max
Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
5
|
May AM, Dempsey JL. A new era of LMCT: leveraging ligand-to-metal charge transfer excited states for photochemical reactions. Chem Sci 2024; 15:6661-6678. [PMID: 38725519 PMCID: PMC11079626 DOI: 10.1039/d3sc05268k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/02/2024] [Indexed: 05/12/2024] Open
Abstract
Ligand-to-metal charge transfer (LMCT) excited states are capable of undergoing a wide array of photochemical reactions, yet receive minimal attention compared to other charge transfer excited states. This work provides general criteria for designing transition metal complexes that exhibit low energy LMCT excited states and routes to drive photochemistry from these excited states. General design principles regarding metal identity, oxidation state, geometry, and ligand sets are summarized. Fundamental photoreactions from these states including visible light-induced homolysis, excited state electron transfer, and other photoinduced chemical transformations are discussed and key design principles for enabling these photochemical reactions are further highlighted. Guided by these fundamentals, this review outlines critical considerations for the future design and application of coordination complexes with LMCT excited states.
Collapse
Affiliation(s)
- Ann Marie May
- Department of Chemistry, University of North Carolina at Chapel Hill Chapel Hill North Carolina 27599-3290 USA
| | - Jillian L Dempsey
- Department of Chemistry, University of North Carolina at Chapel Hill Chapel Hill North Carolina 27599-3290 USA
| |
Collapse
|
6
|
Van Stappen C, Van Kuiken BE, Mörtel M, Ruotsalainen KO, Maganas D, Khusniyarov MM, DeBeer S. Correlating Valence and 2p3d RIXS Spectroscopies: A Ligand-Field Study of Spin-Crossover Iron(II). Inorg Chem 2024; 63:7386-7400. [PMID: 38587408 DOI: 10.1021/acs.inorgchem.4c00435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The molecular spin-crossover phenomenon between high-spin (HS) and low-spin (LS) states is a promising route to next-generation information storage, sensing applications, and molecular spintronics. Spin-crossover complexes also provide a unique opportunity to study the ligand field (LF) properties of a system in both HS and LS states while maintaining the same ligand environment. Presently, we employ complementing valence and core-level spectroscopic methods to probe the electronic excited-state manifolds of the spin-crossover complex [FeII(H2B(pz)2)2phen]0. Light-induced excited spin-state trapping (LIESST) at liquid He temperatures is exploited to characterize magnetic and spectroscopic properties of the photoinduced HS state using SQUID magnetometry and magnetic circular dichroism spectroscopy. In parallel, Fe 2p3d RIXS spectroscopy is employed to examine the ΔS = 0, 1 excited LF states. These experimental studies are combined with state-of-the-art CASSCF/NEVPT2 and CASCI/NEVPT2 calculations characterizing the ground and LF excited states. Analysis of the acquired LF information further supports the notion that the spin-crossover of [FeII(H2B(pz)2)2phen]0 is asymmetric, evidenced by a decrease in eπ in the LS state. The results demonstrate the power of cross-correlating spectroscopic techniques with high and low LF information content to make accurate excited-state assignments, as well as the current capabilities of ab initio theory in interpreting these electronic properties.
Collapse
Affiliation(s)
- Casey Van Stappen
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Benjamin E Van Kuiken
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Max Mörtel
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Kari O Ruotsalainen
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| | - Dimitrios Maganas
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Marat M Khusniyarov
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
7
|
Freibert A, Mendive-Tapia D, Huse N, Vendrell O. Time-Dependent Resonant Inelastic X-ray Scattering of Pyrazine at the Nitrogen K-Edge: A Quantum Dynamics Approach. J Chem Theory Comput 2024; 20:2167-2180. [PMID: 38315564 PMCID: PMC10938531 DOI: 10.1021/acs.jctc.3c01259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024]
Abstract
We calculate resonant inelastic X-ray scattering spectra of pyrazine at the nitrogen K-edge in the time domain including wavepacket dynamics in both the valence and core-excited state manifolds. Upon resonant excitation, we observe ultrafast non-adiabatic population transfer between core-excited states within the core-hole lifetime, leading to molecular symmetry distortions. Importantly, our time-domain approach inherently contains the ability to manipulate the dynamics of this process by detuning the excitation energy, which effectively shortens the scattering duration. We also explore the impact of pulsed incident X-ray radiation, which provides a foundation for state-of-the-art time-resolved experiments with coherent pulsed light sources.
Collapse
Affiliation(s)
- Antonia Freibert
- Department
of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Theoretical
Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - David Mendive-Tapia
- Theoretical
Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - Nils Huse
- Department
of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Oriol Vendrell
- Theoretical
Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Jędrzejowska K, Kobylarczyk J, Tabor D, Srebro-Hooper M, Kumar K, Li G, Stefanczyk O, Muzioł TM, Dziedzic-Kocurek K, Ohkoshi SI, Podgajny R. Nonlinear and Emissive {[M III(CN) 6] 3-···Polyresorcinol} (M = Fe, Co, Cr) Cocrystals Exhibiting an Ultralow Frequency Raman Response. Inorg Chem 2024; 63:1803-1815. [PMID: 38109502 PMCID: PMC10828991 DOI: 10.1021/acs.inorgchem.3c03153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/20/2023]
Abstract
Optically active functional noncentrosymmetric architectures might be achieved through the combination of molecules with inscribed optical responses and species of dedicated tectonic character. Herein, we present the new series of noncentrosymmetric cocrystal salt solvates (PPh4)3[M(CN)6](L)n·msolv (M = Cr(III), Fe(III), Co(III); L = polyresorcinol coformers, multiple hydrogen bond donors: 3,3',5,5'-tetrahydroxy-1,19-biphenyl, DiR, n = 2, or 5'-(3,5-dihydroxyphenyl)-3,3″,5,5″-tetrahydroxy-1,19:3',1″-terphenyl, TriRB, n = 1) denoted as MDiR and MTriRB, respectively. The hydrogen-bonded subnetworks {[M(CN)6]3-;Ln}∞ of dmp, neb, or dia topology are formed through structural matching between building blocks within supramolecular cis-bis(chelate)-like {[M(CN)6]3-;(H2L)2(HL)2} or tris(chelate)-like {[M(CN)6]3-;(H2L)3} fragments. The quantum-chemical analysis demonstrates the mixed electrostatic and covalent character of these interactions, with their strength clearly enhanced due to the negative charge of the hydrogen bond acceptor metal complex. The corresponding interaction energy is also dependent on the geometry of the contact and size matching of its components, rotational degree of freedom and extent of the π-electron system of the coformer, and overall fit to the molecular surroundings. Symmetry of the crystal lattices is correlated with the local symmetry of coformers and {complex;(coformer)n} hydrogen-bonded motifs characterized by the absence of the inversion center and mirror plane. All compounds reveal second-harmonic generation activity and photoluminescence diversified by individual UV-vis spectral characteristics of the components, and interesting low-frequency Raman scattering spectra within the subterahertz spectroscopic domain. Vibrational (infrared/Raman), UV-vis electronic absorption (experimental and calculated), and 57Fe Mössbauer spectra together with electrospray ionization mass spectrometry (ESI-MS) data are provided for the complete description of our systems.
Collapse
Affiliation(s)
- Katarzyna Jędrzejowska
- Faculty of
Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Kraków, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University in Kraków, Prof. St. Łojasiewicza 11, 30-348 Kraków, Poland
| | | | - Dominika Tabor
- Faculty of
Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Kraków, Poland
| | - Monika Srebro-Hooper
- Faculty of
Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Kraków, Poland
| | - Kunal Kumar
- Department
of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Guanping Li
- Department
of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Olaf Stefanczyk
- Department
of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tadeusz M. Muzioł
- Faculty of
Chemistry, Nicolaus Copernicus University
in Toruń, Gagarina
7, 87-100 Toruń, Poland
| | - Katarzyna Dziedzic-Kocurek
- Marian Smoluchowski
Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Robert Podgajny
- Faculty of
Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
9
|
Retegan M, Jafri SF, Curti L, Lisnard L, Otero E, Rivière E, Haverkort MW, Bleuzen A, Sainctavit P, Arrio MA. Orbital Magnetic Moment and Single-Ion Magnetic Anisotropy of the S = 1/2 K 3[Fe(CN) 6] Compound: A Case Where the Orbital Magnetic Moment Dominates the Spin Magnetic Moment. Inorg Chem 2023; 62:18864-18877. [PMID: 37942765 DOI: 10.1021/acs.inorgchem.3c02158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The potassium hexacyanoferrate(III), K3[FeIII(CN)6], is known for its exceptional magnetic anisotropy among the 3d transition metal series. The Fe(III) ions are in the S = 1/2 low spin state imposed by the strong crystal field of the cyanido ligands. A large orbital magnetic moment is expected from previous publications. In the present work, X-ray magnetic circular dichroism was recorded for a powder sample, allowing direct measurement of the Fe(III) orbital magnetic moment. A combination of molecular multiconfigurational ab initio and atomic ligand field multiplets calculations provides the spin and orbital magnetic moments for the [FeIII(CN)6]3- isolated cluster, the crystallographic unit cell, and the powder sample. The calculations of the angular dependencies of the spin and orbital magnetic moments with the external magnetic induction direction reveal easy magnetization axes for each S = 1/2 molecular entity and the crystal. It also shows that the orbital magnetic moment dominates the spin magnetic moment for all directions. Our measurements confirm that the orbital magnetic moment contributes to 60% of the total magnetization for the powder, which is in excellent agreement with our theoretical predictions. An orbital magnetic moment greater than the spin magnetic moment is exceptional for 3d transition metal ions. The impact of crystal field strength and distortion, π back-bonding, spin-orbit coupling, and external magnetic induction was analyzed, leading to a deeper understanding of the spin and orbital magnetic anisotropies.
Collapse
Affiliation(s)
- Marius Retegan
- European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble, France
| | - Sadaf Fatima Jafri
- CNRS, Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR7590, CNRS/SU/IRD/MNHN, 75252 Paris Cedex 05, France
- Department of Physics, University of Karachi, 75270 Karachi, Pakistan
| | - Leonardo Curti
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, FR2769, 75252 Paris Cedex 05, France
| | - Laurent Lisnard
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, FR2769, 75252 Paris Cedex 05, France
| | - Edwige Otero
- Synchrotron SOLEIL, L'Orme des Merisiers, F-91192 Saint-Aubin, France
| | - Eric Rivière
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, CNRS, ICMMO, 91405 Orsay Cedex, France
| | - Maurits W Haverkort
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany
| | - Anne Bleuzen
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, CNRS, ICMMO, 91405 Orsay Cedex, France
| | - Philippe Sainctavit
- CNRS, Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR7590, CNRS/SU/IRD/MNHN, 75252 Paris Cedex 05, France
- Synchrotron SOLEIL, L'Orme des Merisiers, F-91192 Saint-Aubin, France
| | - Marie-Anne Arrio
- CNRS, Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR7590, CNRS/SU/IRD/MNHN, 75252 Paris Cedex 05, France
| |
Collapse
|
10
|
Supramolecular cis-“Bis(Chelation)” of [M(CN)6]3− (M = CrIII, FeIII, CoIII) by Phloroglucinol (H3PG). Molecules 2022; 27:molecules27134111. [PMID: 35807353 PMCID: PMC9268030 DOI: 10.3390/molecules27134111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
Studies on molecular co-crystal type materials are important in the design and preparation of easy-to-absorb drugs, non-centrosymmetric, and chiral crystals for optical performance, liquid crystals, or plastic phases. From a fundamental point of view, such studies also provide useful information on various supramolecular synthons and molecular ordering, including metric parameters, molecular matching, energetical hierarchy, and combinatorial potential, appealing to the rational design of functional materials through structure–properties–application schemes. Co-crystal salts involving anionic d-metallate coordination complexes are moderately explored (compared to the generality of co-crystals), and in this context, we present a new series of isomorphous co-crystalline salts (PPh4)3[M(CN)6](H3PG)2·2MeCN (M = Cr, 1; Fe, 2; Co 3; H3PG = phloroglucinol, 1,3,5-trihydroxobenzene). In this study, 1–3 were characterized experimentally using SC XRD, Hirshfeld analysis, ESI-MS spectrometry, vibrational IR and Raman, 57Fe Mössbauer, electronic absorption UV-Vis-NIR, and photoluminescence spectroscopies, and theoretically with density functional theory calculations. The two-dimensional square grid-like hydrogen-bond {[M(CN)6]3−;(H3PG)2}∞ network features original {[M(CN)6]3−;(H3PG)4} supramolecular cis-bis(chelate) motifs involving: (i) two double cyclic hydrogen bond synthons M(-CN⋅⋅⋅HO-)2Ar, {[M(CN)6]3−;H2PGH}, between cis-oriented cyanido ligands of [M(CN)6]3− and resorcinol-like face of H3PG, and (ii) two single hydrogen bonds M-CN⋅⋅⋅HO-Ar, {[M(CN)6]3−;HPGH2}, involving the remaining two cyanide ligands. The occurrence of the above tectonic motif is discussed with regard to the relevant data existing in the CCDC database, including the multisite H-bond binding of [M(CN)6]3− by organic species, mononuclear coordination complexes, and polynuclear complexes. The physicochemical and computational characterization discloses notable spectral modifications under the regime of an extended hydrogen bond network.
Collapse
|
11
|
Nascimento DR, Govind N. Computational approaches for XANES, VtC-XES, and RIXS using linear-response time-dependent density functional theory based methods. Phys Chem Chem Phys 2022; 24:14680-14691. [PMID: 35699090 DOI: 10.1039/d2cp01132h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The emergence of state-of-the-art X-ray light sources has paved the way for novel spectroscopies that take advantage of their atomic specificity to shed light on fundamental physical, chemical, and biological processes both in the static and time domains. The success of these experiments hinges on the ability to interpret and predict core-level spectra, which has opened avenues for theory to play a key role. Over the last two decades, linear-response time-dependent density functional theory (LR-TDDFT), despite various theoretical challenges, has become a computationally attractive and versatile framework to study excited-state spectra including X-ray spectroscopies. In this context, we focus our discussion on LR-TDDFT approaches for the computation of X-ray Near-Edge Structure (XANES), Valence-to-Core X-ray Emission (VtC-XES), and Resonant Inelastic X-ray Scattering (RIXS) spectroscopies in molecular systems with an emphasis on Gaussian basis set implementations. We illustrate these approaches with applications and provide a brief outlook of possible new directions.
Collapse
Affiliation(s)
- Daniel R Nascimento
- Department of Chemistry, The University of Memphis, Memphis, TN, 38152, USA.
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| |
Collapse
|
12
|
Uselman TW, Medina CS, Gray HB, Jacobs RE, Bearer EL. Longitudinal manganese-enhanced magnetic resonance imaging of neural projections and activity. NMR IN BIOMEDICINE 2022; 35:e4675. [PMID: 35253280 PMCID: PMC11064873 DOI: 10.1002/nbm.4675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/19/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) holds exceptional promise for preclinical studies of brain-wide physiology in awake-behaving animals. The objectives of this review are to update the current information regarding MEMRI and to inform new investigators as to its potential. Mn(II) is a powerful contrast agent for two main reasons: (1) high signal intensity at low doses; and (2) biological interactions, such as projection tracing and neural activity mapping via entry into electrically active neurons in the living brain. High-spin Mn(II) reduces the relaxation time of water protons: at Mn(II) concentrations typically encountered in MEMRI, robust hyperintensity is obtained without adverse effects. By selectively entering neurons through voltage-gated calcium channels, Mn(II) highlights active neurons. Safe doses may be repeated over weeks to allow for longitudinal imaging of brain-wide dynamics in the same individual across time. When delivered by stereotactic intracerebral injection, Mn(II) enters active neurons at the injection site and then travels inside axons for long distances, tracing neuronal projection anatomy. Rates of axonal transport within the brain were measured for the first time in "time-lapse" MEMRI. When delivered systemically, Mn(II) enters active neurons throughout the brain via voltage-sensitive calcium channels and clears slowly. Thus behavior can be monitored during Mn(II) uptake and hyperintense signals due to Mn(II) uptake captured retrospectively, allowing pairing of behavior with neural activity maps for the first time. Here we review critical information gained from MEMRI projection mapping about human neuropsychological disorders. We then discuss results from neural activity mapping from systemic Mn(II) imaged longitudinally that have illuminated development of the tonotopic map in the inferior colliculus as well as brain-wide responses to acute threat and how it evolves over time. MEMRI posed specific challenges for image data analysis that have recently been transcended. We predict a bright future for longitudinal MEMRI in pursuit of solutions to the brain-behavior mystery.
Collapse
Affiliation(s)
- Taylor W. Uselman
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | | | - Harry B. Gray
- Beckman Institute, California Institute of Technology, Pasadena, California, USA
| | - Russell E. Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Elaine L. Bearer
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
- Beckman Institute, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
13
|
Cutsail III GE, DeBeer S. Challenges and Opportunities for Applications of Advanced X-ray Spectroscopy in Catalysis Research. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- George E. Cutsail III
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
14
|
Cagan DA, Bím D, Silva B, Kazmierczak NP, McNicholas BJ, Hadt RG. Elucidating the Mechanism of Excited-State Bond Homolysis in Nickel-Bipyridine Photoredox Catalysts. J Am Chem Soc 2022; 144:6516-6531. [PMID: 35353530 PMCID: PMC9979631 DOI: 10.1021/jacs.2c01356] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ni 2,2'-bipyridine (bpy) complexes are commonly employed photoredox catalysts of bond-forming reactions in organic chemistry. However, the mechanisms by which they operate are still under investigation. One potential mode of catalysis is via entry into Ni(I)/Ni(III) cycles, which can be made possible by light-induced, excited-state Ni(II)-C bond homolysis. Here, we report experimental and computational analyses of a library of Ni(II)-bpy aryl halide complexes, Ni(Rbpy)(R'Ph)Cl (R = MeO, t-Bu, H, MeOOC; R' = CH3, H, OMe, F, CF3), to illuminate the mechanism of excited-state bond homolysis. At given excitation wavelengths, photochemical homolysis rate constants span 2 orders of magnitude across these structures and correlate linearly with Hammett parameters of both bpy and aryl ligands, reflecting structural control over key metal-to-ligand charge-transfer (MLCT) and ligand-to-metal charge-transfer (LMCT) excited-state potential energy surfaces (PESs). Temperature- and wavelength-dependent investigations reveal moderate excited-state barriers (ΔH‡ ∼ 4 kcal mol-1) and a minimum energy excitation threshold (∼55 kcal mol-1, 525 nm), respectively. Correlations to electronic structure calculations further support a mechanism in which repulsive triplet excited-state PESs featuring a critical aryl-to-Ni LMCT lead to bond rupture. Structural control over excited-state PESs provides a rational approach to utilize photonic energy and leverage excited-state bond homolysis processes in synthetic chemistry.
Collapse
Affiliation(s)
- David A. Cagan
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Daniel Bím
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Breno Silva
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States,Department of Chemistry and Biochemistry, Suffolk University, Boston, Massachusetts 02108, United States
| | - Nathanael P. Kazmierczak
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Brendon J. McNicholas
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Ryan G. Hadt
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States,Corresponding Author:
| |
Collapse
|
15
|
Kunnus K, Guo M, Biasin E, Larsen CB, Titus CJ, Lee SJ, Nordlund D, Cordones AA, Uhlig J, Gaffney KJ. Quantifying the Steric Effect on Metal-Ligand Bonding in Fe Carbene Photosensitizers with Fe 2p3d Resonant Inelastic X-ray Scattering. Inorg Chem 2022; 61:1961-1972. [PMID: 35029978 DOI: 10.1021/acs.inorgchem.1c03124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the electronic structure and chemical bonding of transition metal complexes is important for improving the function of molecular photosensitizers and catalysts. We have utilized X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) at the Fe L3 edge to investigate the electronic structure of two Fe N-heterocyclic carbene complexes with similar chemical structures but different steric effects and contrasting excited-state dynamics: [Fe(bmip)2]2+ and [Fe(btbip)2]2+, bmip = 2,6-bis(3-methyl-imidazole-1-ylidine)pyridine and btbip = 2,6-bis(3-tert-butyl-imidazole-1-ylidene)pyridine. In combination with charge transfer multiplet and ab initio calculations, we quantified how changes in Fe-carbene bond length due to steric effects modify the metal-ligand bonding, including σ/π donation and π back-donation. We find that σ donation is significantly stronger in [Fe(bmip)2]2+, whereas the π back-donation is similar in both complexes. The resulting stronger ligand field and nephelauxetic effect in [Fe(bmip)2]2+ lead to approximately 1 eV destabilization of the quintet metal-centered 5T2g excited state compared to [Fe(btbip)2]2+, providing an explanation for the absence of a photoinduced 5T2g population and a longer metal-to-ligand charge-transfer excited-state lifetime in [Fe(bmip)2]2+. This work demonstrates how combined modeling of XAS and RIXS spectra can be utilized to understand the electronic structure of transition metal complexes governed by correlated electrons and donation/back-donation interactions.
Collapse
Affiliation(s)
- Kristjan Kunnus
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States.,Institute of Physics, University of Tartu, W. Ostwaldi 1, Tartu EE-50411, Estonia
| | - Meiyuan Guo
- Department of Chemistry, Lund University, Lund SE-22100, Sweden
| | - Elisa Biasin
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Christopher B Larsen
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Charles J Titus
- Department of Physics, Stanford University, Stanford, California 94305, United States
| | - Sang Jun Lee
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Dennis Nordlund
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Amy A Cordones
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Jens Uhlig
- Department of Chemistry, Lund University, Lund SE-22100, Sweden
| | - Kelly J Gaffney
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| |
Collapse
|
16
|
Larsen CB, Braun JD, Lozada IB, Kunnus K, Biasin E, Kolodziej C, Burda C, Cordones AA, Gaffney KJ, Herbert DE. Reduction of Electron Repulsion in Highly Covalent Fe-Amido Complexes Counteracts the Impact of a Weak Ligand Field on Excited-State Ordering. J Am Chem Soc 2021; 143:20645-20656. [PMID: 34851636 DOI: 10.1021/jacs.1c06429] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ability to access panchromatic absorption and long-lived charge-transfer (CT) excited states is critical to the pursuit of abundant-metal molecular photosensitizers. Fe(II) complexes supported by benzannulated diarylamido ligands have been reported to broadly absorb visible light with nanosecond CT excited state lifetimes, but as amido donors exert a weak ligand field, this defies conventional photosensitizer design principles. Here, we report an aerobically stable Fe(II) complex of a phenanthridine/quinoline diarylamido ligand, Fe(ClL)2, with panchromatic absorption and a 3 ns excited-state lifetime. Using X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) at the Fe L-edge and N K-edge, we experimentally validate the strong Fe-Namido orbital mixing in Fe(ClL)2 responsible for the panchromatic absorption and demonstrate a previously unreported competition between ligand-field strength and metal-ligand (Fe-Namido) covalency that stabilizes the 3CT state over the lowest energy triplet metal-centered (3MC) state in the ground-state geometry. Single-crystal X-ray diffraction (XRD) and density functional theory (DFT) suggest that formation of this CT state depopulates an orbital with Fe-Namido antibonding character, causing metal-ligand bonds to contract and accentuating the geometric differences between CT and MC excited states. These effects diminish the driving force for electron transfer to metal-centered excited states and increase the intramolecular reorganization energy, critical properties for extending the lifetime of CT excited states. These findings highlight metal-ligand covalency as a novel design principle for elongating excited state lifetimes in abundant metal photosensitizers.
Collapse
Affiliation(s)
- Christopher B Larsen
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Jason D Braun
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, MB R3T 2N2, Canada
| | - Issiah B Lozada
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, MB R3T 2N2, Canada
| | - Kristjan Kunnus
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Elisa Biasin
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Charles Kolodziej
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Clemens Burda
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Amy A Cordones
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Kelly J Gaffney
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - David E Herbert
- Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
17
|
Nascimento DR, Biasin E, Poulter BI, Khalil M, Sokaras D, Govind N. Resonant Inelastic X-ray Scattering Calculations of Transition Metal Complexes Within a Simplified Time-Dependent Density Functional Theory Framework. J Chem Theory Comput 2021; 17:3031-3038. [PMID: 33909424 DOI: 10.1021/acs.jctc.1c00144] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We present a time-dependent density functional theory (TDDFT) approach to compute the light-matter couplings between two different manifolds of excited states relative to a common ground state in the context of 4d transition metal systems. These quantities are the necessary ingredients to solve the Kramers-Heisenberg (KH) equation for resonant inelastic X-ray scattering (RIXS) and several other types of two-photon spectroscopies. The procedure is based on the pseudo-wavefunction approach, where the solutions of a TDDFT calculation can be used to construct excited-state wavefunctions, and on the restricted energy window approach, where a manifold of excited states can be rigorously defined based on the energies of the occupied molecular orbitals involved in the excitation process. Thus, the present approach bypasses the need to solve the costly TDDFT quadratic-response equations. We illustrate the applicability of the method to 4d transition metal molecular complexes by calculating the 2p4d RIXS maps of three representative ruthenium complexes and comparing them to experimental results. The method can capture all the experimental features in all three complexes to allow the assignment of the experimental peaks, with relative energies correct to within ∼0.6 eV at the cost of two independent TDDFT calculations.
Collapse
Affiliation(s)
- Daniel R Nascimento
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Elisa Biasin
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Benjamin I Poulter
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Munira Khalil
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dimosthenis Sokaras
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
18
|
Castillo RG, Hahn AW, Van Kuiken BE, Henthorn JT, McGale J, DeBeer S. Probing Physical Oxidation State by Resonant X-ray Emission Spectroscopy: Applications to Iron Model Complexes and Nitrogenase. Angew Chem Int Ed Engl 2021; 60:10112-10121. [PMID: 33497500 PMCID: PMC8252016 DOI: 10.1002/anie.202015669] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Indexed: 11/07/2022]
Abstract
The ability of resonant X-ray emission spectroscopy (XES) to recover physical oxidation state information, which may often be ambiguous in conventional X-ray spectroscopy, is demonstrated. By combining Kβ XES with resonant excitation in the XAS pre-edge region, resonant Kβ XES (or 1s3p RXES) data are obtained, which probe the 3dn+1 final-state configuration. Comparison of the non-resonant and resonant XES for a series of high-spin ferrous and ferric complexes shows that oxidation state assignments that were previously unclear are now easily made. The present study spans iron tetrachlorides, iron sulfur clusters, and the MoFe protein of nitrogenase. While 1s3p RXES studies have previously been reported, to our knowledge, 1s3p RXES has not been previously utilized to resolve questions of metal valency in highly covalent systems. As such, the approach presented herein provides chemists with means to more rigorously and quantitatively address challenging electronic-structure questions.
Collapse
Affiliation(s)
- Rebeca G. Castillo
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Anselm W. Hahn
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | | | - Justin T. Henthorn
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Jeremy McGale
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Serena DeBeer
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| |
Collapse
|
19
|
Castillo RG, Hahn AW, Van Kuiken BE, Henthorn JT, McGale J, DeBeer S. Probing Physical Oxidation State by Resonant X‐ray Emission Spectroscopy: Applications to Iron Model Complexes and Nitrogenase. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rebeca G. Castillo
- Department of Inorganic Spectroscopy Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | - Anselm W. Hahn
- Department of Inorganic Spectroscopy Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | | | - Justin T. Henthorn
- Department of Inorganic Spectroscopy Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | - Jeremy McGale
- Department of Inorganic Spectroscopy Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| | - Serena DeBeer
- Department of Inorganic Spectroscopy Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34–36 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
20
|
Bergmann U, Kern J, Schoenlein RW, Wernet P, Yachandra VK, Yano J. Using X-ray free-electron lasers for spectroscopy of molecular catalysts and metalloenzymes. NATURE REVIEWS. PHYSICS 2021; 3:264-282. [PMID: 34212130 PMCID: PMC8245202 DOI: 10.1038/s42254-021-00289-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 05/14/2023]
Abstract
The metal centres in metalloenzymes and molecular catalysts are responsible for the rearrangement of atoms and electrons during complex chemical reactions, and they enable selective pathways of charge and spin transfer, bond breaking/making and the formation of new molecules. Mapping the electronic structural changes at the metal sites during the reactions gives a unique mechanistic insight that has been difficult to obtain to date. The development of X-ray free-electron lasers (XFELs) enables powerful new probes of electronic structure dynamics to advance our understanding of metalloenzymes. The ultrashort, intense and tunable XFEL pulses enable X-ray spectroscopic studies of metalloenzymes, molecular catalysts and chemical reactions, under functional conditions and in real time. In this Technical Review, we describe the current state of the art of X-ray spectroscopy studies at XFELs and highlight some new techniques currently under development. With more XFEL facilities starting operation and more in the planning or construction phase, new capabilities are expected, including high repetition rate, better XFEL pulse control and advanced instrumentation. For the first time, it will be possible to make real-time molecular movies of metalloenzymes and catalysts in solution, while chemical reactions are taking place.
Collapse
Affiliation(s)
- Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Physics, University of Wisconsin–Madison, Madison, WI, USA
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robert W. Schoenlein
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Philippe Wernet
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Vittal K. Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
21
|
Biasin E, Nascimento DR, Poulter BI, Abraham B, Kunnus K, Garcia-Esparza AT, Nowak SH, Kroll T, Schoenlein RW, Alonso-Mori R, Khalil M, Govind N, Sokaras D. Revealing the bonding of solvated Ru complexes with valence-to-core resonant inelastic X-ray scattering. Chem Sci 2021; 12:3713-3725. [PMID: 34163645 PMCID: PMC8179428 DOI: 10.1039/d0sc06227h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/21/2021] [Indexed: 12/27/2022] Open
Abstract
Ru-complexes are widely studied because of their use in biological applications and photoconversion technologies. We reveal novel insights into the chemical bonding of a series of Ru(ii)- and Ru(iii)-complexes by leveraging recent advances in high-energy-resolution tender X-ray spectroscopy and theoretical calculations. We perform Ru 2p4d resonant inelastic X-ray scattering (RIXS) to probe the valence excitations in dilute solvated Ru-complexes. Combining these experiments with a newly developed theoretical approach based on time-dependent density functional theory, we assign the spectral features and quantify the metal-ligand bonding interactions. The valence-to-core RIXS features uniquely identify the metal-centered and charge transfer states and allow extracting the ligand-field splitting for all the complexes. The combined experimental and theoretical approach described here is shown to reliably characterize the ground and excited valence states of Ru complexes, and serve as a basis for future investigations of ruthenium, or other 4d metals active sites, in biological and chemical applications.
Collapse
Affiliation(s)
- Elisa Biasin
- Stanford PULSE Institute, SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
| | - Daniel R Nascimento
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory Richland Washington 99352 USA
| | - Benjamin I Poulter
- Department of Chemistry, University of Washington Seattle Washington 98195 USA
| | - Baxter Abraham
- SSRL, SLAC National Accelerator Laboratory Menlo Park California 94025 USA
| | - Kristjan Kunnus
- Stanford PULSE Institute, SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
- LCLS, SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
| | | | - Stanislaw H Nowak
- SSRL, SLAC National Accelerator Laboratory Menlo Park California 94025 USA
| | - Thomas Kroll
- SSRL, SLAC National Accelerator Laboratory Menlo Park California 94025 USA
| | - Robert W Schoenlein
- Stanford PULSE Institute, SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
- LCLS, SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
| | | | - Munira Khalil
- Department of Chemistry, University of Washington Seattle Washington 98195 USA
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory Richland Washington 99352 USA
| | | |
Collapse
|
22
|
Ngo DX, Del Ciello SA, Barth AT, Hadt RG, Grubbs RH, Gray HB, McNicholas BJ. Electronic Structures, Spectroscopy, and Electrochemistry of [M(diimine)(CN-BR 3) 4] 2- (M = Fe, Ru; R = Ph, C 6F 5) Complexes. Inorg Chem 2020; 59:9594-9604. [PMID: 32584033 DOI: 10.1021/acs.inorgchem.0c00632] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Complexes with the formula [M(diimine)(CN-BR3)4]2-, where diimine = bipyridine (bpy), phenanthroline (phen), 3,5-trifluoromethylbipyridine (flpy), R = Ph, C6F5, and M = FeII, RuII, were synthesized and characterized by X-ray crystal structure analysis, UV-visible spectroscopy, IR spectroscopy, and voltammetry. Three highly soluble complexes, [FeII(bpy)(CN-B(C6F5)3)4]2-, [RuII(bpy)(CN-B(C6F5)3)4]2-, and [RuII(flpy)(CN-B(C6F5)3)4]2-, exhibit electrochemically reversible redox reactions, with large potential differences between the bpy0/- or flpy0/- and MIII/II couples of 3.27, 3.52, and 3.19 V, respectively. CASSCF+NEVPT2 calculations accurately reproduce the effects of borane coordination on the electronic structures and spectra of cyanometallates.
Collapse
Affiliation(s)
- Danh X Ngo
- Beckman Institute, and Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Mail Code 139-74, Pasadena, California 91125, United States
| | - Sarah A Del Ciello
- Beckman Institute, and Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Mail Code 139-74, Pasadena, California 91125, United States
| | - Alexandra T Barth
- Beckman Institute, and Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Mail Code 139-74, Pasadena, California 91125, United States
| | - Ryan G Hadt
- Beckman Institute, and Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Mail Code 139-74, Pasadena, California 91125, United States
| | - Robert H Grubbs
- Beckman Institute, and Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Mail Code 139-74, Pasadena, California 91125, United States
| | - Harry B Gray
- Beckman Institute, and Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Mail Code 139-74, Pasadena, California 91125, United States
| | - Brendon J McNicholas
- Beckman Institute, and Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Mail Code 139-74, Pasadena, California 91125, United States
| |
Collapse
|
23
|
Källman E, Guo M, Delcey MG, Meyer DA, Gaffney KJ, Lindh R, Lundberg M. Simulations of valence excited states in coordination complexes reached through hard X-ray scattering. Phys Chem Chem Phys 2020; 22:8325-8335. [PMID: 32236271 DOI: 10.1039/d0cp01003k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hard X-ray spectroscopy selectively probes metal sites in complex environments. Resonant inelastic X-ray scattering (RIXS) makes it is possible to directly study metal-ligand interactions through local valence excitations. Here multiconfigurational wavefunction simulations are used to model valence K pre-edge RIXS for three metal-hexacyanide complexes by coupling the electric dipole-forbidden excitations with dipole-allowed valence-to-core emission. Comparisons between experimental and simulated spectra makes it possible to evaluate the simulation accuracy and establish a best-modeling practice. The calculations give correct descriptions of all LMCT excitations in the spectra, although energies and intensities are sensitive to the description of dynamical electron correlation. The consistent treatment of all complexes shows that simulations can rationalize spectral features. The dispersion in the manganese(iii) spectrum comes from unresolved multiple resonances rather than fluorescence, and the splitting is mainly caused by differences in spatial orientation between holes and electrons. The simulations predict spectral features that cannot be resolved in current experimental data sets and the potential for observing d-d excitations is also explored. The latter can be of relevance for non-centrosymmetric systems with more intense K pre-edges. These ab initio simulations can be used to both design and interpret high-resolution X-ray scattering experiments.
Collapse
Affiliation(s)
- Erik Källman
- Department of Chemistry - Ångström Laboratory, Uppsala University, S-75120 Uppsala, Sweden.
| | - Meiyuan Guo
- Department of Chemistry - Ångström Laboratory, Uppsala University, S-75120 Uppsala, Sweden.
| | - Mickaël G Delcey
- Department of Chemistry - Ångström Laboratory, Uppsala University, S-75120 Uppsala, Sweden.
| | - Drew A Meyer
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kelly J Gaffney
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Roland Lindh
- Department of Chemistry - BMC, Organic Chemistry, Uppsala University, S-75105 Uppsala, Sweden and Uppsala Center for Computational Chemistry (UC3), Uppsala University, P.O. Box 596, SE-751 24 Uppsala, Sweden
| | - Marcus Lundberg
- Department of Chemistry - Ångström Laboratory, Uppsala University, S-75120 Uppsala, Sweden.
| |
Collapse
|
24
|
Al Samarai M, Hahn AW, Beheshti Askari A, Cui YT, Yamazoe K, Miyawaki J, Harada Y, Rüdiger O, DeBeer S. Elucidation of Structure-Activity Correlations in a Nickel Manganese Oxide Oxygen Evolution Reaction Catalyst by Operando Ni L-Edge X-ray Absorption Spectroscopy and 2p3d Resonant Inelastic X-ray Scattering. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38595-38605. [PMID: 31523947 DOI: 10.1021/acsami.9b06752] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Herein, we report the synthesis and electrochemical oxygen evolution experiments for a graphene-supported Ni3MnO4 catalyst. The changes that occur at the Ni active sites during the electrocatalyic oxygen evolution reaction (OER) were elucidated by a combination of operando Ni L-edge X-ray absorption spectroscopy (XAS) and Ni 2p3d resonant inelastic X-ray scattering (RIXS). These data are compared to reference measurements on NiO, β-Ni(OH)2, β-NiOOH, and γ-NiOOH. Through this comparative analysis, we are able to show that under alkaline conditions (0.1 M KOH), the oxides of the Ni3MnO4 catalyst are converted to hydroxides. At the onset of catalysis (1.47 V), the β-Ni(OH)2-like phase is oxidized and converted to a dominantly γ-NiOOH phase. The present study thus challenges the notion that the β-NiOOH phase is the active phase in OER and provides further evidence that the γ-NiOOH phase is catalytically active. The ability to use Ni L-edge XAS and 2p3d RIXS to provide a rational basis for structure-activity correlations is highlighted.
Collapse
Affiliation(s)
- Mustafa Al Samarai
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36 , Mülheim an der Ruhr 45470 , Germany
| | - Anselm W Hahn
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36 , Mülheim an der Ruhr 45470 , Germany
| | - Abbas Beheshti Askari
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36 , Mülheim an der Ruhr 45470 , Germany
| | - Yi-Tao Cui
- Institute for Solid State Physics , The University of Tokyo , Kashiwa , Chiba 277-8581 , Japan
- Synchrotron Radiation Research Organization , The University of Tokyo , Sayo, Sayo-gun, Hyogo 679-5148 , Japan
| | - Kosuke Yamazoe
- Institute for Solid State Physics , The University of Tokyo , Kashiwa , Chiba 277-8581 , Japan
- Synchrotron Radiation Research Organization , The University of Tokyo , Sayo, Sayo-gun, Hyogo 679-5148 , Japan
| | - Jun Miyawaki
- Institute for Solid State Physics , The University of Tokyo , Kashiwa , Chiba 277-8581 , Japan
- Synchrotron Radiation Research Organization , The University of Tokyo , Sayo, Sayo-gun, Hyogo 679-5148 , Japan
| | - Yoshihisa Harada
- Institute for Solid State Physics , The University of Tokyo , Kashiwa , Chiba 277-8581 , Japan
- Synchrotron Radiation Research Organization , The University of Tokyo , Sayo, Sayo-gun, Hyogo 679-5148 , Japan
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36 , Mülheim an der Ruhr 45470 , Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36 , Mülheim an der Ruhr 45470 , Germany
| |
Collapse
|
25
|
Bokarev SI, Kühn O. Theoretical X‐ray spectroscopy of transition metal compounds. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1433] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Oliver Kühn
- Institut für Physik Universität Rostock Rostock Germany
| |
Collapse
|
26
|
Rohringer N. X-ray Raman scattering: a building block for nonlinear spectroscopy. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20170471. [PMID: 30929628 DOI: 10.1098/rsta.2017.0471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Ultraintense X-ray free-electron laser pulses of attosecond duration can enable new nonlinear X-ray spectroscopic techniques to observe coherent electronic motion. The simplest nonlinear X-ray spectroscopic concept is based on stimulated electronic X-ray Raman scattering. We present a snapshot of recent experimental achievements, paving the way towards the goal of realizing nonlinear X-ray spectroscopy. In particular, we review the first proof-of-principle experiments, demonstrating stimulated X-ray emission and scattering in atomic gases in the soft X-ray regime and first results of stimulated hard X-ray emission spectroscopy on transition metal complexes. We critically asses the challenges that have to be overcome for future successful implementation of nonlinear coherent X-ray Raman spectroscopy. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.
Collapse
Affiliation(s)
- Nina Rohringer
- 1 Deutsches Elektronen-Synchrotron (DESY) , 22607 Hamburg , Germany
- 2 Department of Physics , Universität Hamburg , 20355 Hamburg , Germany
| |
Collapse
|