1
|
Blanco CO, Cormier SK, Koller AJ, Boros E, Fogg DE. Olefin Metathesis in Water: Speciation of a Leading Water-Soluble Catalyst Pinpoints Challenges and Opportunities for Chemical Biology. J Am Chem Soc 2025; 147:9441-9448. [PMID: 40053839 PMCID: PMC11926881 DOI: 10.1021/jacs.4c16700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
The metathetical modification of biomolecules in aqueous environments holds great promise for advances at the interface of chemistry, biology, and medicine. However, rapid degradation of the metathesis catalysts necessitates their use in large stoichiometric excess, resulting in undesired side-reactions promoted by the ruthenium products. Although water is now known to play a central role in catalyst decomposition, the elusive nature of the intermediates has hampered insight into the pathways involved. We describe the detailed speciation in water of AquaMet (AM), the dominant ruthenium catalyst used for aqueous metathesis, and implications for catalysis. Potentiometric and spectroscopic speciation studies reveal that only trace AM is present under the pH-neutral, salt-free conditions routinely employed in synthetic applications of aqueous metathesis. Instead, metathesis-inactive hydroxide species dominate. Even at pH 3, Ru-H2O complexes dominate in 0.01 M NaCl(aq), and the water ligands are readily deprotonated as the pH is increased. Raising NaCl(aq) concentrations to 1 M suppresses deprotonation events below pH 8, stabilizing AM as the dominant solution species at neutral pH, and significantly expanding the metathesis-compatible regime. Hitherto unrecognized catalyst solubility issues are also revealed, pointing toward avenues for advance. More broadly, the capacity to directly link catalyst environment to structure and performance opens new opportunities for olefin metathesis in complex, water-rich settings.
Collapse
Affiliation(s)
- Christian O Blanco
- Center for Catalysis Research and Innovation, and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Samantha K Cormier
- Center for Catalysis Research and Innovation, and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Angus J Koller
- Department of Chemistry, University of Southern Maine, Portland, Maine 04103, United States
| | - Eszter Boros
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Deryn E Fogg
- Center for Catalysis Research and Innovation, and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- Department of Chemistry, University of Bergen, N-5007 Bergen, Norway
| |
Collapse
|
2
|
Wang C, Chen D, Wei Z, Tan J, Wu C, Zhang X. Metal-Catalyzed Abiotic Cleavage of C═C Bonds for Effective Fluorescence Imaging of Cu(II) and Fe(III) in Living Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412407. [PMID: 39784410 PMCID: PMC11848571 DOI: 10.1002/advs.202412407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/25/2024] [Indexed: 01/12/2025]
Abstract
Imaging abnormal copper/iron with effective fluorescent tools is essential to comprehensively put insight into many pathological events. However, conventional coordination-based detection is mired in the fluorescence quenching induced by paramagnetic Cu(II)/Fe(III). Moreover, the strong chelating property of the probe will consume dissociative metal ions and inevitably interfere with the physiological microenvironment. Here, a new strategy is developed by employing this aberrant Cu(II)/Fe(III) to catalyze bond cleavage for fluorescent imaging of them. A short series of near-infrared fluorescent molecules (NIRB1-NIRB6) is devised as substrates, wherein the specific C═C bonds can be effectively cleaved to activate red fluorophore by Cu(II)/Fe(III) catalyzing. Representatively, NIRB1 is applied for fluorescent imaging of Cu(II)/Fe(III) in living cells, zebrafish, and Alzheimer's disease (AD)-afflicted mouse brains which is of significance to monitor metal safety. The successful cleavage of C═C bonds catalyzed by Cu(II)/Fe(III) enriches the application of abiotic bond cleavage reactions in metal detection, and may also inspire the development of fluorescent tools for the future diagnosis and therapy of diseases.
Collapse
Affiliation(s)
- Chunfei Wang
- Faculty of Health SciencesUniversity of MacauMacau SAR999078China
- Department of PharmacologySchool of PharmacyWannan Medical CollegeWuhuAnhui241002China
| | - Dandan Chen
- Department of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Zixiang Wei
- Faculty of Health SciencesUniversity of MacauMacau SAR999078China
| | - Jingyun Tan
- Faculty of Health SciencesUniversity of MacauMacau SAR999078China
| | - Changfeng Wu
- Department of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Xuanjun Zhang
- Faculty of Health SciencesUniversity of MacauMacau SAR999078China
- MOE Frontiers Science Centre for Precision OncologyUniversity of MacauMacau SAR999078China
| |
Collapse
|
3
|
Nehra N, Kaushik R, Kanika, Rahul, Khan R. Benzothiazole-Quinoline-Based Fluorescent Probe for Fe 3+ and its Applications in Environmental and Biological Samples. J Fluoresc 2024:10.1007/s10895-024-03827-1. [PMID: 39002051 DOI: 10.1007/s10895-024-03827-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Due to the its high abundance, iron ion contamination and toxicity is one of the most challenging issue for living beings. Although, iron is extremenly important for several body functions, excess amount of iron in the body can also be fatal. In last century, rapid industrialization, iron extraction and mismanagement of industrial waste disposal leads to iron contamination in water bodies. Therefore, versatile iron sensors needs to be develop which can be employed for detection in biological as well as real water samples. 8-hydroxyquinoline is well-known for its strong affinity towards transition metals including Fe3+. In this regard, we have synthesised benzothiazole-quinoline derived 1,2,3- triazole (4HBTHQTz), in which 4-(benzo[d]thiazol-2-yl)phenolic (4-HBT) group acts as a fluorophore. 4HBTHQTz showed high fluorescence and induced a selective decrease in fluorescence with Fe3+ at 380 nm (λex. = 320 nm). The detection limit of 4HBTHQTz with Fe3+ is calculated as 0.64 μM, which is lower than the WHO recommended limit in drinking water. 4HBTHQTz works over the 5-8 pH range and has shown promising results for quantitative detection of Fe3+ in water samples collected from tap, river and seawater. 4HBTHQTz can also detect the Fe3+ in biological samples which is confirmed by fluorescence cell imaging using L929 mouse fibroblast cells. Overall, 4HBTHQTz showed advantages such as high selectivity, quick detection, and good limit of detection (LOD) for Fe3+.
Collapse
Affiliation(s)
- Nidhi Nehra
- Department of Chemistry, National Institute of Technology, Kurukshetra, Haryana, 136119, India
- Department of Chemistry, Indian Institute of Technology, Powai, Mumbai, 400 076, India
| | - Rahul Kaushik
- Chemical Oceanography Division, CSIR- National Institute of Oceanography, Dona Paula, 403004, Goa, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Kanika
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, 140306, India
| | - Rahul
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, 140306, India
- Department of Chemistry, Malaviya National Institute of Technology Jaipur (MNIT), JLN Marg, Jaipur, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Mohali, Punjab, 140306, India
| |
Collapse
|
4
|
Li J, Yu X, Shu D, Liu H, Gu M, Zhang K, Mao G, Yang S, Yang R. Accelerated Activity-Based Sensing by Fluorogenic Reporter Engineering Enables to Rapidly Determine Unstable Analyte. Anal Chem 2024; 96:7723-7729. [PMID: 38695281 DOI: 10.1021/acs.analchem.4c00945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
Accurate detection of labile analytes through activity based fluorogenic sensing is meaningful but remains a challenge because of nonrapid reaction kinetic. Herein, we present a signaling reporter engineering strategy to accelerate azoreduction reaction by positively charged fluorophore promoted unstable anion recognition for rapidly sensing sodium dithionite (Na2S2O4), a kind of widespread used but harmful inorganic reducing agent. Its quick decomposition often impedes application reliability of traditional fluorogenic probes in real samples because of their slow responses. In this work, four azo-based probes with different charged fluorophores (positive, zwitterionic, neutral, and negative) were synthesized and compared. Among of them, with sequestration effect of positively charged anthocyanin fluorophore for dithionite anion via electrostatic attraction, the cationic probe Azo-Pos displayed ultrafast fluorogenic response (∼2 s) with the fastest response kinetic (kpos' = 0.373 s-1) that is better than other charged ones (kzwi' = 0.031 s-1, kneu' = 0.013 s-1, kneg' = 0.003 s-1). Azo-Pos was demonstrated to be capable to directly detect labile Na2S2O4 in food samples and visualize the presence of Na2S2O4 in living systems in a timely fashion. This new probe has potential as a robust tool to fluorescently monitor excessive food additives and biological invasion of harmful Na2S2O4. Moreover, our proposed accelerating strategy would be versatile to develop more activity-based sensing probes for quickly detecting other unstable analytes of interest.
Collapse
Affiliation(s)
- Jingjing Li
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Xizi Yu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Dunji Shu
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Huihong Liu
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Maoxin Gu
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Kai Zhang
- Department of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, P. R. China
| | - Guojiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Sheng Yang
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Ronghua Yang
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| |
Collapse
|
5
|
Sakamoto DM, Tamura I, Yi B, Hasegawa S, Saito Y, Yamada N, Takakusagi Y, Kubota SI, Kobayashi M, Harada H, Hanaoka K, Taki M, Nangaku M, Tainaka K, Sando S. Whole-Body and Whole-Organ 3D Imaging of Hypoxia Using an Activatable Covalent Fluorescent Probe Compatible with Tissue Clearing. ACS NANO 2024; 18:5167-5179. [PMID: 38301048 DOI: 10.1021/acsnano.3c12716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Elucidation of biological phenomena requires imaging of microenvironments in vivo. Although the seamless visualization of in vivo hypoxia from the level of whole-body to single-cell has great potential to discover unknown phenomena in biological and medical fields, no methodology for achieving it has been established thus far. Here, we report the whole-body and whole-organ imaging of hypoxia, an important microenvironment, at single-cell resolution using activatable covalent fluorescent probes compatible with tissue clearing. We initially focused on overcoming the incompatibility of fluorescent dyes and refractive index matching solutions (RIMSs), which has greatly hindered the development of fluorescent molecular probes in the field of tissue clearing. The fluorescent dyes compatible with RIMS were then incorporated into the development of activatable covalent fluorescent probes for hypoxia. We combined the probes with tissue clearing, achieving comprehensive single-cell-resolution imaging of hypoxia in a whole mouse body and whole organs.
Collapse
Affiliation(s)
- Daichi M Sakamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Iori Tamura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Bo Yi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sho Hasegawa
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Yutaro Saito
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Naoki Yamada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yoichi Takakusagi
- Quantum Hyperpolarized MRI Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba-city 263-8555, Japan
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage, Chiba-city 263-8555, Japan
| | - Shimpei I Kubota
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido 060-0815, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kenjiro Hanaoka
- Division of Analytical Chemistry for Drug Discovery, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Masayasu Taki
- Institute of Transformative Bio-Molecules, Nagoya University, Furo, Chikusa, Nagoya 464-8601, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata 951-8585, Japan
- Gftd DeSci, Gftd DAO, Nishikawa Building, 20 Kikuicho, Shinjuku-ku, Tokyo 162-0044, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
6
|
Tiwari G, Mishra VK, Kumari P, Khanna A, Sharma S, Sagar R. Synthesis of triazole bridged N-glycosides of pyrazolo[1,5- a]pyrimidinones as anticancer agents and their in silico docking studies. RSC Adv 2024; 14:1304-1315. [PMID: 38174229 PMCID: PMC10762718 DOI: 10.1039/d3ra06993a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
In the pursuit of novel therapeutic agents, we present a comprehensive study on the design, synthesis, and evaluation of a diverse library of triazole bridged N-glycosides of pyrazolo[1,5-a]pyrimidinones, employing a microwave-assisted synthetic approach via 'click chemistry'. This methodology offers efficient and accelerated access to the glycohybrids, showcasing improved reaction conditions that yield high-quality products. In this research endeavor, we have successfully synthesized a series of twenty-seven triazole bridged N-glycosides of pyrazolo[1,5-a]pyrimidinones. Our investigation extends beyond synthetic endeavors to explore the potential therapeutic relevance of these compounds. We subjected them to rigorous in vitro screening against prominent breast cancer cell lines MCF-7, MDA-MB231, and MDA-MB453. Among the library of compounds synthesized, (2S,3S,4R,5S,6S)-2-(acetoxymethyl)-6-(4-((5-(4-methoxyphenyl)-7-oxopyrazolo[1,5-a]pyrimidin-1(7H)-yl)methyl)-1H-1,2,3-triazol-1-yl)tetrahydro-2H-pyran-3,4,5-triyl triacetate emerged as a potent compound, exhibiting remarkable anti-cancer activity with an IC50 value of 27.66 μM against the MDA-MB231 cell line. Additionally, (2S,3R,4R,5S,6S)-2-(acetoxymethyl)-6-(4-((7-oxo-5-(4-(trifluoromethyl)phenyl)pyrazolo[1,5-a]pyrimidin-1(7H)-yl)methyl)-1H-1,2,3-triazol-1-yl)tetrahydro-2H-pyran-3,4,5-triyl triacetate displayed notable inhibitory potential against the MCF-7 cell line, with an IC50 value of 4.93 μM. Furthermore, in silico docking analysis was performed to validate our experimental findings. These findings underscore the promise of our triazole bridged N-glycosides of pyrazolo[1,5-a]pyrimidinones as potential anti-cancer agents. This research not only enriches the field of glycohybrid synthesis but also contributes valuable insights into the development of novel anti-cancer therapeutics.
Collapse
Affiliation(s)
- Ghanshyam Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi 221005 India
| | - Vinay Kumar Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi 221005 India
| | - Priti Kumari
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi 221005 India
| | - Ashish Khanna
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi 221005 India
| | - Sunil Sharma
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi 110067 India
| | - Ram Sagar
- Department of Chemistry, Institute of Science, Banaras Hindu University Varanasi 221005 India
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi 110067 India
| |
Collapse
|
7
|
Li M, Lei P, Shuang S, Dong C, Zhang L. Recent advances in fluorescent probes for dual-detecting ONOO - and analytes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123179. [PMID: 37542874 DOI: 10.1016/j.saa.2023.123179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/07/2023]
Abstract
Although peroxynitrite (ONOO-) plays an essential role in cellular redox homeostasis, its excess ONOO- will affect the normal physiological function of cells. Therefore, real-time monitoring of changes in local ONOO- will contribute to further revealing the biological functions. Reliable and accurate detection of biogenic ONOO- will definitely benefit for disentangling its complex functions in living systems. In the past few years, more fluorescent probes have been developed to help understand and reveal cellular ONOO- changes. However, there has been no comprehensive and critical review of multifunctional fluorescent probes for cellular ONOO- and other analytes. To highlight the recent advances, this review first summarized the recent progress of multifunctional fluorescent probes since 2018, focusing on molecular structures, response mechanisms, optical properties, and biological imaging in the detection and imaging of cellular ONOO- and analytes. We classified and discussed in detail the limitations of existing multifunctional probes, and proposed new ideas to overcome these limitations. Finally, the challenges and future development trends of ONOO- fluorescence probes were discussed. We hoped this review will provide new research directions for developing of multifunctional fluorescent probes and contribute to the early diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Minglu Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Peng Lei
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Chuan Dong
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China.
| |
Collapse
|
8
|
Dacon NJ, Wu NB, Michel BW. Red-shifted activity-based sensors for ethylene via direct conjugation of fluorophore to metal-carbene. RSC Chem Biol 2023; 4:871-878. [PMID: 37920389 PMCID: PMC10619136 DOI: 10.1039/d3cb00079f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/22/2023] [Indexed: 11/04/2023] Open
Abstract
A number of Activity-Based Sensors (ABS) for relatively unreactive small molecules, such as ethylene, necessitates a transition metal for reaction under ambient conditions. Olefin metathesis has emerged as one of the primary strategies to achieve ethylene detection, and other transition metals are used for similarly challenging-to-detect analytes. However, limited studies exist investigating how fluorophore-metal attachment impacts photophysical properties of such ABS. Two new probes were prepared with the chelating benzlidene Ru-ligand directly conjugated to a BODIPY fluorophore and the photophysical properties of the new conjugated ABS were evaluated.
Collapse
Affiliation(s)
- Nicholas J Dacon
- Department of Chemistry and Biochemistry, University of Denver Denver CO 80210 USA
| | - Nathan B Wu
- Department of Chemistry and Biochemistry, University of Denver Denver CO 80210 USA
| | - Brian W Michel
- Department of Chemistry and Biochemistry, University of Denver Denver CO 80210 USA
| |
Collapse
|
9
|
Han J. Copper trafficking systems in cells: insights into coordination chemistry and toxicity. Dalton Trans 2023; 52:15277-15296. [PMID: 37702384 DOI: 10.1039/d3dt02166a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Transition metal ions, such as copper, are indispensable components in the biological system. Copper ions which primarily exist in two major oxidation states Cu(I) and Cu(II) play crucial roles in various cellular processes including antioxidant defense, biosynthesis of neurotransmitters, and energy metabolism, owing to their inherent redox activity. The disturbance in copper homeostasis can contribute to the development of copper metabolism disorders, cancer, and neurodegenerative diseases, highlighting the significance of understanding the copper trafficking system in cellular environments. This review aims to offer a comprehensive overview of copper homeostatic machinery, with an emphasis on the coordination chemistry of copper transporters and trafficking proteins. While copper chaperones and the corresponding metalloenzymes are thoroughly discussed, we also explore the potential existence of low-molecular-mass metal complexes within cellular systems. Furthermore, we summarize the toxicity mechanisms originating from copper deficiency or accumulation, which include the dysregulation of oxidative stress, signaling pathways, signal transduction, and amyloidosis. This perspective review delves into the current knowledge regarding the intricate aspects of the copper trafficking system, providing valuable insights into potential treatment strategies from the standpoint of bioinorganic chemistry.
Collapse
Affiliation(s)
- Jiyeon Han
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|
10
|
Kim B, Karlin KD. Ligand-Copper(I) Primary O 2-Adducts: Design, Characterization, and Biological Significance of Cupric-Superoxides. Acc Chem Res 2023; 56:2197-2212. [PMID: 37527056 PMCID: PMC11152209 DOI: 10.1021/acs.accounts.3c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
In this Account, we overview and highlight synthetic bioinorganic chemistry focused on initial adducts formed from the reaction of reduced ligand-copper(I) coordination complexes with molecular oxygen, reactions that produce ligand-CuII(O2•-) complexes (O2•- ≡ superoxide anion). We provide mostly a historical perspective, starting in the Karlin research group in the 1980s, emphasizing the ligand design and ligand effects, structure, and spectroscopy of these O2 adducts and subsequent further reactivity with substrates, including the interaction with a second ligand-CuI complex to form binuclear species. The Account emphasizes the approach, evolution, and results obtained in the Karlin group, a synthetic bioinorganic research program inspired by the state of knowledge and insights obtained on enzymes possessing copper ion active sites which process molecular oxygen. These constitute an important biochemistry for all levels/types of organisms, bacteria, fungi, insects, and mammals, including humans.Copper is earth abundant, and its redox properties in complexes allow for facile CuII/CuI interconversions. Simple salts or coordination complexes have been well known to serve as oxidants for the stoichiometric or catalytic oxidation or oxygenation (i.e., O-atom insertion) of organic substrates. Thus, copper dioxygen- or peroxide-centered synthetic bioinorganic studies provide strong relevance and potential application to synthesis or even the development of cathodic catalysts for dioxygen reduction to hydrogen peroxide or water, as in fuel cells. The Karlin group's focus however was primarily oriented toward bioinorganic chemistry with the goal to provide fundamental insights into the nature of copper-dioxygen adducts and further reduced and/or protonated derivatives, species likely occurring in enzyme turnover or related in one or more aspects of formation, structure, spectroscopic properties, and scope of reactivity toward organic/biochemical substrates.Prior to this time, the 1980s, O2 adducts of redox-active first-row transition-metal ions focused on iron, such as the porphyrinate-Fe centers occurring in the oxygen carrier proteins myoglobin and hemoglobin and that determined to occur in cytochrome P-450 monooxygenase turnover. Deoxy (i.e., reduced Fe(II)) heme proteins react with O2, giving FeIII-superoxo complexes (preferably referred to by traditional biochemists as ferrous-oxy species). And, it was in the 1970s that great strides were made by synthetic chemists in generating hemes capable of forming O2 adducts, their physiochemical characterization providing critical insights to enzyme (bio)chemistry and providing ideas and important goals leading to countless person years of future research.
Collapse
Affiliation(s)
- Bohee Kim
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D Karlin
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
11
|
Gupta K, Datta A. An activity-based fluorescent sensor with a penta-coordinate N-donor binding site detects Cu ions in living systems. Chem Commun (Camb) 2023; 59:8282-8285. [PMID: 37318277 DOI: 10.1039/d3cc02201c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
An activity-based sensor afforded a 63 times fluorescence-enhancement with Cu2+/Cu+ ions and could image Cu2+/Cu+ in living cells and in a multicellular organism. The sensor functioned only in the presence of ambient dioxygen and glutathione, and the characterization of intermediates and products hinted toward a sensing mechanism involving a CuII hydroperoxo species.
Collapse
Affiliation(s)
- Kunika Gupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai-400005, India.
| | - Ankona Datta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Colaba, Mumbai-400005, India.
| |
Collapse
|
12
|
Xue SS, Li Y, Pan W, Li N, Tang B. Multi-stimuli-responsive molecular fluorescent probes for bioapplications. Chem Commun (Camb) 2023; 59:3040-3049. [PMID: 36786045 DOI: 10.1039/d2cc07008a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Stimuli-responsive fluorescent probes have been widely utilized in detecting the physiological and pathological states of living systems. Numerous stimuli-responsive fluorescent probes have been developed due to their advantages of good sensitivity, high resolution, and high contrast fluorescent signals. In this feature article, the progress of multi-stimuli-responsive probes, including organic molecules and metal complexes, for the detection of various biomarkers for bio-applications is summarized. The feature article focuses on the applications of organic-molecule- and metal-complex-based molecular probes in biological systems for detecting different biomarkers of cancer or other diseases. The current challenges and potential future directions of these probes for applications in biological systems are also discussed.
Collapse
Affiliation(s)
- Shan-Shan Xue
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Yuanyuan Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| |
Collapse
|
13
|
Pham VN, Chang CJ. Metalloallostery and Transition Metal Signaling: Bioinorganic Copper Chemistry Beyond Active Sites. Angew Chem Int Ed Engl 2023; 62:e202213644. [PMID: 36653724 PMCID: PMC10754205 DOI: 10.1002/anie.202213644] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Indexed: 01/20/2023]
Abstract
Transition metal chemistry is essential to life, where metal binding to DNA, RNA, and proteins underpins all facets of the central dogma of biology. In this context, metals in proteins are typically studied as static active site cofactors. However, the emergence of transition metal signaling, where mobile metal pools can transiently bind to biological targets beyond active sites, is expanding this conventional view of bioinorganic chemistry. This Minireview focuses on the concept of metalloallostery, using copper as a canonical example of how metals can regulate protein function by binding to remote allosteric sites (e.g., exosites). We summarize advances in and prospects for the field, including imaging dynamic transition metal signaling pools, allosteric inhibition or activation of protein targets by metal binding, and metal-dependent signaling pathways that underlie nutrient vulnerabilities in diseases spanning obesity, fatty liver disease, cancer, and neurodegeneration.
Collapse
Affiliation(s)
- Vanha N Pham
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
14
|
Brawley H, Kreinbrink AC, Hierholzer JD, Vali SW, Lindahl PA. Labile Iron Pool of Isolated Escherichia coli Cytosol Likely Includes Fe-ATP and Fe-Citrate but not Fe-Glutathione or Aqueous Fe. J Am Chem Soc 2023; 145:2104-2117. [PMID: 36661842 PMCID: PMC9896560 DOI: 10.1021/jacs.2c06625] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Indexed: 01/21/2023]
Abstract
The existence of labile iron pools (LFePs) in biological systems has been recognized for decades, but their chemical composition remains uncertain. Here, the LFeP in cytosol from Escherichia coli was investigated. Mössbauer spectra of whole vs lysed cells indicated significant degradation of iron-sulfur clusters (ISCs), even using an unusually gentle lysis procedure; this demonstrated the fragility of ISCs. Moreover, the released iron contributed to the non-heme high-spin Fe(II) species in the cell, which likely included the LFeP. Cytosol batches isolated from cells grown with different levels of iron supplementation were passed through a 3 kDa cutoff membrane, and resulting flow-through-solutions (FTSs) were subjected to SEC-ICP-MS. Mössbauer spectroscopy was used to evaluate the oxidation states of standards. FTSs exhibited iron-detected peaks likely due to different forms of Fe-citrate and Fe-nucleotide triphosphate complexes. Fe-Glutathione (GSH) complexes were not detected using physiological concentrations of GSH mixed with either Fe(II) or Fe(III); Fe(II)-GSH was concluded not to be a significant component of the LFeP in E. coli under physiological conditions. Aqueous iron was also not present in significant concentrations in isolated cytosol and is unlikely a major component of the pool. Fe appeared to bind ATP more tightly than citrate, but ATP also hydrolyzed on the timescale of tens of hours. Isolated cytosol contained excess ligands that coordinated the added Fe(II) and Fe(III). The LFeP in healthy metabolically active cells is undoubtedly dominated by the Fe(II) state, but the LFeP is redox-active such that a fraction might be present as stable and soluble Fe(III) complexes especially under oxidatively stressed cellular conditions.
Collapse
Affiliation(s)
- Hayley
N. Brawley
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Alexia C. Kreinbrink
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Justin D. Hierholzer
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Shaik Waseem Vali
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Paul A. Lindahl
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| |
Collapse
|
15
|
Agarwal H, Florian J, Pert D, Goldsmith BR, Singh N. Explaining Kinetic Trends of Inner-Sphere Transition-Metal-Ion Redox Reactions on Metal Electrodes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Harsh Agarwal
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan48109-2136, United States
- Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan48109-2136, United States
| | - Jacob Florian
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan48109-2136, United States
- Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan48109-2136, United States
| | - Daniel Pert
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan48109-2136, United States
- Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan48109-2136, United States
| | - Bryan R. Goldsmith
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan48109-2136, United States
- Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan48109-2136, United States
| | - Nirala Singh
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan48109-2136, United States
- Catalysis Science and Technology Institute, University of Michigan, Ann Arbor, Michigan48109-2136, United States
| |
Collapse
|
16
|
Pham VN, Chang CJ. Metalloallostery and Transition Metal Signaling: Bioinorganic Copper Chemistry Beyond Active Sites. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202213644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Vanha N. Pham
- Department of Chemistry University of California Berkeley CA 94720 USA
| | - Christopher J. Chang
- Department of Chemistry University of California Berkeley CA 94720 USA
- Department of Molecular and Cell Biology University of California Berkeley CA 94720 USA
- Helen Wills Neuroscience Institute University of California Berkeley CA 94720 USA
| |
Collapse
|
17
|
Messina MS, Quargnali G, Chang CJ. Activity-Based Sensing for Chemistry-Enabled Biology: Illuminating Principles, Probes, and Prospects for Boronate Reagents for Studying Hydrogen Peroxide. ACS BIO & MED CHEM AU 2022; 2:548-564. [PMID: 36573097 PMCID: PMC9782337 DOI: 10.1021/acsbiomedchemau.2c00052] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
Activity-based sensing (ABS) offers a general approach that exploits chemical reactivity as a method for selective detection and manipulation of biological analytes. Here, we illustrate the value of this chemical platform to enable new biological discovery through a case study in the design and application of ABS reagents for studying hydrogen peroxide (H2O2), a major type of reactive oxygen species (ROS) that regulates a diverse array of vital cellular signaling processes to sustain life. Specifically, we summarize advances in the use of activity-based boronate probes for the detection of H2O2 featuring high molecular selectivity over other ROS, with an emphasis on tailoring designs in chemical structure to promote new biological principles of redox signaling.
Collapse
Affiliation(s)
- Marco S. Messina
- Department
of Chemistry and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Gianluca Quargnali
- Department
of Chemistry and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department
of Chemistry and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
18
|
Gonzalez-Valero A, Reeves AG, Page ACS, Moon PJ, Miller E, Coulonval K, Crossley SWM, Xie X, He D, Musacchio PZ, Christian AH, McKenna JM, Lewis RA, Fang E, Dovala D, Lu Y, McGregor LM, Schirle M, Tallarico JA, Roger PP, Toste FD, Chang CJ. An Activity-Based Oxaziridine Platform for Identifying and Developing Covalent Ligands for Functional Allosteric Methionine Sites: Redox-Dependent Inhibition of Cyclin-Dependent Kinase 4. J Am Chem Soc 2022; 144:22890-22901. [PMID: 36484997 PMCID: PMC10124963 DOI: 10.1021/jacs.2c04039] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Activity-based protein profiling (ABPP) is a versatile strategy for identifying and characterizing functional protein sites and compounds for therapeutic development. However, the vast majority of ABPP methods for covalent drug discovery target highly nucleophilic amino acids such as cysteine or lysine. Here, we report a methionine-directed ABPP platform using Redox-Activated Chemical Tagging (ReACT), which leverages a biomimetic oxidative ligation strategy for selective methionine modification. Application of ReACT to oncoprotein cyclin-dependent kinase 4 (CDK4) as a representative high-value drug target identified three new ligandable methionine sites. We then synthesized a methionine-targeting covalent ligand library bearing a diverse array of heterocyclic, heteroatom, and stereochemically rich substituents. ABPP screening of this focused library identified 1oxF11 as a covalent modifier of CDK4 at an allosteric M169 site. This compound inhibited kinase activity in a dose-dependent manner on purified protein and in breast cancer cells. Further investigation of 1oxF11 found prominent cation-π and H-bonding interactions stabilizing the binding of this fragment at the M169 site. Quantitative mass-spectrometry studies validated 1oxF11 ligation of CDK4 in breast cancer cell lysates. Further biochemical analyses revealed cross-talk between M169 oxidation and T172 phosphorylation, where M169 oxidation prevented phosphorylation of the activating T172 site on CDK4 and blocked cell cycle progression. By identifying a new mechanism for allosteric methionine redox regulation on CDK4 and developing a unique modality for its therapeutic intervention, this work showcases a generalizable platform that provides a starting point for engaging in broader chemoproteomics and protein ligand discovery efforts to find and target previously undruggable methionine sites.
Collapse
Affiliation(s)
- Angel Gonzalez-Valero
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Audrey G. Reeves
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Annika C. S. Page
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Patrick J. Moon
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Edward Miller
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Katia Coulonval
- Faculté de Médecine, Institute of Interdisciplinary Research, Université Libre de Bruxelles, Campus Erasme, Brussels 1070, Belgium
| | - Steven W. M. Crossley
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Xiao Xie
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Dan He
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Patricia Z. Musacchio
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Alec H. Christian
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jeffrey M. McKenna
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Richard A. Lewis
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Eric Fang
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Dustin Dovala
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Yipin Lu
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Lynn M. McGregor
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Markus Schirle
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - John A. Tallarico
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Pierre P. Roger
- Faculté de Médecine, Institute of Interdisciplinary Research, Université Libre de Bruxelles, Campus Erasme, Brussels 1070, Belgium
| | - F. Dean Toste
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| |
Collapse
|
19
|
Oxidation state-specific fluorescent copper sensors reveal oncogene-driven redox changes that regulate labile copper(II) pools. Proc Natl Acad Sci U S A 2022; 119:e2202736119. [PMID: 36252013 PMCID: PMC9621372 DOI: 10.1073/pnas.2202736119] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Copper is an essential metal nutrient for life that often relies on redox cycling between Cu(I) and Cu(II) oxidation states to fulfill its physiological roles, but alterations in cellular redox status can lead to imbalances in copper homeostasis that contribute to cancer and other metalloplasias with metal-dependent disease vulnerabilities. Copper-responsive fluorescent probes offer powerful tools to study labile copper pools, but most of these reagents target Cu(I), with limited methods for monitoring Cu(II) owing to its potent fluorescence quenching properties. Here, we report an activity-based sensing strategy for turn-on, oxidation state-specific detection of Cu(II) through metal-directed acyl imidazole chemistry. Cu(II) binding to a metal and oxidation state-specific receptor that accommodates the harder Lewis acidity of Cu(II) relative to Cu(I) activates the pendant dye for reaction with proximal biological nucleophiles and concomitant metal ion release, thus avoiding fluorescence quenching. Copper-directed acyl imidazole 649 for Cu(II) (CD649.2) provides foundational information on the existence and regulation of labile Cu(II) pools, including identifying divalent metal transporter 1 (DMT1) as a Cu(II) importer, labile Cu(II) increases in response to oxidative stress induced by depleting total glutathione levels, and reciprocal increases in labile Cu(II) accompanied by decreases in labile Cu(I) induced by oncogenic mutations that promote oxidative stress.
Collapse
|
20
|
Xue SS, Pan Y, Pan W, Liu S, Li N, Tang B. Bioimaging agents based on redox-active transition metal complexes. Chem Sci 2022; 13:9468-9484. [PMID: 36091899 PMCID: PMC9400682 DOI: 10.1039/d2sc02587f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022] Open
Abstract
Detecting the fluctuation and distribution of various bioactive species in biological systems is of great importance in determining diseases at their early stages. Metal complex-based probes have attracted considerable attention in bioimaging applications owing to their unique advantages, such as high luminescence, good photostability, large Stokes shifts, low toxicity, and good biocompatibility. In this review, we summarized the development of redox-active transition metal complex-based probes in recent five years with the metal ions of iron, manganese, and copper, which play essential roles in life and can avoid the introduction of exogenous metals into biological systems. The designing principles that afford these complexes with optical or magnetic resonance (MR) imaging properties are elucidated. The applications of the complexes for bioimaging applications of different bioactive species are demonstrated. The current challenges and potential future directions of these probes for applications in biological systems are also discussed.
Collapse
Affiliation(s)
- Shan-Shan Xue
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Yingbo Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Shujie Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
21
|
Ren H, Li F, Yu S, Wu P. The detection of multiple analytes by using visual colorimetric and fluorometric multimodal chemosensor based on the azo dye. Heliyon 2022; 8:e10216. [PMID: 36060988 PMCID: PMC9434052 DOI: 10.1016/j.heliyon.2022.e10216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/15/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
In recent decades, researchers have conducted in-depth studies of the design and synthesis of colorimetric/fluorometric probes and the application of such probes to biological and practical samples. The multifunctional colorimetric and fluorescent azo benzene-based probe (4′-hydroxyl-2,4-diaminoazobenzene, MP) was designed to detect Al3+, Fe3+, Cu2+ and F¯. Based on the distinct redshift of the absorption band and a significant color change (yellow → purple), MP was utilized for both naked-eyed and quantitative detection of Al3+ and Fe3+ after formation of the 1:1 complex. Test paper coated with MP and used in conjunction with a cell phone was used for colorimetric detection of Al3+ and Fe3+ ions (20 μM–2.0 mM) in water samples through naked-eye and digital image colorimetry. The “MP-Fe3+” coordination shift that occurs in the presence of the competitive ligand F¯ was used in the colorimetric measurement of F¯ in toothpaste. In the presence of Cu2+ ion, the non-emissive MP has transformed into fluorescent benzotriazole product PMP (Φ = 0.53) through the bimolecular rate-limiting step, and the second-order rate constant k is calculated as 31 ± 2 M−1 s−1. MP exhibits a “turn-on” fluorescence response in the presence of Cu2+ that is greater than its response in the presence of competitive species such as Fe3+, Al3+, Co2+, Fe2+, Zn2+, Cd2+, Mg2+, Mn2+, Ni2+ and Ag+. MP was shown to have low toxicity to living HeLa cells and to present good imaging characteristics for tracking of Cu2+ in vivo.
Collapse
|
22
|
Huang Y, Sun L, Mirica LM. Turn-on fluorescent sensors for Cu-rich amyloid β peptide aggregates. SENSORS & DIAGNOSTICS 2022; 1:709-713. [PMID: 35923774 PMCID: PMC9280444 DOI: 10.1039/d2sd00028h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/09/2022] [Indexed: 01/12/2023]
Abstract
Protein misfolding and metal dishomeostasis are two key pathological factors of Alzheimer's disease. Previous studies have shown that Cu-mediated amyloid β (Aβ) peptide aggregation leads to the formation of neurotoxic Aβ oligomers. Herein, we report a series of picolinic acid-based Cu-activatable sensors, which can be used for the fluorescence imaging of Cu-rich Aβ aggregates.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Chemistry, University of Illinois at Urbana-Champaign 600 S. Mathews Avenue Urbana IL 61801 USA
| | - Liang Sun
- Department of Chemistry, University of Illinois at Urbana-Champaign 600 S. Mathews Avenue Urbana IL 61801 USA
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign 600 S. Mathews Avenue Urbana IL 61801 USA
| |
Collapse
|
23
|
Liu Y, Lai KL, Vong K. Transition Metal Scaffolds Used To Bring New‐to‐Nature Reactions into Biological Systems. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yifei Liu
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Ka Lun Lai
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Kenward Vong
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| |
Collapse
|
24
|
Mao Z, Xiong J, Wang P, An J, Zhang F, Liu Z, Seung Kim J. Activity-based fluorescence probes for pathophysiological peroxynitrite fluxes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214356] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Ge EJ, Bush AI, Casini A, Cobine PA, Cross JR, DeNicola GM, Dou QP, Franz KJ, Gohil VM, Gupta S, Kaler SG, Lutsenko S, Mittal V, Petris MJ, Polishchuk R, Ralle M, Schilsky ML, Tonks NK, Vahdat LT, Van Aelst L, Xi D, Yuan P, Brady DC, Chang CJ. Connecting copper and cancer: from transition metal signalling to metalloplasia. Nat Rev Cancer 2022; 22:102-113. [PMID: 34764459 PMCID: PMC8810673 DOI: 10.1038/s41568-021-00417-2] [Citation(s) in RCA: 703] [Impact Index Per Article: 234.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 12/25/2022]
Abstract
Copper is an essential nutrient whose redox properties make it both beneficial and toxic to the cell. Recent progress in studying transition metal signalling has forged new links between researchers of different disciplines that can help translate basic research in the chemistry and biology of copper into clinical therapies and diagnostics to exploit copper-dependent disease vulnerabilities. This concept is particularly relevant in cancer, as tumour growth and metastasis have a heightened requirement for this metal nutrient. Indeed, the traditional view of copper as solely an active site metabolic cofactor has been challenged by emerging evidence that copper is also a dynamic signalling metal and metalloallosteric regulator, such as for copper-dependent phosphodiesterase 3B (PDE3B) in lipolysis, mitogen-activated protein kinase kinase 1 (MEK1) and MEK2 in cell growth and proliferation and the kinases ULK1 and ULK2 in autophagy. In this Perspective, we summarize our current understanding of the connection between copper and cancer and explore how challenges in the field could be addressed by using the framework of cuproplasia, which is defined as regulated copper-dependent cell proliferation and is a representative example of a broad range of metalloplasias. Cuproplasia is linked to a diverse array of cellular processes, including mitochondrial respiration, antioxidant defence, redox signalling, kinase signalling, autophagy and protein quality control. Identifying and characterizing new modes of copper-dependent signalling offers translational opportunities that leverage disease vulnerabilities to this metal nutrient.
Collapse
Affiliation(s)
- Eva J Ge
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Justin R Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gina M DeNicola
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Q Ping Dou
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI, USA
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, USA
- Department of Pathology, School of Medicine, Wayne State University, Detroit, MI, USA
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | | | - Vishal M Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Sanjeev Gupta
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Department of Pathology, Albert Einstein College of Medicine, New York, NY, USA
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, New York, NY, USA
- Diabetes Research Center, Albert Einstein College of Medicine, New York, NY, USA
- Irwin S. and Sylvia Chanin Institute for Cancer Research, Albert Einstein College of Medicine, New York, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY, USA
| | - Stephen G Kaler
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, MD, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Michael J Petris
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
- Department of Ophthalmology, University of Missouri, Columbia, MO, USA
- Genetics Area Program, University of Missouri, Columbia, MO, USA
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, USA
| | | | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, OR, USA
| | - Michael L Schilsky
- Section of Transplantation and Immunology, Division of Digestive Diseases, Department of Medicine and Surgery, Yale University Medical Center, New Haven, CT, USA
| | | | - Linda T Vahdat
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Dan Xi
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peng Yuan
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St Louis, MI, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MI, USA
| | - Donita C Brady
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
26
|
Gong W, Jiang L, Zhu Y, Jiang M, Chen D, Jin Z, Qin S, Yu Z, He Q. An Activity‐Based Ratiometric Fluorescent Probe for In Vivo Real‐Time Imaging of Hydrogen Molecules. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wanjun Gong
- Center of Hydrogen Science Shanghai Jiao Tong University Shanghai 200240 China
- School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 Guangdong China
| | - Lingdong Jiang
- Marshall Laboratory of Biomedical Engineering School of Biomedical Engineering Health Science Center Shenzhen University No. 1066 Xueyuan Avenue Shenzhen 518060 Guangdong China
| | - Yanxia Zhu
- Marshall Laboratory of Biomedical Engineering School of Biomedical Engineering Health Science Center Shenzhen University No. 1066 Xueyuan Avenue Shenzhen 518060 Guangdong China
| | - Mengna Jiang
- Marshall Laboratory of Biomedical Engineering School of Biomedical Engineering Health Science Center Shenzhen University No. 1066 Xueyuan Avenue Shenzhen 518060 Guangdong China
| | - Danyang Chen
- Center of Hydrogen Science Shanghai Jiao Tong University Shanghai 200240 China
- Marshall Laboratory of Biomedical Engineering School of Biomedical Engineering Health Science Center Shenzhen University No. 1066 Xueyuan Avenue Shenzhen 518060 Guangdong China
| | - Zhaokui Jin
- Marshall Laboratory of Biomedical Engineering School of Biomedical Engineering Health Science Center Shenzhen University No. 1066 Xueyuan Avenue Shenzhen 518060 Guangdong China
| | - Shucun Qin
- Institute of Atherosclerosis Taishan Institute for Hydrogen Biological Medicine Shandong First Medical University & Shandong Academy of Medical Sciences Tai'an 271000 Shandong China
| | - Zhiqiang Yu
- School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 Guangdong China
| | - Qianjun He
- Center of Hydrogen Science Shanghai Jiao Tong University Shanghai 200240 China
- Marshall Laboratory of Biomedical Engineering School of Biomedical Engineering Health Science Center Shenzhen University No. 1066 Xueyuan Avenue Shenzhen 518060 Guangdong China
- Institute of Atherosclerosis Taishan Institute for Hydrogen Biological Medicine Shandong First Medical University & Shandong Academy of Medical Sciences Tai'an 271000 Shandong China
| |
Collapse
|
27
|
Gong W, Jiang L, Zhu Y, Jiang M, Chen D, Jin Z, Qin S, Yu Z, He Q. An Activity-Based Ratiometric Fluorescent Probe for In Vivo Real-Time Imaging of Hydrogen Molecules. Angew Chem Int Ed Engl 2021; 61:e202114594. [PMID: 34921480 DOI: 10.1002/anie.202114594] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 11/09/2022]
Abstract
To reveal the biomedical effects and mechanisms of hydrogen molecules urgently needs hydrogen molecular imaging probes as an imperative tool, but the development of these probes is extremely challenging. In this work, a catalytic hydrogenation strategy is proposed to design and synthesize a ratiometric fluorescent probe by encapsulating Pd nanoparticles and conjugating azido-/coumarin-modified fluorophore into mesoporous silica nanoparticles, realizing in vitro and in vivo fluorescence imaging of hydrogen molecules. The developed hydrogen probe exhibits high sensitivity, rapid responsivity, high selectivity and low detection limit, enabling rapid and real-time detection of hydrogen molecules both in cells and in the body of animal and plant. By application of the developed fluorescent probe, we have directly observed superhigh transmembrane and ultrafast transport abilities of hydrogen molecules in cell, animal and plant, and discovered in vivo high diffusion of hydrogen molecules.
Collapse
Affiliation(s)
- Wanjun Gong
- Shanghai Jiao Tong University, School of Materials Science and Engineering, CHINA
| | | | - Yanxia Zhu
- Shenzhen University, School of Medicine, CHINA
| | | | - Danyang Chen
- Shanghai Jiao Tong University, School of Materials Science and Engineering, CHINA
| | - Zhaokui Jin
- Shenzhen University, School of Medicine, CHINA
| | - Shucun Qin
- Shandong First Medical University, Taishan Institute for Hydrogen Biological Medicine, CHINA
| | - Zhiqiang Yu
- Southern Medical University, School of Pharmaceutical Sciences, CHINA
| | - Qianjun He
- Shenzhen University, Health Science Center, No. 1066 Xueyuan Road, 508050, Shenzhen, CHINA
| |
Collapse
|
28
|
Ping WU, Hong REN, Dandan HAN, Li JIN, Lanning YANG, Xiaotao CUI. Effects of chemical equilibrium on Cu2+ colorimetric probe based on azobenzene with ortho amino and sulfonamide group. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Chen Y, Yan W, Guo D, Li Y, Li J, Liu H, Wei L, Yu N, Wang B, Zheng Y, Jing M, Zhao J, Ye Y. An Activity‐Based Sensing Fluorogenic Probe for Monitoring Ethylene in Living Cells and Plants. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yiliang Chen
- Key Laboratory of Plant Immunity, College of Plant Protection Nanjing Agricultural University Nanjing 210095 P. R. China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Wei Yan
- Key Laboratory of Plant Immunity, College of Plant Protection Nanjing Agricultural University Nanjing 210095 P. R. China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Duojing Guo
- Key Laboratory of Plant Immunity, College of Plant Protection Nanjing Agricultural University Nanjing 210095 P. R. China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Yu Li
- Key Laboratory of Plant Immunity, College of Plant Protection Nanjing Agricultural University Nanjing 210095 P. R. China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Ji Li
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Hao Liu
- Key Laboratory of Plant Immunity, College of Plant Protection Nanjing Agricultural University Nanjing 210095 P. R. China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Lirong Wei
- Key Laboratory of Plant Immunity, College of Plant Protection Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Na Yu
- Key Laboratory of Plant Immunity, College of Plant Protection Nanjing Agricultural University Nanjing 210095 P. R. China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Biao Wang
- Key Laboratory of Plant Immunity, College of Plant Protection Nanjing Agricultural University Nanjing 210095 P. R. China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Ying Zheng
- Key Laboratory of Plant Immunity, College of Plant Protection Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Maofeng Jing
- Key Laboratory of Plant Immunity, College of Plant Protection Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Yonghao Ye
- Key Laboratory of Plant Immunity, College of Plant Protection Nanjing Agricultural University Nanjing 210095 P. R. China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application Nanjing Agricultural University Nanjing 210095 P. R. China
| |
Collapse
|
30
|
Jiang J, Sun H, Hu Y, Lu G, Cui J, Hao J. AIE + ESIPT activity-based NIR Cu 2+ sensor with dye participated binding strategy. Chem Commun (Camb) 2021; 57:7685-7688. [PMID: 34254605 DOI: 10.1039/d1cc02233d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A novel activity-based Cu2+ fluorescent probe featuring multidentate binding sites was synthesized. It functions through chelation with Cu2+, which in turn specifically triggers hydrolysis of the probe to release a near-infrared emission with AIE + ESIPT properties. The probe was found to be capable of ratiometric imaging of Cu2+ in living HeLa cells.
Collapse
Affiliation(s)
- Jie Jiang
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China.
| | - Haifeng Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China.
| | - Yanlei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China.
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China.
| | - Jiwei Cui
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China.
| | - Jingcheng Hao
- School of Chemistry and Chemical Engineering, Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China.
| |
Collapse
|
31
|
Chen Y, Yan W, Guo D, Li Y, Li J, Liu H, Wei L, Yu N, Wang B, Zheng Y, Jing M, Zhao J, Ye Y. An Activity-Based Sensing Fluorogenic Probe for Monitoring Ethylene in Living Cells and Plants. Angew Chem Int Ed Engl 2021; 60:21934-21942. [PMID: 34291549 DOI: 10.1002/anie.202108335] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 02/06/2023]
Abstract
Ethylene (ET) is an important gaseous plant hormone. It is highly desirable to develop fluorescent probes for monitoring ethylene in living cells. We report an efficient RhIII -catalysed coupling of N-phenoxyacetamides to ethylene in the presence of an alcohol. The newly discovered coupling reaction exhibited a wide scope of N-phenoxyacetamides and excellent regioselectivity. We successfully developed three fluorophore-tagged RhIII -based fluorogenic coumarin-ethylene probes (CEPs) using this strategy for the selective and quantitative detection of ethylene. CEP-1 exhibited the highest sensitivity with a limit of detection of ethylene at 52 ppb in air. Furthermore, CEP-1 was successfully applied for imaging in living CHO-K1 cells and for monitoring endogenous-induced changes in ethylene biosynthesis in tobacco and Arabidopsis thaliana plants. These results indicate that CEP-1 has great potential to illuminate the spatiotemporal regulation of ethylene biosynthesis and ethylene signal transduction in living biological systems.
Collapse
Affiliation(s)
- Yiliang Chen
- Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Wei Yan
- Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Duojing Guo
- Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yu Li
- Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Ji Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hao Liu
- Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Lirong Wei
- Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Na Yu
- Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Biao Wang
- Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Ying Zheng
- Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Maofeng Jing
- Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yonghao Ye
- Key Laboratory of Plant Immunity, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| |
Collapse
|
32
|
Bouhadir KH, Elaridi J, Sonji G. Selective and sensitive turn on fluorescence cyanide recognition in aqueous medium based on Zn(II)-hydrazone metal complex chemosensor. LUMINESCENCE 2021; 36:1608-1620. [PMID: 34089573 DOI: 10.1002/bio.4102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022]
Abstract
Detection and quantification of the cyanide ion (CN- ) has attracted considerable attention because of its extreme toxicity. A novel Zn(II)-complex, applicable as a fluorescent chemosensor for CN- recognition, was synthesized in excellent yields from the reaction of zinc sulfate with the novel hydrazone: 3-(amino-9H-purin-yl)-N'-(hydroxybenzylidene) propanehydrazide. The structures of the hydrazone (L) and the zinc-hydrazone complex (L.Zn) were characterized by ultraviolet-visible spectrophotometry, Fourier-transform infrared spectrometry, mass spectrometry, proton- and carbon-13-nuclear magnetic resonance. The sensing performance of the proposed chemosensors, L and L.Zn, towards common ions was investigated via naked-eye studies as well as absorption and emission spectral analysis. Hydrazone (L) efficiently functioned as a fluorescence sensor for aluminum ions (Al3+ ) and zinc ions (Zn2+ ) with large binding constants, and exhibited colorimetric and fluorometric responses for several basic anions: OH- , CO3 2- , HCO3 - , HSO3 - , CH3 COO- and CN- . However, L.Zn showed quick, sensitive and specific enhancement of fluorescence intensity towards CN- anion, and a linear relationship was observed as the concentration of CN- varied from 1 to 14 μM. The detection limit was determined to be 0.14 μM, which is lower than the 1.9 μM maximum value recommended by the World Health Organization for drinking water. The practical performance of the sensor was successfully demonstrated using various environmental water samples spiked with cyanide ion.
Collapse
Affiliation(s)
- Kamal H Bouhadir
- Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Jomana Elaridi
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Ghassan Sonji
- Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
33
|
Marrone A, Fish RH. DFT Mechanism Studies: Biomimetic 1,4-NADH Chemoselective, Co-factor Regeneration with [Cp*Rh(bpy)H]+, in Tandem with the Biocatalysis Pathways of a Core Model of the (HLADH)-Zn(II) Mediated Enzyme, in the Enantioselective Reduction of Achiral Ketones to Chiral S-Alcohols. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Falcone E, Okafor M, Vitale N, Raibaut L, Sour A, Faller P. Extracellular Cu2+ pools and their detection: From current knowledge to next-generation probes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Guo C, Sedgwick AC, Hirao T, Sessler JL. Supramolecular Fluorescent Sensors: An Historical Overview and Update. Coord Chem Rev 2021; 427:213560. [PMID: 34108734 PMCID: PMC8184024 DOI: 10.1016/j.ccr.2020.213560] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Since as early as 1867, molecular sensors have been recognized as being intelligent "devices" capable of addressing a variety of issues related to our environment and health (e.g., the detection of toxic pollutants or disease-related biomarkers). In this review, we focus on fluorescence-based sensors that incorporate supramolecular chemistry to achieve a desired sensing outcome. The goal is to provide an illustrative overview, rather than a comprehensive listing of all that has been done in the field. We will thus summarize early work devoted to the development of supramolecular fluorescent sensors and provide an update on recent advances in the area (mostly from 2018 onward). A particular emphasis will be placed on design strategies that may be exploited for analyte sensing and corresponding molecular platforms. Supramolecular approaches considered include, inter alia, binding-based sensing (BBS) and indicator displacement assays (IDAs). Because it has traditionally received less treatment, many of the illustrative examples chosen will involve anion sensing. Finally, this review will also include our perspectives on the future directions of the field.
Collapse
Affiliation(s)
- Chenxing Guo
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712, United States
| | - Adam C. Sedgwick
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712, United States
| | - Takehiro Hirao
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712, United States
| |
Collapse
|
36
|
Lee S, Chung CYS, Liu P, Craciun L, Nishikawa Y, Bruemmer KJ, Hamachi I, Saijo K, Miller EW, Chang CJ. Activity-Based Sensing with a Metal-Directed Acyl Imidazole Strategy Reveals Cell Type-Dependent Pools of Labile Brain Copper. J Am Chem Soc 2020; 142:14993-15003. [PMID: 32815370 PMCID: PMC7877313 DOI: 10.1021/jacs.0c05727] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Copper is a required nutrient for life and particularly important to the brain and central nervous system. Indeed, copper redox activity is essential to maintaining normal physiological responses spanning neural signaling to metabolism, but at the same time copper misregulation is associated with inflammation and neurodegeneration. As such, chemical probes that can track dynamic changes in copper with spatial resolution, especially in loosely bound, labile forms, are valuable tools to identify and characterize its contributions to healthy and disease states. In this report, we present an activity-based sensing (ABS) strategy for copper detection in live cells that preserves spatial information by a copper-dependent bioconjugation reaction. Specifically, we designed copper-directed acyl imidazole dyes that operate through copper-mediated activation of acyl imidazole electrophiles for subsequent labeling of proximal proteins at sites of elevated labile copper to provide a permanent stain that resists washing and fixation. To showcase the utility of this new ABS platform, we sought to characterize labile copper pools in the three main cell types in the brain: neurons, astrocytes, and microglia. Exposure of each of these cell types to physiologically relevant stimuli shows distinct changes in labile copper pools. Neurons display translocation of labile copper from somatic cell bodies to peripheral processes upon activation, whereas astrocytes and microglia exhibit global decreases and increases in intracellular labile copper pools, respectively, after exposure to inflammatory stimuli. This work provides foundational information on cell type-dependent homeostasis of copper, an essential metal in the brain, as well as a starting point for the design of new activity-based probes for metals and other dynamic signaling and stress analytes in biology.
Collapse
Affiliation(s)
| | | | | | | | - Yuki Nishikawa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO Innovative Molecular Technology for Neuroscience Project, Japan Science and Technology Agency (JST), Kyoto 615-8530, Japan
| | | | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- ERATO Innovative Molecular Technology for Neuroscience Project, Japan Science and Technology Agency (JST), Kyoto 615-8530, Japan
| | | | | | | |
Collapse
|
37
|
Alday J, Mazzeo A, Suarez S. Selective detection of gasotransmitters using fluorescent probes based on transition metal complexes. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
Morstein J, Höfler D, Ueno K, Jurss JW, Walvoord RR, Bruemmer KJ, Rezgui SP, Brewer TF, Saitoe M, Michel BW, Chang CJ. Ligand-Directed Approach to Activity-Based Sensing: Developing Palladacycle Fluorescent Probes That Enable Endogenous Carbon Monoxide Detection. J Am Chem Soc 2020; 142:15917-15930. [DOI: 10.1021/jacs.0c06405] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | | | - Kohei Ueno
- Tokyo Metropolitan Institute of Medical Science, Tokyo 1568506, Japan
| | | | | | | | - Samir P. Rezgui
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
| | | | - Minoru Saitoe
- Tokyo Metropolitan Institute of Medical Science, Tokyo 1568506, Japan
| | - Brian W. Michel
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
| | | |
Collapse
|
39
|
Bruemmer KJ, Crossley SWM, Chang CJ. Activity-Based Sensing: A Synthetic Methods Approach for Selective Molecular Imaging and Beyond. Angew Chem Int Ed Engl 2020; 59:13734-13762. [PMID: 31605413 PMCID: PMC7665898 DOI: 10.1002/anie.201909690] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 01/10/2023]
Abstract
Emerging from the origins of supramolecular chemistry and the development of selective chemical receptors that rely on lock-and-key binding, activity-based sensing (ABS)-which utilizes molecular reactivity rather than molecular recognition for analyte detection-has rapidly grown into a distinct field to investigate the production and regulation of chemical species that mediate biological signaling and stress pathways, particularly metal ions and small molecules. Chemical reactions exploit the diverse chemical reactivity of biological species to enable the development of selective and sensitive synthetic methods to decipher their contributions within complex living environments. The broad utility of this reaction-driven approach facilitates application to imaging platforms ranging from fluorescence, luminescence, photoacoustic, magnetic resonance, and positron emission tomography modalities. ABS methods are also being expanded to other fields, such as drug and materials discovery.
Collapse
Affiliation(s)
- Kevin J Bruemmer
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Steven W M Crossley
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
40
|
Bruemmer KJ, Crossley SWM, Chang CJ. Aktivitätsbasierte Sensorik: ein synthetisch‐methodischer Ansatz für die selektive molekulare Bildgebung und darüber hinaus. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201909690] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kevin J. Bruemmer
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | | | - Christopher J. Chang
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute University of California, Berkeley Berkeley CA 94720 USA
| |
Collapse
|
41
|
Messina MS, Maynard HD. Modification of Proteins Using Olefin Metathesis. MATERIALS CHEMISTRY FRONTIERS 2020; 4:1040-1051. [PMID: 34457313 PMCID: PMC8388616 DOI: 10.1039/c9qm00494g] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Olefin metathesis has revolutionized synthetic approaches to carbon-carbon bond formation. With a rich history beginning in industrial settings through its advancement in academic laboratories leading to new and highly active metathesis catalysts, olefin metathesis has found use in the generation of complex natural products, the cyclization of bioactive materials, and in the polymerization of new and unique polymer architectures. Throughout this review, we will trace the deployment of olefin metathesis-based strategies for the modification of proteins, a process which has been facilitated by the extensive development of stable, isolable, and highly active transition-metal-based metathesis catalysts. We first begin by summarizing early works which detail peptide modification strategies that played a vital role in identifying stable metathesis catalysts. We then delve into protein modification using cross metathesis and finish with recent work on the generation of protein-polymer conjugates through ring-opening metathesis polymerization.
Collapse
Affiliation(s)
- Marco S Messina
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, USA
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, USA
| | - Heather D Maynard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, USA
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, USA
| |
Collapse
|
42
|
Ohata J, Bruemmer KJ, Chang CJ. Activity-Based Sensing Methods for Monitoring the Reactive Carbon Species Carbon Monoxide and Formaldehyde in Living Systems. Acc Chem Res 2019; 52:2841-2848. [PMID: 31487154 PMCID: PMC7081942 DOI: 10.1021/acs.accounts.9b00386] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Carbon is central to the chemistry of life, and in addition to its fundamental roles as a static component of all major biomolecules spanning proteins, nucleic acids, sugars, and lipids, emerging evidence shows that small and transient carbon-based metabolites, termed reactive carbon species (RCS), are dynamic signaling/stress agents that can influence a variety of biological pathways. Recent examples include the identification of carbon monoxide (CO) as an ion channel blocker and endogenous formaldehyde (FA) as a one-carbon metabolic unit formed from the spontaneous degradation of dietary folate metabolites. These findings motivate the development of analytical tools for transient carbon species that can achieve high specificity and sensitivity to further investigate RCS signaling and stress pathways at the cell, tissue, and whole-organism levels. This Account summarizes work from our laboratory on the development of new chemical tools to monitor two important one-carbon RCS, CO and FA, through activity-based sensing (ABS), where we leverage the unique chemical reactivities of these small and transient analytes, rather than lock-and-key binding considerations, for selective detection. Classic inorganic/organometallic and organic transformations form the basis for this approach. For example, to distinguish CO from other biological diatomics of similar shape and size (e.g., nitric oxide and oxygen), we exploit palladium-mediated carbonylation as a synthetic method for CO sensing. The high selectivity of this carbonylation approach successfully enables imaging of dynamic changes in intracellular CO levels in live cells. Likewise, we apply the aza-Cope reaction for FA detection to provide high selectivity for this one-carbon unit over other larger biological aldehydes that are reactive electrophiles, such as acetaldehyde and methylglyoxal. By relying on an activity-based trigger as a design principle for small-molecule detection, this approach can be generalized to create a toolbox of selective FA imaging reagents, as illustrated by a broad range of FA probes spanning turn-on and ratiometric fluorescence imaging, positron emission tomography imaging, and chemiluminescence imaging modalities. Moreover, these chemical tools have revealed new one-carbon biology through the identification of folate as a dietary source of FA and alcohol dehydrogenase 5 as a target for FA metabolism. Indeed, these selective RCS detection methods have been expanded to a wider array of imaging platforms, such as metal-complex-based time-gated luminescence and materials-based imaging scaffolds (e.g., nanotubes, nanoparticles, and carbon dots), with modalities extending to Raman and Rayleigh scattering readouts. This pursuit of leveraging selective chemical reactivity to develop highly specific ABS probes for imaging of RCS provides not only practical tools for deciphering RCS-dependent biology but also a general design platform for developing ABS probes for a broader range of biological analytes encompassing elements across the periodic table.
Collapse
Affiliation(s)
- Jun Ohata
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Kevin J. Bruemmer
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|