1
|
Ditta A, Zhang R, Nawaz H, Majeed MI, He S, Zhuang Z, Rütten S, Shahzadi A, Yaseen S, Kiessling F, Hu J, Lammers T, Pallares RM. An exploratory clinical study of the diagnosis and staging of typhoid fever using label-free surface-enhanced Raman spectroscopy liquid biopsy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 333:125864. [PMID: 39938329 DOI: 10.1016/j.saa.2025.125864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Typhoid fever is a highly contagious tropical disease that requires early diagnosis to avoid rapid spread among communities and long-lasting effects on patients. Standard diagnostic protocols rely on microbial cultures and agglutination assays, which have inherent limitations, including low sensitivity, slow clinical results, and the need for often unavailable reagents and equipment in the regions of the outbreak. Label-free surface-enhanced Raman spectroscopy (SERS) is a promising chemical identification technology that can be performed in liquid samples. In this clinical study, we demonstrate the use of label-free SERS based on gold nanoparticles to diagnose and stage typhoid fever through liquid biopsy analysis of 30 patient serum samples and an unsupervised algorithm. Our method can discriminate between healthy and typhoid fever patient samples, as well as identify whether the disease is in an early or consolidated stage. Using only 15 spectra from each patient sample, label-free SERS correctly diagnosed and staged all tested samples (with a true positive rate of 1.00 and a clustering silhouette score of 0.6) as demonstrated by a cross-validation approach. Taken together, our method opens up new avenues for the accurate, rapid, and inexpensive diagnosis and staging of tropical diseases based on liquid biopsy samples.
Collapse
Affiliation(s)
- Allah Ditta
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Rui Zhang
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Irfan Majeed
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Shengjie He
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zijie Zhuang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Stephan Rütten
- Electron Microscope Facility, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Aleena Shahzadi
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Sonia Yaseen
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Jingtian Hu
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Roger M Pallares
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, Aachen 52074, Germany.
| |
Collapse
|
2
|
Yu L, Song Y, Bi J, Gao Y, Jiang C, Yang Z, Qi H, Yu H, Yang W, Gong Q, Shi C, Wang M. Exploring the potent hydrolytic activity of chitosan-cerium complex microspheres resin for organophosphorus pesticide degradation. Heliyon 2024; 10:e33642. [PMID: 39027539 PMCID: PMC11255554 DOI: 10.1016/j.heliyon.2024.e33642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
Chitosan is a biocompatible, non-toxic and renewable natural basic polysaccharide that can be cross-linked and reacted with Ce(IV) to form a physiologically active chitosan-Ce(IV) complex. To investigate this novel complex and its potential to hydrolyze phosphate ester bonds, chitosan-cerium complex microspheres resin (CS-CCMR) was prepared from chitosan and ceric ammonium nitrate by reversed-phase suspension cross-linking polymerization. CS-CCMR was characterized, its ability to hydrolyze disodium p-nitrobenzene phosphate (PNPP2Na) and organophosphorus pesticides was investigated, and the hydrolytic mechanism was explored. CS-CCMR was composed of dark yellow microspheres with smooth surfaces and dense pores. It was found that CS-CCMR contained 4.507 mg/g Ce(IV), indicating that coordination polymerization between Ce(IV) and chitosan was successful. The presence of Ce(IV) in CS-CCMR was confirmed by multiple analytical methods and it was found that coordination of Ce(IV) by chitosan was mediated by the nitrogen atom of the amino group and the oxygen atom of the hydroxyl group of chitosan. It was shown that CS-CCMR efficiently hydrolyzed the phosphate ester bonds of PNPP2Na and five organophosphorus pesticides. Hydrolysis of PNPP2Na is potentially accomplished by charge neutralization and nucleophilic substitution. The mechanism of parathion degradation by CS-CCMR involves modification of the nitro group to give aminoparathion, followed by cleavage of the P-O bond to generate diazinphos. Consequently, the novel chitosan-Ce(IV) complex exhibits great efficiency for hydrolysis of phosphate ester bonds and CS-CCMR is expected to be developed as an agent to reduce the possibility of contamination of fruit and vegetable drinks by organophosphorus pesticides.
Collapse
Affiliation(s)
- Lina Yu
- Shandong Peanut Research Institute, Qingdao, 266100, PR China
| | - Yu Song
- Shandong Peanut Research Institute, Qingdao, 266100, PR China
| | - Jie Bi
- Shandong Peanut Research Institute, Qingdao, 266100, PR China
| | - Yuan Gao
- Shandong Peanut Research Institute, Qingdao, 266100, PR China
| | - Chen Jiang
- Shandong Peanut Research Institute, Qingdao, 266100, PR China
| | - Zhen Yang
- Shandong Peanut Research Institute, Qingdao, 266100, PR China
| | - Hongtao Qi
- College of Life Sciences, Qingdao University, Qingdao, 266071, PR China
| | - Honghua Yu
- Shandong Innovation and Entrepreneurship Community of Science and Technology Special Commissioner, Jinan, 250000, PR China
| | - Weiqiang Yang
- Shandong Peanut Research Institute, Qingdao, 266100, PR China
| | - Qingxuan Gong
- Shandong Peanut Research Institute, Qingdao, 266100, PR China
| | - Chengren Shi
- Shandong Peanut Research Institute, Qingdao, 266100, PR China
| | - Mingqing Wang
- Shandong Peanut Research Institute, Qingdao, 266100, PR China
| |
Collapse
|
3
|
Pallares RM, An DD, Hebert S, Loguinov A, Proctor M, Villalobos JA, Bjornstad KA, Rosen CJ, Vulpe C, Abergel RJ. Screening the complex biological behavior of late lanthanides through genome-wide interactions. Metallomics 2023; 15:mfad039. [PMID: 37336558 DOI: 10.1093/mtomcs/mfad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/26/2023] [Indexed: 06/21/2023]
Abstract
Despite their similar physicochemical properties, recent studies have demonstrated that lanthanides can display different biological behaviors. Hence, the lanthanide series can be divided into three parts, namely early, mid, and late lanthanides, based on their interactions with biological systems. In particular, the late lanthanides demonstrate distinct, but poorly understood biological activity. In the current study, we employed genome-wide functional screening to help understand biological effects of exposure to Yb(III) and Lu(III), which were selected as representatives of the late lanthanides. As a model organism, we used Saccharomyces cerevisiae, since it shares many biological functions with humans. Analysis of the functional screening results indicated toxicity of late lanthanides is consistent with disruption of vesicle-mediated transport, and further supported a role for calcium transport processes and mitophagy in mitigating toxicity. Unexpectedly, our analysis suggested that late lanthanides target proteins with SH3 domains, which may underlie the observed toxicity. This study provides fundamental insights into the unique biological chemistry of late lanthanides, which may help devise new avenues toward the development of decorporation strategies and bio-inspired separation processes.
Collapse
Affiliation(s)
- Roger M Pallares
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Forckenbeckstr. 55, Aachen 52074, Germany
| | - Dahlia D An
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Solene Hebert
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alex Loguinov
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Michael Proctor
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jonathan A Villalobos
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kathleen A Bjornstad
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Chris J Rosen
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Christopher Vulpe
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Nuclear Engineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Bhowmik D, Maitra U. A photoluminescence assay with a portable device for rapid, sensitive and selective detection of europium and terbium. Chem Sci 2023; 14:4901-4904. [PMID: 37181768 PMCID: PMC10171180 DOI: 10.1039/d3sc00009e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Rare earth elements are essential in many real-life applications, but their steady supply is being affected by multiple challenges. The recycling of lanthanides from electronic and other waste is thus gaining momentum which makes the detection of lanthanides with high sensitivity and selectivity a critical area of research. We now report a paper-based photoluminescent sensor for the rapid detection of terbium and europium with low detection limit (nM), which has the potential to facilitate recycling processes.
Collapse
Affiliation(s)
- Dipankar Bhowmik
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 Karnataka India
| | - Uday Maitra
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 Karnataka India
| |
Collapse
|
5
|
Sadiq Z, Safiabadi Tali SH, Hajimiri H, Al-Kassawneh M, Jahanshahi-Anbuhi S. Gold Nanoparticles-Based Colorimetric Assays for Environmental Monitoring and Food Safety Evaluation. Crit Rev Anal Chem 2023; 54:2209-2244. [PMID: 36629748 DOI: 10.1080/10408347.2022.2162331] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recent years have witnessed an exponential increase in the research on gold nanoparticles (AuNPs)-based colorimetric sensors to revolutionize point-of-use sensing devices. Hence, this review is compiled focused on current progress in the design and performance parameters of AuNPs-based sensors. The review begins with the characteristics of AuNPs, followed by a brief explanation of synthesis and functionalization methods. Then, the mechanisms of AuNPs-based sensors are comprehensively explained in two broad categories based on the surface plasmon resonance (SPR) characteristics of AuNPs and their peroxidase-like catalytic properties (nanozyme). SPR-based colorimetric sensors further categorize into aggregation, anti-aggregation, etching, growth-mediated, and accumulation-based methods depending on their sensing mechanisms. On the other hand, peroxidase activity-based colorimetric sensors are divided into two methods based on the expression or inhibition of peroxidase-like activity. Next, the analytes in environmental and food samples are classified as inorganic, organic, and biological pollutants, and recent progress in detection of these analytes are reviewed in detail. Finally, conclusions are provided, and future directions are highlighted. Improving the sensitivity, reproducibility, multiplexing capabilities, and cost-effectiveness for colorimetric detection of various analytes in environment and food matrices will have significant impact on fast testing of hazardous substances, hence reducing the pollution load in environment as well as rendering food contamination to ensure food safety.
Collapse
Affiliation(s)
- Zubi Sadiq
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Seyed Hamid Safiabadi Tali
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Hasti Hajimiri
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Muna Al-Kassawneh
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Sana Jahanshahi-Anbuhi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
6
|
Pallares RM, Abergel RJ. Development of radiopharmaceuticals for targeted alpha therapy: Where do we stand? Front Med (Lausanne) 2022; 9:1020188. [PMID: 36619636 PMCID: PMC9812962 DOI: 10.3389/fmed.2022.1020188] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Targeted alpha therapy is an oncological treatment, where cytotoxic doses of alpha radiation are locally delivered to tumor cells, while the surrounding healthy tissue is minimally affected. This therapeutic strategy relies on radiopharmaceuticals made of medically relevant radionuclides chelated by ligands, and conjugated to targeting vectors, which promote the drug accumulation in tumor sites. This review discusses the state-of-the-art in the development of radiopharmaceuticals for targeted alpha therapy, breaking down their key structural components, such as radioisotope, targeting vector, and delivery formulation, and analyzing their pros and cons. Moreover, we discuss current drawbacks that are holding back targeted alpha therapy in the clinic, and identify ongoing strategies in field to overcome those issues, including radioisotope encapsulation in nanoformulations to prevent the release of the daughters. Lastly, we critically discuss potential opportunities the field holds, which may contribute to targeted alpha therapy becoming a gold standard treatment in oncology in the future.
Collapse
Affiliation(s)
- Roger M. Pallares
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA, United States
| | - Rebecca J. Abergel
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA, United States,Department of Nuclear Engineering, University of California, Berkeley, Berkeley, CA, United States,*Correspondence: Rebecca J. Abergel,
| |
Collapse
|
7
|
Lu Y, Xiao Y, Liu LF, Xiao XL, Liao LF, Nie CM. Theoretical probing into complexation of Si-5LIO-1-Cm-3,2-HOPO with Uranyl. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02916-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Pallares R, An DD, Hébert S, Loguinov A, Proctor M, Villalobos JA, Bjornstad KA, Rosen CJ, Vulpe CD, Abergel RJ. Identifying Toxicity Mechanisms Associated with Early Lanthanide Exposure through Multidimensional Genome-Wide Screening. ACS OMEGA 2022; 7:34412-34419. [PMID: 36188298 PMCID: PMC9521019 DOI: 10.1021/acsomega.2c04045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Lanthanides are a series of elements essential to a wide range of applications, from clean energy production to healthcare. Despite their presence in multiple products and technologies, their toxicological characteristics have been only partly studied. Recently, our group has employed a genomic approach to extensively characterize the toxicity mechanisms of lanthanides. Even though we identified substantially different behaviors for mid and late lanthanides, the toxicological profiles of early lanthanides remained elusive. Here, we overcome this gap by describing a multidimensional genome-wide toxicogenomic study for two early lanthanides, namely, lanthanum and praseodymium. We used Saccharomyces cerevisiae as a model system since its genome shares many biological pathways with humans. By performing functional analysis and protein-protein interaction network analysis, we identified the main genes and proteins that participate in the yeast response to counter metal harmful effects. Moreover, our analysis also highlighted key enzymes that are dysregulated by early lanthanides, inducing cytotoxicity. Several of these genes and proteins have human orthologues, indicating that they may also participate in the human response against the metals. By highlighting the key genes and proteins in lanthanide-induced toxicity, this work may contribute to the development of new prophylactic and therapeutic strategies against lanthanide harmful exposures.
Collapse
Affiliation(s)
- Roger
M. Pallares
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Dahlia D. An
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Solène Hébert
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Alex Loguinov
- Center
for Environmental and Human Toxicology, Department of Physiological
Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Michael Proctor
- Center
for Environmental and Human Toxicology, Department of Physiological
Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Jonathan A. Villalobos
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Kathleen A. Bjornstad
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Chris J. Rosen
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Chris D. Vulpe
- Center
for Environmental and Human Toxicology, Department of Physiological
Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32611, United States
| | - Rebecca J. Abergel
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Nuclear Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
9
|
Santos MA, Irto A, Buglyó P, Chaves S. Hydroxypyridinone-Based Metal Chelators towards Ecotoxicity: Remediation and Biological Mechanisms. Molecules 2022; 27:1966. [PMID: 35335329 PMCID: PMC8950932 DOI: 10.3390/molecules27061966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 01/29/2023] Open
Abstract
Hydroxypyridinones (HPs) are recognized as excellent chemical tools for engineering a diversity of metal chelating agents, with high affinity for hard metal ions, exhibiting a broad range of activities and applications, namely in medical, biological and environmental contexts. They are easily made and functionalizable towards the tuning of their pharmacokinetic properties or the improving of their metal complex thermodynamic stabilities. In this review, an analysis of the recently published works on hydroxypyridinone-based ligands, that have been mostly addressed for environmental applications, namely for remediation of hard metal ion ecotoxicity in living beings and other biological matrices is carried out. In particular, herein the most recent developments in the design of new chelating systems, from bidentate mono-HP to polydentate multi-HP derivatives, with a structural diversity of soluble or solid-supported backbones are outlined. Along with the ligand design, an analysis of the relationship between their structures and activities is presented and discussed, namely associated with the metal affinity and the thermodynamic stability of the corresponding metal complexes.
Collapse
Affiliation(s)
- M. Amélia Santos
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Anna Irto
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale F. Stagno d’Alcontres, 31, I-98166 Messina, Italy;
| | - Péter Buglyó
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary;
| | - Sílvia Chaves
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| |
Collapse
|
10
|
Pallares RM, Charrier M, Tejedor-Sanz S, Li D, Ashby PD, Ajo-Franklin CM, Ralston CY, Abergel RJ. Precision Engineering of 2D Protein Layers as Chelating Biogenic Scaffolds for Selective Recovery of Rare-Earth Elements. J Am Chem Soc 2022; 144:854-861. [PMID: 34985894 DOI: 10.1021/jacs.1c10802] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rare-earth elements, which include the lanthanide series, are key components of many clean energy technologies, including wind turbines and photovoltaics. Because most of these 4f metals are at high risk of supply chain disruption, the development of new recovery technologies is necessary to avoid future shortages, which may impact renewable energy production. This paper reports the synthesis of a non-natural biogenic material as a potential platform for bioinspired lanthanide extraction. The biogenic material takes advantage of the atomically precise structure of a 2D crystalline protein lattice with the high lanthanide binding affinity of hydroxypyridinonate chelators. Luminescence titration data demonstrated that the engineered protein layers have affinities for all tested lanthanides in the micromolar-range (dissociation constants) and a higher binding affinity for the lanthanide ions with a smaller ionic radius. Furthermore, competitive titrations confirmed the higher selectivity (up to several orders of magnitude) of the biogenic material for lanthanides compared to other cations commonly found in f-element sources. Lastly, the functionalized protein layers could be reused in several cycles by desorbing the bound metal with citrate solutions. Taken together, these results highlight biogenic materials as promising bioadsorption platforms for the selective binding of lanthanides, with potential applications in the recovery of these critical elements from waste.
Collapse
Affiliation(s)
- Roger M Pallares
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Marimikel Charrier
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Sara Tejedor-Sanz
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Dong Li
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Paul D Ashby
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Caroline M Ajo-Franklin
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of BioSciences, Rice University, Houston, Texas 77005, United States
| | - Corie Y Ralston
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Nuclear Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Pallares RM, An DD, Hébert S, Faulkner D, Loguinov A, Proctor M, Villalobos JA, Bjornstad KA, Rosen CJ, Vulpe C, Abergel RJ. Delineating toxicity mechanisms associated with MRI contrast enhancement through a multidimensional toxicogenomic profiling of gadolinium. Mol Omics 2022; 18:237-248. [PMID: 35040455 DOI: 10.1039/d1mo00267h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gadolinium is a metal used in contrast agents for magnetic resonance imaging. Although gadolinium is widely used in clinical settings, many concerns regarding its toxicity and bioaccumulation after gadolinium-based contrast agent administration have been raised and published over the last decade. To date, most toxicological studies have focused on identifying acute effects following gadolinium exposure, rather than investigating associated toxicity mechanisms. In this study, we employ functional toxicogenomics to assess mechanistic interactions of gadolinium with Saccharomyces cerevisiae. Furthermore, we determine which mechanisms are conserved in humans, and their implications for diseases related to the use of gadolinium-based contrast agents in medicine. A homozygous deletion pool of 4291 strains were screened to identify biological functions and pathways disturbed by the metal. Gene ontology and pathway enrichment analyses showed endocytosis and vesicle-mediated transport as the main yeast response to gadolinium, while certain metabolic processes, such as glycosylation, were the primary disrupted functions after the metal treatments. Cluster and protein-protein interaction network analyses identified proteins mediating vesicle-mediated transport through the Golgi apparatus and the vacuole, and vesicle cargo exocytosis as key components to reduce the metal toxicity. Moreover, the metal seemed to induce cytotoxicity by disrupting the function of enzymes (e.g. transferases and proteases) and chaperones involved in metabolic processes. Several of the genes and proteins associated with gadolinium toxicity are conserved in humans, suggesting that they may participate in pathologies linked to gadolinium-based contrast agent exposures. We thereby discuss the potential role of these conserved genes and gene products in gadolinium-induced nephrogenic systemic fibrosis, and propose potential prophylactic strategies to prevent its adverse health effects.
Collapse
Affiliation(s)
- Roger M Pallares
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Dahlia D An
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Solène Hébert
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - David Faulkner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Alex Loguinov
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Michael Proctor
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Jonathan A Villalobos
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Kathleen A Bjornstad
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Chris J Rosen
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Christopher Vulpe
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,Department of Nuclear Engineering, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
12
|
Bartoli F, Eckelman WC, Boyd M, Mairs RJ, Erba PA. Principles of Molecular Targeting for Radionuclide Therapy. NUCLEAR ONCOLOGY 2022:41-93. [DOI: 10.1007/978-3-031-05494-5_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Pallares RM, An DD, Hébert S, Faulkner D, Loguinov A, Proctor M, Villalobos JA, Bjornstad KA, Rosen CJ, Vulpe C, Abergel RJ. Multidimensional genome-wide screening in yeast provides mechanistic insights into europium toxicity. Metallomics 2021; 13:6409834. [PMID: 34694395 DOI: 10.1093/mtomcs/mfab061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022]
Abstract
Europium is a lanthanide metal that is highly valued in optoelectronics. Even though europium is used in many commercial products, its toxicological profile has only been partially characterized, with most studies focusing on identifying lethal doses in different systems or bioaccumulation in vivo. This paper describes a genome-wide toxicogenomic study of europium in Saccharomyces cerevisiae, which shares many biological functions with humans. By using a multidimensional approach and functional and network analyses, we have identified a group of genes and proteins associated with the yeast responses to ameliorate metal toxicity, which include metal discharge paths through vesicle-mediated transport, paths to regulate biologically relevant cations, and processes to reduce metal-induced stress. Furthermore, the analyses indicated that europium promotes yeast toxicity by disrupting the function of chaperones and cochaperones, which have metal-binding sites. Several of the genes and proteins highlighted in our study have human orthologues, suggesting they may participate in europium-induced toxicity in humans. By identifying the endogenous targets of europium as well as the already existing paths that can decrease its toxicity, we can determine specific genes and proteins that may help to develop future therapeutic strategies.
Collapse
Affiliation(s)
- Roger M Pallares
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Dahlia D An
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Solène Hébert
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - David Faulkner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alex Loguinov
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Michael Proctor
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jonathan A Villalobos
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kathleen A Bjornstad
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Chris J Rosen
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Christopher Vulpe
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Department of Nuclear Engineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
14
|
Dash D, Baral M, Kanungo BK. Development of a Flexible Tripodal Hydroxypyridinone Ligand with Cyclohexane Framework: Complexation, Solution Thermodynamics, Spectroscopic and DFT Studies. ChemistrySelect 2021. [DOI: 10.1002/slct.202102962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dibyajit Dash
- Department of Chemistry Sant Longowal Institute of Engineering and Technology Longowal Punjab 148106 India
| | - Minati Baral
- Department of Chemistry National Institute of Technology Kurukshetra Haryana 136119 India
| | - Bikram K Kanungo
- Department of Chemistry Sant Longowal Institute of Engineering and Technology Longowal Punjab 148106 India
| |
Collapse
|
15
|
Zairov RR, Dovzhenko AP, Sarkanich KA, Nizameev IR, Luzhetskiy AV, Sudakova SN, Podyachev SN, Burilov VA, Vatsouro IM, Vomiero A, Mustafina AR. Single Excited Dual Band Luminescent Hybrid Carbon Dots-Terbium Chelate Nanothermometer. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3080. [PMID: 34835844 PMCID: PMC8618998 DOI: 10.3390/nano11113080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 12/18/2022]
Abstract
The report introduces hybrid polyelectrolyte-stabilized colloids combining blue and green-emitting building blocks, which are citrate carbon dots (CDs) and [TbL]+ chelate complexes with 1,3-diketonate derivatives of calix[4]arene. The joint incorporation of green and blue-emitting blocks into the polysodium polystyrenesulfonate (PSS) aggregates is carried out through the solvent-exchange synthetic technique. The coordinative binding between Tb3+ centers and CD surface groups in initial DMF solutions both facilitates joint incorporation of [TbL]+ complexes and the CDs into the PSS-based nanobeads and affects fluorescence properties of [TbL]+ complexes and CDs, as well as their ability for temperature sensing. The variation of the synthetic conditions is represented herein as a tool for tuning the fluorescent response of the blue and green-emitting blocks upon heating and cooling. The revealed regularities enable developing either dual-band luminescent colloids for monitoring temperature changes within 25-50 °C through double color emission or transforming the colloids into ratiometric temperature sensors via simple concentration variation of [TbL]+ and CDs in the initial DMF solution. Novel hybrid carbon dots-terbium chelate PSS-based nanoplatform opens an avenue for a new generation of sensitive and customizable single excited dual-band nanothermometers.
Collapse
Affiliation(s)
- Rustem R. Zairov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088 Kazan, Russia; (S.N.S.); (S.N.P.); (A.R.M.)
| | - Alexey P. Dovzhenko
- Department of Physical Chemistry, Kazan (Volga Region) Federal University, Kremlyovskaya Str., 18, 420008 Kazan, Russia; (A.P.D.); (K.A.S.); (V.A.B.)
| | - Kirill A. Sarkanich
- Department of Physical Chemistry, Kazan (Volga Region) Federal University, Kremlyovskaya Str., 18, 420008 Kazan, Russia; (A.P.D.); (K.A.S.); (V.A.B.)
| | - Irek R. Nizameev
- Department of Nanotechnologies in Electronics, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 10, K. Marx Str., 420111 Kazan, Russia;
| | - Andrey V. Luzhetskiy
- Federal State Autonomous Educational Institution of Higher Education “Gubkin Russian State University of Oil and Gas” (National Research University), Leninsky Prospect, 65, 119991 Moscow, Russia;
| | - Svetlana N. Sudakova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088 Kazan, Russia; (S.N.S.); (S.N.P.); (A.R.M.)
| | - Sergey N. Podyachev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088 Kazan, Russia; (S.N.S.); (S.N.P.); (A.R.M.)
| | - Vladimir A. Burilov
- Department of Physical Chemistry, Kazan (Volga Region) Federal University, Kremlyovskaya Str., 18, 420008 Kazan, Russia; (A.P.D.); (K.A.S.); (V.A.B.)
| | - Ivan M. Vatsouro
- Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin’s Hills 1, 119991 Moscow, Russia;
| | - Alberto Vomiero
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University Venezia, Via Torino 155, 30172 Venezia-Mestre, Italy;
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Asiya R. Mustafina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088 Kazan, Russia; (S.N.S.); (S.N.P.); (A.R.M.)
| |
Collapse
|
16
|
Pallares RM, An DD, Deblonde GJP, Kullgren B, Gauny SS, Jarvis EE, Abergel RJ. Efficient discrimination of transplutonium actinides by in vivo models. Chem Sci 2021; 12:5295-5301. [PMID: 34168780 PMCID: PMC8179619 DOI: 10.1039/d0sc06610a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/24/2021] [Indexed: 01/18/2023] Open
Abstract
Transplutonium actinides are among the heaviest elements whose macroscale chemical properties can be experimentally tested. Being scarce and hazardous, their chemistry is rather unexplored, and they have traditionally been considered a rather homogeneous group, with most of their characteristics extrapolated from lanthanide surrogates. Newly emerged applications for these elements, combined with their persistent presence in nuclear waste, however, call for a better understanding of their behavior in complex living systems. In this work, we explored the biodistribution and excretion profiles of four transplutonium actinides (248Cm, 249Bk, 249Cf and 253Es) in a small animal model, and evaluated their in vivo sequestration and decorporation by two therapeutic chelators, diethylenetriamine pentaacetic acid and 3,4,3-LI(1,2-HOPO). Notably, the organ deposition patterns of those transplutonium actinides were element-dependent, particularly in the liver and skeleton, where lower atomic number radionuclides showed up to 7-fold larger liver/skeleton accumulation ratios. Nevertheless, the metal content in multiple organs was significantly decreased for all tested actinides, particularly in the liver, after administering the therapeutic agent 3,4,3-LI(1,2-HOPO) post-contamination. Lastly, the systematic comparison of the radionuclide biodistributions showed discernibly element-dependent organ depositions, which may provide insights into design rules for new bio-inspired chelating systems with high sequestration and separation performance.
Collapse
Affiliation(s)
- Roger M Pallares
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Dahlia D An
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Gauthier J-P Deblonde
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Glenn T. Seaborg Institute, Physical and Life Sciences, Lawrence Livermore National Laboratory Livermore CA 94550 USA
| | - Birgitta Kullgren
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Stacey S Gauny
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Erin E Jarvis
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Department of Nuclear Engineering, University of California Berkeley CA 94720 USA
| |
Collapse
|
17
|
M. Pallares R, Hébert S, Sturzbecher-Hoehne M, Abergel RJ. Chelator-assisted high performance liquid chromatographic separation of trivalent lanthanides and actinides. NEW J CHEM 2021. [DOI: 10.1039/d1nj01966j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
3,4,3-LI(1,2-HOPO) can be used as a HPLC chelating agent, promoting lanthanide and trivalent actinide separation without column modifications.
Collapse
Affiliation(s)
- Roger M. Pallares
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | - Solène Hébert
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | | | - Rebecca J. Abergel
- Chemical Sciences Division
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
- Department of Nuclear Engineering
| |
Collapse
|
18
|
Pallares RM, Panyala NR, Sturzbecher-Hoehne M, Illy MC, Abergel RJ. Characterizing the general chelating affinity of serum protein fetuin for lanthanides. J Biol Inorg Chem 2020; 25:941-948. [DOI: 10.1007/s00775-020-01815-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/31/2020] [Indexed: 12/27/2022]
|
19
|
Pallares RM, Agbo P, Liu X, An DD, Gauny SS, Zeltmann SE, Minor AM, Abergel RJ. Engineering Mesoporous Silica Nanoparticles for Targeted Alpha Therapy against Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40078-40084. [PMID: 32805833 DOI: 10.1021/acsami.0c11051] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Targeted alpha therapy, where highly cytotoxic doses are delivered to tumor cells while sparing surrounding healthy tissue, has emerged as a promising treatment against cancer. Radionuclide conjugation with targeting vectors and dose confinement, however, are still limiting factors for the widespread application of this therapy. In the current study, we developed multifunctional silica nanoconstructs for targeted alpha therapy that show targeting capabilities against breast cancer cells, cytotoxic responses at therapeutic dosages, and enhanced clearance. The silica nanoparticles were conjugated to transferrin, which promoted particle accumulation in cancerous cells, and 3,4,3-LI(1,2-HOPO), a chelator with high selectivity and binding affinity for f-block elements. High cytotoxic effects were observed when the nanoparticles were loaded with 225Ac, a clinically relevant radioisotope. Lastly, in vivo studies in mice showed that the administration of radionuclides with nanoparticles enhanced their excretion and minimized their deposition in bones. These results highlight the potential of multifunctional silica nanoparticles as delivery systems for targeted alpha therapy and offer insight into design rules for the development of new nanotherapeutic agents.
Collapse
Affiliation(s)
- Roger M Pallares
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Peter Agbo
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Xin Liu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Dahlia D An
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Stacey S Gauny
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Steven E Zeltmann
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Andrew M Minor
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Nuclear Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
20
|
Pallares RM, An DD, Tewari P, Wang ET, Abergel RJ. Rapid Detection of Gadolinium-Based Contrast Agents in Urine with a Chelated Europium Luminescent Probe. ACS Sens 2020; 5:1281-1286. [PMID: 32352783 DOI: 10.1021/acssensors.0c00615] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gadolinium-based contrast agents are widely used in magnetic resonance imaging procedures to enhance image contrast. Despite their ubiquitous use in clinical settings, gadolinium is not an innocuous element, as suggested by several disorders associated with its use. Therefore, novel analytical technologies capable of tracking contrast agent excretion through urine are necessary for optimizing patient safety after imaging procedures. Here, we describe an assay to detect and quantify contrast agents in urine based on the luminescence quenching of a metal chelate probe, Eu3+-3,4,3-LI(1,2-HOPO), which only requires 10 min incubation before measurement. Gadolinium-based contrast agents prevent the formation of the Eu3+-3,4,3-LI(1,2-HOPO) complex, subsequently decreasing the luminescence of the assay solution. Three commercial contrast agents, Magnevist, Multihance, and Omniscan, were used to demonstrate the analytical concept in synthetic human urine, and subsequent quantification of mouse urine samples. To the best of our knowledge, this is the first assay capable of detecting and quantifying gadolinium-based contrast agents in urine without sample preparation or digestion.
Collapse
Affiliation(s)
- Roger M. Pallares
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Dahlia D. An
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Pariswi Tewari
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Elizabeth T. Wang
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rebecca J. Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Nuclear Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|