1
|
He B, Hu Y, Qin Y, Zhang Y, Luo X, Wang Z, Xue W. Design, synthesis and antiviral activity of indole derivatives containing quinoline moiety. Mol Divers 2025; 29:1091-1107. [PMID: 39046564 DOI: 10.1007/s11030-024-10894-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/09/2024] [Indexed: 07/25/2024]
Abstract
A series of indole derivatives containing quinoline structures were designed and synthesized. The synthesized compounds were characterized by NMR and HRMS. And W14 was performed by single crystal X-ray diffraction experiments. The antiviral activity studies showed that some of the target compounds possessed significant activity against tobacco mosaic virus (TMV). In particular, W20 had significant activity. The results of in vivo anti-TMV activity assay showed that W20 possessed the best curative and protective activities with EC50 values of 84.4 and 65.7 μg/mL, which were better than ningnanmycin (NNM) 205.1 and 162.0 μg/mL, respectively. The results of Microscale thermophoresis (MST) showed that W20 had a strong binding affinity for the tobacco mosaic virus coat protein (TMV-CP) with a dissociation constant (Kd) of 0.00519 μmol/L, which was superior to that of NNM (1. 65320 μmol/L). The molecular docking studies were in accordance with the experimental results. In addition, the determination of malondialdehyde (MDA) content in tobacco leaves showed that W20 improved the disease resistance of tobacco. Overall, this study shows that indole derivatives containing quinoline can be used as new antiviral agents for plant viruses for further research.
Collapse
Affiliation(s)
- Bangcan He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Yuzhi Hu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Yishan Qin
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Yufang Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Xingping Luo
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Zhenchao Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Wei Xue
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Jiang Q, Liu YY, Huang D, Cheng YX. Euphraticanoids N-T: Aromadendrane-Type Diterpenes and Sesquiterpenes with Fungicidal Activities from Populus euphratica Resins. Int J Mol Sci 2025; 26:2187. [PMID: 40076830 PMCID: PMC11900364 DOI: 10.3390/ijms26052187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Seven previously undescribed terpenoids, including five prenylaromadendrane-type diterpenes euphraticanoids N-R (1-5) and two aromadendrane-type sesquiterpenes, euphraticanoids S and T (6 and 7), were isolated from Populus euphratica resins. Their structures, including their absolute configurations, were elucidated by HRESIMS and spectroscopic analysis, ECD calculations, and crystallographic methods. In addition, an evaluation of the fungicidal activities of compound 1 was carried out, resulting in the discovery of 1 as a fungicidal candidate lead compound with an EC50 of 15.7 and 68.6 mg/L against Curvularia mebaldsii and Fusarium graminearum, respectively.
Collapse
Affiliation(s)
- Qinbin Jiang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China;
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University, Shenzhen 518055, China; (Y.-Y.L.); (D.H.)
| | - Yun-Yun Liu
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University, Shenzhen 518055, China; (Y.-Y.L.); (D.H.)
| | - Danling Huang
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University, Shenzhen 518055, China; (Y.-Y.L.); (D.H.)
| | - Yong-Xian Cheng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China;
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University, Shenzhen 518055, China; (Y.-Y.L.); (D.H.)
| |
Collapse
|
3
|
Cui P, Yang Y. Synthesis and Insecticidal/Fungicidal Activities of Triazone Derivatives Containing Acylhydrazone Moieties. Molecules 2025; 30:340. [PMID: 39860209 PMCID: PMC11767570 DOI: 10.3390/molecules30020340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/28/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
A series of novel triazone derivatives containing aldehyde hydrazone or ketone hydrazone moieties were designed, synthesized and their biological activities were investigated against Aphis craccivora, Culex pipiens pallens, Helicoverpa armigera, Ostrinia nubilalis, Mythimna separata and 14 Kinds of fungi. Most of the aldehyde hydrazone exhibited excellent insecticidal activities against A. craccivora. In particular, the aphicidal activities of compounds 3t (35%) and 3w (30%) were equivalent to pymetrozine (30%) at 5 mg/kg. The aphicidal activities of derivatives 3p, 3u, 3y, 5g, 5i, 5l, 5q and 5u against C. pipiens pallens were higher than that of pymetrozine. Compound 3u (100%) exhibited good larvicidal activities against C. pipiens pallens at 0.25 mg/kg. Most derivatives exhibited broad-spectrum fungicidal activities against 14 kinds of plant fungi at 50 mg/kg. Thirty-nine compounds exhibited a more than 50% inhibition rate against Physalospora piricola. Compounds 3h, 3t and 3w were expected to be the leading structure for the development of new triazone insecticides agents.
Collapse
Affiliation(s)
- Peipei Cui
- College of Architecture and Arts, Taiyuan University of Technology, Jinzhong 030060, China;
| | - Yan Yang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
4
|
Ventura-Hernández KI, Delgado-Alvarado E, Pawar TJ, Olivares-Romero JL. Chirality in Insecticide Design and Efficacy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20722-20737. [PMID: 39255417 DOI: 10.1021/acs.jafc.4c05363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Chirality plays a crucial role in the design and efficacy of insecticides, significantly influencing their biological activity, selectivity, and environmental impact. Recent advancements in chiral insecticides have focused on enhancing their effectiveness, reducing toxicity to nontarget organisms, and improving environmental sustainability. This review provides a comprehensive overview of the current state of knowledge on chiral insecticides, including neonicotinoids, isoxazolines, and sulfiliminyls. We discuss the stereochemistry, synthetic development, mode of action, and environmental fate of these compounds. The review highlights the importance of chirality in optimizing insecticidal properties and underscores the need for continued research into novel chiral compounds and advanced synthesis technologies. By understanding the role of chirality, we can develop more effective and environmentally friendly insecticides for sustainable pest management.
Collapse
Affiliation(s)
- Karla Irazú Ventura-Hernández
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C. Carretera Antigua a Coatepec 351, Xalapa, Veracruz, México CP 91073
- Instituto de Química Aplicada, Universidad Veracruzana, Luis Castelazo Ayala s/n, Col. Industrial Animas, Xalapa-Enríquez, Veracruz, México 91190
| | - Enrique Delgado-Alvarado
- Micro and Nanotechnology Research Center, Universidad Veracruzana, Blvd. Av. Ruiz Cortines No. 455 Fracc. Costa Verde, Boca del Río, Veracruz, México 94294
| | - Tushar Janardan Pawar
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C. Carretera Antigua a Coatepec 351, Xalapa, Veracruz, México CP 91073
| | - José Luis Olivares-Romero
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C. Carretera Antigua a Coatepec 351, Xalapa, Veracruz, México CP 91073
| |
Collapse
|
5
|
Maniak H, Matyja K, Pląskowska E, Jarosz J, Majewska P, Wietrzyk J, Gołębiowska H, Trusek A, Giurg M. 4-Hydroxybenzoic Acid-Based Hydrazide-Hydrazones as Potent Growth Inhibition Agents of Laccase-Producing Phytopathogenic Fungi That Are Useful in the Protection of Oilseed Crops. Molecules 2024; 29:2212. [PMID: 38792074 PMCID: PMC11124341 DOI: 10.3390/molecules29102212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/28/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
The research on new compounds against plant pathogens is still socially and economically important. It results from the increasing resistance of pests to plant protection products and the need to maintain high yields of crops, particularly oilseed crops used to manufacture edible and industrial oils and biofuels. We tested thirty-five semi-synthetic hydrazide-hydrazones with aromatic fragments of natural origin against phytopathogenic laccase-producing fungi such as Botrytis cinerea, Sclerotinia sclerotiorum, and Cerrena unicolor. Among the investigated molecules previously identified as potent laccase inhibitors were also strong antifungal agents against the fungal species tested. The highest antifungal activity showed derivatives of 4-hydroxybenzoic acid and salicylic aldehydes with 3-tert-butyl, phenyl, or isopropyl substituents. S. sclerotiorum appeared to be the most susceptible to the tested compounds, with the lowest IC50 values between 0.5 and 1.8 µg/mL. We applied two variants of phytotoxicity tests for representative crop seeds and selected hydrazide-hydrazones. Most tested molecules show no or low phytotoxic effect for flax and sunflower seeds. Moreover, a positive impact on seed germination infected with fungi was observed. With the potential for application, the cytotoxicity of the hydrazide-hydrazones of choice toward MCF-10A and BALB/3T3 cell lines was lower than that of the azoxystrobin fungicide tested.
Collapse
Affiliation(s)
- Halina Maniak
- Department of Micro, Nano, and Bioprocess Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, 4/6 Norwida Street, 50-373 Wroclaw, Poland; (K.M.); (A.T.)
| | - Konrad Matyja
- Department of Micro, Nano, and Bioprocess Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, 4/6 Norwida Street, 50-373 Wroclaw, Poland; (K.M.); (A.T.)
| | - Elżbieta Pląskowska
- Division of Plant Pathology and Mycology, Department of Plant Protection, Wroclaw University of Environmental and Life Sciences, 24A Grunwald Square, 50-363 Wroclaw, Poland;
| | - Joanna Jarosz
- Laboratory of Experimental Anticancer Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigla Street, 53-114 Wroclaw, Poland; (J.J.); (J.W.)
| | - Paulina Majewska
- Institute of Technology and Life Sciences-National Research Institute, 3 Hrabska Avenue, 05-090 Raszyn, Poland;
| | - Joanna Wietrzyk
- Laboratory of Experimental Anticancer Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigla Street, 53-114 Wroclaw, Poland; (J.J.); (J.W.)
| | - Hanna Gołębiowska
- Department of Weed Science and Tillage Systems, Institute of Soil Science and Plant Cultivation State Research Institute, 61 Orzechowa Street, 50-540 Wroclaw, Poland;
| | - Anna Trusek
- Department of Micro, Nano, and Bioprocess Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, 4/6 Norwida Street, 50-373 Wroclaw, Poland; (K.M.); (A.T.)
| | - Mirosław Giurg
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, 27 Wybrzeże Wyspiańskiego, 50-370 Wroclaw, Poland
| |
Collapse
|
6
|
Liang Q, Gao F, Jian J, Yang J, Hao X, Huang L. Design, Synthesis and Antifungal Activity of Nootkatone Derivatives Containing Acylhydrazone and Oxime Ester. Chem Biodivers 2024; 21:e202400355. [PMID: 38453645 DOI: 10.1002/cbdv.202400355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
In an attempt to search for new natural products-based antifungal agents, fifty-three nootkatone derivatives were designed, synthesized, and evaluated for their antifungal activity against Phytophthora parasitica var nicotianae, Fusarium oxysporum, Fusarium graminearum and Phomopsis sp. by the mycelium growth rate method. Nootkatone derivatives N17 exhibited good inhibitory activity against Phomopsis. sp. with EC50 values of 2.02 μM. The control effect of N17 against Phomopsis. sp. on kiwifruit showed that N17 exhibited a good curative effect in reducing kiwifruit rot at the concentration of 202 μM(100×EC50 ), with the curative effect of 41.11 %, which was better than commercial control of pyrimethanil at the concentration of 13437 μM(100×EC50 ) with the curative effect of 38.65 %. Phomopsis. sp. mycelium treated with N17 showed irregular surface collapse and shrinkage, and the cell membrane crinkled irregularly, vacuoles expanded significantly, mitochondria contracted, and organelles partially swollen by the SEM and TEM detected. Preliminary pharmacological experiments show that N17 exerted antifungal effects by altering release of cellular contents, and altering cell membrane permeability and integrity. The cytotoxicity test demonstrated that N17 showed almost no toxicity to K562 cells. The presented results implied that N17 may be as a potential antifungal agents for developing more efficient fungicides to control Phomopsis sp.
Collapse
Affiliation(s)
- Qilong Liang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, People's Republic of China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, People's Republic of China
| | - Futian Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, People's Republic of China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, People's Republic of China
- School of Pharmacy, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Junyou Jian
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, People's Republic of China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, People's Republic of China
| | - Jue Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, People's Republic of China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, People's Republic of China
| | - Xiaojiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, People's Republic of China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, People's Republic of China
| | - Liejun Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, People's Republic of China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, People's Republic of China
| |
Collapse
|
7
|
Dongxu Z. Trifluoromethylated hydrazones and acylhydrazones as potent nitrogen-containing fluorinated building blocks. Beilstein J Org Chem 2023; 19:1741-1754. [PMID: 38025086 PMCID: PMC10667715 DOI: 10.3762/bjoc.19.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
Nitrogen-containing organofluorine derivatives, which are prepared using fluorinated building blocks, are among the most important active fragments in various pharmaceutical and agrochemical products. This review focuses on the reactivity, synthesis, and applications of fluoromethylated hydrazones and acylhydrazones. It summarizes recent methodologies that have been used for the synthesis of various nitrogen-containing organofluorine compounds.
Collapse
Affiliation(s)
- Zhang Dongxu
- Department of Fire Protection Engineering, China Fire and Rescue Institute, Beijing 102202, P. R. of China
| |
Collapse
|
8
|
Ni W, Song H, Wang L, Liu Y, Wang Q. Design, Synthesis and Various Bioactivity of Acylhydrazone-Containing Matrine Analogues. Molecules 2023; 28:molecules28104163. [PMID: 37241904 DOI: 10.3390/molecules28104163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Compounds with acylhydrazone fragments contain amide and imine groups that can act as electron donors and acceptors, so they are easier to bind to biological targets and thus generally exhibit significant biological activity. In this work, acylhydrazone fragments were introduced to the C-14 or C-11 position of matrine, a natural alkaloid, aiming to enhance their biological activities. The result of this bioassay showed that many synthesized compounds exhibited excellent anti-virus activity against the tobacco mosaic virus (TMV). Seventeen out of 25 14-acylhydrazone matrine derivatives and 17 out of 20 11-butanehydrazone matrine derivatives had a higher inhibitory activity against TMV than the commercial antiviral agent Ribavirin (the in vitro activity, in vivo inactivation, curative and protection activities at 500 µg/mL were 40.9, 36.5 ± 0.9, 38.0 ± 1.6 and 35.1 ± 2.2%, respectively), and four 11-butanehydrazone matrine derivatives even had similar to or higher activity than the most efficient antiviral agent Ningnanmycin (55.4, 57.8 ± 1.4, 55.3 ± 0.5 and 60.3 ± 1.2% at 500 µg/mL for the above four test modes). Among them, the N-benzyl-11-butanehydrazone of matrine formed with 4-bromoindole-3-carboxaldehyde exhibited the best anti-TMV activity (65.8, 71.8 ± 2.8, 66.8 ± 1.3 and 69.5 ± 3.1% at 500 µg/mL; 29, 33.5 ± 0.7, 24.1 ± 0.2 and 30.3 ± 0.6% at 100 µg/mL for the above four test modes), deserving further investigation as an antiviral agent. Other than these, the two series of acylhydrazone-containing matrine derivatives were evaluated for their insecticidal and fungicidal activities. Several compounds were found to have good insecticidal activities against diamondback moth (Plutella xylostella) and mosquito larvae (Culex pipiens pallens), showing broad biological activities.
Collapse
Affiliation(s)
- Wanjun Ni
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Lizhong Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Hu D, Zhang N, Zhang Y, Yuan C, Gong C, Zhou Y, Xue W. Design, synthesis and biological activity of novel chalcone derivatives containing indole. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
|
10
|
Zhu M, Li Y, Chen DP, Li CP, Ouyang GP, Wang ZC. Allicin-inspired disulfide derivatives containing quinazolin-4(3H)-one as a bacteriostat against Xanthomonas oryzae pv. oryzae. PEST MANAGEMENT SCIENCE 2023; 79:537-547. [PMID: 36193761 DOI: 10.1002/ps.7221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/29/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Plant bacterial diseases have seriously affected the yield and quality of crops, among which rice bacterial leaf blight (BLB), caused by Xanthomonas oryzae pv. oryzae has seriously affected the yield of rice. As plant-pathogenic bacteria gradually become resistant to existing bactericides, it is necessary to find effective bactericides with novel structures. RESULTS Herein, a series of compounds containing quinazolin-4(3H)-one and disulfide moieties were designed and synthesized using a facile synthetic method. The bioassay results revealed that most target compounds possessed noticeable antibacterial activity against Xanthomonas oryzae pv. oryzae. Particularly, compound 2-(butyldisulfanyl) quinazolin-4(3H)-one (1) exhibited remarkable antibacterial activity with the half effective concentration (EC50 ) of 0.52 μg mL-1 . Additionally, compound 1 was confirmed to inhibit the growth of the bacteria, change the bacterial morphology, and increase the level of reactive oxygen species. Proteomics, and RT-qPCR analysis results indicated that compound 1 could downregulate the expression of Pil-Chp histidine kinase chpA encoded by the pilL gene, and the potting experiments proved that compound 1 exhibits significant protective activity against BLB. CONCLUSIONS Compound 1 may weaken the pathogenicity of Xanthomonas oryzae pv. oryzae by inhibiting the bacterial growth and blocking the pili-mediated twitching motility without inducing the bacterial apoptosis. This study indicates that such derivatives could be a promising scaffold to develop a bacteriostat to control BLB. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mei Zhu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yan Li
- College of Pharmacy, Guizhou University, Guiyang, China
| | - Dan-Ping Chen
- College of Pharmacy, Guizhou University, Guiyang, China
| | - Cheng-Peng Li
- College of Pharmacy, Guizhou University, Guiyang, China
| | - Gui-Ping Ouyang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, China
- College of Pharmacy, Guizhou University, Guiyang, China
| | - Zhen-Chao Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals of Guizhou University, Guiyang, China
- College of Pharmacy, Guizhou University, Guiyang, China
| |
Collapse
|
11
|
Wang Y, Guo S, Yu L, Zhang W, Wang Z, Chi YR, Wu J. Hydrazone derivatives in agrochemical discovery and development. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
12
|
Jin J, Shen T, Shu L, Huang Y, Deng Y, Li B, Jin Z, Li X, Wu J. Recent Achievements in Antiviral Agent Development for Plant Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1291-1309. [PMID: 36625507 DOI: 10.1021/acs.jafc.2c07315] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plant virus disease is the second most prevalent plant diseases and can cause extensive loss in global agricultural economy. Extensive work has been carried out on the development of novel antiplant virus agents for preventing and treating plant virus diseases. In this review, we summarize the achievements of the research and development of new antiviral agents in the recent five years and provide our own perspective on the future development in this highly active research field.
Collapse
Affiliation(s)
- Jiamiao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Tingwei Shen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Liangzhen Shu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yixian Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Youlin Deng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Benpeng Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jian Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
13
|
Gao Z, Chen Y, Nie Y, Chen K, Cao X, Ke S. Structural diversity-guided optimization of carbazole derivatives as potential cytotoxic agents. Front Chem 2023; 11:1104868. [PMID: 36742033 PMCID: PMC9890180 DOI: 10.3389/fchem.2023.1104868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Carbazole alkaloids, as an important class of natural products, have been widely reported to have extensive biological activities. Based on our previous three-component reaction to construct carbazole scaffolds, we introduced a methylene group to provide a rotatable bond, and designed series of carbazole derivatives with structural diversity including carbazole amide, carbazole hydrazide and carbazole hydrazone. All synthesized carbazole derivatives were evaluated for their in vitro cytotoxic activity against 7901 (gastric adenocarcinoma), A875 (human melanoma) and MARC145 (African green monkey kidney) cell lines. The preliminary results indicated that compound 14a exhibited high inhibitory activities on 7901 and A875 cancer cells with the lowest IC50 of 11.8 ± 1.26 and 9.77 ± 8.32 μM, respectively, which might be the new lead compound for discovery of novel carbazole-type anticancer agents.
Collapse
Affiliation(s)
- Zilin Gao
- College of Science, Huazhong Agricultural University, Wuhan, China,National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yu Chen
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Yufei Nie
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Keming Chen
- College of Science, Huazhong Agricultural University, Wuhan, China
| | - Xiufang Cao
- College of Science, Huazhong Agricultural University, Wuhan, China,*Correspondence: Xiufang Cao, ; Shaoyong Ke,
| | - Shaoyong Ke
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China,*Correspondence: Xiufang Cao, ; Shaoyong Ke,
| |
Collapse
|
14
|
Zhang W, Guo S, Yu L, Wang Y, Chi YR, Wu J. Piperazine: Its role in the discovery of pesticides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Zhang J, Yang R, Li L, Liu J, Liu Y, Song H, Wang Q. Design, Synthesis, and Bioactivity Study of Novel Tryptophan Derivatives Containing Azepine and Acylhydrazone Moieties. Molecules 2022; 27:molecules27196700. [PMID: 36235237 PMCID: PMC9573203 DOI: 10.3390/molecules27196700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Based on the scaffolds widely used in drug design, a series of novel tryptophan derivatives containing azepine and acylhydrazone moieties have been designed, synthesized, characterized, and evaluated for their biological activities. The bioassay results showed that the target compounds possessed moderate to good antiviral activities against the tobacco mosaic virus (TMV), among which compounds 5c, 6a, 6h, 6t, 6v, and 6y exhibited higher inactivation, curative, and protection activities in vivo than that of ribavirin (40 ± 1, 37 ± 1, 39 ± 2% at 500 mg/L). Especially, 6y showed comparable activities to that of ningnanmycin (57 ± 2, 55 ± 3, 58 ± 1% at 500 mg/L). Meanwhile, we were pleased to find that almost all these derivatives showed good larvicidal activities against Plutella xylostella. Meanwhile, these derivatives also showed a broad spectrum of fungicidal activities.
Collapse
Affiliation(s)
- Jingjing Zhang
- College of Basic Science, Tianjin Agricultural University, Tianjin 300384, China
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Rongxin Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Lili Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Jianhua Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
- Correspondence: (H.S.); (Q.W.); Tel./Fax: +86-22-235-039-52 (Q.W.)
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
- Correspondence: (H.S.); (Q.W.); Tel./Fax: +86-22-235-039-52 (Q.W.)
| |
Collapse
|
16
|
Design, Synthesis, and Bioactivities of Novel Tryptophan Derivatives Containing 2,5-Diketopiperazine and Acyl Hydrazine Moieties. Molecules 2022; 27:molecules27185758. [PMID: 36144506 PMCID: PMC9506431 DOI: 10.3390/molecules27185758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/18/2022] Open
Abstract
Based on the scaffolds widely used in drug design, a series of novel tryptophan derivatives containing 2,5-diketopiperazine and acyl hydrazine moieties have been designed, synthesized, characterized, and evaluated for their biological activities. The bioassay results showed that the target compounds possessed moderate to good antiviral activities against tobacco mosaic virus (TMV), among which compounds 4, 9, 14, 19, and 24 showed higher inactivation, curative, and protection activities in vivo than that of ribavirin (39 ± 1, 37 ± 1, 39 ± 1 at 500 mg/L) and comparable to that of ningnanmycin (58 ± 1, 55 ± 1, 57 ± 1% at 500 mg/L). Thus, these compounds are a promising candidate for anti-TMV development. Most of these compounds showed broad-spectrum fungicidal activities against 13 kinds of phytopathogenic fungi and selective fungicidal activities against Alternaria solani, Phytophthora capsica, and Sclerotinia sclerotiorum. Additionally, some of these compounds exhibited larvicidal activities against Tetranychus cinnabarinus, Plutella xylostella, Culex pipiens pallens, Mythimna separata, Helicoverpa armigera, and Pyrausta nubilalis.
Collapse
|
17
|
Chen J, Luo X, Chen Y, Wang Y, Peng J, Xing Z. Recent Research Progress: Discovery of Anti-Plant Virus Agents Based on Natural Scaffold. Front Chem 2022; 10:926202. [PMID: 35711962 PMCID: PMC9196591 DOI: 10.3389/fchem.2022.926202] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/13/2022] [Indexed: 12/26/2022] Open
Abstract
Plant virus diseases, also known as “plant cancers”, cause serious harm to the agriculture of the world and huge economic losses every year. Antiviral agents are one of the most effective ways to control plant virus diseases. Ningnanmycin is currently the most successful anti-plant virus agent, but its field control effect is not ideal due to its instability. In recent years, great progress has been made in the research and development of antiviral agents, the mainstream research direction is to obtain antiviral agents or lead compounds based on structural modification of natural products. However, no antiviral agent has been able to completely inhibit plant viruses. Therefore, the development of highly effective antiviral agents still faces enormous challenges. Therefore, we reviewed the recent research progress of anti-plant virus agents based on natural products in the past decade, and discussed their structure-activity relationship (SAR) and mechanism of action. It is hoped that this review can provide new inspiration for the discovery and mechanism of action of novel antiviral agents.
Collapse
Affiliation(s)
- Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- *Correspondence: Jixiang Chen,
| | - Xin Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yifang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yu Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Ju Peng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Rice Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Zhifu Xing
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
18
|
Discovery of evodiamine derivatives as potent insecticide candidates. Bioorg Med Chem 2022; 62:116727. [PMID: 35366437 DOI: 10.1016/j.bmc.2022.116727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 11/21/2022]
Abstract
In the search for novel more effective insecticides, natural products could be used as ideal template compounds due to their good environmental compatibility, various bioactivities, unique scaffolds and mode of action. We have found that natural product evodiamine, the main active component from the fruits of Evodia rutaecarpa (Juss.) Benth, displayed obvious insecticidal activities against lepidoptera pests. To continue our research, a series of evodiamine derivatives 3a-3aa were rationally designed and synthesized. The larvicidal activities results indicated that most of target compounds displayed better efficacy than evodiamine, matrine, and rotenone against Mythimna separata, Plutella xylostella and Helicoverpa armigera, among which 3z exhibited excellent larvicidal activities (65% at 2.5 mg/L against M. separata, 75% at 1.0 mg/L against P. xylostella, and 85% 10 mg/L against H. armigera, respectively), much better than evodiamine (0%), matrine (0%), and rotenone (0%). The preliminary structure activity relationships demonstrated that the fluorine atom at the E ring of evodiamine had a positive influence on the larvicidal activity. The calcium imaging experiment studies indicated that 3z could act on the ryanodine receptor (RyR) of M. separata and was an effective calcium activator for RyR.
Collapse
|
19
|
Wang Y, Mu Y, Hu X, Zhang C, Gao Y, Ma Z, Feng J, Liu X, Lei P. Indole/Tetrahydroquinoline as Renewable Natural Resource-Inspired Scaffolds in the Devising and Preparation of Potential Fungicide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4582-4590. [PMID: 35385275 DOI: 10.1021/acs.jafc.1c07879] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As a continuous effort toward developing novel and highly efficient agrochemicals for integrated management of crop pathogens, two series of oxime ester derivatives from indole and tetrahydroquinoline natural scaffolds were prepared. Guided by the preliminary inhibition rates against ubiquitous and representative fungi, the antifungal profile of the target compounds against Valsa mali was intensively and extensively studied. The tetrahydroquinoline-based derivatives 12a-12r exerted a promising inhibition effect, especially against V. mali. The remarkable compounds 12p (R = 4-OCF3) and 12r (R = 4-OBn) with EC50 values of 0.81 and 0.47 μg/mL, respectively, have a far more prominent activity than commercial fungicide trifloxystrobin. The biochemistry and physiology responses of V. mali after treatment with target compound 12p was examined, and the fruit body production, hyphae morphology, and organelles were profoundly affected. Moreover, the curative effects of compound 12p on apple detached branches and leaves were 57.69 and 64.84% at 100 μg/mL, respectively, which were even superior to that of trifloxystrobin. Meanwhile, the three-dimensional quantitative structure-activity relationship model [comparative molecular field analysis (CoMFA): q2 = 0.823, r2 = 0.924, F = 189.781, and standard error of estimation (SEE) = 0.138 and comparative molecular similarity index analysis (CoMSIA): q2 = 0.795, r2 = 0.904, F = 145.644, and SEE = 0.156] indicated that the antifungal activity of target compounds was facilitated by crucial structural factors, which would render inspiration for further design and discovery of novel fungicidal candidates.
Collapse
Affiliation(s)
- Yujia Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yali Mu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiatong Hu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Caixia Zhang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanqing Gao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiqing Ma
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juntao Feng
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xili Liu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Lei
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Research Center of Biopesticide Engineering & Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
20
|
Li Y, Dong M, Gao N, Cao G, Teng D. Zn (II)/spiroQuinox catalyzed asymmetric Friedel–Crafts alkylation of indoles with cyclic
N
‐sulfonyl ketimino esters. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yanshun Li
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Mengqi Dong
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Nanxing Gao
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Guorui Cao
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Dawei Teng
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| |
Collapse
|
21
|
Li L, Zou J, Xu C, You S, Deng Z, Chen G, Liu Y, Wang Q. Preparation and Anti-Tobacco Mosaic Virus Activities of Crocetin Diesters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13637-13643. [PMID: 34730974 DOI: 10.1021/acs.jafc.1c03884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of antiviral agents with an original structure and noticeable effect is always in great need. Natural products are important lead compounds in the development of new pesticides. Crocin-1 and crocin-2 were effectively isolated from Gardeniae fructus and found to have higher anti-tobacco mosaic virus (TMV) activity levels than ribavirin. A series of the crocetin diester derivatives were synthesized with separated crocetin-1 as material and evaluated for their anti-TMV activities. They could be dissolved in common organic solvents as dichloromethane, ethyl acetate, tetrahydrofuran, and methanol. Compounds 5, 9, 13, 14, and 15 displayed higher activities in vivo than ribavirin. Compound 14 with significantly higher antiviral activities than lead compounds (crocin-1 and crocin-2) emerged as a new antiviral candidate.
Collapse
Affiliation(s)
- Ling Li
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, Jiangxi 330096, People's Republic of China
| | - Jiyong Zou
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, Jiangxi 330096, People's Republic of China
| | - Changjiang Xu
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, Jiangxi 330096, People's Republic of China
| | - Shengyong You
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, Jiangxi 330096, People's Republic of China
| | - Zhaoyang Deng
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, Jiangxi 330096, People's Republic of China
| | - Guihua Chen
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, Jiangxi 330096, People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
22
|
Bojarska J, Mieczkowski A, Ziora ZM, Skwarczynski M, Toth I, Shalash AO, Parang K, El-Mowafi SA, Mohammed EHM, Elnagdy S, AlKhazindar M, Wolf WM. Cyclic Dipeptides: The Biological and Structural Landscape with Special Focus on the Anti-Cancer Proline-Based Scaffold. Biomolecules 2021; 11:1515. [PMID: 34680148 PMCID: PMC8533947 DOI: 10.3390/biom11101515] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Cyclic dipeptides, also know as diketopiperazines (DKP), the simplest cyclic forms of peptides widespread in nature, are unsurpassed in their structural and bio-functional diversity. DKPs, especially those containing proline, due to their unique features such as, inter alia, extra-rigid conformation, high resistance to enzyme degradation, increased cell permeability, and expandable ability to bind a diverse of targets with better affinity, have emerged in the last years as biologically pre-validated platforms for the drug discovery. Recent advances have revealed their enormous potential in the development of next-generation theranostics, smart delivery systems, and biomaterials. Here, we present an updated review on the biological and structural profile of these appealing biomolecules, with a particular emphasis on those with anticancer properties, since cancers are the main cause of death all over the world. Additionally, we provide a consideration on supramolecular structuring and synthons, based on the proline-based DKP privileged scaffold, for inspiration in the design of compound libraries in search of ideal ligands, innovative self-assembled nanomaterials, and bio-functional architectures.
Collapse
Affiliation(s)
- Joanna Bojarska
- Faculty of Chemistry, Institute of General & Inorganic Chemistry, Technical University of Lodz, 90-924 Lodz, Poland;
| | - Adam Mieczkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland;
| | - Zyta M. Ziora
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.M.Z.); (I.T.)
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.S.); (A.O.S.)
| | - Istvan Toth
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (Z.M.Z.); (I.T.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.S.); (A.O.S.)
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Ahmed O. Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (M.S.); (A.O.S.)
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, School of Pharmacy, Chapman University, Irvine, CA 92618, USA; (K.P.); (S.A.E.-M.); (E.H.M.M.)
| | - Shaima A. El-Mowafi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, School of Pharmacy, Chapman University, Irvine, CA 92618, USA; (K.P.); (S.A.E.-M.); (E.H.M.M.)
| | - Eman H. M. Mohammed
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, School of Pharmacy, Chapman University, Irvine, CA 92618, USA; (K.P.); (S.A.E.-M.); (E.H.M.M.)
| | - Sherif Elnagdy
- Botany Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.E.); (M.A.)
| | - Maha AlKhazindar
- Botany Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (S.E.); (M.A.)
| | - Wojciech M. Wolf
- Faculty of Chemistry, Institute of General & Inorganic Chemistry, Technical University of Lodz, 90-924 Lodz, Poland;
| |
Collapse
|
23
|
Wu C, Murugan SP, Wang Y, Pan H, Sun B, Lin Y, Fatimah S, Chang AHH, Chen C, Lee G. Synthesis of Indoline‐Fused 2,5‐Diketopiperazine Scaffolds
via
Ugi‐4CR in the Basic Mediated Tandem Consecutive Cyclization. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chih‐Yu Wu
- Department of Nursing Tzu Chi University of Science and Technology Hualien 970302 Taiwan
| | | | - Yu‐Wei Wang
- Department of Chemistry National Dong Hwa University Shoufeng Hualien 974301 Taiwan
| | - Hao‐Wei Pan
- Department of Chemistry National Dong Hwa University Shoufeng Hualien 974301 Taiwan
| | - Bing‐Jian Sun
- Department of Chemistry National Dong Hwa University Shoufeng Hualien 974301 Taiwan
| | - Yu‐Ting Lin
- Department of Chemistry National Dong Hwa University Shoufeng Hualien 974301 Taiwan
| | - Siti Fatimah
- Department of Chemistry National Dong Hwa University Shoufeng Hualien 974301 Taiwan
| | - Agnes H. H. Chang
- Department of Chemistry National Dong Hwa University Shoufeng Hualien 974301 Taiwan
| | - Chinpiao Chen
- Department of Nursing Tzu Chi University of Science and Technology Hualien 970302 Taiwan
- Department of Chemistry National Dong Hwa University Shoufeng Hualien 974301 Taiwan
| | - Gene‐Hsian Lee
- Instrumentation Center National Taiwan University Taipei 10617 Taiwan
| |
Collapse
|
24
|
Zhou Y, Cai M, Zhou H, Hou L, Peng H, He H. Discovery of efficient inhibitors against pyruvate dehydrogenase complex component E1 with bactericidal activity using computer aided design. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 177:104894. [PMID: 34301356 DOI: 10.1016/j.pestbp.2021.104894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/15/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Computer aided optimization of lead compounds is of great significance to the design and discovery of new agrochemicals. A series of 2,6-dimethyl-4-aminopyrimidine acylhydrazones 6 was rationally designed as pyruvate dehydrogenase complex component E1 (PDHc-E1) inhibitors using computer aided drug design. Compounds in series 6 showed excellent inhibitory activity against Escherichia coli PDHc-E1, which was considerably higher than that of the lead compound A2. Compound 6l showed the best inhibitory activity (IC50 = 95 nM). Molecular docking, site-directed mutagenesis, and enzymatic assays revealed that the compounds bound in a "straight" conformation in the active site of E. coli PDHc-E1. Compounds 6b, 6e, and 6l showed negligible inhibition against porcine PDHc-E1. The in vitro antibacterial activity indicated that 6a, 6d, 6e, 6g, 6h, 6i, 6m, and 6n exhibited 61%-94% inhibition against Ralstonia solanacearum at 100 μg/mL, which was better than commercial thiodiazole‑copper (29%) and bismerthiazol (55%). These results demonstrated that a lead structure for a highly selective PDHc-E1 inhibitor as a bactericide could be obtained using computer aided drug design.
Collapse
Affiliation(s)
- Yuan Zhou
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China
| | - Meng Cai
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China
| | - Huan Zhou
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China
| | - Leifeng Hou
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China
| | - Hao Peng
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China
| | - Hongwu He
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, PR China.
| |
Collapse
|
25
|
Zhang X, Huang W, Lu X, Liu S, Feng H, Yang W, Ye J, Li F, Ke S, Wei D. Identification of Carbazole Alkaloid Derivatives with Acylhydrazone as Novel Anti-TMV Agents with the Guidance of a Digital Fluorescence Visual Screening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7458-7466. [PMID: 34165977 DOI: 10.1021/acs.jafc.1c00897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Difficulty in preventing crops from plant viruses urges to discover novel efficient antiviral chemicals, which is sped up by precise screening methods. Fluorescence-based methods have recently been applied as innovative and rapid tools for visually monitoring the replication of viruses and screening of antivirals, whereas the quantification of fluorescence signals mainly depends on manually calculating the fluorescent spots, which is time-consuming and imprecise. In the present work, the fluorescence spots were automatically identified, and the fluorescence area was directly quantified by a program developed in our group, which avoided subjective errors from the operators. We further employed this digital and visual screening assay to identify antivirals using the tobacco mosaic virus-green fluorescence protein (TMV-GFP) construct, in which the expression of GFP intuitively reflected the efficacy of antivirals. The accuracy of this assay was validated by quantifying the activities of the commercial antiviral inhibitors ribavirin and ningnanmycin and then was applied to evaluate the subtle activity differences of a series of newly synthesized carbazole and β-carboline alkaloid derivatives. Among them, compounds 5 (76%) and 11 (63%) exhibited anti-TMV activities comparable to that of ningnanmycin (65%) at 50 μM, and they delayed the multiplication of TMV in the early stage of infection without phytotoxicity. Taken together, these findings demonstrated that the digital and visual TMV-GFP screening method was competent to test the antiviral activities of compounds with subtle modifications and facilitated the discovery of novel antivirals.
Collapse
Affiliation(s)
- Xianpeng Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Wenbo Huang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, P. R. China
| | - Xu Lu
- Key Laboratory of Horticulture Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Sisi Liu
- College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Hui Feng
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Junli Ye
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Feng Li
- Key Laboratory of Horticulture Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Shaoyong Ke
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, P. R. China
| | - Dengguo Wei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| |
Collapse
|
26
|
Huang W, Gao Z, Zhang Z, Fang W, Wang Z, Wan Z, Shi L, Wang K, Ke S. Selective and effective anticancer agents: Synthesis, biological evaluation and structure-activity relationships of novel carbazole derivatives. Bioorg Chem 2021; 113:104991. [PMID: 34051416 DOI: 10.1016/j.bioorg.2021.104991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022]
Abstract
Carbazole alkaloids is an important class of natural products with diverse biological functions. So, the aim of this article is to explore new chemical entities containing carbazole scaffold as potential novel cytotoxic agents based on our developed three-component indole-to-carbazole reaction. Two series of carbazole derivatives were designed and synthesized, and their in vitro cytotoxic activities against three cell lines (A875, HepG2, and MARC145) were evaluated. The results indicated that some of these carbazole derivatives exhibited significantly good cytotoxic activities against tested cell lines compared with the control 5-fluorouracil (5-FU). Especially, carbazole acylhydrazone compounds 7g and 7p displayed high inhibitory activity on cancer cells, but almost no activity on normal cells. Further analysis of induced apoptosis for potential compounds indicated that the potential antitumor agents induced cell death in A875 cells at least partly (initially) by apoptosis, which might be used as promising lead scaffold for discovery of novel carbazole-type cytotoxic agents.
Collapse
Affiliation(s)
- Wenbo Huang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zilin Gao
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhigang Zhang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Wei Fang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zuoqian Wang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Ministry of Agriculture Key Laboratory of Integrated Pest Management in Crops in Central China, Wuhan 430064, China
| | - Zhongyi Wan
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Liqiao Shi
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Kaimei Wang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Shaoyong Ke
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|