1
|
Zhou Z, Tian J, Si Q, Tay YJ, Han M, Jiang Q, Wang L. Unraveling the stress response: How low temperature and nanoparticles impact the chinese mitten crab (Eriocheir sinensis). JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138775. [PMID: 40449217 DOI: 10.1016/j.jhazmat.2025.138775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 05/27/2025] [Accepted: 05/28/2025] [Indexed: 06/03/2025]
Abstract
The Chinese mitten crab (Eriocheir sinensis) is a freshwater crustacean of considerable economic significance. To elucidate its physiological regulatory mechanisms under environmental stressors, we examined responses to low temperature (10 °C), ambient temperature (25 °C), and polystyrene nanoparticles (PS-NPs; 0, 1, and 10 mg/L) over a 28-day period. Exposure to these stressors led to a marked increase in glutathione peroxidase (GSH-Px) and lysozyme (LZM) activity, alongside a notable suppression of superoxide dismutase (SOD). Integrative microbiome, metabolome and transcriptome analyses revealed distinct shifts in microbial composition and metabolite profiles, including elevated levels of citric acid, L-isoleucine (L-allo-Ile), and trans-cinnamic acid (t-CA). Functional enrichment of differentially expressed metabolites and microbial taxa implicated pathways involved in oxidative defense, immune regulation, and PI3K-Akt-FoxO signaling. Functional enrichment analyses of differentially expressed metabolites (DEMs) and microbial taxa pointed to coordinated disruptions in redox homeostasis, cellular defense mechanisms, and host-microbe interactions. Collectively, our findings demonstrate that prolonged exposure to low temperatures and PS-NPs imposes considerable physiological burden on E. sinensis, manifested as metabolic dysregulation, oxidative damage, and impaired immune competence. This study provides a comprehensive molecular framework for understanding how E. sinensis responds to multifactorial environmental stressors, offering valuable insights for ecological risk assessment and resilience-oriented aquaculture practices.
Collapse
Affiliation(s)
- Zihan Zhou
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China; Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; Centre for Marine and Coastal Studies, University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Jian Tian
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Qin Si
- Jiangsu Maritime Institute, 309 Gezhi Road, Nanjing, Jiangsu 211100, China
| | - Yi Juin Tay
- Centre for Marine and Coastal Studies, University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Mingming Han
- Centre for Marine and Coastal Studies, University Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China.
| | - Lanmei Wang
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi 214081, China.
| |
Collapse
|
2
|
Wang M, Bai F, Zhao Q, Shi J, Hao Y, Wu J. Quantitative Proteomics Revealed the Molecular Regulatory Network of Lysine and the Effects of Lysine Supplementation on Sunit Skeletal Muscle Satellite Cells. Animals (Basel) 2025; 15:1425. [PMID: 40427302 PMCID: PMC12108402 DOI: 10.3390/ani15101425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/30/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Stimulating skeletal muscle satellite cells (SMSCs) with amino acids improves their proliferation and differentiation, enhancing skeletal muscle mass, thereby increasing lean meat rate. This study explored lysine (Lys)'s effects on SMSCs and their protein profiles in Sunit sheep. SMSCs were successfully isolated, assessing their survival and proliferation after Lys stimulation at varying concentrations using the CCK-8 assay. Western blotting revealed Lys-induced changes in myogenic differentiation protein expression, while immunocytochemistry detected α-Actinin and Myostatin within the SMSCs. TMT proteomics identified differentially expressed proteins, which underwent functional and interaction analyses, with RT-qPCR validating the corresponding gene expression. This study revealed that 4 mmol/L of Lys significantly boosted SMSC proliferation. A 24 h stimulation with this concentration reduced Myostatin expression, and increased MYOD1 and α-Actinin levels in the SMSCs. A proteomic analysis identified 577 differentially expressed proteins, primarily associated with lipoblast differentiation and muscle development, as highlighted by the GO enrichment analysis. A pathway analysis further demonstrated these proteins' involvement in the autophagy-lysosome and NOD-like receptor signaling pathways. Lys enhances SMSC proliferation, differentiation, and adipogenesis in Sunit sheep, exhibiting antioxidant properties and supporting muscle stability and amino acid metabolism. It may also have anti-inflammatory, anti-pyroptotic, and proteolysis-inhibitory effects, offering insights into muscle growth mechanisms through amino acid supplementation in ruminants.
Collapse
Affiliation(s)
- Mingxu Wang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (M.W.); (J.S.); (Y.H.)
| | - Fan Bai
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China; (F.B.); (Q.Z.)
| | - Qinan Zhao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China; (F.B.); (Q.Z.)
| | - Jianan Shi
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (M.W.); (J.S.); (Y.H.)
| | - Yutian Hao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (M.W.); (J.S.); (Y.H.)
| | - Jindi Wu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (M.W.); (J.S.); (Y.H.)
| |
Collapse
|
3
|
Lin J, Song Y, Zhang Y, Ke T, Ou F, Zeng K, He D, Li L, Yu L. A reliable LC-MS/MS method for the quantification of natural amino acids in human plasma and its application in clinic. J Pharm Biomed Anal 2025; 256:116672. [PMID: 39813777 DOI: 10.1016/j.jpba.2025.116672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/28/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
A simple and fast LC-MS/MS method was developed and validated for simultaneous quantification of 20 L-amino acids (AAs) in human plasma. Chromatographic separation was achieved on an Agilent AdvanceBio Hilic column within 15 min via gradient elution with an aqueous solution containing 5 mM ammonium formate, 5 mM ammonium acetate and 0.1 % formic acid and an organic mobile phase containing 0.1 % formic acid, 5 mM ammonium formate and 5 mM ammonium acetate acetonitrile-water (90:10, v/v) at the flow rate of 0.25 mL/min. Individual AAs and internal standard were analyzed by multiple reaction monitoring (MRM) in positive ion mode under optimized conditions. Method validation consisted of linearity, sensitivity, accuracy and precision, recovery, matrix effect, and stability, and the results demonstrated this LC-MS/MS method as a specific, accurate, and reliable assay. The method was thus utilized to compare the dynamics of individual plasma AAs between healthy females and patients with ovarian tumors. Our results revealed that, in cancer group, plasma 3-Methyl-L-Histidine, L-Proline, L-Phenylalanine and L-Lysine concentrations were significantly increased in patients with malignant ovarian tumors while L-Leucine and L-Isoleucine levels were sharply decreased. These findings support the utilities of this LC-MS/MS method and the promise of specific AAs as possible biomarkers for ovarian cancer.
Collapse
Affiliation(s)
- Junhuan Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321036, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Yibo Song
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Department of Pharmacy, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing 312000, China
| | - Yangrui Zhang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321036, China
| | - Tao Ke
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fengting Ou
- Jinhua Institute of Zhejiang University, Jinhua 321036, China
| | - Kui Zeng
- Jinhua Institute of Zhejiang University, Jinhua 321036, China
| | - Debo He
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Li Li
- Department of Pharmacy, Zhejiang Hospital, Hangzhou, Zhejiang 310013, China.
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321036, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Jin C, Zhu M, Ye J, Song Z, Zheng C, Chen W. Autophagy: Are Amino Acid Signals Dependent on the mTORC1 Pathway or Independent? Curr Issues Mol Biol 2024; 46:8780-8793. [PMID: 39194736 DOI: 10.3390/cimb46080519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Autophagy is a kind of "self-eating" phenomenon that is ubiquitous in eukaryotic cells. It mainly manifests in the damaged proteins or organelles in the cell being wrapped and transported by the autophagosome to the lysosome for degradation. Many factors cause autophagy in cells, and the mechanism of nutrient-deficiency-induced autophagy has been a research focus. It has been reported that amino-acid-deficiency-induced cellular autophagy is mainly mediated through the mammalian rapamycin target protein complex 1 (mTORC1) signaling pathway. In addition, some researchers also found that non-mTORC1 signaling pathways also regulate autophagy, and the mechanism of autophagy occurrence induced by the deficiency of different amino acids is not precisely the same. Therefore, this review aims to summarize the process of various amino acids regulating cell autophagy and provide a narrative review on the molecular mechanism of amino acids regulating autophagy.
Collapse
Affiliation(s)
- Chenglong Jin
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Min Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Jinling Ye
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Zhiwen Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Chuntian Zheng
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Wei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| |
Collapse
|
5
|
Wu L, Lu X, Cai W, Zou Y, Zhang X, Yang J, Zhao G. Spectroscopic Study of a Novel Binaphthyl Amine Fluorescent Probe for Chiral Recognition of D/L-Lysine. Int J Mol Sci 2024; 25:7504. [PMID: 39062746 PMCID: PMC11277325 DOI: 10.3390/ijms25147504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Lysine plays a crucial role in promoting development, enhancing immune function, and improving the function of central nervous system tissues. The two configurational isomers of amino acids have significantly different effects. Currently, methods for chiral recognition of lysine have been reported; however, previous detection methods have drawbacks such as expensive equipment and complicated detection processes. Fluorescence analysis, on the other hand, boasts high sensitivity, strong selectivity, and simple operation. In this study, we synthesized four novel Binaphthyl-Amine (BINAM)-based fluorescent probes capable of specifically identifying the L-configuration of lysine among the twenty amino acids that constitute human proteins. The enantiomeric fluorescence enhancement ratio (ef or ΔIL/ΔID) reached up to 15.29, demonstrating high enantioselectivity. In addition, we assessed the probe's recognition capabilities under varying pH levels, reaction times, and metal ion conditions, along with its limit of detection (LOD) and quantum yield. Our results suggest that this probe serves as a highly stable tool for the detection of chiral lysine.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gang Zhao
- School of Chemical Engineering, Sichuan University, Chengdu 610207, China; (L.W.); (X.L.); (W.C.); (Y.Z.); (X.Z.); (J.Y.)
| |
Collapse
|
6
|
Li C, Cao H, Ren Y, Jia J, Yang G, Jin J, Shi X. Eicosapentaenoic acid-mediated activation of PGAM2 regulates skeletal muscle growth and development via the PI3K/AKT pathway. Int J Biol Macromol 2024; 268:131547. [PMID: 38641281 DOI: 10.1016/j.ijbiomac.2024.131547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Eicosapentaenoic acid regulates glucose uptake in skeletal muscle and significantly affects whole-body energy metabolism. However, the underlying molecular mechanism remains unclear. Here we report that eicosapentaenoic acid activates phosphoglycerate mutase 2, which mediates the conversion of 2-phosphoglycerate into 3-phosphoglycerate. This enzyme plays a pivotal role in glycerol degradation, thereby facilitating the proliferation and differentiation of satellite cells in skeletal muscle. Interestingly, phosphoglycerate mutase 2 inhibits mitochondrial metabolism, promoting the formation of fast-type muscle fibers. Treatment with eicosapentaenoic acid and phosphoglycerate mutase 2 knockdown induced opposite transcriptomic changes, most of which were enriched in the PI3K-AKT signaling pathway. Phosphoglycerate mutase 2 activated the PI3K-AKT signaling pathway, which inhibited the phosphorylation of FOXO1, and, in turn, inhibited mitochondrial function and promoted the formation of fast-type muscle fibers. Our results suggest that eicosapentaenoic acid promotes skeletal muscle growth and regulates glucose metabolism by targeting phosphoglycerate mutase 2 and activating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Chenchen Li
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Haigang Cao
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yingchun Ren
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jinrui Jia
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jianjun Jin
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| | - Xin'e Shi
- Laboratory of Animal Fat Deposition and Muscle Development, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
7
|
Wang X, Zong X, Ye M, Jin C, Xu T, Yang J, Gao C, Wang X, Yan H. Lysine Distinctively Manipulates Myogenic Regulatory Factors and Wnt/Ca 2+ Pathway in Slow and Fast Muscles, and Their Satellite Cells of Postnatal Piglets. Cells 2024; 13:650. [PMID: 38607088 PMCID: PMC11011516 DOI: 10.3390/cells13070650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
Muscle regeneration, representing an essential homeostatic process, relies mainly on the myogenic progress of resident satellite cells, and it is modulated by multiple physical and nutritional factors. Here, we investigated how myogenic differentiation-related factors and pathways respond to the first limiting amino acid lysine (Lys) in the fast and slow muscles, and their satellite cells (SCs), of swine. Thirty 28-day-old weaned piglets with similar body weights were subjected to three diet regimens: control group (d 0-28: 1.31% Lys, n = 12), Lys-deficient group (d 0-28: 0.83% Lys, n = 12), and Lys rescue group (d 0-14: 0.83% Lys; d 15-28: 1.31% Lys, n = 6). Pigs on d 15 and 29 were selectively slaughtered for muscular parameters evaluation. Satellite cells isolated from fast (semimembranosus) and slow (semitendinosus) muscles were also selected to investigate differentiation ability variations. We found Lys deficiency significantly hindered muscle development in both fast and slow muscles via the distinct manipulation of myogenic regulatory factors and the Wnt/Ca2+ pathway. In the SC model, Lys deficiency suppressed the Wnt/Ca2+ pathways and myosin heavy chain, myogenin, and myogenic regulatory factor 4 in slow muscle SCs but stimulated them in fast muscle SCs. When sufficient Lys was attained, the fast muscle-derived SCs Wnt/Ca2+ pathway (protein kinase C, calcineurin, calcium/calmodulin-dependent protein kinase II, and nuclear factor of activated T cells 1) was repressed, while the Wnt/Ca2+ pathway of its counterpart was stimulated to further the myogenic differentiation. Lys potentially manipulates the differentiation of porcine slow and fast muscle myofibers via the Wnt/Ca2+ pathway in opposite trends.
Collapse
Affiliation(s)
- Xiaofan Wang
- College of Animal Science, South China Agricultural University, State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou 510642, China; (X.W.); (X.Z.); (M.Y.); (C.J.); (T.X.); (C.G.); (X.W.)
| | - Xiaoyin Zong
- College of Animal Science, South China Agricultural University, State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou 510642, China; (X.W.); (X.Z.); (M.Y.); (C.J.); (T.X.); (C.G.); (X.W.)
| | - Mao Ye
- College of Animal Science, South China Agricultural University, State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou 510642, China; (X.W.); (X.Z.); (M.Y.); (C.J.); (T.X.); (C.G.); (X.W.)
| | - Chenglong Jin
- College of Animal Science, South China Agricultural University, State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou 510642, China; (X.W.); (X.Z.); (M.Y.); (C.J.); (T.X.); (C.G.); (X.W.)
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Tao Xu
- College of Animal Science, South China Agricultural University, State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou 510642, China; (X.W.); (X.Z.); (M.Y.); (C.J.); (T.X.); (C.G.); (X.W.)
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA;
| | - Chunqi Gao
- College of Animal Science, South China Agricultural University, State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou 510642, China; (X.W.); (X.Z.); (M.Y.); (C.J.); (T.X.); (C.G.); (X.W.)
| | - Xiuqi Wang
- College of Animal Science, South China Agricultural University, State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou 510642, China; (X.W.); (X.Z.); (M.Y.); (C.J.); (T.X.); (C.G.); (X.W.)
| | - Huichao Yan
- College of Animal Science, South China Agricultural University, State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou 510642, China; (X.W.); (X.Z.); (M.Y.); (C.J.); (T.X.); (C.G.); (X.W.)
| |
Collapse
|
8
|
Jia W, Wu L, Zhuang Z, Xu M, Lu Y, Wang Z, Bai H, Chen G, Chang G, Jiang Y. Research Note: Transcriptome analysis reveals differentially expressed genes regulated muscle development in Pekin ducks during dietary threonine deficiency. Poult Sci 2023; 102:103168. [PMID: 37918132 PMCID: PMC10641540 DOI: 10.1016/j.psj.2023.103168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023] Open
Abstract
To investigate the underlying molecular mechanism of threonine (Thr) regulation on the development of breast muscle in Pekin ducks, 240 male Pekin ducks at 1 d of age were fed a Thr deficiency diet (Thr-D), Thr sufficiency diet (Thr-S), or Thr excess diet (Thr-E) for 21 d. The results showed that Thr-D reduced body weight (BW), average weight gain (ADG), and average feed intake (ADFI), and increased the feed/gain (F/G) in Pekin ducks (P < 0.05), and Thr-E did not affect BW, ADG, ADFI, or F/G (P > 0.05), compared with Thr-S. The diameter and cross-sectional area of the breast muscle fibers in the Thr-S group were larger than those in the Thr-D group (P < 0.05). RNA sequencing revealed 1,300 differential expressed genes (DEGs) between the Thr-D and Thr-S groups, of which 625 were upregulated and 675 were downregulated by Thr-D. KEGG analysis showed that the upregulated genes were enriched in mTOR, FoxO, Wnt, fat digestion and absorption, and other signaling pathways. The downregulated genes were enriched in the MAPK signaling, glycolysis/gluconeogenesis, adipocytokine signaling, and biosynthesis of unsaturated fatty acids signaling pathways. The genes of Wnt family member 3a (Wnt3a), myogenin, myozenin 2, and insulin like growth factor 2 mRNA binding protein were upregulated, and platelet derived growth factor subunit B, PDGF receptor beta and Wnt4 were downregulated by Thr deficiency, which involving in muscle development. Our findings indicated that Thr increased breast fiber size, perhaps because Thr affected the proliferation and differentiation of satellite cells in breast muscle of ducks after hatch. Our results provide novel insights into new understanding of the molecular mechanisms underlying breast muscle development in ducks subjected to dietary Thr.
Collapse
Affiliation(s)
- Wenqian Jia
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Lei Wu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhong Zhuang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Minghong Xu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yijia Lu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhixiu Wang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Guobin Chang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Yong Jiang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
9
|
Xing J, Xie L, Qi X, Liu G, Akhtar MF, Li X, Bou G, Bai D, Zhao Y, Dugarjaviin M, Zhang X. Integrated analysis of transcriptome and proteome for exploring mechanism of promoting proliferation of equine satellite cells associated with leucine. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101118. [PMID: 37633218 DOI: 10.1016/j.cbd.2023.101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/28/2023]
Abstract
The proliferation and differentiation of skeletal muscle satellite cells (SCs) are necessary for the development of mature skeletal muscle. Leucine (Leu) is both an essential amino acid (EAA) and a branched-chain amino acid (BCAA), which has attracted worldwide attention due to its ability to repair and become new fibers. We separated the equine SCs into the control group (CON) and the Leu-supplemented group (LEU), which the cells were cultured in Leu-deprived and Leu-supplemented media respectively. We combined the transcriptome (RNA-Seq) and quantitative proteome (TMT) profiling analyses on proliferation of equine SCs associated with Leu. 1839 up-regulated and 631 down-regulated genes made up the 2470 differentially expressed genes (DEGs), and the 253 differentially abundant proteins (DEPs) included 118 up-regulated and 135 down-regulated proteins. 110 overlapping genes were verified based on the mRNA and protein translation relationship. Moreover, by comparing overlapped pathways through enrichment analysis, we found 13 genes not only appeared among 110 key DEGs/DEPs but also enriched in the KEGG overlapping signaling pathway, including CCL26, STAT2, PCK2, ASNS, GPT2, SHMT2, PHGDH, PGAM2, PSAT1, FTL, HMOX1, STEAP1 and STEAP2. To our knowledge, this is the first report in the world to systematically show how Leu regulated the growth of equine SCs. Leu deficiency inhibits the proliferation of equine SCs and development of fresh muscle fibers was proved in this paper. The main genes in charge of the Leu-induced proliferation of horse SCs have been found. These genes will make it easier to understand the mechanism at work and offer new information for enhancing the performance of sport horses and alleviating the equine muscle damage during exercise in the future.
Collapse
Affiliation(s)
- Jingya Xing
- Key Laboratory of Equus Germplasm Innovation (Co-const ruction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; College of animal science, Qingdao Agricultural University, Qingdao 266000, China
| | - Lan Xie
- College of Agronomy, Liaocheng University, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center, Liaocheng 252059, Shandong Province, China
| | - Xingzhen Qi
- College of Agronomy, Liaocheng University, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center, Liaocheng 252059, Shandong Province, China
| | - Guiqin Liu
- College of Agronomy, Liaocheng University, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center, Liaocheng 252059, Shandong Province, China
| | - Muhammad Faheem Akhtar
- College of Agronomy, Liaocheng University, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center, Liaocheng 252059, Shandong Province, China
| | - Xinyu Li
- Key Laboratory of Equus Germplasm Innovation (Co-const ruction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Gerelchimeg Bou
- Key Laboratory of Equus Germplasm Innovation (Co-const ruction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Dongyi Bai
- Key Laboratory of Equus Germplasm Innovation (Co-const ruction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yiping Zhao
- Key Laboratory of Equus Germplasm Innovation (Co-const ruction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Manglai Dugarjaviin
- Key Laboratory of Equus Germplasm Innovation (Co-const ruction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xinzhuang Zhang
- Key Laboratory of Equus Germplasm Innovation (Co-const ruction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
10
|
Hasan MS, Wang Y, Feugang JM, Zhou H, Liao SF. RNA sequencing analysis revealed differentially expressed genes and their functional annotation in porcine longissimus dorsi muscle affected by dietary lysine restriction. Front Vet Sci 2023; 10:1233292. [PMID: 38026666 PMCID: PMC10668494 DOI: 10.3389/fvets.2023.1233292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
The objective of this study was to investigate the effects of dietary lysine restriction on the global gene expression profile of skeletal muscle in growing pigs. Twelve crossbred (Yorkshire × Landrace) barrows (initial BW 22.6 ± 2.04 kg) were randomly assigned to two dietary treatments (LDD: a lysine-deficient diet; LAD: a lysine-adequate diet) according to a completely randomized experiment design (n = 6). After feeding for 8 weeks, skeletal muscle was sampled from the longissimus dorsi of individual pigs. The muscle total RNA was isolated and cDNA libraries were prepared for RNA sequencing (RNA-Seq) analysis. The RNA-Seq data obtained was then analyzed using the CLC Genomics Workbench to identify differentially expressed genes (DEGs). A total of 80 genes (padj ≤ 0.05) were differentially expressed in the longissimus dorsi muscle of the pigs fed LDD vs. LAD, of which 46 genes were downregulated and 34 genes were upregulated. Gene Ontology (GO) analysis of the DEGs (padj ≤ 0.05) for functional annotation identified those GO terms that are mostly associated with the molecular functions of structural molecules and metabolic enzymes (e.g., oxidoreductase and endopeptidase), biological process of acute-phase response, and amino acid metabolism including synthesis and degradation in the extracellular matrix region. Collectively, the results of this study have provided some novel insight regarding the molecular mechanisms of muscle growth that are associated with dietary lysine supply.
Collapse
Affiliation(s)
- Md. Shamimul Hasan
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| | - Ying Wang
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Jean M. Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Shengfa F. Liao
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
11
|
Jin CL, He YA, Jiang SG, Wang XQ, Yan HC, Tan HZ, Gao CQ. Chemical Composition of Pigeon Crop Milk and Factors Affecting Its Production: A Review. Poult Sci 2023; 102:102681. [PMID: 37098298 PMCID: PMC10149254 DOI: 10.1016/j.psj.2023.102681] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
Pigeons are important commercial poultry in addition to being ornamental birds. In 2021, more than 111 million pairs of breeding pigeons were kept in stock and 1.6 billion squabs were slaughtered for meat in China. However, in many countries, pigeons are not domestic birds; thus, it is necessary to elucidate the factors involved in their growth and feeding strategy due to their economic importance. Pigeons are altricial birds, so feedstuffs cannot be digested by squabs, which instead are fed a mediator named pigeon crop milk. During lactation, breeding pigeons (both female and male) ingest diets and generate crop milk to feed squabs. Thus, research on squab growth is more complex than that on chicken and other poultry. To date, research on the measurement of crop milk composition and estimation of the factors affecting its production has not ceased, and these results are worth reviewing to guide production. Moreover, some studies have focused on the formation mechanism of crop milk, reporting that the synthesis of crop milk is controlled by prolactin and insulin-activated pathways. Furthermore, the Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5) pathway, target of rapamycin (TOR) pathway and AMP-activated protein kinase (AMPK) pathway were also reported to be involved in crop milk synthesis. Therefore, this review focuses on the chemical composition of pigeon crop milk and factors affecting its production during lactation. This work explores novel mechanisms and provides a theoretical reference for improving production in the pigeon industry, including for racing, ornamental purposes, and production of meat products.
Collapse
|
12
|
Tang S, Wei Z, Guo J, Sun X, Hu Y. Enantioselective Recognition of L-Lysine by ICT Effect with a Novel Binaphthyl-Based Complex. MICROMACHINES 2023; 14:500. [PMID: 36984907 PMCID: PMC10056047 DOI: 10.3390/mi14030500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
A novel triazole fluorescent sensor was efficiently synthesized using binaphthol as the starting substrate with 85% total end product yield. This chiral fluorescence sensor was proved to have high specific enantioselectivity for lysine. The fluorescence intensity of R-1 was found to increase linearly when the equivalent amount of L-lysine (0-100 eq.) was gradually increased in the system. The fluorescence intensity of L-lysine to R-1 was significantly enhanced, accompanied by the red-shift of emission wavelength (389 nm to 411 nm), which was attributed to the enhanced electron transfer within the molecular structure, resulting in an ICT effect, while the fluorescence response of D-lysine showed a decreasing trend. The enantioselective fluorescence enhancement ratio for the maximum fluorescence intensity was 31.27 [ef = |(IL - I0)/(ID - I0)|, 20 eq. Lys], thus it can be seen that this fluorescent probe can be used to identify and distinguish between different configurations of lysine.
Collapse
Affiliation(s)
- Shi Tang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Zhaoqin Wei
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jiani Guo
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Xiaoxia Sun
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yu Hu
- College of Chemistry, Nanchang University, Nanchang 330031, China
| |
Collapse
|
13
|
Zhou H, Yang Y, Wang L, Ye S, Liu J, Gong P, Qian Y, Zeng H, Chen X. Integrated multi-omic data reveal the potential molecular mechanisms of the nutrition and flavor in Liancheng white duck meat. Front Genet 2022; 13:939585. [PMID: 36046229 PMCID: PMC9421069 DOI: 10.3389/fgene.2022.939585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/14/2022] [Indexed: 12/01/2022] Open
Abstract
The Liancheng white (LW) duck is one of the most valued Chinese indigenous poultry breeds. Its meat is rich in nutrients and has distinct flavors, but the molecular mechanisms behind them are unknown. To address this issue, we measured and compared multi-omic data (genome, transcriptome, and metabolome) of breast meat from LW ducks and the Mianyang Shelduck (MS) ducks. We found that the LW duck has distinct breed-specific genetic features, including numerous mutant genes with differential expressions associated with amino acid metabolism and transport activities. The metabolome driven by genetic materials was also seen to differ between the two breeds. For example, several amino acids that are beneficial for human health, such as L-Arginine, L-Ornithine, and L-lysine, were found in considerably higher concentrations in LW muscle than in MS duck muscle (p < 0.05). SLC7A6, a mutant gene, was substantially upregulated in the LW group (p < 0.05), which may lead to excessive L-arginine and L-ornithine accumulation in LW duck meat through transport regulation. Further, guanosine monophosphate (GMP), an umami-tasting molecule, was considerably higher in LW muscle (p < 0.05), while L-Aspartic acid was significantly abundant in MS duck meat (p < 0.05), showing that the LW duck has a different umami formation. Overall, this study contributed to our understanding of the molecular mechanisms driving the enriched nutrients and distinct umami of LW duck meat, which will provide a useful reference for duck breeding.
Collapse
Affiliation(s)
- Hao Zhou
- Insitute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Science, Wuhan, China
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Yang
- Insitute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Science, Wuhan, China
| | - Lixia Wang
- Insitute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Science, Wuhan, China
| | - Shengqiang Ye
- Insitute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Science, Wuhan, China
| | - Jiajia Liu
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Gong
- Insitute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Science, Wuhan, China
| | - Yunguo Qian
- Insitute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Science, Wuhan, China
| | - Huijun Zeng
- Wuhan Institute for Food and Cosmetic Control, Wuhan, China
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan, China
- *Correspondence: Huijun Zeng, ; Xing Chen,
| | - Xing Chen
- Insitute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Science, Wuhan, China
- *Correspondence: Huijun Zeng, ; Xing Chen,
| |
Collapse
|
14
|
Iturin A Rescued STb-R-Induced Pork Skeletal Muscle Growth Restriction through the Hypothalamic-Pituitary-mTORC1 Growth Axis. Animals (Basel) 2022; 12:ani12121568. [PMID: 35739903 PMCID: PMC9219473 DOI: 10.3390/ani12121568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
The engineered STb-Rosetta Escherichia coli (STb-R) was designed to investigate the effects of Iturin A on the skeletal muscle growth of weaned piglets. A total of 28 piglets were randomly divided into 4 groups (7 piglets per group): the control group (100 mL PBS), the Iturin A group (100 mL 320 mg/kg body weight (BW) Iturin A), the STb-R group (100 mL 1 × 1010 CFU/mL STb-R), and the Iturin A + STb-R group (100 mL 320 mg/kg BW Iturin A + 1 × 1010 CFU/mL STb-R). Compared with the control, STb-R-reduced body weight gain were rescued by Iturin A. The semimembranosus muscle weight recovered to normal level in the Iturin A + STb-R group. The level of relevant genes of the growth axis were elevated by Iturin A, including GHRH in the hypothalamus, GHRHR and GH in the pituitary, and GHR, IGF-1 and IGF-1R in the semimembranosus muscle. Moreover, Iturin A increased the mean fiber area and the number of proliferating cells in the semimembranosus muscle, which were decreased by STb-R. Additionally, the mTORC1 pathway was reactivated by Iturin A to relieve the suppression of STb-R. Collectively, the hypothalamic-pituitary growth axis-mediated Iturin A reactivated the mTORC1 pathway to rescue STb-R-restricted pork skeletal muscle growth.
Collapse
|
15
|
Jin CL, Ye M, Song ZW, Zhang ZM, Gao CQ, Yan HC, Wang XQ. Lysine Interacts with Frizzled7 to Activate β-Catenin in Satellite Cell-Participated Skeletal Muscle Growth. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3745-3756. [PMID: 35312309 DOI: 10.1021/acs.jafc.2c01027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This work provided an interesting finding of lysine (Lys) control on skeletal muscle growth besides protein synthesis. According to the isobaric tag for relative and absolute quantitation and molecular docking analyses, we found both in in vivo skeletal muscle and in vitro muscle satellite cells (MuSCs) that the frizzled7 (FZD7) expression level was positively correlated with Lys levels and this was consistent with the activation of the Wnt/β-catenin pathway. On the other hand, FZD7 inhibition suppressed the Lys-rescued Wnt/β-catenin pathway, FZD7 knockdown caused cell proliferation, and Wnt/β-catenin pathway restrictions could not be compensated for by Lys or Wnt3a. Furthermore, the combination between Lys and recombinant pig frizzled7 (rpFZD7) protein was confirmed by isothermal titration calorimetry. This finding displayed concrete evidence that Lys is not only a molecular block of protein synthesis but is also a ligand for FZD7 to activate β-catenin to stimulate MuSCs in promoting skeletal muscle growth.
Collapse
Affiliation(s)
- Cheng-Long Jin
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China
| | - Mao Ye
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China
| | - Zhi-Wen Song
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China
| | - Zong-Ming Zhang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China
| |
Collapse
|
16
|
Solsona R, Pavlin L, Bernardi H, Sanchez AMJ. Molecular Regulation of Skeletal Muscle Growth and Organelle Biosynthesis: Practical Recommendations for Exercise Training. Int J Mol Sci 2021; 22:2741. [PMID: 33800501 PMCID: PMC7962973 DOI: 10.3390/ijms22052741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022] Open
Abstract
The regulation of skeletal muscle mass and organelle homeostasis is dependent on the capacity of cells to produce proteins and to recycle cytosolic portions. In this investigation, the mechanisms involved in skeletal muscle mass regulation-especially those associated with proteosynthesis and with the production of new organelles-are presented. Thus, the critical roles of mammalian/mechanistic target of rapamycin complex 1 (mTORC1) pathway and its regulators are reviewed. In addition, the importance of ribosome biogenesis, satellite cells involvement, myonuclear accretion, and some major epigenetic modifications related to protein synthesis are discussed. Furthermore, several studies conducted on the topic of exercise training have recognized the central role of both endurance and resistance exercise to reorganize sarcomeric proteins and to improve the capacity of cells to build efficient organelles. The molecular mechanisms underlying these adaptations to exercise training are presented throughout this review and practical recommendations for exercise prescription are provided. A better understanding of the aforementioned cellular pathways is essential for both healthy and sick people to avoid inefficient prescriptions and to improve muscle function with emergent strategies (e.g., hypoxic training). Finally, current limitations in the literature and further perspectives, notably on epigenetic mechanisms, are provided to encourage additional investigations on this topic.
Collapse
Affiliation(s)
- Robert Solsona
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120 Font-Romeu, France;
| | - Laura Pavlin
- DMEM, University of Montpellier, INRAE UMR866, 2 Place Pierre Viala, 34060 Montpellier, France; (L.P.); (H.B.)
| | - Henri Bernardi
- DMEM, University of Montpellier, INRAE UMR866, 2 Place Pierre Viala, 34060 Montpellier, France; (L.P.); (H.B.)
| | - Anthony MJ Sanchez
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120 Font-Romeu, France;
| |
Collapse
|
17
|
Song ZW, Jin CL, Ye M, Gao CQ, Yan HC, Wang XQ. Lysine inhibits apoptosis in satellite cells to govern skeletal muscle growth via the JAK2-STAT3 pathway. Food Funct 2020; 11:3941-3951. [PMID: 32338270 DOI: 10.1039/d0fo00047g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Apoptosis is programmed cell death that can be stimulated by external stress or nutrition restrictions. However, the precise mechanism of apoptosis in skeletal muscle remains unknown. The objective of this study was to investigate whether apoptosis could be regulated by lysine (Lys) supplementation and the potential mechanism. In this study, an isobaric tag for relative and absolute quantification (iTRAQ) proteomics analysis of the longissimus dorsi muscle from piglets showed that the Janus family tyrosine kinase (JAK)-signal transducer and activator of transcription (STAT) pathway was involved in Lys deficiency-induced apoptosis and inhibited skeletal muscle growth. Meanwhile, western blotting results demonstrated that Lys deficiency led to apoptosis in the longissimus dorsi muscle with the JAK2-STAT3 pathway inhibition. Interestingly, apoptosis was suppressed, and the JAK2-STAT3 pathway was reactivated after Lys re-supplementation. In addition, the results showed that Lys deficiency-induced apoptosis in satellite cells (SCs) was mediated by the JAK2-STAT3 pathway inhibition. Moreover, the JAK2-STAT3 pathway was reactivated by Lys re-supplementation and suppressed cell apoptosis, and this effect was inhibited after treatment with Tyrphostin B42 (AG 490). In conclusion, we found that Lys inhibits apoptosis in SCs to govern skeletal muscle growth via the JAK2-STAT3 pathway.
Collapse
Affiliation(s)
- Zhi-Wen Song
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China.
| | | | | | | | | | | |
Collapse
|