1
|
Zhu M, Ouyang G. Reducing the Phytotoxicity of Tryptanthrin Derivatives for Controlling Plant Bacterial Canker and Wilt Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7151-7165. [PMID: 40070101 DOI: 10.1021/acs.jafc.4c12641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Herein, we synthesized 34 novel tryptanthrin derivatives, among which T7NHCO-series compounds showed great antibacterial activity againstXanthomonas axonopodis pv. citri,Pseudomonas syringae pv. actinidiae, andRalstonia solanacearum with EC50 values ranging from 0.26 to 0.56 μg/mL. Meanwhile, these compounds exhibited low cytotoxicity against HEK-293. Additionally, compound T7NHCO can inhibit biofilm formation, damage bacterial morphology, downregulate the expression of bacterial chemotaxis-related proteins, cause bacterial necrosis, and effectively control citrus and kiwifruit canker (the curative and protective efficiency is 79.35 and 88.31%, respectively) diseases. However, compound T7NHCO exhibited a significant phytotoxicity to tobacco. Subsequently, based on the characteristic of tobacco wilt disease being prone to outbreak in weakly acidic soil conditions, we introduced the pH-responsive ZIF-8 drug delivery system. Fortunately, T7NHCO@ZIF-8 nanoparticles exhibited low phytotoxicity and noticeable activity against tobacco wilt disease. Above all, T7NHCO@ZIF-8 nanoparticles may be a promising green lead agent against plant bacterial diseases.
Collapse
Affiliation(s)
- Mei Zhu
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Guiping Ouyang
- Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Chen K, Wang S, Fu S, Kim J, Park P, Liu R, Lei K. 4(3 H)-Quinazolinone: A Natural Scaffold for Drug and Agrochemical Discovery. Int J Mol Sci 2025; 26:2473. [PMID: 40141117 PMCID: PMC11941892 DOI: 10.3390/ijms26062473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
4(3H)-quinazolinone is a functional scaffold that exists widely both in natural products and synthetic organic compounds. Its drug-like derivatives have been extensively synthesized with interesting biological features including anticancer, anti-inflammatory, antiviral, antimalarial, antibacterial, antifungal, and herbicidal, etc. In this review, we highlight the medicinal and agrochemical versatility of the 4(3H)-quinazolinone scaffold according to the studies published in the past six years (2019-2024), and comprehensively give a summary of the target recognition, structure-activity relationship, and mechanism of its analogs. The present review is expected to provide valuable guidance for discovering novel lead compounds containing 4(3H)-quinazolinone moiety in both drug and agrochemical research.
Collapse
Affiliation(s)
- Ke Chen
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Shumin Wang
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.W.); (S.F.)
| | - Shuyue Fu
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.W.); (S.F.)
| | - Junehyun Kim
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Phumbum Park
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Rui Liu
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Kang Lei
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.W.); (S.F.)
| |
Collapse
|
3
|
Tian J, Hu C, Deng T, Zhou Q, Luo X, Li J, Pu H, Yang Y, Liu D, Xue W. Discovery of highly effective antiviral agents based on flavonoid-benzothiazole against TMV. Mol Divers 2025:10.1007/s11030-025-11126-5. [PMID: 39966255 DOI: 10.1007/s11030-025-11126-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025]
Abstract
A series of flavonol derivatives containing benzothiazole were designed and synthesized. The structures of all the compounds were characterized by NMR and HRMS. The results of the activity assay showed that some of the target compounds possessed outstanding in vivo antiviral activity against the tobacco mosaic virus (TMV). Among them, the median effective concentration (EC50) of L20 was 90.5 and 202.2 μg/mL for curative and protective activity against TMV, respectively, which was better than that of ningnanmycin (NNM: 252.0 and 204.2 μg/mL). The results of microcalorimetric thermophoresis (MST) and molecular docking experiments indicate that L20 binds TMV-CP more strongly than NNM; density functional theory (DFT) calculation the indicating that L20 is more chemical reactivity than NNM. In addition, malondialdehyde (MDA) and superoxide dismutase assay (SOD) activity measurements also fully confirmed that L20 stimulated the plant immune system and strengthened the plant's resistance to diseases by lowering the MDA content and increasing the SOD activity. Furthermore, the chlorophyll content test experiment found that L20 could reduce the destructive effect of viruses on chloroplasts, increase the content of chlorophyll, and promote photosynthesis. In conclusion, above experimental results suggested that flavonol derivatives containing benzothiazole could be further investigated as new plant virus antiviral drugs.
Collapse
Affiliation(s)
- Jiao Tian
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Chunmei Hu
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Tianyu Deng
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Qing Zhou
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Xingping Luo
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Jieyu Li
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Haotao Pu
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Ying Yang
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Da Liu
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Huaihua University, Huaihua, 418008, China.
| | - Wei Xue
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
4
|
Alam K, Hossain MS, Zhao Y, Zhang Z, Xu S, Hao J, Yang Q, Li A. Tryptanthrins as multi-bioactive agents: discovery, diversity distribution and synthesis. Bioorg Chem 2025; 154:108071. [PMID: 39721143 DOI: 10.1016/j.bioorg.2024.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/08/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Tryptanthrin and its derivatives, representing a type of alkaloids with indoloquinazoline structures, were first obtained from blue plants and indigo, and then extracted from fungi, marine bacteria and a number of many other natural sources. Various strategies for their chemical synthesis have been reported while tryptanthrin biosynthesis has been less investigated. Tryptanthrin and its derivative products have a broad range of pharmacological and biological functions. In this review, we cover the sources, chemical synthesis and biosynthesis, modes of action and biological activities of tryptanthrin and its derivatives.
Collapse
Affiliation(s)
- Khorshed Alam
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; Bangladesh Standards and Testing Institution (BSTI), Dhaka 1208, Bangladesh.
| | - Md Sawkat Hossain
- Chittagong Medical College Hospital, K B Fazlul Kader Road, Panchlaish, Chattogram 4203, Bangladesh.
| | - Yiming Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Zhiheng Zhang
- Haide College, Ocean University of China, Qingdao 266100, China.
| | - Shouying Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Jinfang Hao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai 200438, China.
| | - Aiying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
5
|
Yang Y, Hu L, Chen T, Zhang L, Wang D, Chen Z. Chemical and Biological Investigations of Antiviral Agents Against Plant Viruses Conducted in China in the 21st Century. Genes (Basel) 2024; 15:1654. [PMID: 39766921 PMCID: PMC11728098 DOI: 10.3390/genes15121654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/15/2025] Open
Abstract
Research into the biology of plant viruses, their mechanisms of pathogenicity, and the induction of host resistance has laid a solid foundation for the discovery of antiviral agents and their targets and the development of effective control technologies. Additionally, recent advancements in fields such as chemical biology, cheminformatics, bioinformatics, and synthetic biology have provided valuable methods and tools for the design of antiviral drugs, the synthesis of drug molecules, assessment of their activity, and investigation of their modes of action. Compared with drug development for human viral diseases, the control of plant viral diseases presents greater challenges, including the cost-benefit of agents, simplification of control technologies, and the effectiveness of treatments. Therefore, in the current context of complex outbreaks and severe damage caused by plant viral diseases, it is crucial to delve deeper into the research and development of antiviral agents. This review provides a detailed overview of the biological characteristics of current targets for antiviral agents, the mode of interaction between plant virus targets and antivirals, and insights for future drug development. We believe this review will not only facilitate the in-depth analysis of the development of antivirals for crops but also offer valuable perspectives for the development of antiviral agents for use in human and veterinary medicine.
Collapse
Affiliation(s)
- Yuanyou Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Y.); (L.H.); (L.Z.)
| | - Lei Hu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Y.); (L.H.); (L.Z.)
| | - Tongtong Chen
- College of Agriculture, Guizhou University, Guiyang 550025, China;
| | - Libo Zhang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Y.); (L.H.); (L.Z.)
| | - Delu Wang
- College of Forestry, Guizhou University, Guiyang 550025, China;
| | - Zhuo Chen
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Y.); (L.H.); (L.Z.)
| |
Collapse
|
6
|
Liao YM, Cheng L, Luo RS, Guo Q, Shao WB, Feng YM, Zhou X, Liu LW, Yang S. Discovery of New 1,2,4-Triazole/1,3,4-Oxadiazole-Decorated Quinolinones as Agrochemical Alternatives for Controlling Viral Infection by Inhibiting the Viral Replication and Self-Assembly Process. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27750-27761. [PMID: 39625458 DOI: 10.1021/acs.jafc.4c05234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Tobacco mosaic virus (TMV), a representative plant virus, is widely known and causes severe crop losses worldwide. In order to ensure the demand for crop and food security, the exploration of novel antiviral agents with outstanding activity and unique mechanisms of action is necessary. Herein, 40 new azole-quinolinone molecules were elaborately designed and systematically evaluated for their anti-TMV activity. Notably, compound A21 had significant therapeutic activity against TMV (EC50 value = 200 μg/mL), which was superior to commercial ningnanmycin (280 μg/mL). Studies on the anti-TMV mechanism showed that compound A21 could suppress the expression level of important TMV genes and affect the assembly of TMV viral particles by disrupting the self-assembly process of TMV coat protein (TMV-CP). In-depth antiviral behaviors were verified by molecular docking, fluorescence titration analysis, and TMV assembly assays, suggesting that compound A21 strongly interacted with TMV coat protein through various interactions. Overall, this promising work discloses a new paradigm for the exploitation of 2-quinolinone-based virucidal agents for hindering plant viral infection through triggering versatile antiviral behavior.
Collapse
Affiliation(s)
- Yan-Mei Liao
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Long Cheng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Rong-Shuang Luo
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Qian Guo
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wu-Bin Shao
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yu-Mei Feng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li-Wei Liu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
7
|
Guo X, Zhang P, Chen M, Li T, Hou C, Que X, Xu L, Zhou Z, Wang Q, Wang Z. Synthesis, structural modification, and biological activity of a novel bisindole alkaloid iheyamine A. Bioorg Chem 2024; 153:107757. [PMID: 39226649 DOI: 10.1016/j.bioorg.2024.107757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
Diseases caused by plant viruses and pathogens pose a serious threat to crop yield and quality. Traditional pesticides have gradually developed drug resistance and brought certain environmental safety issues during long-term overuse. There is an urgent need to discover new candidate compounds to address these issues. In this study, we achieved the efficient synthesis of iheyamine A and its derivatives, and discovered their excellent antiviral activities against tobacco mosaic virus (TMV). Most compounds displayed higher antiviral activities against TMV than commercial ribavirin at 500 μg/mL, with compounds 3a (Inactive effect IC50: 162 µg/mL), 3d (Inactive effect IC50: 249 µg/mL), 6p (Inactive effect IC50: 254 µg/mL), and 7a (Inactive effect IC50: 234 µg/mL) exhibiting better antiviral activities than ningnanmycin at 500 μg/mL (Inactive effect IC50: 269 µg/mL). Meanwhile, the structure-activity relationships of this type of compounds were systematically studied. We chose 3a for further antiviral mechanism research and found that it can directly act on viral coat protein (CP). The interaction of 3a and CP was further verified via molecular docking. These compounds also showed broad-spectrum fungicidal activities against 8 plant pathogenic fungi, especially for P. piricola. This study provides a reference for the role of iheyamine alkaloids in combating plant pathogenic diseases.
Collapse
Affiliation(s)
- Xin Guo
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Peiyao Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Miaomiao Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Taiqing Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Cancan Hou
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Xinyue Que
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Li Xu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Zhenghong Zhou
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
8
|
Dong CL, Liu HC, He YH, Guan Z. Photoinduced Redox Cascade Reaction of Isatins and Aliphatic Carboxylic Acids to Access 6-Hydroxyindoloquinazolinones. Chemistry 2024; 30:e202400655. [PMID: 38959118 DOI: 10.1002/chem.202400655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
A visible-light-induced cascade reaction is described for the one-pot synthesis of 6-hydroxyindoloquinazolinones using isatins (or isatins and isatoic anhydrides) and aliphatic carboxylic acids. The method provides 36 desired products in 33-96 % yield, exhibiting broad substrate scope and good functional group tolerance. This approach utilizes inexpensive and commercially available starting materials, enabling the direct construction of high-value complex structures under mild conditions without the need for photocatalyst, showcasing significant applicability and environmental friendliness.
Collapse
Affiliation(s)
- Chun-Lin Dong
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Han-Chi Liu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| |
Collapse
|
9
|
Saeedian Moghadam E, Bonyasi F, Bayati B, Sadeghi Moghadam M, Amini M. Recent Advances in Design and Development of Diazole and Diazine Based Fungicides (2014-2023). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15427-15448. [PMID: 38967261 DOI: 10.1021/acs.jafc.4c02187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
With fungal diseases posing a major threat to agricultural production, the application of fungicides to control related diseases is often considered necessary to ensure the world's food supply. The search for new bioactive agents has long been a priority in crop protection due to the continuous development of resistance against currently used types of active compounds. Heterocyclic compounds are an inseparable part of the core structures of numerous lead compounds, these rings constitute pharmacophores of a significant number of fungicides developed over the past decade by agrochemists. Among heterocycles, nitrogen-based compounds play an essential role. To date, diazole (imidazole and pyrazole) and diazine (pyrimidine, pyridazine, and pyrazine) derivatives make up an important series of synthetic fungicides. In recent years, many reports have been published on the design, synthesis, and study of the fungicidal activity of these scaffolds, but there was a lack of a comprehensive classified review on nitrogen-containing scaffolds. Regarding this issue, here we have reviewed the published articles on the fungicidal activity of the diazole and diazine families. In current review, we have classified the molecules synthesized so far based on the size of the ring.
Collapse
Affiliation(s)
- Ebrahim Saeedian Moghadam
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Fahimeh Bonyasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Bahareh Bayati
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mahdis Sadeghi Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mohsen Amini
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| |
Collapse
|
10
|
Mari G, De Crescentini L, Favi G, Mantellini F, Olivieri D, Santeusanio S. Challenge N- versus O-six-membered annulation: FeCl 3-catalyzed synthesis of heterocyclic N, O-aminals. Beilstein J Org Chem 2024; 20:1412-1420. [PMID: 38952961 PMCID: PMC11216082 DOI: 10.3762/bjoc.20.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024] Open
Abstract
A new class of heterocyclic N,O-aminal and hemiaminal scaffolds was successfully obtained by means of a three-component reaction (3-CR) of 1,2-diaza-1,3-dienes (DDs), α-aminoacetals and iso(thio)cyanates. These stable imine surrogates are generated from key-substituted (thio)hydantoin intermediates through selective FeCl3-catalyzed intramolecular N-annulation.
Collapse
Affiliation(s)
- Giacomo Mari
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University "Carlo Bo" of Urbino, Via Ca' le Suore 2-4, 61029, Urbino (PU), Italy
| | - Lucia De Crescentini
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University "Carlo Bo" of Urbino, Via Ca' le Suore 2-4, 61029, Urbino (PU), Italy
| | - Gianfranco Favi
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University "Carlo Bo" of Urbino, Via Ca' le Suore 2-4, 61029, Urbino (PU), Italy
| | - Fabio Mantellini
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University "Carlo Bo" of Urbino, Via Ca' le Suore 2-4, 61029, Urbino (PU), Italy
| | - Diego Olivieri
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University "Carlo Bo" of Urbino, Via Ca' le Suore 2-4, 61029, Urbino (PU), Italy
| | - Stefania Santeusanio
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University "Carlo Bo" of Urbino, Via Ca' le Suore 2-4, 61029, Urbino (PU), Italy
| |
Collapse
|
11
|
Zhang T, Feng H. Skeletal Editing of Isatins for Heterocycle Molecular Diversity. CHEM REC 2024; 24:e202400024. [PMID: 38847062 DOI: 10.1002/tcr.202400024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Indexed: 06/28/2024]
Abstract
Isatins have been widely used in the preparation of a variety of heterocyclic compounds, where the skeletal editing of isatins has shown significant advantages for the construction of diverse heterocycles. This review highlights the progress made in the last decade (2013-2023) in the skeletal editing of the isatin scaffold. A series of ring expansion reactions for the construction of quinoline skeleton, quinolone skeleton, polycyclic quinazoline skeleton, medium-sized ring skeleton, as well as a series of ring opening reactions for the generation of 2-(azoly)aniline skeleton by the cleavage of C-C bond and C-N bond are highlighted. It is hoped that this review will provide some understanding of the chemical transformations of isatins and contribute to the further realization of its molecular diversity.
Collapse
Affiliation(s)
- Tiantian Zhang
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Huangdi Feng
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| |
Collapse
|
12
|
Zhou X. Recent advances of tryptanthrin and its derivatives as potential anticancer agents. RSC Med Chem 2024; 15:1127-1147. [PMID: 38665827 PMCID: PMC11042161 DOI: 10.1039/d3md00698k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/03/2024] [Indexed: 04/28/2024] Open
Abstract
Tryptanthrin is one of the well-known natural alkaloids with a broad spectrum of biological activities and can act as anti-inflammatory, anticancer, antibacterial, antifungal, antiviral, antitubercular, and other agents. Owing to its potent anticancer activity, tryptanthrin has been widely explored for the therapy of various cancers besides being effective against other diseases. Tryptanthrin with a pharmacological indoloquinazoline moiety can not only be modified by different functional groups to achieve various tryptanthrin derivatives, which may realize the improvement of anticancer activity, but also bind with different metal ions to obtain varied tryptanthrin metal complexes as potential anticancer agents, due to their higher anticancer activities in comparison with tryptanthrin (or its derivatives) and cisplatin. This review outlines the recent advances in the syntheses, structures, and anticancer activities of tryptanthrin derivatives and their metal complexes, trying to reveal their structure-activity relationships and to provide a helpful way for medicinal chemists in the development of new and effective tryptanthrin-based anticancer agents.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Second Clinical Medicine College of Lanzhou University Lanzhou China
| |
Collapse
|
13
|
Wu Z, Zhang C, Huang Y, Tao N, Wang T, Cai X, Wang Z, Li X. Tryptanthrin Derivative B1 Binds Viral Genome-Linked Protein (VPg) of Potato Virus Y. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5699-5709. [PMID: 38462724 DOI: 10.1021/acs.jafc.4c01306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Potato virus Y (PVY) is a plant virus that is known to be responsible for substantial economic losses in agriculture. Within the PVY genome, viral genome-linked protein (VPg) plays a pivotal role in the viral translation process. In this study, VPg was used as a potential target for analyzing the antiviral activity of tryptanthrin derivatives. In vitro, the dissociation constants of B1 with PVY VPg were 0.69 μmol/L (measured by microscale thermophoresis) and 4.01 μmol/L (measured via isothermal titration calorimetry). B1 also strongly bound to VPg proteins from three other Potyviruses. Moreover, in vivo experiments demonstrated that B1 effectively suppressed the expression of the PVY gene. Molecular docking experiments revealed that B1 formed a hydrogen bond with N121 and that no specific binding occurred between B1 and the PVY VPgN121A mutant. Therefore, N121 is a key amino acid residue in PVY VPg involved in B1 binding. These results highlight the potential of PVY VPg as a potential target for the development of antiviral agents.
Collapse
Affiliation(s)
- Zilin Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Chun Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yuanqin Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Na Tao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Tao Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xiaobo Cai
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhenchao Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- College of Pharmacy, Guizhou University, Guiyang 550025, China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
14
|
Zhang T, Tian CY, Zhang J, An Q, Yi P, Yuan CM, Zhang ZK, Zhao LH, Hao XJ, Hu ZX. Quinolizidine Alkaloids and Isoflavones from the Herb of Thermopsis lupinoides and Their Antiviral, Antifungal, and Insecticidal Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5047-5061. [PMID: 38394631 DOI: 10.1021/acs.jafc.3c09529] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
As part of our ongoing investigation of natural bioactive substances from the genus Thermopsis of the tribe Fabaceae for agricultural protection, the chemical constituents of the herb Thermopsis lupinoides were systematically investigated, which led to the isolation of 39 quinolizidine alkaloids (QAs) (1-39), including 14 new QAs (1-14) and 14 isoflavones (40-53). Their structures were elucidated through comprehensive spectroscopic data analysis (IR, UV, NMR, HRESIMS), ECD calculations, and X-ray crystallography. The antitomato spotted wilt virus (TSWV) and antifungal (against Botrytis cinerea, Gibberella zeae, Phytophythora capsica, and Alternaria alternata) and insecticidal (against Aphis fabae and Tetranychus urticae) activities of the isolated compounds were screened using the lesion counting method, mycelial inhibition assay, and spray method, respectively. The bioassay results showed that 34 exhibited excellent protective activity against TSWV, with an EC50 value of 36.04 μg/mL, which was better than that of the positive control, ningnanmycin (86.03 μg/mL). The preliminary mechanistic exploration illustrated that 34 induced systemic acquired resistance in the host plant by acting on the salicylic acid signaling pathway. Moreover, 1 showed significant antifungal activity against B. cinerea (EC50 value of 20.83 μg/mL), while 2 exhibited good insecticidal activity against A. fabae (LC50 value of 24.97 μg/mL). This research is promising for the invention of novel pesticides from QAs with high efficiency and satisfactory ecological compatibility.
Collapse
Affiliation(s)
- Tong Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Cai-Yan Tian
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Ji Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Qiao An
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Ping Yi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Chun-Mao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Zhong-Kai Zhang
- The Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming 650204, China
| | - Li-Hua Zhao
- The Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming 650204, China
| | - Xiao-Jiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
| | - Zhan-Xing Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| |
Collapse
|
15
|
Zhang GL, Wang ZC, Li CP, Chen DP, Li ZR, Li Y, Ouyang GP. Discovery of tryptanthrin analogues bearing F and piperazine moieties as novel phytopathogenic antibacterial and antiviral agents. PEST MANAGEMENT SCIENCE 2024; 80:1026-1038. [PMID: 37842924 DOI: 10.1002/ps.7834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Plant bacterial infections and plant viruses seriously affect the yield and quality of crops. Based on the various activities of tryptanthrin, a series of tryptanthrin analogues bearing F and piperazine moieties were designed, synthesized, and evaluated for their biological activities against three plant bacteria and tobacco mosaic virus (TMV). RESULTS Bioassay results indicated that compounds 6a-6l displayed excellent antibacterial activities in vitro and 6a-6c and 6g exhibited better antiviral activities against TMV than commercial ribavirin. In particular, 6b showed the most effect on Xanthomonas oryzae pv. oryzae (Xoo) with a half-maximal effective concentration (EC50 ) of 1.26 μg mL-1 , compared with the commercial pesticide bismerthiazol (BT; EC50 = 34.3 μg mL-1 ) and thiodiazole copper (TC; EC50 = 73.3 μg mL-1 ). Meanwhile, 6a also had the best antiviral activity at 500 μg mL-1 for curative, protection, and inactivation purposes, compared with ribavirin in vivo. CONCLUSION Compound 6b could cause changes in bacterial morphology, induce the accumulation of reactive oxygen species, promote apoptosis of bacterial cells, inhibit the formation of biofilm, and block the growth of Xoo cells. Proteomic analysis revealed major differences in the bacterial secretory system pathways T2SS and T6SS, which inhibited membrane transport. Molecular docking revealed that 6a and 6g could interact with TMV coat protein preventing virus assembly. These results suggest that tryptanthrin analogues bearing F and piperazine moieties could be promising candidate agents for antibacterial and antiviral use in agricultural production. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guang-Long Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhen-Chao Wang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Cheng-Peng Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Dan-Ping Chen
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Zhu-Rui Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Yan Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Gui-Ping Ouyang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, China
| |
Collapse
|
16
|
Shao WB, Liao YM, Luo RS, Ji J, Xiao WL, Zhou X, Liu LW, Yang S. Discovery of novel phenothiazine derivatives as new agrochemical alternatives for treating plant viral diseases. PEST MANAGEMENT SCIENCE 2023; 79:4231-4243. [PMID: 37345486 DOI: 10.1002/ps.7623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/04/2023] [Accepted: 06/22/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Plant viral diseases, namely 'plant cancer', are extremely difficult to control. Even worse, few antiviral agents can effectively control and totally block viral infection. There is an urgent need to explore and discover novel agrochemicals with high activity and a unique mode of action to manage these refractory diseases. RESULTS Forty-one new phenothiazine derivatives were prepared and their inhibitory activity against tobacco mosaic virus (TMV) was assessed. Compound A8 had the highest protective activity against TMV, with a half-maximal effective concentration (EC50 ) of 115.67 μg/mL, which was significantly better than that of the positive controls ningnanmycin (271.28 μg/mL) and ribavirin (557.47 μg/mL). Biochemical assays demonstrated that compound A8 could inhibit TMV replication by disrupting TMV self-assembly, but also enabled the tobacco plant to enhance its defense potency by increasing the activities of various defense enzymes. CONCLUSION In this study, novel phenothiazine derivatives were elaborately fabricated and showed remarkable anti-TMV behavior that possessed the dual-action mechanisms of inhibiting TMV assembly and invoking the defense responses of tobacco plants. Moreover, new agrochemical alternatives based on phenothiazine were assessed for their antiviral activities and showed extended agricultural application. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wu-Bin Shao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yan-Mei Liao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Rong-Shuang Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Jin Ji
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Wan-Lin Xiao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
17
|
Zhang G, Li C, Li Y, Chen D, Li Z, Wang Z, Ouyang G. Design, Synthesis, and Mechanism of Novel 9-Aliphatic Amine Tryptanthrin Derivatives against Phytopathogenic Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14232-14242. [PMID: 37749804 DOI: 10.1021/acs.jafc.3c03738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Taking inspiration from the use of natural product-derived bactericide candidates in drug discovery, a series of novel 9-aliphatic amine tryptanthrin derivatives were designed, synthesized, and evaluated for their biological activity against three plant bacteria. The majority of these compounds exhibited excellent antibacterial activity in vitro. Compound 7c exhibited a significantly superior bacteriostatic effect against Xanthomonas axonopodis pv Citri (Xac), Xanthomonas oryzae pv Oryzae (Xoo), and Pseudomonas syringae pv Actinidiae (Psa) with final corrected EC50 values of 0.769, 1.29, and 15.5 μg/mL, respectively, compared to the commercial pesticide thiodiazole copper which had EC50 values of 58.8, 70.9, and 91.9 μg/mL. Preliminary mechanism studies have demonstrated that 7c is capable of altering bacterial morphology, inducing reactive oxygen species accumulation, promoting bacterial cell apoptosis, inhibiting normal cell growth, and affecting cell membrane permeability. Moreover, in vivo experiments have substantiated the effectiveness of 7c as a therapeutic and defensive agent against the citrus canker. The proteomic analysis has unveiled that the major disparities are located within the bacterial secretion system pathway, which hinders membrane transportation. These discoveries imply that 7c could be an auspicious prototype for developing antiphytopathogenic bacterial agents.
Collapse
Affiliation(s)
- Guanglong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Chengpeng Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yan Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou 550025, China
| | - Danping Chen
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou 550025, China
| | - Zhuirui Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou 550025, China
| | - Zhenchao Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou 550025, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, Guizhou 550025, China
| | - Guiping Ouyang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou 550025, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, Guizhou 550025, China
| |
Collapse
|
18
|
Tang X, Lei L, Liao A, Sun W, Zhang J, Wu J. Morpholine Derivatives in Agrochemical Discovery and Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13197-13208. [PMID: 37583294 DOI: 10.1021/acs.jafc.3c03818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Derivatives of morpholine are biologically active organic compounds with special structures discovered in multiple drugs. As a result of the terminal pharmacophore of action and extraordinary activity, they attracted fair attention with regard to pesticide innovation and development. Analysis of brief structure-activity relationships and the summarization of the characteristics of pesticides containing morpholine fragments with efficient activity are key steps in the development of novel pesticides. This review primarily overviews morpholine compounds with insecticidal, fungicidal, herbicidal, antiviral, and plant growth regulation properties to provide educational insight for the creation of new morpholine-containing compounds.
Collapse
Affiliation(s)
- Xu Tang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, Guizhou 550025, People's Republic of China
| | - Li Lei
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, Guizhou 550025, People's Republic of China
| | - Anjing Liao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, Guizhou 550025, People's Republic of China
| | - Wei Sun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, Guizhou 550025, People's Republic of China
| | - Jian Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, Guizhou 550025, People's Republic of China
| | - Jian Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, Guizhou 550025, People's Republic of China
| |
Collapse
|
19
|
Su CF, Das D, Muhammad Aslam M, Xie JQ, Li XY, Chen MX. Eukaryotic splicing machinery in the plant-virus battleground. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1793. [PMID: 37198737 DOI: 10.1002/wrna.1793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/24/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
Plant virual infections are mainly caused by plant-virus parasitism which affects ecological communities. Some viruses are highly pathogen specific that can infect only specific plants, while some can cause widespread harm, such as tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV). After a virus infects the host, undergoes a series of harmful effects, including the destruction of host cell membrane receptors, changes in cell membrane components, cell fusion, and the production of neoantigens on the cell surface. Therefore, competition between the host and the virus arises. The virus starts gaining control of critical cellular functions of the host cells and ultimately affects the fate of the targeted host plants. Among these critical cellular processes, alternative splicing (AS) is an essential posttranscriptional regulation process in RNA maturation, which amplify host protein diversity and manipulates transcript abundance in response to plant pathogens. AS is widespread in nearly all human genes and critical in regulating animal-virus interactions. In particular, an animal virus can hijack the host splicing machinery to re-organize its compartments for propagation. Changes in AS are known to cause human disease, and various AS events have been reported to regulate tissue specificity, development, tumour proliferation, and multi-functionality. However, the mechanisms underlying plant-virus interactions are poorly understood. Here, we summarize the current understanding of how viruses interact with their plant hosts compared with humans, analyze currently used and putative candidate agrochemicals to treat plant-viral infections, and finally discussed the potential research hotspots in the future. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Chang-Feng Su
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Debatosh Das
- College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences & Technology, University of Missouri, Columbia, Missouri, USA
| | - Mehtab Muhammad Aslam
- College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences & Technology, University of Missouri, Columbia, Missouri, USA
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ji-Qin Xie
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
| | - Xiang-Yang Li
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Mo-Xian Chen
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
20
|
Yang S, Wang T, Lu A, Wang Q. Discovery of Chiral Diamine Derivatives Containing 1,2-Diphenylethylenediamine as Novel Antiviral and Fungicidal Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37433073 DOI: 10.1021/acs.jafc.3c01247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Severe plant virus diseases lead to poor harvests and poor crop quality, and the lack of effective suppressive drugs makes plant disease control a huge challenge. Natural product-based structural simplification is an important strategy for finding novel pesticide candidates. According to our previous research on the antiviral activities of harmine and tetrahydroharmine derivatives, a series of chiral diamine compounds were designed and synthesized by means of structural simplification using diamines in natural products as the core structure in this work, and the antiviral and fungicidal activities were investigated. Most of these compounds displayed higher antiviral activities than those of ribavirin. Compounds 1a and 4g displayed higher antiviral activities than ningnanmycin at 500 μg/mL. The antiviral mechanism research revealed that compounds 1a and 4g could inhibit virus assembly by binding to tobacco mosaic virus (TMV) CP and interfere with the assembly process of TMV CP and RNA via transmission electron microscopy and molecular docking. Further fungicidal activity tests showed that these compounds displayed broad-spectrum fungicidal activities. Compounds 3a, 3i, 5c, and 5d with excellent fungicidal activities against Fusarium oxysporum f.sp. cucumerinum can be considered as new fungicidal candidates for further research. The current work provides a reference to the development of agricultural active ingredients in crop protection.
Collapse
Affiliation(s)
- Shan Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Tienan Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Aidang Lu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
21
|
Jhansirani N, Devappa V, Sangeetha CG, Sridhara S, Shankarappa KS, Mohanraj M. Identification of Potential Phytochemical/Antimicrobial Agents against Pseudoperonospora cubensis Causing Downy Mildew in Cucumber through In-Silico Docking. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112202. [PMID: 37299181 DOI: 10.3390/plants12112202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/06/2023] [Accepted: 05/13/2023] [Indexed: 06/12/2023]
Abstract
Compatibility interactions between the host and the fungal proteins are necessary to successfully establish a disease in plants by fungi or other diseases. Photochemical and antimicrobial substances are generally known to increase plant resilience, which is essential for eradicating fungus infections. Through homology modeling and in silico docking analysis, we assessed 50 phytochemicals from cucumber (Cucumis sativus), 15 antimicrobial compounds from botanical sources, and six compounds from chemical sources against two proteins of Pseudoperonospora cubensis linked to cucumber downy mildew. Alpha and beta sheets made up the 3D structures of the two protein models. According to Ramachandran plot analysis, the QNE 4 effector protein model was considered high quality because it had 86.8% of its residues in the preferred region. The results of the molecular docking analysis showed that the QNE4 and cytochrome oxidase subunit 1 proteins of P. cubensis showed good binding affinities with glucosyl flavones, terpenoids and flavonoids from phytochemicals, antimicrobial compounds from botanicals (garlic and clove), and chemically synthesized compounds, indicating the potential for antifungal activity.
Collapse
Affiliation(s)
- Nagaraju Jhansirani
- Department of Plant Pathology, College of Horticulture-Bengaluru, University of Horticultural Sciences, Bagalkot 560 065, India
| | - Venkatappa Devappa
- Department of Plant Pathology, College of Horticulture-Bengaluru, University of Horticultural Sciences, Bagalkot 560 065, India
| | - Chittarada Gopal Sangeetha
- Department of Plant Pathology, College of Horticulture-Bengaluru, University of Horticultural Sciences, Bagalkot 560 065, India
| | - Shankarappa Sridhara
- Center for Climate Resilient Agriculture, Keladi Shivappa Nayaka University of Agricultural and Horticultural Sciences, Shivamogga 577 201, India
| | - Kodegandlu Subbanna Shankarappa
- Department of Plant Pathology, College of Horticulture-Bengaluru, University of Horticultural Sciences, Bagalkot 560 065, India
| | - Mooventhiran Mohanraj
- Department of Plant Pathology, College of Horticulture-Bengaluru, University of Horticultural Sciences, Bagalkot 560 065, India
| |
Collapse
|
22
|
Jin J, Shen T, Shu L, Huang Y, Deng Y, Li B, Jin Z, Li X, Wu J. Recent Achievements in Antiviral Agent Development for Plant Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1291-1309. [PMID: 36625507 DOI: 10.1021/acs.jafc.2c07315] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plant virus disease is the second most prevalent plant diseases and can cause extensive loss in global agricultural economy. Extensive work has been carried out on the development of novel antiplant virus agents for preventing and treating plant virus diseases. In this review, we summarize the achievements of the research and development of new antiviral agents in the recent five years and provide our own perspective on the future development in this highly active research field.
Collapse
Affiliation(s)
- Jiamiao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Tingwei Shen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Liangzhen Shu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yixian Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Youlin Deng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Benpeng Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jian Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
23
|
Mokariya JA, Rajani DP, Patel MP. 1,2,4‐Triazole and benzimidazole fused dihydropyrimidine derivatives: Design, green synthesis, antibacterial, antitubercular, and antimalarial activities. Arch Pharm (Weinheim) 2022; 356:e2200545. [PMID: 36534897 DOI: 10.1002/ardp.202200545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
This study reports the design and synthesis of novel 1,2,4-triazolo/benzimidazolo-pyrimidine linked 1-benzyl-4-[(p-tolyloxy)methyl]-1,2,3-triazole derivatives as potent antimicrobial agents according to their in vitro antibacterial, antifungal, antitubercular as well as antimalarial activities. An efficient, ecologically benign, and facile multicomponent synthesis was employed to synthesize these derivatives. The synthesis is accelerated with the mild and eco-friendly organocatalyst tetrabutylammonium bromide, providing a yield of 82%-96% within the short reaction time of 0.5-1.5 h. Compared with the MIC values of ciprofloxacin and ampicillin on the respective strains, compound d2 showed better activity against Escherichia coli and Streptococcus pyogenes and compound d8 showed better MIC against Staphylococcus aureus. Additionally, compounds d3, d4, and d5 showed potent MIC values against Pseudomonas aeruginosa. All triazolo-pyrimidine derivatives d1-d8 showed potent inhibitory action against Gram-positive strains. Compound e3 showed good potency against Mycobacterium tuberculosis H37Rv. The IC50 values of d3 and e2 indicated better activity against Plasmodium falciparum. Collectively, these derivatives depict potent multifaceted activity and provide promising access for further antimicrobial and antimalarial investigations.
Collapse
Affiliation(s)
| | - Dhanji P. Rajani
- Microcare Laboratory and Tuberculosis Research Centre, Haripura Surat Gujarat India
| | - Manish P. Patel
- Department of Chemistry Sardar Patel University Anand Gujarat India
| |
Collapse
|
24
|
Kotajima M, Choi JH, Kondo M, D’Alessandro-Gabazza CN, Toda M, Yasuma T, Gabazza EC, Miwa Y, Shoda C, Lee D, Nakai A, Kurihara T, Wu J, Hirai H, Kawagishi H. Axl, Immune Checkpoint Molecules and HIF Inhibitors from the Culture Broth of Lepista luscina. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248925. [PMID: 36558053 PMCID: PMC9781456 DOI: 10.3390/molecules27248925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Two compounds 1 and 2 were isolated from the culture broth of Lepista luscina. This is the first time that compound 1 was isolated from a natural source. The structure of compound 1 was identified via 1D and 2D NMR and HRESIMS data. Compounds 1 and 2 along with 8-nitrotryptanthrin (4) were evaluated for their biological activities using the A549 lung cancer cell line. As a result, 1 and 2 inhibited the expression of Axl and immune checkpoint molecules. In addition, compounds 1, 2 and 4 were tested for HIF inhibitory activity. Compound 2 demonstrated statistically significant HIF inhibitory effects on NIH3T3 cells and 1 and 2 against ARPE19 cells.
Collapse
Affiliation(s)
- Mihaya Kotajima
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Jae-Hoon Choi
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Mitsuru Kondo
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | | | - Masaaki Toda
- Department of Immunology, Graduate School of Medicine, Mie University, Edobashi 2-174, Tsu 524-8507, Japan
| | - Taro Yasuma
- Department of Immunology, Graduate School of Medicine, Mie University, Edobashi 2-174, Tsu 524-8507, Japan
| | - Esteban C. Gabazza
- Department of Immunology, Graduate School of Medicine, Mie University, Edobashi 2-174, Tsu 524-8507, Japan
| | - Yukihiro Miwa
- Department of Ophthalmology, Keio University School of Medicine, 35 Shina-nomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Chiho Shoda
- Department of Ophthalmology, Keio University School of Medicine, 35 Shina-nomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Deokho Lee
- Department of Ophthalmology, Keio University School of Medicine, 35 Shina-nomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ayaka Nakai
- Department of Ophthalmology, Keio University School of Medicine, 35 Shina-nomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, 35 Shina-nomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jing Wu
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hirofumi Hirai
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hirokazu Kawagishi
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Correspondence:
| |
Collapse
|
25
|
Discovery of Hyrtinadine A and Its Derivatives as Novel Antiviral and Anti-Phytopathogenic-Fungus Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238439. [PMID: 36500532 PMCID: PMC9738573 DOI: 10.3390/molecules27238439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
Plant diseases caused by viruses and fungi have a serious impact on the quality and yield of crops, endangering food security. The use of new, green, and efficient pesticides is an important strategy to increase crop output and deal with the food crisis. Ideally, the best pesticide innovation strategy is to find and use active compounds from natural products. Here, we took the marine natural product hyrtinadine A as the lead compound, and designed, synthesized, and systematically investigated a series of its derivatives for their antiviral and antifungal activities. Compound 8a was found to have excellent antiviral activity against the tobacco mosaic virus (TMV) (inactivation inhibitory effect of 55%/500 μg/mL and 19%/100 μg/mL, curative inhibitory effect of 52%/500 μg/mL and 22%/100 μg/mL, and protection inhibitory effect of 57%/500 μg/mL and 26%/100 μg/mL) and emerged as a novel antiviral candidate. These compound derivatives displayed broad-spectrum fungicidal activities against 14 kinds of phytopathogenic fungi at 50 μg/mL and the antifungal activities of compounds 5c, 5g, 6a, and 6e against Rhizoctonia cerealis are higher than that of the commercial fungicide chlorothalonil. Therefore, this study could lay a foundation for the application of hyrtinadine A derivatives in plant protection.
Collapse
|
26
|
Sharma S, Utreja D. Synthesis and antiviral activity of diverse heterocyclic scaffolds. Chem Biol Drug Des 2022; 100:870-920. [PMID: 34551197 DOI: 10.1111/cbdd.13953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 01/25/2023]
Abstract
Heterocyclic moieties form a major part of organic chemistry as they are widely distributed in nature and have wide scale practical applications ranging from extensive clinical use to diverse fields such as medicine, agriculture, photochemistry, biocidal formulations, and polymer science. By virtue of their therapeutic properties, they could be employed in combating many infectious diseases. Among the common infectious diseases, viral infections are of great public health importance worldwide. Thus, there is an urgent need for the discovery and development of antiviral drugs and clinical methods to prevent various viral infections so as to increase the life expectancy. This review presents the comprehensive overview of the synthesis and antiviral activity of different heterocyclic compounds 2015 onwards, which aids in present knowledge and helps the researchers and other stakeholders to explore their field.
Collapse
Affiliation(s)
- Shivali Sharma
- Department of Chemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, India
| | - Divya Utreja
- Department of Chemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
27
|
Design, synthesis, and antiviral activities of chalcone derivatives containing pyrimidine. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Ni W, Wang L, Song H, Liu Y, Wang Q. Synthesis and Evaluation of 11-Butyl Matrine Derivatives as Potential Anti-Virus Agents. Molecules 2022; 27:7563. [PMID: 36364389 PMCID: PMC9658933 DOI: 10.3390/molecules27217563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
Matrine derivatives were reported to have various biological activities, especially the ester, amide or sulfonamide derivatives of matrine deriving from the hydroxyl or carboxyl group at the end of the branch chain after the D ring of matrine is opened. In this work, to investigate whether moving away all functional groups from the C-11 branch chain could have an impact on the bioactivities, such as anti-tobacco mosaic virus (TMV), insecticidal and fungicidal activities, a variety of N-substituted-11-butyl matrine derivatives were synthesized. The obtained bioassay result showed that most N-substituted-11-butyl matrine derivatives had obviously enhanced anti-TMV activity compared with matrine, especially many compounds had good inhibitory activity close to that of commercialized virucide Ningnanmycin (inhibition rate 55.4, 57.8 ± 1.4, 55.3 ± 0.5 and 60.3 ± 1.2% at 500 μg/mL; 26.1, 29.7 ± 0.2, 24.2 ± 1.0 and 27.0 ± 0.3% at 100 μg/mL, for the in vitro activity, in vivo inactivation, curative and protection activities, respectively). Notably, N-benzoyl (7), N-benzyl (16), and N-cyclohexylmethyl-11-butyl (19) matrine derivatives had higher anti-TMV activity than Ningnanmycin at both 500 and 100 μg/mL for the four test modes, showing high potential as anti-TMV agent. Furthermore, some compounds also showed good fungicidal activity or insecticidal activity.
Collapse
Affiliation(s)
| | | | | | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
29
|
Wang X, Chai J, Gu Y, Zhang D, Meng F, Si X, Yang C, Xue W. Expedient Discovery for Novel Antifungal Leads Inhibiting Fusarium graminearum: 3-(Phenylamino)quinazolin-4(3 H)-ones Deriving from Systematic Optimizations on a Tryptanthrin Structure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13165-13175. [PMID: 36194787 DOI: 10.1021/acs.jafc.2c04933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The ever-increasing resistance of Fusarium graminearum has emerged as a pressing agricultural issue that could be settled by developing novel fungicides owning inimitable action mechanisms. With the aim of discovering novel antifungal leads inhibiting F. graminearum, a tryptanthrin structure was dexterously optimized to generate 30 novel quinazolin-4(3H)-one derivatives. The aforementioned optimization generated the molecule C17 that owned exhilarating in vitro anti-F. graminearum effect (EC50 value = 0.76 μg/mL). Whereafter, the in vivo anti-F. graminearum preventative efficacy of the molecule C17 was measured to be 59.5% at 200 μg/mL, which was approximately comparable with that of carbendazim (64.9%). Furthermore, morphological observations indicated that the molecule C17 could cause the hypha to become slender and dense, distort the outline of cell walls, induce an increase in liposome numbers, and cause the reduction of mitochondria numbers. The above results have emerged as an obbligato complement for developing novel antifungal leads that could effectively control Fusarium head blight.
Collapse
Affiliation(s)
- Xiaobin Wang
- College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jianqi Chai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yifei Gu
- College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Di Zhang
- College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Fei Meng
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinxin Si
- College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Chunlong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xue
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
30
|
Synthesis, bioactivity and preliminary mechanism of action of novel trifluoromethyl pyrimidine derivatives. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
31
|
Sulaiman M, Jannat K, Nissapatorn V, Rahmatullah M, Paul AK, de Lourdes Pereira M, Rajagopal M, Suleiman M, Butler MS, Break MKB, Weber JF, Wilairatana P, Wiart C. Antibacterial and Antifungal Alkaloids from Asian Angiosperms: Distribution, Mechanisms of Action, Structure-Activity, and Clinical Potentials. Antibiotics (Basel) 2022; 11:1146. [PMID: 36139926 PMCID: PMC9495154 DOI: 10.3390/antibiotics11091146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
The emergence of multidrug-resistant bacteria and fungi requires the development of antibiotics and antifungal agents. This review identified natural products isolated from Asian angiosperms with antibacterial and/or antifungal activities and analyzed their distribution, molecular weights, solubility, and modes of action. All data in this review were compiled from Google Scholar, PubMed, Science Direct, Web of Science, ChemSpider, PubChem, and a library search from 1979 to 2022. One hundred and forty-one antibacterial and/or antifungal alkaloids were identified during this period, mainly from basal angiosperms. The most active alkaloids are mainly planar, amphiphilic, with a molecular mass between 200 and 400 g/mol, and a polar surface area of about 50 Å2, and target DNA and/or topoisomerase as well as the cytoplasmic membrane. 8-Acetylnorchelerythrine, cryptolepine, 8-hydroxydihydrochelerythrine, 6-methoxydihydrosanguinarine, 2'-nortiliacorinine, pendulamine A and B, rhetsisine, sampangine, tiliacorine, tryptanthrin, tylophorinine, vallesamine, and viroallosecurinine yielded MIC ≤ 1 µg/mL and are candidates for the development of lead molecules.
Collapse
Affiliation(s)
- Mazdida Sulaiman
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Khoshnur Jannat
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Monica Suleiman
- Institute for Tropical Biology & Conservation, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | | | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81411, Saudi Arabia
| | - Jean-Frédéric Weber
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR ŒNOLOGIE, EA 4577, USC 1366, ISVV, Université de Bordeaux, 210 Chemin de Leysotte, 33882 Villenave d’Ornon, France
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Christophe Wiart
- Institute for Tropical Biology & Conservation, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| |
Collapse
|
32
|
Rapid syntheses of N-fused heterocycles via acyl-transfer in heteroaryl ketones. Nat Commun 2022; 13:3337. [PMID: 35680930 PMCID: PMC9184603 DOI: 10.1038/s41467-022-31063-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022] Open
Abstract
The wide-ranging potencies of bioactive N-fused heterocycles inspire the development of synthetic transformations that simplify preparation of their complex, diverse structural motifs. Heteroaryl ketones are ubiquitous, readily available, and inexpensive molecular scaffolds, and are thus synthetically appealing as precursors in preparing N-fused heterocycles via intramolecular acyl-transfer. To best of our knowledge, acyl-transfer of unstrained heteroaryl ketones remains to be demonstrated. Here, we show an acyl transfer-annulation to convert heteroaryl ketones to N-fused heterocycles. Driven via aromatisation, the acyl of a heteroaryl ketone can be transferred from the carbon to the nitrogen of the corresponding heterocycle. The reaction commences with the spiroannulation of a heteroaryl ketone and an alkyl bromide, with the resulting spirocyclic intermediate undergoing aromatisation-driven intramolecular acyl transfer. The reaction conditions are optimised, with the reaction exhibiting a broad substrate scope in terms of the ketone and alkyl bromide. The utility of this protocol is further demonstrated via application to complex natural products and drug derivatives to yield heavily functionalised N-fused heterocycles. Heteroaryl ketones are ubiquitous molecular scaffolds but seldom used as synthetic precusors. Here, the authors develop an acyl transfer-annulation to convert heteroaryl ketones to N-fused heterocycles, which are prevalent in bioactive molecules.
Collapse
|
33
|
Chen J, Wang Y, Luo X, Chen Y. Recent research progress and outlook in agricultural chemical discovery based on quinazoline scaffold. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105122. [PMID: 35715060 DOI: 10.1016/j.pestbp.2022.105122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 05/27/2023]
Abstract
The discovery of new scaffolds and targets for pesticides is still a huge challenge facing the sustainable development of modern agriculture. In recent years, quinazoline derivatives have achieved great progress in drug discovery and have attracted great attention. Quinazoline is a unique bicyclic scaffold with a variety of biological activities, which increases the possibilities and flexibility of structural modification, showing enormous appeal in the discovery of new pesticides. Therefore, the agricultural biological activities, structure-activity relationships (SAR), and mechanism of action of quinazoline derivatives in the past decade were reviewed systematically, with emphasis on SAR and mechanism. Then, we prospected the application of the quinazoline scaffold as a special structure in agricultural chemical discovery, hoping to provide new ideas for the rational design and mechanism of novel quinazoline agricultural chemicals in the future.
Collapse
Affiliation(s)
- Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
| | - Yu Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xin Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yifang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
34
|
Tian J, Ji R, Wang H, Li S, Zhang G. Discovery of Novel α-Aminophosphonates with Hydrazone as Potential Antiviral Agents Combined With Active Fragment and Molecular Docking. Front Chem 2022; 10:911453. [PMID: 37868694 PMCID: PMC10588822 DOI: 10.3389/fchem.2022.911453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/13/2022] [Indexed: 10/24/2023] Open
Abstract
A series of novel α-aminophosphonate derivatives containing hydrazone were designed and synthesized based on active fragments. Bioassay results demonstrated that title compounds possessed good activities against tobacco mosaic virus. Among them, compounds 6a, 6g, 6i, and 6j were equivalent to the commercial antiviral agents like dufulin. On structure optimization-based molecular docking, compound 6k was synthesized and displayed excellent activity with values of 65.1% curative activity, 74.3% protective activity, and 94.3% inactivation activity, which were significantly superior to the commercial antiviral agents dufulin and ningnanmycin. Therefore, this study indicated that new lead compounds could be developed by adopting a joint strategy with active fragments and molecular docking.
Collapse
Affiliation(s)
- Jia Tian
- Chemistry and Material Science College, Huaibei Normal University, Huaibei, China
| | - Renjing Ji
- Chemistry and Material Science College, Huaibei Normal University, Huaibei, China
| | - Huan Wang
- Chemistry and Material Science College, Huaibei Normal University, Huaibei, China
| | - Siyu Li
- Chemistry and Material Science College, Huaibei Normal University, Huaibei, China
| | - Guoping Zhang
- Chemistry and Material Science College, Huaibei Normal University, Huaibei, China
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, China
| |
Collapse
|
35
|
Dao PDQ, Cho CS. Copper‐Catalyzed Synthesis of 5‐Arylindolo[1.2‐c]quinazoline‐6(5H)‐ones from 2‐2(Bromoaryl)indoles and Aryl Isocyanates under Microwave Irradiation. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pham Duy Quang Dao
- Kyungpook National University Applied Chemistry 80 Daehakro, Bukgu 41566 Daegu KOREA, REPUBLIC OF
| | - Chan Sik Cho
- Kyungpook National University Department of Applied Chemistry 80 Daehakro, Bukgu 41566 Daegu KOREA, REPUBLIC OF
| |
Collapse
|
36
|
Wong LW, Goh CBS, Tan JBL. A Systemic Review for Ethnopharmacological Studies on Isatis indigotica Fortune: Bioactive Compounds and their Therapeutic Insights. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:161-207. [PMID: 35139772 DOI: 10.1142/s0192415x22500069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Isatis indigotica Fortune is a biennial Chinese woad of the Cruciferae family. It is primarily cultivated in China, where it was a staple in indigo dye manufacture till the end of the 17th century. Today, I. indigotica is used primarily as a therapeutic herb in traditional Chinese medicine (TCM). The medicinal use of the plant is separated into its leaves (Da-Qing-Ye) and roots (Ban-Lan-Gen), whereas its aerial components can be processed into a dried bluish-spruce powder (Qing-Dai), following dehydration for long-term preservation. Over the past several decades, I. indigotica has been generally utilized for its heat-clearing effects and bodily detoxification in TCM, attributed to the presence of several classes of bioactive compounds, including organic acids, alkaloids, terpenoids, and flavonoids, as well as lignans, anthraquinones, glucosides, glucosinolates, sphingolipids, tetrapyrroles, and polysaccharides. This paper aims to delineate I. indigotica from its closely-related species (Isatis tinctoria and Isatis glauca) while highlighting the ethnomedicinal uses of I. indigotica from the perspectives of modern and traditional medicine. A systematic search of PubMed, Embase, PMC, Web of Science, and Google Scholar databases was done for articles on all aspects of the plant, emphasizing those analyzing the bioactivity of constituents of the plant. The various key bioactive compounds of I. indigotica that have been found to exhibit anti-inflammatory, antimicrobial, anticancer, and anti-allergic properties, along with the protective effects against neuronal injury and bone fracture, will be discussed. Collectively, the review hopes to draw attention to the therapeutic potential of I. indigotica not only as a TCM, but also as a potential source of bioactive compounds for disease management and treatment.
Collapse
Affiliation(s)
- Li Wen Wong
- School of Science, Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, 47500 Selangor, Malaysia
| | - Calvin Bok Sun Goh
- School of Science, Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, 47500 Selangor, Malaysia
| | - Joash Ban Lee Tan
- School of Science, Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya, 47500 Selangor, Malaysia
| |
Collapse
|
37
|
Gan X, Wang Z, Hu D. Synthesis of Novel Antiviral Ferulic Acid-Eugenol and Isoeugenol Hybrids Using Various Link Reactions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13724-13733. [PMID: 34751031 DOI: 10.1021/acs.jafc.1c05521] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To develop novel antiviral agents, some novel conjugates between ferulic acid and eugenol or isoeugenol were designed and synthesized by the link reaction. The antiviral activities of compounds were evaluated using the half leaf dead spot method. Bioassay results showed acceptable antiviral activities of some conjugates against the tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV). Compounds A9, A10, E1, and E4 showed remarkable curative, protective, and inactivating effects on TMV and CMV at 500 μg mL-1. Notably, these compounds exhibited excellent protective effects on TMV and CMV. The EC50 values of compounds A9, A10, E1, and E4 against TMV were 180.5, 169.5, 211.4, and 135.5 μg mL-1, respectively, and those against CMV were 210.5, 239.1, 218.4, and 178.6 μg mL-1, respectively, which were superior to those of ferulic acid (471.5 and 489.2 μg mL-1), eugenol (456.3 and 463.2 μg mL-1), isoeugenol (478.4 and 487.5 μg mL-1), and ningnanmycin (246.5 and 286.6 μg mL-1). Then, the antiviral mechanisms of compound E4 were investigated by determining defensive enzyme activities and multi-omics analysis. The results indicated that compound E4 resisted the virus infection by enhancing defensive responses via inducing the accumulation of secondary metabolites from the phenylpropanoid biosynthesis pathway in tobacco.
Collapse
Affiliation(s)
- Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhengxing Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
38
|
Li L, Zou J, Xu C, You S, Deng Z, Chen G, Liu Y, Wang Q. Preparation and Anti-Tobacco Mosaic Virus Activities of Crocetin Diesters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13637-13643. [PMID: 34730974 DOI: 10.1021/acs.jafc.1c03884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of antiviral agents with an original structure and noticeable effect is always in great need. Natural products are important lead compounds in the development of new pesticides. Crocin-1 and crocin-2 were effectively isolated from Gardeniae fructus and found to have higher anti-tobacco mosaic virus (TMV) activity levels than ribavirin. A series of the crocetin diester derivatives were synthesized with separated crocetin-1 as material and evaluated for their anti-TMV activities. They could be dissolved in common organic solvents as dichloromethane, ethyl acetate, tetrahydrofuran, and methanol. Compounds 5, 9, 13, 14, and 15 displayed higher activities in vivo than ribavirin. Compound 14 with significantly higher antiviral activities than lead compounds (crocin-1 and crocin-2) emerged as a new antiviral candidate.
Collapse
Affiliation(s)
- Ling Li
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, Jiangxi 330096, People's Republic of China
| | - Jiyong Zou
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, Jiangxi 330096, People's Republic of China
| | - Changjiang Xu
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, Jiangxi 330096, People's Republic of China
| | - Shengyong You
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, Jiangxi 330096, People's Republic of China
| | - Zhaoyang Deng
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, Jiangxi 330096, People's Republic of China
| | - Guihua Chen
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, Jiangxi 330096, People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
39
|
Pinheiro D, Pineiro M, Seixas de Melo JS. Tryptanthrin derivatives as efficient singlet oxygen sensitizers. Photochem Photobiol Sci 2021; 21:645-658. [PMID: 34735707 DOI: 10.1007/s43630-021-00117-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/14/2021] [Indexed: 11/27/2022]
Abstract
Halogenated tryptanthrin and aminotryptanthrin were synthesized from indigo or isatin precursors. Dibromo- and tetrabromo-tryptanthrin were obtained from indigo dyes following green chemistry procedures, through microwave-assisted synthesis in mild oxidation conditions. Spectral and photophysical properties of the compounds, including quantitative determination of all the different deactivation pathways of S1 and T1, were obtained in different solvents and temperatures. The triplet state (T1) has a dominant role on the photophysical properties of these compounds, which is further enhanced by the halogens at the fused-phenyl rings. Substitution with an amino group, 2-aminotryptanthrin (TRYP-NH2), leads a dominance of the radiative decay channel. Moreover, with the sole exception of TRYP-NH2, S1 ~ ~ > T1 intersystem crossing constitutes the dominant route, with internal conversion playing a minor role in the deactivation of S1 in all the studied derivatives. In agreement with tryptanthrin, emission of the triplet state of tryptanthrin derivatives (with exception of TRYP-NH2), was observed together with an enhancement of the singlet oxygen sensitization quantum yield: from 70% in tryptanthrin to 92% in the iodine derivative. This strongly contrasts with indigo and its derivatives, where singlet oxygen sensitization is found inefficient.
Collapse
Affiliation(s)
- Daniela Pinheiro
- Department of Chemistry, CQC, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal
| | - Marta Pineiro
- Department of Chemistry, CQC, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal
| | - J Sérgio Seixas de Melo
- Department of Chemistry, CQC, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal.
| |
Collapse
|
40
|
Hou B, Zhou Y, Li W, Liu J, Wang C. Synthesis and evaluation of tryptanthrins as antitumor agents. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Tian Z, Liao A, Kang J, Gao Y, Lu A, Wang Z, Wang Q. Toad Alkaloid for Pesticide Discovery: Dehydrobufotenine Derivatives as Novel Agents against Plant Virus and Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9754-9763. [PMID: 34415761 DOI: 10.1021/acs.jafc.1c03714] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plant viruses and fungi are a serious threat to food security and natural ecosystems. The efficient and environment-friendly control methods are urgently needed to help safeguard such resources. Here, we achieved the efficient synthesis of toad alkaloid dehydrobufotenine in eight steps with an overall yield of 8% from 5-methoxyindole. A series of dehydrobufotenine derivatives were designed, synthesized, and evaluated for their antiviral and fungicidal activities systematically. It was found for the first time that these compounds have good anti-plant virus activities and anti-plant pathogen activities. The antiviral activities of 21 compounds were similar to or better than those of ribavirin. Compounds 12 and 17 displayed better antiviral activities than ningnanmycin which is perhaps the most effective anti-plant virus agent. The antiviral mechanism research study of 12 revealed that it could make 20S CP disk fusion and aggregation. Further molecular docking results showed that there are hydrogen bonds between compounds 12, 17, and tobacco mosaic virus CP. The docking results are consistent with the antiviral activity. These compounds also displayed broad-spectrum fungicidal activities against 14 kinds of fungi, especially for Sclerotinia sclerotiorum. In this work, the synthesis, structure optimization, structure-activity relationship studies, and mode of action research of dehydrobufotenine alkaloids were carried out. It provides a reference for the development of the anti-plant virus agent and anti-plant pathogen agent from toad alkaloids.
Collapse
Affiliation(s)
- Zhaoyong Tian
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Ancai Liao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Jin Kang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Yongyue Gao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Aidang Lu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
42
|
Wang X, Chai J, Kong X, Jin F, Chen M, Yang C, Xue W. Expedient discovery for novel antifungal leads: 1,3,4-Oxadiazole derivatives bearing a quinazolin-4(3H)-one fragment. Bioorg Med Chem 2021; 45:116330. [PMID: 34333395 DOI: 10.1016/j.bmc.2021.116330] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
Developing novel fungicide candidates are intensively promoted by the rapid emergences of resistant fungi that outbreak on agricultural production. Aiming to discovery novel antifungal leads, a series of 1,3,4-oxadiazole derivatives bearing a quinazolin-4(3H)-one fragment were constructed for evaluating their inhibition effects against phytopathogenic fungi in vitro and in vivo. Systematically structural optimizations generated the bioactive molecule I32 that was identified as a promising inhibitor against Rhizoctonia solani with the in vivo preventative effect of 58.63% at 200 μg/mL. The observations that were captured by scanning electron microscopy and transmission electron microscopy demonstrated that the bioactive molecule I32 could induce the sprawling growth of hyphae, the local shrinkage and rupture on hyphal surfaces, the extreme swelling of vacuoles, the striking distortions on cell walls, and the reduction of mitochondria numbers. The above results provided an indispensable complement for the discovery of antifungal lead bearing a quinazolin-4(3H)-one and 1,3,4-oxadiazole fragment.
Collapse
Affiliation(s)
- Xiaobin Wang
- Jiangsu Key Laboratory of Pesticide Science, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jianqi Chai
- Jiangsu Key Laboratory of Pesticide Science, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangyi Kong
- Jiangsu Key Laboratory of Pesticide Science, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Jin
- Jiangsu Key Laboratory of Pesticide Science, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Chen
- Jiangsu Key Laboratory of Pesticide Science, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunlong Yang
- Jiangsu Key Laboratory of Pesticide Science, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wei Xue
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
43
|
Zhang X, Huang W, Lu X, Liu S, Feng H, Yang W, Ye J, Li F, Ke S, Wei D. Identification of Carbazole Alkaloid Derivatives with Acylhydrazone as Novel Anti-TMV Agents with the Guidance of a Digital Fluorescence Visual Screening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7458-7466. [PMID: 34165977 DOI: 10.1021/acs.jafc.1c00897] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Difficulty in preventing crops from plant viruses urges to discover novel efficient antiviral chemicals, which is sped up by precise screening methods. Fluorescence-based methods have recently been applied as innovative and rapid tools for visually monitoring the replication of viruses and screening of antivirals, whereas the quantification of fluorescence signals mainly depends on manually calculating the fluorescent spots, which is time-consuming and imprecise. In the present work, the fluorescence spots were automatically identified, and the fluorescence area was directly quantified by a program developed in our group, which avoided subjective errors from the operators. We further employed this digital and visual screening assay to identify antivirals using the tobacco mosaic virus-green fluorescence protein (TMV-GFP) construct, in which the expression of GFP intuitively reflected the efficacy of antivirals. The accuracy of this assay was validated by quantifying the activities of the commercial antiviral inhibitors ribavirin and ningnanmycin and then was applied to evaluate the subtle activity differences of a series of newly synthesized carbazole and β-carboline alkaloid derivatives. Among them, compounds 5 (76%) and 11 (63%) exhibited anti-TMV activities comparable to that of ningnanmycin (65%) at 50 μM, and they delayed the multiplication of TMV in the early stage of infection without phytotoxicity. Taken together, these findings demonstrated that the digital and visual TMV-GFP screening method was competent to test the antiviral activities of compounds with subtle modifications and facilitated the discovery of novel antivirals.
Collapse
Affiliation(s)
- Xianpeng Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Wenbo Huang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, P. R. China
| | - Xu Lu
- Key Laboratory of Horticulture Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Sisi Liu
- College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Hui Feng
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Junli Ye
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Feng Li
- Key Laboratory of Horticulture Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Shaoyong Ke
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, P. R. China
| | - Dengguo Wei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| |
Collapse
|
44
|
Li S, Lv M, Sun Z, Hao M, Xu H. Optimization of Osthole in the Lactone Ring: Structural Elucidation, Pesticidal Activities, and Control Efficiency of Osthole Ester Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6465-6474. [PMID: 34077224 DOI: 10.1021/acs.jafc.1c01434] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Here, we prepared a series of novel osthole-type ester derivatives modified in the lactone ring of osthole, which is isolated from Cnidium monnieri. The positions of H-3 and H-4 of the representative compound 4z were determined by a 1H-1H COSY spectrum. By opening the lactone ring of osthole, the double bonds at the C-3 and C-4 positions of diol 3 and esters 4a-4z, 4a', and 4b' were still retained as a Z configuration. That is, H-3 and H-4 of compounds 3 and 4a-4z, 4a', and 4b' were all in the cis relationship. The steric configurations of 4k, 4v, and 4z were further undoubtedly determined by single-crystal X-ray diffraction. Against Tetranychus cinnabarinus Boisduval, four aliphatic esters 4c (R = n-C3H7; LC50: 0.31 mg/mL), 4d (R = CH3(CH2)10; LC50: 0.24 mg/mL), 4a' (R = CH3(CH2)9; LC50: 0.28 mg/mL), and 4b' (R = CH3(CH2)12; LC50: 0.32 mg/mL) showed the most promising acaricidal activity, and compounds 4c, 4d, and 4a' also exhibited a potent control efficiency. Especially, compound 4d exhibited greater than fivefold acaricidal activity of the precursor osthole (LC50: 1.22 mg/mL). Against Mythimna separata Walker, compounds 4g, 4l, and 4m displayed 1.6-1.8-fold potent insecticidal activity of osthole. It demonstrated that the lactone ring of osthole is not necessary for the agricultural activities, thiocarbonylation of osthole was not beneficial for the agricultural activities, introduction of R as an aliphatic chain is vital for the acaricidal activity, notably, the length of the aliphatic chain is related to the acaricidal activity, 4d could be further studied as a lead acaricidal agent, and to the aromatic series, R containing the fluorine atom(s) is important for the insecticidal activity.
Collapse
Affiliation(s)
- Shaochen Li
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Min Lv
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Zhiqiang Sun
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Meng Hao
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| |
Collapse
|
45
|
Shim S, Park H, Mishra NK, Kim IS, Lee JK, Lee K, Jalani HB, Choi Y. Catalyst‐Free One‐Pot Multi‐Component Synthesis of 2‐Substituted Quinazolin‐4‐carboxamides from 2‐Aminophenyl‐2‐oxoacetamides, Aldehydes, and Ammonium Acetate. ChemistrySelect 2021. [DOI: 10.1002/slct.202100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Seung‐Hwan Shim
- School of Life Sciences and Biotechnology Korea University Seoul 02841 Republic of Korea
| | - Hyejun Park
- School of Life Sciences and Biotechnology Korea University Seoul 02841 Republic of Korea
| | | | - In Su Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Jae Kyun Lee
- Center for Neuromedicine Korea Institute of science and Technology Seoul 02792 Republic of Korea
| | - Kiho Lee
- College of Pharmacy Korea University Seoul 2511 Republic of Korea E-mail: sejong-ro
| | - Hitesh B. Jalani
- Smart BioPharm 310-Pilotplant Incheon Techno-Park, 12-Gaetbeol-ro, Yeonsu-gu Incheon 21999 South Korea
| | - Yongseok Choi
- School of Life Sciences and Biotechnology Korea University Seoul 02841 Republic of Korea
| |
Collapse
|
46
|
Zhang J, Xia W, Huda S, Ward JS, Rissanen K, Albrecht M. Synthesis of N‐Fused Indolines via Copper (II)‐Catalyzed Dearomatizing Cyclization of Indoles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jingyu Zhang
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 D-52074 Aachen Germany
| | - Wei Xia
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 D-52074 Aachen Germany
| | - Saskia Huda
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 D-52074 Aachen Germany
| | - Jas S. Ward
- University of Jyvaskyla Department of Chemistry Survontie 9 B FIN-40014 Jyväskylä Finland
| | - Kari Rissanen
- University of Jyvaskyla Department of Chemistry Survontie 9 B FIN-40014 Jyväskylä Finland
| | - Markus Albrecht
- Institut für Organische Chemie RWTH Aachen University Landoltweg 1 D-52074 Aachen Germany
| |
Collapse
|
47
|
Shi X, Zhang Y, Han J, Peng W, Fang Z, Qin Y, Xu X, Lin J, Xiao F, Zhao L, Lin Y. Tryptanthrin Regulates Vascular Smooth Muscle Cell Phenotypic Switching in Atherosclerosis by AMP-Activated Protein Kinase/Acetyl-CoA Carboxylase Signaling Pathway. J Cardiovasc Pharmacol 2021; 77:642-649. [PMID: 33951699 DOI: 10.1097/fjc.0000000000001008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/16/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Atherosclerosis (AS) is one of the most severe cardiovascular diseases involved in the phenotypic switching of vascular smooth muscle cells (VSMCs). Tryptanthrin is a natural product with broad biological activities. However, the effect of tryptanthrin on atherosclerotic progression is unclear. The aim of this study was to determine the role of tryptanthrin in AS and explore the potential mechanism. In vitro, primary VSMCs were stimulated with platelet-derived growth factor-BB (PDGF) to induce cell dedifferentiation. Treatment with tryptanthrin (5 μM or 10 μM) suppressed the proliferation and recovered the contractility of VSMCs in the presence of PDGF. The contractile proteins (α-smooth muscle actin, calponin, and SM22α) were increased, and the synthetic protein vimentin was decreased by tryptanthrin in PDGF-induced VSMCs. ApoE-/- mice fed with high-fat diet were used as an in vivo model of AS. Similarly, gavage administration of tryptanthrin (50 mg/kg or 100 mg/kg) attenuated VSMC phenotypic changes from a contractile to a synthetic state in aortic tissues of AS mice. The serum lipid level, atherosclerotic plaque formation, and arterial intimal hyperplasia were attenuated by tryptanthrin. Furthermore, tryptanthrin increased the expression levels of phosphorylated AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) both in vitro and in vivo. Administration of compound C, an AMPK inhibitor, reversed the inhibitory effect of tryptanthrin on VSMC dedifferentiation in vitro. Thus, we demonstrate that tryptanthrin protects against AS progression through the inhibition of VSMC switching from a contractile to a pathological synthetic phenotype by the activation of AMPK/ACC pathway. It provides novel insights into AS prevention and treatment.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Acetyl-CoA Carboxylase/metabolism
- Animals
- Atherosclerosis/drug therapy
- Atherosclerosis/enzymology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Becaplermin/pharmacology
- Cell Plasticity/drug effects
- Cells, Cultured
- Disease Models, Animal
- Male
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Neointima
- Phenotype
- Phosphorylation
- Plaque, Atherosclerotic
- Quinazolines/pharmacology
- Signal Transduction
- Mice
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jie Lin
- Endocrinology and Metabolism, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Department of Atherosclerosis, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China; and
| | - Fucheng Xiao
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Limin Zhao
- Department of Atherosclerosis, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China; and
| | | |
Collapse
|
48
|
Brandão P, Marques C, Pinto E, Pineiro M, Burke AJ. Petasis adducts of tryptanthrin – synthesis, biological activity evaluation and druglikeness assessment. NEW J CHEM 2021. [DOI: 10.1039/d1nj02079j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The first example of a tryptanthrin-based Petasis multicomponent reaction is reported, with one of the new derivatives showing moderate fungicidal activity.
Collapse
Affiliation(s)
- Pedro Brandão
- Department of Chemistry
- University of Coimbra
- CQC
- Coimbra
- Portugal
| | | | - Eugénia Pinto
- Laboratório de Microbiologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
- 4050-313 Porto
| | - Marta Pineiro
- Department of Chemistry
- University of Coimbra
- CQC
- Coimbra
- Portugal
| | - Anthony J. Burke
- LAQV-REQUIMTE
- University of Évora
- Évora
- Portugal
- Department of Chemistry
| |
Collapse
|
49
|
Zou J, Zhao L, Yi P, An Q, He L, Li Y, Lou H, Yuan C, Gu W, Huang L, Hu Z, Hao X. Quinolizidine Alkaloids with Antiviral and Insecticidal Activities from the Seeds of Sophora tonkinensis Gagnep. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15015-15026. [PMID: 33285067 DOI: 10.1021/acs.jafc.0c06032] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The discovery of novel, effective, and botanical pesticides is one of the main strategies for modern plant protection and insect pest control. During the search for novel botanical pesticides from natural sources, the seeds of Sophora tonkinensis were systematically investigated to obtain 11 new matrine-type alkaloids (1-11), including one novel matrine-type alkaloid featuring an unprecedented 5/6/6/6 tetracyclic skeleton (1), along with 16 known compounds (12-27). Their structures were elucidated by comprehensive spectroscopic data analysis (IR, UV, NMR, and HRESIMS), ECD calculations, and single-crystal X-ray diffraction. The anti-tobacco mosaic virus (TMV) activity and insecticidal activities against Aphis fabae and Tetranychus urticae of the compounds were also respectively screened using the half-leaf method and spray method. Biological tests indicated that compounds 2, 4, 6, and 26 displayed significant anti-TMV biological activities compared with the positive control ningnanmycin. Compounds 7, 17, and 26 presented moderate activities against A. fabae with LC50 values of 38.29, 18.63, and 23.74 mg/L, respectively. Moreover, compounds 13 and 26 exhibited weak activities against T. urticae.
Collapse
Affiliation(s)
- Jibin Zou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, PR China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, PR China
| | - Lihua Zhao
- The Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming 650204, PR China
| | - Ping Yi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, PR China
| | - Qiao An
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, PR China
| | - Longxiang He
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, PR China
| | - Yanan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, PR China
| | - Huayong Lou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, PR China
| | - Chunmao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, PR China
| | - Wei Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, PR China
| | - Liejun Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, PR China
| | - Zhanxing Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, PR China
| | - Xiaojiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, PR China
| |
Collapse
|