1
|
Li W, Yi L, Gu Y, Ren D, Dong W. Investigation on the Lipid Profile of Ripened Pu-erh Tea and Relationships Between Their Changes and Key Aromatic Volatiles. J Sep Sci 2025; 48:e70133. [PMID: 40226889 DOI: 10.1002/jssc.70133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025]
Abstract
Ripened Pu-erh tea is a special tea with unique flavor and obtained by solid fermentation of microorganisms. This work aimed to investigate the changes of lipid metabolites during fermentation and the association between lipids and the aroma of ripened Pu-erh tea based on ultra-high-performance liquid chromatography-high resolution mass spectrometry and GC-MS. A total of 217 lipids and lipid-soluble substances covering 19 subclasses were detected and characterized. Compared with green tea, black tea, and raw Pu-erh tea, ripened Pu-erh tea showed the highest levels of fatty acids. The contents of 36 lipids varied remarkably with fermentation time, and thus these compounds were screened as differential metabolites. These changes were mainly caused by the degradation of glycerophospholipids (folds change: 0.48-0.13) and the formation of fatty acids (folds change: 5.2-11.2). Results of Pearson correlation analysis showed that a few of the aromatic volatiles, including 2-octenal, 3,5-octadien-2-one, 2,4-heptadienal, and 2,6-nonadienal showed obvious negative correlations with phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol, but significant positive correlations with fatty acids 18:2 and 18:1. This study provided a further understanding of the lipid composition of ripened Pu-erh and their changes during tea production.
Collapse
Affiliation(s)
- Wenting Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Lunzhao Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Dabing Ren
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Wenjiang Dong
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, People's Republic of China
| |
Collapse
|
2
|
Cheng Y, Gu W, Wu X, Tian W, Mu Z, Ye Y, Chao H, Bao Z. Allicin alleviates traumatic brain injury-induced neuroinflammation by enhancing PKC-δ-mediated mitophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156500. [PMID: 39986225 DOI: 10.1016/j.phymed.2025.156500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/21/2025] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Traumatic brain injury (TBI) leads to neuroinflammation, which is a key contributor to the negative prognosis in TBI patients. Recent evidence indicates that allicin can prevent neuronal injury after TBI. However, whether allicin alleviates neuroinflammation by promoting mitophagy is unclear. PURPOSE We investigated the suppressive effects of allicin on neuroinflammation and clarified the role of mitophagy in the underlying mechanism. STUDY DESIGN/METHODS The controlled cortical impact (CCI) was employed to effectively mimic TBI in a living system. Cellular mechanical damage was modeled in vitro using a Bv2 cell stretch model. Neuroinflammation was assessed by evaluating levels of TNF-α, IL-1β, IL-6, ROS, IL-4 and IL-10, along with the expression of NLRP3 and TLR4 proteins. RNA-sequence and KEGG analyses revealed allicin-regulated molecular processes in the Bv2 cell stretch model. Immunofluorescence staining was performed to label both the autophagy marker protein LC3 and the outer mitochondrial membrane (OMM) marker COX IV. Lipid MS and lipidomic analyses were used to determine the CL levels in the OMM and IMM. The characteristic bilayer structure of mitochondria was observed using transmission electron microscopy (TEM). PKC-δ expression and phosphorylated phospholipid scramblase-3 (PLS3) levels were detected via western blotting. Stretched Bv2 cells and primary neurons were cocultured to assess the anti-neuroinflammatory effects of allicin. Neuro-rehabilitation was assessed using behavioral experiments such as the rotarod and morris water maze (MWM) tests. RESULTS Allicin treatment reduced TNF-α, IL-1β, IL-6, ROS levels, and the expression of NLRP3 and TLR4 proteins in mice with CCI, while IL-4 and IL-10 levels remained unchanged. Additionally, allicin reduced tissue lesions and cell death after CCI. The transcriptomic analysis revealed that mitophagy was important in allicin-related molecular pathways. The translocation of CL from IMM to OMM was facilitated by allicin, as demonstrated by flow cytometry and lipidomic analyses. Importantly, allicin increased PKC-δ expression and PLS3 phosphorylation in the CL-related mitophagy process in both the CCI and Bv2 cell stretch models. These findings suggest that allicin reduces mitophagy-related neuroinflammation and further prevents neuronal injury in vitro. Rottlerin, a selective PKC-δ inhibitor, effectively diminished allicin's capacity to reduce neuroinflammation, correlating with worsened motor function and cognitive abilities. Thus, CCI-induced behavioral deficits were also ameliorated by the administration of allicin via a PKC-δ-related mitophagy. CONCLUSIONS This study uncovers a novel mechanism where allicin enhances PKC-δ expression and PLS3 phosphorylation, facilitating CL translocation to the OMM and activating mitophagy, thereby reducing TBI-induced neuroinflammation.
Collapse
Affiliation(s)
- Yue Cheng
- Department of Radiology, Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, No. 68 Zhongshan Road, Liangxi District, Wuxi 214001, China
| | - Wei Gu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xuechao Wu
- Department of Neurosurgery, Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, No. 68 Zhongshan Road, Liangxi District, Wuxi 214001, China
| | - Wei Tian
- Department of Neurosurgery, Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, No. 68 Zhongshan Road, Liangxi District, Wuxi 214001, China
| | - Zhenqian Mu
- Department of Neurosurgery, Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, No. 68 Zhongshan Road, Liangxi District, Wuxi 214001, China
| | - Yangfan Ye
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Honglu Chao
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongyuan Bao
- Department of Neurosurgery, Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, No. 68 Zhongshan Road, Liangxi District, Wuxi 214001, China.
| |
Collapse
|
3
|
Zheng T, Yang J, Chen Q, Huang X, Xue Y, Tang Q, Wang G, Li Y, Hu Z, Zeng HT. Analysis of lipidomics profile of Brassica napus hybrid 'Fangyou 777' and its parents during ripening stages based on UPLC-MS/MS. BMC PLANT BIOLOGY 2025; 25:197. [PMID: 39953462 PMCID: PMC11827199 DOI: 10.1186/s12870-025-06220-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Lipids in rapeseed is of great significance to human health, and 'Fangyou 777' (No. GPD-2019-510073) has been identified as an excellent cultivar with high oil content. However, the change of lipid profile at different ripening stages remain unclear. Herein, UPLC-MS/MS was utilized for comprehensive lipidomics analysis of 'Fangyou 777' and its parents at four ripening stages. RESULTS 778 lipids components across 25 subclasses were identified, and triglycerides (TGs), diglycerides (DGs), phosphatidylserines (PSs), phosphatidylinositols (PIs), phosphatidylglycerols (PGs), phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), and free fatty acids (FFAs) were identified as the dominant lipid subclass. Due to heterotic vigor, the total lipids, TGs, FFAs, lysophosphatidylglycerol (LPGs) and PSs contents in 'Fangyou 777' were significantly higher than its parents. The PCA and OPLS-DA results elucidated that lipids in 'Fangyou 777' differed obviously from its parents at S1 (17 April, 2023; 28 days before ripening, 28 DBR), S2 (1 May, 2023; 14 DBR), and S3 (15 May, 2023; ripening day). TG(18:1_18:3_22:1), TG(18:1_22:1_18:2), TG(16:0_18:1_20:1), TG(16:0_18:1_22:1), TG(20:1_18:2_20:2), TG(18:1_18:1_20:1), and FFA(24:4) were recognized as key differential lipids. The glycerolipid metabolism and unsaturated fatty acid biosynthesis were the differential metabolic pathways at S1 and S3, while glycosylphosphatidylinositol (GPI)-anchor biosynthesis and glycerophospholipid metabolism were the differential metabolic pathways at S2 and S4 (7 days after ripening/physiologically ripened for one week). CONCLUSION This study provided a comprehensive profile to facilitate the understanding lipids accumulation in 'Fangyou 777' and its parents during ripening stages, and offered a foundation to comprehend lipid metabolism.
Collapse
Affiliation(s)
- Tao Zheng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong, Shaanxi, 723001, China
| | - Jianmei Yang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong, Shaanxi, 723001, China
| | - Qiao Chen
- Hanzhong Vocational and Technical College, Hanzhong, Shaanxi, 723001, China
| | - Xinxin Huang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong, Shaanxi, 723001, China
| | - Yan Xue
- Hanzhong Institute of Agricultural Sciences, Hanzhong, Shaanxi, 723001, China
| | - Qi Tang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong, Shaanxi, 723001, China
| | - Guodong Wang
- College of Life Sciences, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Ying Li
- Hanzhong Institute of Agricultural Sciences, Hanzhong, Shaanxi, 723001, China
| | - Zhubing Hu
- Henan University, Kaifeng, Henan, 475001, China.
| | - Haitao T Zeng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, China.
- Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong, Shaanxi, 723001, China.
| |
Collapse
|
4
|
Zheng T, Tian M, Deng Z, Tang Q, Hu Z, Wang G, Zeng H. UPLC-MS/MS reveals the differences in lipids composition of Camellia oleifera from northern margin distribution area. Food Chem X 2024; 23:101629. [PMID: 39071932 PMCID: PMC11279709 DOI: 10.1016/j.fochx.2024.101629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024] Open
Abstract
The lipids accumulation characteristics in 23Camellia oleifera lines from northern margin distribution area were investigated through quantitative lipidomics. Combined lipids content-function analysis indicated that NQ1, HT1, HT2, ZA2, ZB1, ZB2, and SN2 lines had potential to develop functional foods due to abundant glycerolipids (GLs), glycerophospholipids (GPs), fatty acids (FAs), and prenol lipids (PRs). 673 lipids components were detected, and 293 differential components were identified in NQ1, ZA2, HB1, and HT1. 4 kinds free fatty acids (FFAs) were higher in NQ1, 5 triglycerides (TGs) were higher in HT1, and 2 phosphatidyl serines (PSs) and 1 phosphatidyl glycerol (PG) were higher in ZA2. GLs, GPs, and FFAs had strong relation at intra- and inter-category level. Glycerolipid metabolism, glycerophospholipid metabolism, and fatty acid biosynthesis were the significantly differential lipids pathways. Our study elucidated lipids differences of 23 C. oleifera lines, and offered valuable references for lipids biosynthesis, directional breeding, and lipids utilization.
Collapse
Affiliation(s)
- Tao Zheng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong 723001, Shaanxi, China
- Collaborative Innovation Center for Comprehensive Development of Biological Resources in Qinba Mountain Area of Southern Shaanxi, Hanzhong 723001, Shaanxi, China
- Shaanxi Key Laboratory of Bio-resources, Hanzhong 723001, Shaanxi, China
| | - Min Tian
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong 723001, Shaanxi, China
- Collaborative Innovation Center for Comprehensive Development of Biological Resources in Qinba Mountain Area of Southern Shaanxi, Hanzhong 723001, Shaanxi, China
- Shaanxi Key Laboratory of Bio-resources, Hanzhong 723001, Shaanxi, China
| | - Zhuang Deng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong 723001, Shaanxi, China
- Collaborative Innovation Center for Comprehensive Development of Biological Resources in Qinba Mountain Area of Southern Shaanxi, Hanzhong 723001, Shaanxi, China
- Shaanxi Key Laboratory of Bio-resources, Hanzhong 723001, Shaanxi, China
| | - Qi Tang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong 723001, Shaanxi, China
- Collaborative Innovation Center for Comprehensive Development of Biological Resources in Qinba Mountain Area of Southern Shaanxi, Hanzhong 723001, Shaanxi, China
- Shaanxi Key Laboratory of Bio-resources, Hanzhong 723001, Shaanxi, China
| | - Zhubing Hu
- Henan University, Kaifeng 475001, Henan, China
| | - Guodong Wang
- Shaanxi Normal University, Xi'an, 710119, Shaanxi, China
| | - Haitao Zeng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Hanzhong 723001, Shaanxi, China
- Collaborative Innovation Center for Comprehensive Development of Biological Resources in Qinba Mountain Area of Southern Shaanxi, Hanzhong 723001, Shaanxi, China
- Shaanxi Key Laboratory of Bio-resources, Hanzhong 723001, Shaanxi, China
| |
Collapse
|
5
|
Fan J, Wang D, Kaneko S, Shimizu K. Lipidomic Profiling of Flammulina velutipes (Curtis) Singer (Agaricomycetes) through Ultra-Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry: Examining Lipid Dynamics Changes during Fruiting Body Formation and Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18271-18282. [PMID: 39074379 DOI: 10.1021/acs.jafc.4c03863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Flammulina velutipes (enokitake) is widely recognized for its nutritional and medicinal properties. Understanding the biochemical processes, such as lipid metabolism during fruiting body formation, is essential for enhancing mushroom cultivation and utilization. This study aimed at elucidating the dynamic lipidomic changes during seven growth stages of F. velutipes using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Our results revealed significant increases in ceramides along with the growth and a sharp decline in phosphatidylinositols from mycelial to primordial stages. Fatty acid esters of hydroxy fatty acids, recently discovered for their bioactivities, showed high intensities in the mycelial and primordial stages but decreased rapidly thereafter. These findings provide profound insights into the lipid profiles associated with mushroom morphology and development. This lipidomics study establishes a foundational understanding for future research in agricultural and food chemistry applications, potentially improving industrial production and quality control of F. velutipes.
Collapse
Affiliation(s)
- Jiaxin Fan
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Dongmei Wang
- Department of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Shuhei Kaneko
- Japan Tree Doctors Association, Tokyo 113-0021, Japan
| | - Kuniyoshi Shimizu
- Department of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
6
|
Zhou L, Zhang W, Li Q, Cui M, Shen D, Shu J, Mo R, Liu Y. Evaluation of Lipid Quality in Fruit: Utilizing Lipidomic Approaches for Assessing the Impact of Biotic Stress on Pecans ( Carya illinoinensis). Foods 2024; 13:974. [PMID: 38611280 PMCID: PMC11011906 DOI: 10.3390/foods13070974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
There is a scarcity of data on how the lipid composition of oily seeds changes in response to biotic stress. Yellow peach moth (Conogethes punctiferalis) has caused massive economic losses on the pecan (Carya illinoinensis) industry. Lipidomics is used in this study to determine the lipid composition of pecan and how it changes in response to insect attack. Pecan had 167 lipids, including 34 glycerolipids (GL), 62 glycerophospholipids (GP), 17 fatty acyls (FA), 41 sphingolipids (SP), and 13 saccharolipids (SL). The effects of biotic stress on lipids, particularly GL and GP, were significant. Biotic stress significantly reduced the lipid content of chains longer than 48. Forty-four significantly different lipids were discovered as potential biomarkers for distinguishing non-infected pecans from infested pecans. In addition, we used bioinformatics to identify the five most important metabolic pathways in order to investigate the processes underlying the changes. Our discoveries may offer valuable insights for enhancing pecan production in the future and contribute novel perspectives towards enhancing the nutritional value of pecans.
Collapse
Affiliation(s)
- Lingyuan Zhou
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, China; (L.Z.); (W.Z.); (Q.L.); (M.C.); (D.S.); (J.S.)
| | - Wei Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, China; (L.Z.); (W.Z.); (Q.L.); (M.C.); (D.S.); (J.S.)
| | - Qingyang Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, China; (L.Z.); (W.Z.); (Q.L.); (M.C.); (D.S.); (J.S.)
- Institute of Pesticide and Environmental Toxicology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - Maokai Cui
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, China; (L.Z.); (W.Z.); (Q.L.); (M.C.); (D.S.); (J.S.)
| | - Danyu Shen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, China; (L.Z.); (W.Z.); (Q.L.); (M.C.); (D.S.); (J.S.)
| | - Jinping Shu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, China; (L.Z.); (W.Z.); (Q.L.); (M.C.); (D.S.); (J.S.)
| | - Runhong Mo
- Quality Testing Center for Non-Wood Forest Products of National Forestry and Grassland Administration, Chinese Academy of Forestry, Fuyang 311400, China
| | - Yihua Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, China; (L.Z.); (W.Z.); (Q.L.); (M.C.); (D.S.); (J.S.)
| |
Collapse
|
7
|
Ma Y, Yao J, Zhou L, Zhao M, Wang W, Liu J, Marchioni E. Comprehensive untargeted lipidomic analysis of sea buckthorn using UHPLC-HR-AM/MS/MS combined with principal component analysis. Food Chem 2024; 430:136964. [PMID: 37531917 DOI: 10.1016/j.foodchem.2023.136964] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023]
Abstract
Sea buckthorn is an important ecological and economic plant which has multiple bioactivities. The fruits and seeds of sea buckthorn are rich in oil. However, there are few studies on the differences of lipid profiles of sea buckthorn varieties. Herein, the lipidomic fingerprints of sea buckthorn was established. First, a mixture solvent of methanol and chloroform (2:1, v/v) was selected to extract the lipid of the flesh and seed of sea buckthorn. Then, global lipidomic analysis of different varieties of sea buckthorn was conducted. A total of 16 lipid classes and 112 lipid molecular species were determined. Several molecular species, such as PE (phosphatidylethanolamine) 18:1/18:3, PE18:0/18:1, PE18:0/18:2, etc. were selected as the potential biomarkers to classify the samples. Our study provides a scientific basis for quality control of sea buckthorn and promotes the development of sea buckthorn oil.
Collapse
Affiliation(s)
- Yue Ma
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China
| | - Jiaxu Yao
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China.
| | - Minjie Zhao
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), 74 route du Rhin, 67400 Illkirch, France
| | - Wei Wang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Jikai Liu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China.
| | - Eric Marchioni
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), 74 route du Rhin, 67400 Illkirch, France
| |
Collapse
|
8
|
Zhu J, Zhou L, Zhao M, Wei F, Fu H, Marchioni E. Revealing the dynamic changes of lipids in coffee beans during roasting based on UHPLC-QE-HR-AM/MS/MS. Food Res Int 2023; 174:113507. [PMID: 37986503 DOI: 10.1016/j.foodres.2023.113507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 11/22/2023]
Abstract
Coffee is popular worldwide and its consumption is increasing in recent years. Although mass spectrometry-based lipidomics approaches have been prevalent, their application in studies related to detailed information and dynamic changes in lipid composition during coffee bean roasting is still limited. The aim of this study was to investigate the dynamic changes in coffee bean lipids during the roasting process. The lipid classes and lipid molecular species in coffee beans were characterized by lipidomic analysis combined with chemometrics. A total of 12 lipid classes and 105 lipid molecular species were identified and quantified. Triacylglycerols (TAG) was the most abundant lipid class in both green beans and roasted beans. The content of phosphatidylethanolamine (PE) and lysophosphatidylethanolamine (LPE) in green beans was obviously higher than that in roasted beans. Other phospholipids, such as phosphatidylinositol (PI), lysophosphatidylinositol (LPI), phosphatidylcholine (PC), lysophophatidylcholine (LPC) and phosphatidic acid (PA), showed a tendency to increase at the beginning of roasting, then decreased gradually. Several differential lipid molecule species, for instance, PE (16:0_18:2), PC (18:2_18:2) were significantly down-regulated, and PI (18:1_18:2) was significantly up-regulated. This study provided a scientific basis for the change of coffee bean lipids during the roasting process.
Collapse
Affiliation(s)
- Jinrui Zhu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China.
| | - Minjie Zhao
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), 74 route du Rhin, 67400 Illkirch, France
| | - Fang Wei
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, Hubei 430062, PR China.
| | - Haiyan Fu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, PR China.
| | - Eric Marchioni
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), 74 route du Rhin, 67400 Illkirch, France
| |
Collapse
|
9
|
Andrade DLLS, Pintarelli GB, Rosa JV, Paro IB, Pagano PJT, Silva JCN, Suzuki DOH. Musa acuminata as electroporation model. Bioelectrochemistry 2023; 154:108549. [PMID: 37639773 DOI: 10.1016/j.bioelechem.2023.108549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023]
Abstract
Electrochemotherapy (ECT) and Irreversible electroporation (IRE) are cancer treatments based on electric field distribution in tissues. Solanum tuberosum (potato tissue) phantom is known to mimic changes in the electrical conductivity that occur in animal tissues during electroporation (EP). Electric field distribution is assessed through enzymatic staining. However, the 24-h wait for this assessment could slow agile response scenarios. We developed and validated the Musa acuminata (cavendish banana) conductivity model, which quickly evaluates EP by tissue staining. We investigated the frequency response of the tissue using impedance spectroscopy analysis, conductivity changes, and enzymatic staining. We optimized three usual EP models: adapted Gompertz, smoothed Heaviside, and the sigmoid or logistic function. We found dielectric parameters in banana tissue similar to those in potato (electrical conductivity of 0.035 S/m and relative permittivity of 4.1×104). The coefficients of determination R2 were 99.94% (Gompertz), 99.85% (Heaviside), and 99.58% (sigmoid). The sigmoid and Heaviside functions described the calibration and validation electric currents with 95% confidence. We observed the electroporated areas in bananas 3h30m after EP. Staining was significant after 450 V/cm. The conductivity model of Musa acuminata suits treatment planning, hardware development, and training scenarios. Banana phantom supports the 3Rs practice and is a reliable alternative for potato in EP studies.
Collapse
Affiliation(s)
- Daniella L L S Andrade
- Institute of Biomedical Engineering, Department of Electrical and Electronics Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Guilherme B Pintarelli
- Department of Control and Automation Engineering, Federal University of Santa Catarina, Blumenau, SC, Brazil
| | - Juliana V Rosa
- Institute of Biomedical Engineering, Department of Electrical and Electronics Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Isabela B Paro
- Institute of Biomedical Engineering, Department of Electrical and Electronics Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Pedro J T Pagano
- Institute of Biomedical Engineering, Department of Electrical and Electronics Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Julia C N Silva
- Institute of Biomedical Engineering, Department of Electrical and Electronics Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Daniela O H Suzuki
- Institute of Biomedical Engineering, Department of Electrical and Electronics Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
10
|
Tietel Z, Hammann S, Meckelmann SW, Ziv C, Pauling JK, Wölk M, Würf V, Alves E, Neves B, Domingues MR. An overview of food lipids toward food lipidomics. Compr Rev Food Sci Food Saf 2023; 22:4302-4354. [PMID: 37616018 DOI: 10.1111/1541-4337.13225] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
Increasing evidence regarding lipids' beneficial effects on human health has changed the common perception of consumers and dietary officials about the role(s) of food lipids in a healthy diet. However, lipids are a wide group of molecules with specific nutritional and bioactive properties. To understand their true nutritional and functional value, robust methods are needed for accurate identification and quantification. Specific analytical strategies are crucial to target specific classes, especially the ones present in trace amounts. Finding a unique and comprehensive methodology to cover the full lipidome of each foodstuff is still a challenge. This review presents an overview of the lipids nutritionally relevant in foods and new trends in food lipid analysis for each type/class of lipids. Food lipid classes are described following the LipidMaps classification, fatty acids, endocannabinoids, waxes, C8 compounds, glycerophospholipids, glycerolipids (i.e., glycolipids, betaine lipids, and triglycerides), sphingolipids, sterols, sercosterols (vitamin D), isoprenoids (i.e., carotenoids and retinoids (vitamin A)), quinones (i.e., coenzyme Q, vitamin K, and vitamin E), terpenes, oxidized lipids, and oxylipin are highlighted. The uniqueness of each food group: oil-, protein-, and starch-rich, as well as marine foods, fruits, and vegetables (water-rich) regarding its lipid composition, is included. The effect of cooking, food processing, and storage, in addition to the importance of lipidomics in food quality and authenticity, are also discussed. A critical review of challenges and future trends of the analytical approaches and computational methods in global food lipidomics as the basis to increase consumer awareness of the significant role of lipids in food quality and food security worldwide is presented.
Collapse
Affiliation(s)
- Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, Volcani Institute, M.P. Negev, Israel
| | - Simon Hammann
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Josch K Pauling
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Michele Wölk
- Lipid Metabolism: Analysis and Integration; Center of Membrane Biochemistry and Lipid Research; Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Vivian Würf
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
11
|
Torres-Vargas OL, Gaytan-Martinez M, Fernanda CC, Millán-Malo BM, Rodriguez-Garcia M. Changes in the physicochemical properties of isolated starch and plantain ( Musa AAB Simmonds) flours for early maturity stage. Heliyon 2023; 9:e18939. [PMID: 37600412 PMCID: PMC10432965 DOI: 10.1016/j.heliyon.2023.e18939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
This work focuses on the study of the physicochemical changes that take place during the first stage of ripening of plantain, with particular attention to the changes in the orthorhombic and hexagonal nanocrystals present in this starch, and its relation shift with resistance starch. Significant changes were observed in the proximal analysis of plantain flour. A gradual increase in moisture content was attributed to the high content of crystalline structures and molecules that can be removed by drying. Water activity increased with ripening, which was attributed to the hygroscopic nature of the flours. The protein content increased, and the carbohydrate content decreased, indicating the progress of biochemical reactions. The changes in the fat content are consistent with the hydrolysis and resynthesis of lipids during the ripening process. The obtained results indicate a significant influence of the ripening stage on the physicochemical properties of flour and starch of plantain, which is associated with the occurrence of a climacteric peak on the 4th day of ripening. The hydration properties of plantain flour decreased significantly during the ripening days, consistent with the occurrence of a climacteric peak. Water holding capacity (WHC) and water binding capacity (WBC) were affected by the degree of digestion of native starch granules and protein denaturation during fruit ripening. Scanning electron microscopes (SEM) showed that during ripening the surface of the isolated starches do not suffer any significative damage. X-ray diffraction patterns were used to identify crystalline structures and to study the changes in the crystalline structures. These results showed that the starch contains orthorhombic and hexagonal nanocrystals, which play and important role and which show small structural damage during ripening reflected in a decrease in their relative crystallinity. This is the first time that these nanocrystals have been studied and considered in the ripening process. Differential scanning calorimetry was used to study the thermal transition in isolated starch. The results indicated that the gelatinization of starch corresponds to the solvation of orthorhombic and hexagonal nanocrystals, and that during ripening there is a decrease in the enthalpy reflecting some crystal structural damage. Pasting properties were studied using a Starch cell for flours and isolated starches, indicating that the pasting profile is governed by intrinsic and extrinsic factors. The resistant starch does not show significant changes at this stage of maturation. This starch is the one with the highest resistant starch content reported in the literature (38%). It was hypothesized that the resistant starch is directly related to the amount of whole starch granules, and more importantly, directly related to the number concentration of orthorhombic and hexagonal nanocrystals. Therefore, knowledge of the physicochemical and nutritional properties of plantain and flour at each stage of ripening allows better selection according to industrial applications.
Collapse
Affiliation(s)
- Olga L. Torres-Vargas
- Universidad Del Quindío, Facultad de Ciencias Agroindustriales, Grupo de Investigación en Ciencias Agroindustriales, Quindío, Armenia, Colombia
| | - Marcela Gaytan-Martinez
- Programa de Posgrado en Alimentos Del Centro de La República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de Las Campanas S/N, Santiago de Querétaro, Querétaro, C.P. 76010, Mexico
| | - Castro-Campos Fernanda
- Programa de Posgrado en Alimentos Del Centro de La República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de Las Campanas S/N, Santiago de Querétaro, Querétaro, C.P. 76010, Mexico
| | - Beatriz M. Millán-Malo
- Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro, C. P 76230, Mexico
| | - M.E. Rodriguez-Garcia
- Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro, C. P 76230, Mexico
| |
Collapse
|
12
|
Yao J, Zhu J, Zhao M, Zhou L, Marchioni E. Untargeted Lipidomics Method for the Discrimination of Five Crab Species by Ultra-High-Performance Liquid Chromatography High-Resolution Mass Spectrometry Combined with Chemometrics. Molecules 2023; 28:molecules28093653. [PMID: 37175063 PMCID: PMC10179896 DOI: 10.3390/molecules28093653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
In this study, ultra-high-performance liquid chromatography high-resolution accurate mass-mass spectrometry (UHPLC-HRAM/MS) was applied to characterize the lipid profiles of five crab species. A total of 203 lipid molecular species in muscle tissue and 176 in edible viscera were quantified. The results indicate that Cancer pagurus contained high levels of lipids with a docosahexaenoic acid (DHA) and eicosapntemacnioc acid (EPA) structure in the muscle tissue and edible viscera. A partial least squares discriminant analysis (PLS-DA) showed that PE 16:0/22:6, PE P-18:0/20:5, PA 16:0/22:6 and PC 16:0/16:1 could be used as potential biomarkers to discriminate the five kinds of crabs. In addition, some lipids, such as PE 18:0/20:5, PC 16:0/16:1, PE P-18:0/22:6 and SM 12:1;2O/20:0, could be used as characteristic molecules to distinguish between Cancer magister and Cancer pagurus, which are similar in appearance. This study provides a new perspective on discriminating crab species from MS-based lipidomics.
Collapse
Affiliation(s)
- Jiaxu Yao
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Jinrui Zhu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Minjie Zhao
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), 74 Route du Rhin, 67400 Illkirch, France
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Eric Marchioni
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), 74 Route du Rhin, 67400 Illkirch, France
| |
Collapse
|
13
|
Sun F, Huang Y, Chen H, Huang J, Zhang L, Wei S, Liu F, Chen D, Huang W. BPA and its alternatives BPF and BPAF exaggerate hepatic lipid metabolism disorders in male mice fed a high fat diet. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161521. [PMID: 36632902 DOI: 10.1016/j.scitotenv.2023.161521] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Alternatives to Bisphenol A (BPA), such as BPF and BPAF, have found increasing industrial applications. However, toxicological research on these BPA analogues remains limited. This study aimed to investigate the effects of BPA, BPF, and BPAF exposure on hepatotoxicity in mice fed with high-fat diets (HFD). Male mice were exposed to the bisphenols at a dose of 0.05 mg per kg body weight per day (mg/kg bw/day) for eight consecutive weeks, or 5 mg/kg bw/day for the first week followed by 0.05 mg/kg bw/day for seven weeks under HFD. The low dose (0.05 mg/kg bw/day) was corresponding to the tolerable daily intake (TDI) of BPA and the high dose (5 mg/kg bw/day) was corresponding to its no observed adverse effect level (NOAEL). Biochemical analysis revealed that exposure to these bisphenols resulted in liver damage. Metabolomics analysis showed disturbances of fatty acid and lipid metabolism in bisphenol-exposed mouse livers. BPF and BPAF exposure reduced lipid accumulation in HFD mouse liver by lowering glyceride and cholesterol levels. Transcriptomics analysis demonstrated that expression levels of genes related to fatty acid synthesis and metabolism were changed, which might be related to the activation of the PPAR signaling pathway. Besides, a feedback regulation mechanism might exist to maintain hepatic metabolic homeostasis. For the first time, this study demonstrated the effects of BPF and BPAF exposure in HFD-mouse liver. Considering the reality of the high prevalence of obesity nowadays and the ubiquitous environmental distribution of bisphenols, this study provides insight and highlights the adverse effects of BPA alternatives, further contributing to the consideration of the safe use of such compounds.
Collapse
Affiliation(s)
- Fengjiang Sun
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Hexia Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jialing Huang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Long Zhang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Shuchao Wei
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Fangyi Liu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Wei Huang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
14
|
Optimized infrared-assisted extraction to obtain total lipid from microalgae Scenedesmus obliquus: a green approach. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2023. [DOI: 10.1515/ijcre-2022-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Abstract
Microalgae oil has great potential to address the growing energy demand and dependence on fossil fuels. However, the multilayered cell walls of microalgae hinder efficient extraction and enhanced lipid recovery. In this study, we develop a novel protocol based on near infrared-assisted extraction (NIRAE) technology to extract efficiently total lipids from Scenedesmus obliquus. Under a greener solvent extraction approach, the effect of nine non-polar/polar solvent systems in various ratios on lipid yield was tested, and the results were compared with Soxhlet, Folch, and Bligh–Dyer methods. The highest oil yields were NIRAE 15.43%, and Soxhlet 22.24%, using AcoEt/MeOH (1:2 v/v). For Folch and Bligh–Dyer, 9.11 and 10%, respectively. The optimized NIRAE conditions obtained using response surface methodology (RSM): 43.8 min, solvent/biomass 129.90:1 (m/v), and AcOEt/MeOH 0.57:2.43 (v/v) increased the oil yield significantly to 24.20%. In contrast to conventional methods, the overall optimized NIRAE process satisfied the requirements of a green extraction because of the simple and safe operation, less solvent toxicity, lower extraction time, and solvent and energy consumption.
Collapse
|
15
|
Huang Y, Lv J, Liu S, Zhu S, Yao W, Sun J, Wang H, Chen D, Huang X. Physicochemical properties of nanosized biochar regulated by heat treatment temperature dictates algal responses: From the perspective of fatty acid metabolism. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130342. [PMID: 36423452 DOI: 10.1016/j.jhazmat.2022.130342] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Nanosized biochar (NBC) is an important fraction of biochar (BC) as it can exert nano-scale effects on aquatic organisms, attracting increasing research attention. However, effects of different physicochemical properties of NBC on biological responses at the metabolic and gene expression level are not comprehensively understood. Here, biological effects of NBCs pyrolyzed at different heat treatment temperatures (HTTs, 350-700 °C) were evaluated using freshwater algae Chlorella vulgaris, from the perspectives of growth and fatty acid (FA) profile changes. NBC pyrolyzed at 700 °C (N700) induced the greatest algal growth inhibition and oxidative stress than N350 and N500. In addition, NBC exposure to 50 mg/L increased saturated and monounsaturated FAs, along with a decrease in polyunsaturated FAs (PUFAs). Exposure to NBC also significantly influenced the expression of key FA metabolism genes (3fad, sad, kasi and accd), demonstrating the potential role of reactive oxygen species-mediated PUFA reduction accompanied by increased membrane permeability in algal toxicity upon NBC exposure. The observed differences in response to N700 were attributed to its smaller particle size and higher abundance of -COOH. These findings reveal the underlying mechanisms in the algal response to NBCs and provide valuable guidance for the safe design and application of BC materials.
Collapse
Affiliation(s)
- Yichao Huang
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Jia Lv
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Saibo Liu
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Shishu Zhu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Wencong Yao
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Jiachen Sun
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China
| | - Hua Wang
- Department of Toxicology, School of Public Health; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Da Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Xiaochen Huang
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
16
|
Zhou L, Ma Y, Yao J, Zhang M, Fu H, Yang J, Liu J, Zhao M, Marchioni E. Discrimination of chrysanthemum varieties using lipidomics based on UHPLC-HR-AM/MS/MS. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:837-845. [PMID: 36044335 DOI: 10.1002/jsfa.12195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/22/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Chrysanthemum is one of the most important and popular ornamentals over the world. Chrysanthemum drink is a type of traditional healthy drink like Chinese tea. Owing to the differences in the chemical compositions, different chrysanthemum varieties have different medicinal effects on human health. Thus, the identification of different chrysanthemum varieties is very important and necessary. This study aims to distinguish seven chrysanthemum varieties that are widely used in China. First, total lipids were obtained from chrysanthemums. After that, lipid profiles were characterized using ultra-high-performance liquid chromatography hyphenated with a Q Exactive™ high resolution-accurate-mass mass spectrometer. RESULTS A total of 163 lipid molecular species from 17 types of lipid classes in seven varieties of chrysanthemums were determined. Principal component analysis indicated that three lipid molecules, lysophosphatidylethanolamine(18:2) (LPE(18:2)), LPE(16:0), and phosphatidic acid(18:2/18:3) (variable importance in projection >3, P < 0.001), can be used as potential biomarkers to distinguish seven chrysanthemum varieties. Hierarchical cluster analysis showed that the lipid molecular profiles of 'Gongju' were most similar to 'Jinzijianju', followed by 'Huaibaiju', 'Boju', 'Hangbaiju', 'Chuju', and 'Fubaiju'. CONCLUSION This comprehensive analysis provided a new method to identify chrysanthemum varieties through the perspective of lipidomics combined with chemometrics. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, P. R. China
| | - Yue Ma
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, P. R. China
| | - Jiaxu Yao
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, P. R. China
| | - Minghao Zhang
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, P. R. China
| | - Haiyan Fu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, P. R. China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Bejing, P. R. China
| | - Jikai Liu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, P. R. China
| | - Minjie Zhao
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), Illkirch, France
| | - Eric Marchioni
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), Illkirch, France
| |
Collapse
|
17
|
Nutritional lipidomics for the characterization of lipids in food. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023. [PMID: 37516469 DOI: 10.1016/bs.afnr.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lipids represent one out of three major macronutrient classes in the human diet. It is estimated to account for about 15-20% of the total dietary intake. Triacylglycerides comprise the majority of them, estimated 90-95%. Other lipid classes include free fatty acids, phospholipids, cholesterol, and plant sterols as minor components. Various methods are used for the characterization of nutritional lipids, however, lipidomics approaches become increasingly attractive for this purpose due to their wide coverage, comprehensiveness and holistic view on composition. In this chapter, analytical methodologies and workflows utilized for lipidomics profiling of food samples are outlined with focus on mass spectrometry-based assays. The chapter describes common lipid extraction protocols, the distinct instrumental mass-spectrometry based analytical platforms for data acquisition, chromatographic and ion-mobility spectrometry methods for lipid separation, briefly mentions alternative methods such as gas chromatography for fatty acid profiling and mass spectrometry imaging. Critical issues of important steps of lipidomics workflows such as structural annotation and identification, quantification and quality assurance are discussed as well. Applications reported over the period of the last 5years are summarized covering the discovery of new lipids in foodstuff, differential profiling approaches for comparing samples from different origin, species, varieties, cultivars and breeds, and for food processing quality control. Lipidomics as a powerful tool for personalized nutrition and nutritional intervention studies is briefly discussed as well. It is expected that this field is significantly growing in the near future and this chapter gives a short insight into the power of nutritional lipidomics approaches.
Collapse
|
18
|
Zainal PW, Syukri D, Fahmy K, Imaizumi T, Thammawong M, Tsuta M, Nagata M, Nakano K. Lipidomic Profiling to Assess the Freshness of Stored Cabbage. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
19
|
Wang Y, Wu P, Huang Y, Ye Y, Yang X, Sun F, Ye YX, Lai Y, Ouyang J, Wu L, Li Y, Li Y, Zhao B, Wang Y, Liu G, Pan XF, Chen D, Pan A. BMI and lipidomic biomarkers with risk of gestational diabetes in pregnant women. Obesity (Silver Spring) 2022; 30:2044-2054. [PMID: 36046944 DOI: 10.1002/oby.23517] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/05/2022] [Accepted: 05/20/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The study aimed to identify BMI-related lipids and to explore the role of lipids linking BMI and gestational diabetes mellitus (GDM). METHODS Plasma lipidome, height, and weight were measured in early pregnancy among 1008 women. Pearson correlation analyses and least absolute shrinkage and selection operator regression (LASSO) were performed to identify BMI-associated lipids. Based on these lipids, a lipid score was created using LASSO, and its association with GDM risk was evaluated by conditional logistic regression. The causal relationships between BMI and lipids were tested by Mendelian randomization analysis with genotyping data. Mediation analysis was conducted to evaluate the mediating effect of lipids on the association of BMI with GDM. RESULTS Of 366 measured lipids, BMI was correlated with 28 lipids, which mainly belong to glycerophospholipids and glycerolipids. A total of 10 lipid species were associated with BMI, and a lipid score was established. A causal relationship between BMI and lysophosphatidylcholine 14:0 was observed. The lipid score was associated with a 1.69-fold increased risk of GDM per 1-point increment (95% CI: 1.33-2.15). Furthermore, BMI-associated lipids might explain 66.4% of the relationship between BMI and GDM. CONCLUSIONS Higher BMI in early pregnancy was associated with altered lipid metabolism that may contribute to the increased risk of GDM.
Collapse
Affiliation(s)
- Yi Wang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Wu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yichao Huang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Yi Ye
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Yang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Fengjiang Sun
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
| | - Yi-Xiang Ye
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuwei Lai
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Ouyang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linjing Wu
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Li
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqin Li
- Department of Obstetrics, Shuangliu Maternal and Child Health Hospital, Chengdu, China
| | - Bin Zhao
- Antenatal Care Clinics, Shuangliu Maternal and Child Health Hospital, Chengdu, China
| | - Yixin Wang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong-Fei Pan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Yin Z, Dong T, Huang W, Du M, Chen D, Fernie AR, Yi G, Yan S. Spatially resolved metabolomics reveals variety-specific metabolic changes in banana pulp during postharvest senescence. Food Chem X 2022; 15:100371. [PMID: 35769331 PMCID: PMC9234350 DOI: 10.1016/j.fochx.2022.100371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Both post-ripening stages and banana varieties contribute to metabolite variation. AuNP-assisted LDI-MSI was firstly used in mapping functional metabolites in pulps. AAs and monoamines exclusively accumulated in the middle region near the seed zone. Monosaccharides locate in whole pulps but enrich in the intermediate microregion. Di/trisaccharides exhibit different accumulation patterns as monosaccharides.
Banana is one of most popular fruits globally due to health-promoting and disease-preventing effects, yet little is known about in situ metabolic changes across banana varieties. Here, we integrated gold nanoparticle (AuNP)-assisted laser desorption/ionization mass spectrometry imaging (LDI-MSI) and metabolomics to investigate the spatiotemporal distribution and levels of metabolites within Brazil and Dongguan banana pulps during postharvest senescence. Metabolomics results indicated that both postripening stages and banana varieties contribute to metabolite levels. Benefiting from improved ionization efficiency of small-molecule metabolites and less peak interference, we visualized the spatiotemporal distribution of sugars, amino acids (AAs) and monoamines within pulps using AuNP-assisted LDI-MSI for the first time, revealing that AAs and monoamines exclusively accumulated in the middle region near the seed zone. Monosaccharides and di/trisaccharides were generally distributed across entire pulps but exhibited different accumulation patterns. These findings provide a guide for breeding new varieties and improving extraction efficiency of bioactive compounds.
Collapse
Affiliation(s)
- Zhibin Yin
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Tao Dong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, 510640, China
| | - Wenjie Huang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Mingyi Du
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Dong Chen
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, Potsdam-Golm 14476, Germany
| | - Ganjun Yi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, 510640, China
- Corresponding authors.
| | - Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Corresponding authors.
| |
Collapse
|
21
|
Li Q, Zhang W, Shen D, Li Z, Shu J, Liu Y. Comprehensive lipidomics analysis reveals the changes in lipid profile of camellia oil affected by insect damage. Front Nutr 2022; 9:993334. [PMID: 36118741 PMCID: PMC9478382 DOI: 10.3389/fnut.2022.993334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Information on changes in lipid composition of seed oils under biotic stresses is scare. The camellia weevil, Curculio chinensis (Coleoptera: Curculionidae) as a notorious seed predator of Camellia species, has caused huge economic losses in China. Lipidomics is used in this study to reveal the lipid composition of camellia oil and its changes after insect damage. 278 lipids including glycerolipids (GL) (221), glycerophospholipids (GP) (34), fatty acyls (FA) (13), sphingolipids (SP) (8), prenol lipids (PR) (1) and sterol lipids (ST) (1) were determined in camellia oils. Insect damage had a significant impact on lipids, particularly FA and GL. Ten significantly different lipids [FFA(18:2), FFA(24:6), TG(14:1/18:2/18:2), TG(16:0/23:0/18:2), TG(20:1/24:1/18:2), TG(18:2/24:0/18:2), TG(16:3/18:2/22:5), PI(16:1/18:1), PE(16:0/18:1), PE(18:1/18:2)] were identified as potential biomarkers for distinguishing oil extracted from non-infested oilseeds and oil from infested oilseeds. We also detected four most important metabolic pathways by bioinformatics analysis to explore the mechanisms underlying changes. Our findings may be useful for future camellia oil production and may provide new insight into improving of nutritional quality of camellia oil.
Collapse
|
22
|
Investigation of oyster Crassostrea gigas lipid profile from three sea areas of China based on non-targeted lipidomics for their geographic region traceability. Food Chem 2022; 386:132748. [PMID: 35344724 DOI: 10.1016/j.foodchem.2022.132748] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/20/2022] [Accepted: 03/18/2022] [Indexed: 11/22/2022]
Abstract
The present study sought to analyze the lipid profiles of oyster Crassostrea gigas from Yellow Sea (YS), East China Sea, and South China Sea (SCS) through the untargeted lipidomics strategy based on UPLC-Q-Exactive Orbitrap mass spectrometry and multivariate statistics. The results elucidated that geographical differences had profound effects on the lipid content, composition, and lipid molecular profiles. Notably, oysters from the YS group contained the highest lipid content, including triacylglycerol, diacylglycerols, and the majority of phospholipid molecule species, while oysters from the ECS group contained most of the phosphatidylcholine species and the SCS group contained most of the sphingolipid species. Totally, 1155 lipid molecular species belonging to 21 subclasses were identified; of them, 45 lipid molecular species could serve as differential marker for lipid of oysters from different sea areas. Overall, lipidomics could be a potential approach for discrimination of lipid characters between marine shellfishes for geographical origin traceability.
Collapse
|
23
|
Gularte PS, Steffens CA, Cerezer B, Miqueloto T, da Silva JC, Heinzen AS, Amarante CVT. Use of nitric oxide for ripening delay and oxidative stress reduction in Cavendish banana stored in a controlled atmosphere. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Paulo Sérgio Gularte
- Department of Plant Sciences Postharvest Research Center, University of Santa Catarina State, Center for Agrovetinary Sciences Lages Brazil
| | - Cristiano André Steffens
- Department of Plant Sciences Postharvest Research Center, University of Santa Catarina State, Center for Agrovetinary Sciences Lages Brazil
| | - Bernardo Cerezer
- Department of Plant Sciences Postharvest Research Center, Federal Institute of Santa Catarina São Miguel do Oeste Brazil
| | - Tiago Miqueloto
- Department of Plant Sciences Postharvest Research Center, University of Santa Catarina State, Center for Agrovetinary Sciences Lages Brazil
| | - Janaiana Catarina da Silva
- Department of Plant Sciences Postharvest Research Center, University of Santa Catarina State, Center for Agrovetinary Sciences Lages Brazil
| | - Angélica Schmitz Heinzen
- Department of Plant Sciences Postharvest Research Center, University of Santa Catarina State, Center for Agrovetinary Sciences Lages Brazil
| | - Cassandro Vidal Talamini Amarante
- Department of Plant Sciences Postharvest Research Center, University of Santa Catarina State, Center for Agrovetinary Sciences Lages Brazil
| |
Collapse
|
24
|
Hong X, Wang G, Liu X, Wu M, Zhang X, Hua X, Jiang P, Wang S, Tang S, Shi X, Huang Y, Shen T. Lipidomic biomarkers: Potential mediators of associations between urinary bisphenol A exposure and colorectal cancer. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127863. [PMID: 34848068 DOI: 10.1016/j.jhazmat.2021.127863] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/25/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Previous research reported associations between bisphenol A (BPA) exposure and some malignant tumor incidences, yet the underlying mechanism remains largely uncertain. This investigation was aimed to explore the association of BPA exposure burden with colorectal cancer (CRC) and the role of tumor tissue lipid metabolism in the associations between BPA and CRC using lipidomic approach. Urinary BPA levels in CRC cases were significantly higher than those in controls (P value < 0.05). BPA was positively correlated with all three serum CRC biomarkers, with an estimated odds ratio (OR) of 4.45 (95% confidence interval (95% CI): [1.31, 15.14]) between the highest and lowest tertiles of exposure. Lipidomic screening of tumor samples suggested significant perturbation in the glycerophospholipid metabolism pathway, of which phosphatidylcholine (PC 34:0), phosphatidylcholine (PC 37:1), phosphatidylethanolamine (PE 34:2), triacylglycerol (TG 56:4) demonstrated mediation contribution of 21.9%, 18.7%, 18.4% and 27.39%, respectively, in the association between BPA exposure and CRC. Our work provides novel findings that cancer tissue metabolites may be playing vital mediating roles in the associations between BPA exposure burden and CRC risk. These findings contribute to better understanding of the etiology of CRC induced by environmental stressors.
Collapse
Affiliation(s)
- Xu Hong
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Gengfu Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, PR China
| | - Xingcun Liu
- Department of Gastrointestinal surgery, First Affiliated Hospital, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Ming Wu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Xindong Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Xiaohui Hua
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Pengpeng Jiang
- Department of Gastrointestinal surgery, First Affiliated Hospital, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Sheng Wang
- The Center for Scientific Research of Anhui Medical University, Hefei 230032, Anhui Province, PR China
| | - Song Tang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Xiaoming Shi
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China.
| | - Tong Shen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China.
| |
Collapse
|
25
|
Deng S, Li J, Du Z, Wu Z, Yang J, Cai H, Wu G, Xu F, Huang Y, Wang S, Wang C. Rice ACID PHOSPHATASE 1 regulates Pi stress adaptation by maintaining intracellular Pi homeostasis. PLANT, CELL & ENVIRONMENT 2022; 45:191-205. [PMID: 34550608 DOI: 10.1111/pce.14191] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The concentration and homeostasis of intracellular phosphate (Pi) are crucial for sustaining cell metabolism and growth. During short-term Pi starvation, intracellular Pi is maintained relatively constant at the expense of vacuolar Pi. After the vacuolar stored Pi is exhausted, the plant cells induce the synthesis of intracellular acid phosphatase (APase) to recycle Pi from expendable organic phosphate (Po). In this study, the expression, enzymatic activity and subcellular localization of ACID PHOSPHATASE 1 (OsACP1) were determined. OsACP1 expression is specifically induced in almost all cell types of leaves and roots under Pi stress conditions. OsACP1 encodes an acid phosphatase with broad Po substrates and localizes in the endoplasmic reticulum (ER) and Golgi apparatus (GA). The phylogenic analysis demonstrates that OsACP1 has a similar structure with human acid phosphatase PHOSPHO1. Overexpression or mutation of OsACP1 affected Po degradation and utilization, which further influenced plant growth and productivity under both Pi-sufficient and Pi-deficient conditions. Moreover, overexpression of OsACP1 significantly affected intracellular Pi homeostasis and Pi starvation signalling. We concluded that OsACP1 is an active acid phosphatase that regulates rice growth under Pi stress conditions by recycling Pi from Po in the ER and GA.
Collapse
Affiliation(s)
- Suren Deng
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Jingyi Li
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Zezhen Du
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Zixuan Wu
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Jian Yang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, Sichuan University, Chengdu, China
| | - Hongmei Cai
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Gaobing Wu
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Sheliang Wang
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Chuang Wang
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
26
|
Wang Y, Huang Y, Wu P, Ye Y, Sun F, Yang X, Lu Q, Yuan J, Liu Y, Zeng H, Song X, Yan S, Qi X, Yang CX, Lv C, Wu JHY, Liu G, Pan XF, Chen D, Pan A. Plasma lipidomics in early pregnancy and risk of gestational diabetes mellitus: a prospective nested case-control study in Chinese women. Am J Clin Nutr 2021; 114:1763-1773. [PMID: 34477820 DOI: 10.1093/ajcn/nqab242] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/28/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Lipid metabolism plays an important role in the pathogenesis of diabetes. There is little evidence regarding the prospective association of the maternal lipidome with gestational diabetes mellitus (GDM), especially in Chinese populations. OBJECTIVES We aimed to identify novel lipid species associated with GDM risk in Chinese women, and assess the incremental predictive capacity of the lipids for GDM. METHODS We conducted a nested case-control study using the Tongji-Shuangliu Birth Cohort with 336 GDM cases and 672 controls, 1:2 matched on age and week of gestation. Maternal blood samples were collected at 6-15 wk, and lipidomes were profiled by targeted ultra-HPLC-tandem MS. GDM was diagnosed by oral-glucose-tolerance test at 24-28 wk. The least absolute shrinkage and selection operator is a regression analysis method that was used to select novel biomarkers. Multivariable conditional logistic regression was used to estimate the associations. RESULTS Of 366 detected lipids, 10 were selected and found to be significantly associated with GDM independently of confounders: there were positive associations with phosphatidylinositol 40:6, alkylphosphatidylcholine 36:1, phosphatidylethanolamine plasmalogen 38:6, diacylglyceride 18:0/18:1, and alkylphosphatidylethanolamine 40:5 (adjusted ORs per 1 log-SD increment range: 1.34-2.86), whereas there were inverse associations with sphingomyelin 34:1, dihexosyl ceramide 24:0, mono hexosyl ceramide 18:0, dihexosyl ceramide 24:1, and phosphatidylcholine 40:7 (adjusted ORs range: 0.48-0.68). Addition of these novel lipids to the classical GDM prediction model resulted in a significant improvement in the C-statistic (discriminatory power of the model) to 0.801 (95% CI: 0.772, 0.829). For every 1-point increase in the lipid risk score of the 10 lipids, the OR of GDM was 1.66 (95% CI: 1.50, 1.85). Mediation analysis suggested the associations between specific lipid species and GDM were partially explained by glycemic and insulin-related indicators. CONCLUSIONS Specific plasma lipid biomarkers in early pregnancy were associated with GDM in Chinese women, and significantly improved the prediction for GDM.
Collapse
Affiliation(s)
- Yi Wang
- Department of Epidemiology & Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yichao Huang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China
| | - Ping Wu
- Department of Epidemiology & Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Ye
- Department of Epidemiology & Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fengjiang Sun
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China
| | - Xue Yang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi Lu
- Department of Epidemiology & Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiaying Yuan
- Department of Science and Education, Shuangliu Maternal and Child Health Hospital, Chengdu, Sichuan, China
| | - Yan Liu
- Department of Obstetrics and Gynecology, Shuangliu Maternal and Child Health Hospital, Chengdu, Sichuan, China
| | - Huayan Zeng
- Nutrition Department, Shuangliu Maternal and Child Health Hospital, Chengdu, Sichuan, China
| | - Xingyue Song
- Department of Emergency, Hainan Clinical Research Center for Acute and Critical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.,Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, Hainan, China
| | - Shijiao Yan
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences, Hainan Medical University, Haikou, Hainan, China.,School of Public Health, Hainan Medical University, Haikou, Hainan, China
| | - Xiaorong Qi
- Department of Gynecology and Obstetrics, West China Second Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Chun-Xia Yang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuanzhu Lv
- Department of Emergency, Hainan Clinical Research Center for Acute and Critical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.,Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, Hainan, China.,Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Jason H Y Wu
- The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Gang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiong-Fei Pan
- Department of Epidemiology & Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia.,Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China
| | - An Pan
- Department of Epidemiology & Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
27
|
Yang F, Zhao M, Zhou L, Zhang M, Liu J, Marchioni E. Identification and Differentiation of Wide Edible Mushrooms Based on Lipidomics Profiling Combined with Principal Component Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9991-10001. [PMID: 34410111 DOI: 10.1021/acs.jafc.1c02269] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mushroom, as a kind of higher fungus, is a precious homology resource of medicine and foods. In this study, total lipids were extracted from eight wild edible mushrooms and subsequently characterized by ultra-high-performance liquid chromatography-Quadrupole-Exactive Orbitrap mass spectrometry. 20 lipid classes and 173 molecular species were identified and quantified. Lipid molecules and their concentrations in Boletus speciosus, Boletus bainiugan, and Tricholoma matsutake exhibited significantly different behaviors compared with the remaining mushrooms. Hierarchical cluster analysis revealed that lipid profiles of B. bainiugan were most similar to B. speciosus followed by T. matsutake, Canthar-ellus cibarius, Sarcodon aspratu, Termitomyces eurrhizus, Laccaria laccata, and Thelephora ganbajun. In addition, several differential lipids can be considered as potential biomarkers to distinguish different mushroom species, for instance, lysophosphatidylethanolamine (16:1) and ceramide non-hydroxy fatty acid-dihydrosphingosine (d23:0-10:0). This study provided a new perspective to discriminate the mushroom species from the perspective of lipidomics.
Collapse
Affiliation(s)
- Fu Yang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, P. R. China
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Minjie Zhao
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), 74 route du Rhin, 67400 Illkirch, France
| | - Li Zhou
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, P. R. China
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Minghao Zhang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, P. R. China
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Jikai Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, P. R. China
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Eric Marchioni
- Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognoise, Institut Pluridisciplinaire Hubert Curien (UMR 7178, CNRS/UDS), 74 route du Rhin, 67400 Illkirch, France
| |
Collapse
|
28
|
Xu S, Lv X, Wu B, Xie Y, Wu Z, Tu X, Chen H, Wei F. Pseudotargeted Lipidomics Strategy Enabling Comprehensive Profiling and Precise Lipid Structural Elucidation of Polyunsaturated Lipid-Rich Echium Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9012-9024. [PMID: 33683118 DOI: 10.1021/acs.jafc.0c07268] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Echium oil has great nutritional value as a result of its high content of α-linolenic acid (ALA, 18:3ω-3) and stearidonic acid (SDA, 18:4ω-3). However, the comprehensive lipid profiling and exact structural characterization of bioactive polyunsaturated lipids in echium oil have not yet been obtained. In this study, we developed a novel pseudotargeted lipidomics strategy for comprehensive profiling and lipid structural elucidation of polyunsaturated lipid-rich echium oil. Our approach integrated untargeted lipidomics analysis with a targeted lipidomics strategy based on Paternò-Büchi (PB)-tandem mass spectrometry (MS/MS) using 2-acetylpyridine (2-AP) as the reaction reagent, allowing for high-coverage lipid profiling and simultaneous determination of C═C locations in triacylglycerols (TGs), diacylglycerols (DGs), free fatty acids (FFAs), and sterol esters (SEs) in echium oil. A total of 209 lipid species were profiled, among which 162 unsaturated lipids were identified with C═C location assignment and 42 groups of ω-3 and ω-6 C═C location isomers were discovered. In addition, relative isomer ratios of certain groups of lipid C═C location isomers were revealed. This pseudotargeted lipidomics strategy described in this study is expected to provide new insight into structural characterization of distinctive bioactive lipids in food.
Collapse
Affiliation(s)
- Shuling Xu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Xin Lv
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Bangfu Wu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Ya Xie
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Zongyuan Wu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Xinghao Tu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Hong Chen
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Fang Wei
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| |
Collapse
|
29
|
Xiao L, Cao S, Shang X, Xie X, Zeng W, Lu L, Kong Q, Yan H. Metabolomic and transcriptomic profiling reveals distinct nutritional properties of cassavas with different flesh colors. FOOD CHEMISTRY: MOLECULAR SCIENCES 2021; 2:100016. [PMID: 35415637 PMCID: PMC8991741 DOI: 10.1016/j.fochms.2021.100016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/14/2021] [Accepted: 02/12/2021] [Indexed: 02/01/2023]
Abstract
A total of 508 metabolites were identified in three cassava cultivars. White-fleshed cassava had the highest contents of amino acids and organic acids. Yellow-fleshed cassava was enriched in metabolites related to specific pathways. Several pathways were found to be regulated at the transcriptional level.
Cassava is a significant food security crop in several developing countries. Metabolites in cassava roots provide numerous nutrients essential for human health. Exploiting the diversity of nutritional ingredients present in cassavas is vital for improving its nutritional value. To address this problem, root metabolomes of three cassava cultivars with white-flesh, light-yellow-flesh and yellow-flesh were comprehensively measured, respectively. A total of 508 metabolites were detected in cassava roots, including 300 primary metabolites and 185 secondary metabolites. There were 22.6% to 34.1% metabolites exhibiting significant variations among the three cassava cultivars. The light-yellow-flesh cassava contained higher contents of secondary metabolites, especially flavone, phenylpropanoids and alkaloids, and lower contents of primary metabolites except lipids, alcohols, vitamins and derivatives. Compared with light-yellow-flesh cassava, the yellow-flesh cassava contained higher contents of amino acid and derivatives, but lower contents of phenylpropanoids, nucleotide and derivates. White-flesh cassava contained higher contents of primary metabolites, especially amino acid and derivatives, but lower contents of secondary metabolites except flavonoid and indole derivatives. Transcriptome analyses were parallelly performed to decipher the potential mechanisms regulating the accumulations of related metabolites. Several pathways were both enriched by differentially expressed genes and differentially accumulated metabolites, supporting that metabolisms of these metabolites were regulated at transcriptional level. These results expand the knowledge on metabolite compositions in cassava roots and provide substantial information for genetic improvement of cassavas with high nutritional values.
Collapse
|
30
|
Gu Y, Gao M, Zhang W, Yan L, Shao F, Zhou J. Exposure to phthalates DEHP and DINP May lead to oxidative damage and lipidomic disruptions in mouse kidney. CHEMOSPHERE 2021; 271:129740. [PMID: 33736212 DOI: 10.1016/j.chemosphere.2021.129740] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 05/26/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) has been well acknowledged for its endocrine disruption and associated metabolic diseases, leading to the search for safer industrial alternatives including di-isononyl phthalate (DINP). However, safety data for the latter chemical has been relatively scarce particularly regarding potential damage to the kidney at low doses. Five-week-old ICR male mice were exposed to vehicle, DEHP or DINP (0.05 and 4.8 mg/kg bw) daily via gavage for 5 weeks. We observed increased levels of reactive oxygen species and malondialdehyde, decreased levels of reduced glutathione, in the kidney at higher dose for both chemicals suggestive of oxidative damage. Elevated levels of inflammatory cytokines tumor necrosis factor-α and interleukin-6 of the kidney further suggested inflammatory status as a result of phthalate exposure in both high dose groups. Targeted lipidomics demonstrated greatest changes in the kidney induced by high dose of DEHP, although DINP also induced significant changes in phospholipids diacylglycerides that are associated with lipid accumulation in glomerular podocytes and inflammatory responses. Our data suggest that oxidative stress may be involved in both DEHP- and DINP-induced renal lipidomic disruption and continue to question the suitability of DINP as proper DEHP substitute.
Collapse
Affiliation(s)
- Yue Gu
- Department of Nephrology, Henan Provincial People's Hospital and the People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Mei Gao
- Department of Nephrology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Wenwen Zhang
- Department of Nephrology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Lei Yan
- Department of Nephrology, Henan Provincial People's Hospital and the People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Fengmin Shao
- Department of Nephrology, Henan Provincial People's Hospital and the People's Hospital of Zhengzhou University, Zhengzhou, China.
| | - Jing Zhou
- Department of Health Management, Henan Provincial People's Hospital, Henan University People's Hospital, Zhengzhou, China.
| |
Collapse
|
31
|
Yang Y, Sun F, Chen H, Tan H, Yang L, Zhang L, Xie J, Sun J, Huang X, Huang Y. Postnatal exposure to DINP was associated with greater alterations of lipidomic markers for hepatic steatosis than DEHP in postweaning mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143631. [PMID: 33223173 DOI: 10.1016/j.scitotenv.2020.143631] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 05/13/2023]
Abstract
The toxicity of the endocrine disruptor di(2-ethylhexyl) phthalate (DEHP) has been extensively studied for its hormonal dysregulation, obesogenic effect and associated metabolic diseases. DEHP's primary substitute di-isononyl phthalate (DINP), however, although increased in annual production globally, requires better understanding of its health effect. Our previous work reported disruptions in plasma lipid profiles, but the metabolic responses following phthalate exposure in the liver, particularly the entire hepatic lipidome, have been lacking. A targeted lipidomic technique was applied to accurately quantify a total of 363 lipid species in the liver of neonatal mice after exposure to a daily dose of 4.8 mg/kg body weight/day from birth throughout lactation. Distinct patterns of disruption for each sum of lipid classes or sub-classes between the genders were the most noticeable. Following DINP administration, female pups were subject to greater changes in phosphatidylethanolamines, bis(monoacylglycero)phosphate and ceramides. In contrast, the males exhibited less changes in the phosphoglycerol backbone-based molecules, whereas glycerol and cholesterol esters were more disrupted by DINP. DEHP, however, induced less changes overall compared to DINP. These findings highlighted the predominant lipidomic disruption of DINP on glycerol (diacylglycerides and triacylglycerides) and/or cholesterol (in ester or free form) molecules in neonatal mice across genders, suggesting the genesis of hepatic steatosis occurring at as early as post weaning. Collectively, these findings question the suitability of DINP as a safe DEHP substitute and warrant further investigation on longer-term exposure to elucidate its effect on chronic liver diseases.
Collapse
Affiliation(s)
- Yan Yang
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China; Synergy Innovation Institute of GDUT, Shantou, 515041, Guangdong, China
| | - Fengjiang Sun
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Haojia Chen
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China; Synergy Innovation Institute of GDUT, Shantou, 515041, Guangdong, China
| | - Hongli Tan
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Liu Yang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Long Zhang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jinxin Xie
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jiachen Sun
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiaochen Huang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yichao Huang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
32
|
Normal-Phase HPLC-ELSD to Compare Lipid Profiles of Different Wheat Flours. Foods 2021; 10:foods10020428. [PMID: 33669180 PMCID: PMC7919678 DOI: 10.3390/foods10020428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022] Open
Abstract
Normal-phase high-performance liquid chromatography (HPLC) is widely used in combination with evaporative light scattering detection (ELSD) for separating and detecting lipids in various food samples. ELSD responses of different lipids were evaluated to elucidate the possibilities and challenges associated with quantification by means of HPLC-ELSD. Not only the number and type of polar functional groups but also the chain length and degree of unsaturation of (free or esterified) fatty acids (FAs) had a significant effect on ELSD responses. Tripalmitin and trilinolein yielded notably different ELSD responses, even if their constituting free FAs produced identical responses. How FA structure impacts ELSD responses of free FAs is thus not predictive for those of triacylglycerols and presumably other lipids containing esterified FAs. Because ELSD responses of lipids depend on the identity of the (esterified) FA(s) which they contain, fully accurate lipid quantification with HPLC-ELSD is challenging and time-consuming. Nonetheless, HPLC-ELSD is a good and fast technique to semi-quantitatively compare the levels of different lipid classes between samples of comparable FA composition. In this way, lipid profiles of different flours from near-isogenic wheat lines could be compared.
Collapse
|
33
|
Zhang L, Huang Y, Sun F, Chen D, Netzel M, Smyth HE, Sultanbawa Y, Deng Y, Fang M, Cozzolino D. The effect of maturity and tissue on the ability of mid infrared spectroscopy to predict the geographical origin of banana (
Musa Cavendish
). Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Long Zhang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health Jinan University 601 Huangpu W Ave Guangzhou510632China
| | - Yichao Huang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health Jinan University 601 Huangpu W Ave Guangzhou510632China
| | - Fengjiang Sun
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health Jinan University 601 Huangpu W Ave Guangzhou510632China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health Jinan University 601 Huangpu W Ave Guangzhou510632China
| | - Michael Netzel
- Centre for Nutrition and Food Sciences Queensland Alliance for Agriculture and Food Innovation (QAAFI) The University of Queensland Brisbane QLD4072Australia
- ARC Training Centre for Uniquely Australian Foods Queensland Alliance for Agriculture and Food Innovation The University of QueenslandCoopers Plains Kessels RdQLD4108Australia
| | - Heather E. Smyth
- Centre for Nutrition and Food Sciences Queensland Alliance for Agriculture and Food Innovation (QAAFI) The University of Queensland Brisbane QLD4072Australia
- ARC Training Centre for Uniquely Australian Foods Queensland Alliance for Agriculture and Food Innovation The University of QueenslandCoopers Plains Kessels RdQLD4108Australia
| | - Yasmina Sultanbawa
- Centre for Nutrition and Food Sciences Queensland Alliance for Agriculture and Food Innovation (QAAFI) The University of Queensland Brisbane QLD4072Australia
- ARC Training Centre for Uniquely Australian Foods Queensland Alliance for Agriculture and Food Innovation The University of QueenslandCoopers Plains Kessels RdQLD4108Australia
| | - Yongfeng Deng
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health Jinan University 601 Huangpu W Ave Guangzhou510632China
| | - Mingliang Fang
- School of Civil and Environmental Engineering Nanyang Technological University Singapore639798Singapore
| | - Daniel Cozzolino
- Centre for Nutrition and Food Sciences Queensland Alliance for Agriculture and Food Innovation (QAAFI) The University of Queensland Brisbane QLD4072Australia
- ARC Training Centre for Uniquely Australian Foods Queensland Alliance for Agriculture and Food Innovation The University of QueenslandCoopers Plains Kessels RdQLD4108Australia
| |
Collapse
|