1
|
Chen K, Wang S, Fu S, Kim J, Park P, Liu R, Lei K. 4(3 H)-Quinazolinone: A Natural Scaffold for Drug and Agrochemical Discovery. Int J Mol Sci 2025; 26:2473. [PMID: 40141117 PMCID: PMC11941892 DOI: 10.3390/ijms26062473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
4(3H)-quinazolinone is a functional scaffold that exists widely both in natural products and synthetic organic compounds. Its drug-like derivatives have been extensively synthesized with interesting biological features including anticancer, anti-inflammatory, antiviral, antimalarial, antibacterial, antifungal, and herbicidal, etc. In this review, we highlight the medicinal and agrochemical versatility of the 4(3H)-quinazolinone scaffold according to the studies published in the past six years (2019-2024), and comprehensively give a summary of the target recognition, structure-activity relationship, and mechanism of its analogs. The present review is expected to provide valuable guidance for discovering novel lead compounds containing 4(3H)-quinazolinone moiety in both drug and agrochemical research.
Collapse
Affiliation(s)
- Ke Chen
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Shumin Wang
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.W.); (S.F.)
| | - Shuyue Fu
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.W.); (S.F.)
| | - Junehyun Kim
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Phumbum Park
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Rui Liu
- Department of Biotechnology, The University of Suwon, Hwaseong-si 18323, Gyeonggi-do, Republic of Korea; (K.C.); (J.K.); (P.P.)
| | - Kang Lei
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.W.); (S.F.)
| |
Collapse
|
2
|
Jaiswal S, Verma K, Srivastva A, Arya N, Dwivedi J, Sharma S. Green Synthetic and Pharmacological Developments in the Hybrid Quinazolinone Moiety: An Updated Review. Curr Top Med Chem 2025; 25:493-532. [PMID: 39162270 DOI: 10.2174/0115680266313354240807051401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/17/2024] [Accepted: 07/11/2024] [Indexed: 08/21/2024]
Abstract
Bicyclic quinazolinone constitutes an important class of organic framework enveloping numerous biological properties which enthused organic and medicinal chemists to explore green synthetic strategies for the construction of quinazolinone hybrids with significantly improved pharmacodynamics and pharmacokinetic profiles. In this perspective, the present review summarizes the most recent green synthetic strategies, biological properties, structure-activity relationship, and molecular docking studies of the 4-quinazolinone-based scaffold. This review provides deeper insight into the hit-to-lead synthesis of quinazolinone derivatives in the development of clinically important therapeutic candidates.
Collapse
Affiliation(s)
- Shivangi Jaiswal
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Anamika Srivastva
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Nikilesh Arya
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| |
Collapse
|
3
|
Yang Y, Hu L, Chen T, Zhang L, Wang D, Chen Z. Chemical and Biological Investigations of Antiviral Agents Against Plant Viruses Conducted in China in the 21st Century. Genes (Basel) 2024; 15:1654. [PMID: 39766921 PMCID: PMC11728098 DOI: 10.3390/genes15121654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/15/2025] Open
Abstract
Research into the biology of plant viruses, their mechanisms of pathogenicity, and the induction of host resistance has laid a solid foundation for the discovery of antiviral agents and their targets and the development of effective control technologies. Additionally, recent advancements in fields such as chemical biology, cheminformatics, bioinformatics, and synthetic biology have provided valuable methods and tools for the design of antiviral drugs, the synthesis of drug molecules, assessment of their activity, and investigation of their modes of action. Compared with drug development for human viral diseases, the control of plant viral diseases presents greater challenges, including the cost-benefit of agents, simplification of control technologies, and the effectiveness of treatments. Therefore, in the current context of complex outbreaks and severe damage caused by plant viral diseases, it is crucial to delve deeper into the research and development of antiviral agents. This review provides a detailed overview of the biological characteristics of current targets for antiviral agents, the mode of interaction between plant virus targets and antivirals, and insights for future drug development. We believe this review will not only facilitate the in-depth analysis of the development of antivirals for crops but also offer valuable perspectives for the development of antiviral agents for use in human and veterinary medicine.
Collapse
Affiliation(s)
- Yuanyou Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Y.); (L.H.); (L.Z.)
| | - Lei Hu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Y.); (L.H.); (L.Z.)
| | - Tongtong Chen
- College of Agriculture, Guizhou University, Guiyang 550025, China;
| | - Libo Zhang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Y.); (L.H.); (L.Z.)
| | - Delu Wang
- College of Forestry, Guizhou University, Guiyang 550025, China;
| | - Zhuo Chen
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Y.); (L.H.); (L.Z.)
| |
Collapse
|
4
|
Gettler J, Markovič M, Koóš P, Gracza T. Recent Advances in the Research on Luotonins A, B, and E. Molecules 2024; 29:3522. [PMID: 39124927 PMCID: PMC11314610 DOI: 10.3390/molecules29153522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
This digest review summarises the most recent progress in the study on luotonins A, B and E. The literature covered in this overview spans from January 2012 to April 2024 and presents synthetic methodologies for the assembly of the quinolinopyrrolo-quinazoline scaffold, the structural motifs present in luotonins A, B, and E, and the evaluation of the biological activities of their derivatives and structural analogues.
Collapse
Affiliation(s)
| | - Martin Markovič
- Department of Organic Chemistry, Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia; (J.G.); (T.G.)
| | - Peter Koóš
- Department of Organic Chemistry, Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia; (J.G.); (T.G.)
| | | |
Collapse
|
5
|
Králová P, Soural M. Biological properties of pyrroloquinoline and pyrroloisoquinoline derivatives. Eur J Med Chem 2024; 269:116287. [PMID: 38492334 DOI: 10.1016/j.ejmech.2024.116287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/18/2024]
Abstract
In this review, we summarize pyrroloquinoline and pyrroloisoquinoline derivatives (PQs and PIQs) that act on a broad spectrum of biological targets and are used as bacteriostatic, antiviral, plasmodial, anticancer, antidiabetic and anticoagulant agents. Many of these compounds play important roles in the study of DNA and its interactions, the regulation of the cell cycle and programmed cell death. This review involves twenty-five types of skeletally analogical compounds bearing pyrrole and (iso)quinoline scaffolds with different mutual annelations.
Collapse
Affiliation(s)
- Petra Králová
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu12, 771 46, Olomouc, Czech Republic
| | - Miroslav Soural
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. listopadu12, 771 46, Olomouc, Czech Republic.
| |
Collapse
|
6
|
Li L, Xu C, Zou J, Deng Z, You S, Wang Q. Novel Cyclopenta[ c]pyridine Derivatives Based on Natural Cerbinal as Potential Agrochemical Anti-TMV Agents and Insecticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6684-6690. [PMID: 38485919 DOI: 10.1021/acs.jafc.3c07422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Based on natural cerbinal, a series of novel 4-bit modified cyclopenta[c]pyridine derivatives containing a substituted amide or ester moiety were designed and synthesized for the first time. Their structures were systematically characterized by NMR and high-resolution mass spectra (HRMS). The anti-TMV activities, such as protection, inactivation, and curative effects in vivo, were evaluated methodically. The lethal activities of the target compounds against the agriculturally common pests Plutella xylostella larvae and Aphis laburni kaltenbach were evaluated by the immersion method. The bioassay results indicated that most of the target compounds exhibited good to excellent anti-TMV activity levels, good lethal activity against P. xylostella larvae at 600 μg/mL, and greater insecticidal activities against A. laburni Kaltenbach compared to the plant-derived insecticide rotenone. The binding mode of cerbinal and cyclopenta[c]pyridine derivatives 4b, 4p, and 4v with the TMV protein was studied with a molecular docking method, which indicated that the functional group of the 2- and 4-positions is vital for anti-TMV activity. The systematic research provides strong evidence that these novel 4-bit modified cyclopenta[c]pyridine derivatives could become potential agrochemical insecticides and anti-TMV agents.
Collapse
Affiliation(s)
- Ling Li
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Changjiang Xu
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Jiyong Zou
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Zhaoyang Deng
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Shengyong You
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Zhang T, Tian CY, Zhang J, An Q, Yi P, Yuan CM, Zhang ZK, Zhao LH, Hao XJ, Hu ZX. Quinolizidine Alkaloids and Isoflavones from the Herb of Thermopsis lupinoides and Their Antiviral, Antifungal, and Insecticidal Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5047-5061. [PMID: 38394631 DOI: 10.1021/acs.jafc.3c09529] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
As part of our ongoing investigation of natural bioactive substances from the genus Thermopsis of the tribe Fabaceae for agricultural protection, the chemical constituents of the herb Thermopsis lupinoides were systematically investigated, which led to the isolation of 39 quinolizidine alkaloids (QAs) (1-39), including 14 new QAs (1-14) and 14 isoflavones (40-53). Their structures were elucidated through comprehensive spectroscopic data analysis (IR, UV, NMR, HRESIMS), ECD calculations, and X-ray crystallography. The antitomato spotted wilt virus (TSWV) and antifungal (against Botrytis cinerea, Gibberella zeae, Phytophythora capsica, and Alternaria alternata) and insecticidal (against Aphis fabae and Tetranychus urticae) activities of the isolated compounds were screened using the lesion counting method, mycelial inhibition assay, and spray method, respectively. The bioassay results showed that 34 exhibited excellent protective activity against TSWV, with an EC50 value of 36.04 μg/mL, which was better than that of the positive control, ningnanmycin (86.03 μg/mL). The preliminary mechanistic exploration illustrated that 34 induced systemic acquired resistance in the host plant by acting on the salicylic acid signaling pathway. Moreover, 1 showed significant antifungal activity against B. cinerea (EC50 value of 20.83 μg/mL), while 2 exhibited good insecticidal activity against A. fabae (LC50 value of 24.97 μg/mL). This research is promising for the invention of novel pesticides from QAs with high efficiency and satisfactory ecological compatibility.
Collapse
Affiliation(s)
- Tong Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Cai-Yan Tian
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Ji Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Qiao An
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Ping Yi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Chun-Mao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Zhong-Kai Zhang
- The Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming 650204, China
| | - Li-Hua Zhao
- The Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming 650204, China
| | - Xiao-Jiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
| | - Zhan-Xing Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| |
Collapse
|
8
|
Yuan C, Tian J, Zhou Q, Xin H, Liu Y, Deng T, Zeng W, Sun Z, Xue W. Myricetin derivatives containing the benzoxazinone moiety discovered as potential anti-tobacco mosaic virus agents. Fitoterapia 2024; 173:105812. [PMID: 38168568 DOI: 10.1016/j.fitote.2023.105812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
A series of myricetin derivatives containing benzoxazinone were designed and synthesized. The structures of all compounds were characterized by NMR and HRMS. The structure of Y4 had been confirmed by single-crystal X-ray diffraction analysis. The test results of EC50 values of tobacco mosaic virus (TMV) suggested that Y8 had the best curative and protective effects, with EC50 values of 236.8, 206.0 μg/mL, respectively, which were higher than that of ningnanmycin (372.4, 360.6 μg/mL). Microscale thermophoresis (MST) experiments demonstrated that Y8 possessed a strong binding affinity for tobacco mosaic virus coat protein (TMV-CP), with a dissociation constant (Kd) value of 0.045 μM, which was superior to the ningnanmycin (0.700 μM). The findings of molecular docking studies revealed that Y8 interacted with multiple amino acid residues of TMV-CP through the formation of non-covalent bonds, which had an effect on the self-assembly of TMV particles. The malondialdehyde (MDA) and superoxide dismutase assay (SOD) content assays also fully verified that Y8 could stimulate the plant immune system and enhance disease resistance by reducing MDA content and increasing SOD content. In summary, myricetin derivatives containing benzoxazinone could be considered to further research and development as novel antiviral agents.
Collapse
Affiliation(s)
- Chunmei Yuan
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jiao Tian
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Qing Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hui Xin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yi Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Tianyu Deng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wei Zeng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhilin Sun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wei Xue
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
9
|
Zhang GL, Wang ZC, Li CP, Chen DP, Li ZR, Li Y, Ouyang GP. Discovery of tryptanthrin analogues bearing F and piperazine moieties as novel phytopathogenic antibacterial and antiviral agents. PEST MANAGEMENT SCIENCE 2024; 80:1026-1038. [PMID: 37842924 DOI: 10.1002/ps.7834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Plant bacterial infections and plant viruses seriously affect the yield and quality of crops. Based on the various activities of tryptanthrin, a series of tryptanthrin analogues bearing F and piperazine moieties were designed, synthesized, and evaluated for their biological activities against three plant bacteria and tobacco mosaic virus (TMV). RESULTS Bioassay results indicated that compounds 6a-6l displayed excellent antibacterial activities in vitro and 6a-6c and 6g exhibited better antiviral activities against TMV than commercial ribavirin. In particular, 6b showed the most effect on Xanthomonas oryzae pv. oryzae (Xoo) with a half-maximal effective concentration (EC50 ) of 1.26 μg mL-1 , compared with the commercial pesticide bismerthiazol (BT; EC50 = 34.3 μg mL-1 ) and thiodiazole copper (TC; EC50 = 73.3 μg mL-1 ). Meanwhile, 6a also had the best antiviral activity at 500 μg mL-1 for curative, protection, and inactivation purposes, compared with ribavirin in vivo. CONCLUSION Compound 6b could cause changes in bacterial morphology, induce the accumulation of reactive oxygen species, promote apoptosis of bacterial cells, inhibit the formation of biofilm, and block the growth of Xoo cells. Proteomic analysis revealed major differences in the bacterial secretory system pathways T2SS and T6SS, which inhibited membrane transport. Molecular docking revealed that 6a and 6g could interact with TMV coat protein preventing virus assembly. These results suggest that tryptanthrin analogues bearing F and piperazine moieties could be promising candidate agents for antibacterial and antiviral use in agricultural production. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guang-Long Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhen-Chao Wang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Cheng-Peng Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Dan-Ping Chen
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Zhu-Rui Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Yan Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Gui-Ping Ouyang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
- Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, China
| |
Collapse
|
10
|
Vaskevych A, Dekhtyar M, Vovk M. Cyclizations of Alkenyl(Alkynyl)-Functionalized Quinazolinones and their Heteroanalogues: A Powerful Strategy for the Construction of Polyheterocyclic Structures. CHEM REC 2024; 24:e202300255. [PMID: 37830463 DOI: 10.1002/tcr.202300255] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/28/2023] [Indexed: 10/14/2023]
Abstract
Quinazolin-4-one, its heteroanalogues, and derivatives represent an outstandingly important class of compounds in modern organic, medicinal, and pharmaceutical chemistry, as these molecular structures are noted for their wide synthetic and pharmacological potential. In the last years, ever-increasing research attention has been paid to quinazolinone derivatives bearing alkenyl and alkynyl substituents on the pyrimidinone nucleus. The original structural combination of synthetically powerful endocyclic amidine (or amidine-related) and exocyclic unsaturated moieties provides a driving force for cyclizations, which offer an efficient toolkit to construct a variety of fused pyrimidine systems with saturated N- and N,S-heterocycles. In this connection, the present review article is mainly aimed at systematic coverage of the progress in using alkenyl(alkynyl)quinazolinones and their heteroanalogues as convenient bifunctional substrates for regioselective annulation of small- and medium-sized heterocyclic nuclei. Much attention is paid to elucidating the structural and electronic effects of reagents on the regio- and stereoselectivity of the cyclizations as well as to clarifying the relevant reaction mechanisms.
Collapse
Affiliation(s)
- Alla Vaskevych
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Academician Kukhar str., 5, Kyiv 02660, Ukraine
| | - Maryna Dekhtyar
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Academician Kukhar str., 5, Kyiv, 02660, Ukraine
| | - Mykhailo Vovk
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Academician Kukhar str., 5, Kyiv, 02660, Ukraine
| |
Collapse
|
11
|
Li ZX, Hu JH, Luo RS, Zhang TH, Ding Y, Zhou X, Liu LW, Wu ZB, Yang S. Identification of natural Rutaecarpine as a potent tobacco mosaic virus (TMV) helicase candidate for managing intractable plant viral diseases. PEST MANAGEMENT SCIENCE 2024; 80:805-819. [PMID: 37794206 DOI: 10.1002/ps.7817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Naturally occurring alkaloids are particularly suitable for use as pesticide precursors and further modifications due to their cost-effectiveness, unique mechanism of action, tolerable degradation, and environmental friendliness. The famous tobacco mosaic virus (TMV) is a persistent plant pathogenic virus that can parasitize many plants and severely reduce crop production. To treat TMV disease, TMV helicase acts as a crucial target by hydrolyzing adenosine triphosphate (ATP) to provide energy for double-stranded RNA unwinding. RESULTS To seek novel framework alkaloid leads targeting TMV helicase, this work successfully established an efficient screening platform for TMV helicase inhibitors based on natural alkaloids. In vivo activity screening, enzyme activity detection, and binding assays showed that Rutaecarpine from Evodia rutaecarpa (Juss.) Benth exhibited excellent TMV helicase inhibitory properties [dissociation constant (Kd ) = 1.1 μm, half maximal inhibitory concentration (IC50 ) = 227.24 μm] and excellent anti-TMV ability. Molecular docking and dynamic simulations depicted that Rutaecarpine could stably bind in active pockets of helicase with low binding energy (ΔGbind = -17.8 kcal/mol) driven by hydrogen bonding and hydrophobic interactions. CONCLUSION Given Rutaecarpine's laudable bioactivity and structural modifiability, it can serve as a privileged building block for further pesticide discovery.
Collapse
Affiliation(s)
- Zhen-Xing Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Jin-Hong Hu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Rong-Shuang Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Tai-Hong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yue Ding
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Zhi-Bing Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| |
Collapse
|
12
|
Gangnale LD, Miriyala SRT, Pasunooti KK, Reddy DS. Amidative Cyclization of Alkynyl Esters to Access Pyrazin-1(2 H)-ones: Application to the Synthesis of Peramine and Dibromophakellin. J Org Chem 2023. [PMID: 38051981 DOI: 10.1021/acs.joc.3c02157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Herein, we report an efficient 1,5,7-Triazabicyclo[4.4.0]dec-5-ene (TBD)-catalyzed tandem intermolecular amidation and regioselective intramolecular 6-exo-dig cyclization of alkynyl esters to efficiently access pyrazine-1(2H)-one scaffolds. This organo-catalyzed [5 + 1] annulation features a broad substrate scope concerning both annulating partners. Total syntheses of peramine and formal syntheses of dibromophakellin natural products were achieved to show the application potential of the method.
Collapse
Affiliation(s)
- Laxmikant D Gangnale
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Satya Ravi Teja Miriyala
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kalyan Kumar Pasunooti
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - D Srinivasa Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| |
Collapse
|
13
|
Gao W, Zhang J, Zhang Y, Huang Y, Wang C, Liang Q, Yu Z, Fan R, Tang L, Fan Z. CoMFA Directed Molecular Design for Significantly Improving Fungicidal Activity of Novel [1,2,4]-Triazolo-[3,4- b][1,3,4]-thiadizoles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14125-14136. [PMID: 37750514 DOI: 10.1021/acs.jafc.3c02444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Target based molecular design via the aid of computation is one of the most efficient methods in the discovery of novel pesticides. Here, a combination of the comparative molecular field analysis (CoMFA) and molecular docking was applied for discovery of potent fungicidal [1,2,4]-triazolo-[3,4-b][1,3,4]-thiadiazoles. Bioassay results indicated that the synthesized target compounds 3a, 3b, and 3c exhibited good activity against Alternaria solani, Botrytis cinerea, Cercospora arachidicola, Fusarium graminearum, Physalospora piricola, Rhizoctonia solani, and Sclerotinia sclerotiorum with an EC50 value falling between 0.64 and 16.10 μg/mL. Specially, 3c displayed excellent fungicidal activity against C. arachidicola and R. solani, which was 5 times more potent than the lead YZK-C22. The enzymatic inhibition assay and fluorescence quenching analysis with R. solani pyruvate kinase (RsPK) showed a weaker binding affinity between RsPK and 3a, 3b, or 3c. Transcriptomic analyses showed that 3c exerted its fungicidal activity by disrupting steroid biosynthesis and ribosome biogenesis in eukaryotes. These findings support that 3c is a promising fungicide candidate, and a fine modification from a lead may lead to a totally different mode of action.
Collapse
Affiliation(s)
- Wei Gao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Jin Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Yue Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Yuting Huang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Conglin Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Qiming Liang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Zecong Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Ruihang Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Liangfu Tang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin 300071, P. R. China
| |
Collapse
|
14
|
Su CF, Das D, Muhammad Aslam M, Xie JQ, Li XY, Chen MX. Eukaryotic splicing machinery in the plant-virus battleground. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1793. [PMID: 37198737 DOI: 10.1002/wrna.1793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/24/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
Plant virual infections are mainly caused by plant-virus parasitism which affects ecological communities. Some viruses are highly pathogen specific that can infect only specific plants, while some can cause widespread harm, such as tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV). After a virus infects the host, undergoes a series of harmful effects, including the destruction of host cell membrane receptors, changes in cell membrane components, cell fusion, and the production of neoantigens on the cell surface. Therefore, competition between the host and the virus arises. The virus starts gaining control of critical cellular functions of the host cells and ultimately affects the fate of the targeted host plants. Among these critical cellular processes, alternative splicing (AS) is an essential posttranscriptional regulation process in RNA maturation, which amplify host protein diversity and manipulates transcript abundance in response to plant pathogens. AS is widespread in nearly all human genes and critical in regulating animal-virus interactions. In particular, an animal virus can hijack the host splicing machinery to re-organize its compartments for propagation. Changes in AS are known to cause human disease, and various AS events have been reported to regulate tissue specificity, development, tumour proliferation, and multi-functionality. However, the mechanisms underlying plant-virus interactions are poorly understood. Here, we summarize the current understanding of how viruses interact with their plant hosts compared with humans, analyze currently used and putative candidate agrochemicals to treat plant-viral infections, and finally discussed the potential research hotspots in the future. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Chang-Feng Su
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Debatosh Das
- College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences & Technology, University of Missouri, Columbia, Missouri, USA
| | - Mehtab Muhammad Aslam
- College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences & Technology, University of Missouri, Columbia, Missouri, USA
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ji-Qin Xie
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
| | - Xiang-Yang Li
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Mo-Xian Chen
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
15
|
Jhansirani N, Devappa V, Sangeetha CG, Sridhara S, Shankarappa KS, Mohanraj M. Identification of Potential Phytochemical/Antimicrobial Agents against Pseudoperonospora cubensis Causing Downy Mildew in Cucumber through In-Silico Docking. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112202. [PMID: 37299181 DOI: 10.3390/plants12112202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/06/2023] [Accepted: 05/13/2023] [Indexed: 06/12/2023]
Abstract
Compatibility interactions between the host and the fungal proteins are necessary to successfully establish a disease in plants by fungi or other diseases. Photochemical and antimicrobial substances are generally known to increase plant resilience, which is essential for eradicating fungus infections. Through homology modeling and in silico docking analysis, we assessed 50 phytochemicals from cucumber (Cucumis sativus), 15 antimicrobial compounds from botanical sources, and six compounds from chemical sources against two proteins of Pseudoperonospora cubensis linked to cucumber downy mildew. Alpha and beta sheets made up the 3D structures of the two protein models. According to Ramachandran plot analysis, the QNE 4 effector protein model was considered high quality because it had 86.8% of its residues in the preferred region. The results of the molecular docking analysis showed that the QNE4 and cytochrome oxidase subunit 1 proteins of P. cubensis showed good binding affinities with glucosyl flavones, terpenoids and flavonoids from phytochemicals, antimicrobial compounds from botanicals (garlic and clove), and chemically synthesized compounds, indicating the potential for antifungal activity.
Collapse
Affiliation(s)
- Nagaraju Jhansirani
- Department of Plant Pathology, College of Horticulture-Bengaluru, University of Horticultural Sciences, Bagalkot 560 065, India
| | - Venkatappa Devappa
- Department of Plant Pathology, College of Horticulture-Bengaluru, University of Horticultural Sciences, Bagalkot 560 065, India
| | - Chittarada Gopal Sangeetha
- Department of Plant Pathology, College of Horticulture-Bengaluru, University of Horticultural Sciences, Bagalkot 560 065, India
| | - Shankarappa Sridhara
- Center for Climate Resilient Agriculture, Keladi Shivappa Nayaka University of Agricultural and Horticultural Sciences, Shivamogga 577 201, India
| | - Kodegandlu Subbanna Shankarappa
- Department of Plant Pathology, College of Horticulture-Bengaluru, University of Horticultural Sciences, Bagalkot 560 065, India
| | - Mooventhiran Mohanraj
- Department of Plant Pathology, College of Horticulture-Bengaluru, University of Horticultural Sciences, Bagalkot 560 065, India
| |
Collapse
|
16
|
Manikanttha M, Deepti K, Tej MB, Tej MB, Gopi Reddy A, Kapavarapu R, Barange DK, V Basaveswara Rao M, Pal M. Ultrasound assisted Cu-catalyzed Ullmann-Goldberg type coupling-cyclization in a single pot: Synthesis and in silico evaluation of 11 H-pyrido[2,1- b]quinazolin-11-ones against SARS-CoV-2 RdRp. J Mol Struct 2023; 1280:135044. [PMID: 36743447 PMCID: PMC9884102 DOI: 10.1016/j.molstruc.2023.135044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
The in silico evaluation of 11H-pyrido[2,1-b]quinazolin-11-one derivatives against SARS-CoV-2 RdRp was undertaken based on the reports on antiviral activities of this class of compounds in addition to the promising interactions of the antiviral drug penciclovir as well as quinazoline derivatives with SARS-CoV-2 RdRp in silico. The target compounds were prepared via an Ullmann-Goldberg type coupling followed by the subsequent cyclization (involving amidation) in a single pot. The methodology involved a CuI-catalyzed reaction of 2-iodobenzoate ester with 2-aminopyridine or quinolin-2-amine or thiazol-2-amine under ultrasound to give the expected products in acceptable (51-93%) yields. The molecular interactions of the synthesized 11H-pyrido[2,1-b]quinazolin-11-one derivatives with the SARS-CoV-2 RdRp (PDB: 7AAP) were evaluated in silico. The study suggested that though none of these compounds showed interactions better than penciclovir but the compound 3a and 3n appeared to be comparable along with 3b seemed to be nearly comparable to favipiravir and remdesivir. The compound 3n with the best binding energy (-79.85 Kcal/mol) participated in the H-bond interactions through its OMe group with THR556 as well as ARG624 and via the N-5 atom with the residue SER682. The in silico studies further suggested that majority of the compounds interacted with the main cavity of active site pocket whereas 3h and 3o that showed relatively lower binding energies (-66.06 and -66.28 Kcal/mol) interacted with the shallow cavity underneath the active site of SARS CoV-2 RdRp. The study also revealed that a OMe group was favourable for interaction with respect to its position in the order C-8 > C-1 > C-2. Further, the presence of a fused quinoline ring was tolerated whereas a fused thiazole ring decreased the interaction significantly. The in silico predictions of pharmacokinetic properties of 3a, 3b and 3n indicated that besides the BBB (Blood Brain Barrier) penetration potential these molecules may show a good overall ADME. Overall, the regioisomers 3a, 3b and 3n have emerged as molecules of possible interest in the context of targeting COVID-19.
Collapse
Affiliation(s)
- Matta Manikanttha
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Greenfields, Vaddeswaram, Guntur, Andhra Pradesh 522 502, India
| | - Kolli Deepti
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Greenfields, Vaddeswaram, Guntur, Andhra Pradesh 522 502, India
| | - Mandava Bhuvan Tej
- Department of Healthcare informatics, Sacred Heart University, 5151 Park Avenue, Fair fields, Connecticut CT06825, USA
| | - Mandava Bhagya Tej
- Department of MBBS, NRI Academi of Medical Sciences, Chinakakani, Guntur, Andhra Pradesh 522503, India
| | - A. Gopi Reddy
- Department of Pharmaceutical Chemistry, SANA College of Pharmacy, Kodad, Telangana, India
| | - Ravikumar Kapavarapu
- Department of Pharmaceutical Chemistry and Phytochemistry, Nirmala College of Pharmacy, Mangalagiri, Andhra Pradesh, India
| | | | - M. V Basaveswara Rao
- Department of Chemistry, Krishna University, Krishna District, Andhra Pradesh, India,Corresponding authors
| | - Manojit Pal
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad 500046, India,Corresponding authors
| |
Collapse
|
17
|
Srikanth G, Ravi A, Sebastian A, Khanfar MA, Abu-Yousef IA, Majdalawieh AF, El-Gamal MI, Alkubaisi BO, Shahin AI, Joseph J, Al-Tel TH. Stereodivergent Desymmetrization of Phenols En Route to Modular Access to Densely Functionalized Quinazoline and Oxazine Scaffolds. J Org Chem 2023; 88:1600-1612. [PMID: 36637399 DOI: 10.1021/acs.joc.2c02653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The de novo assembly of stereochemically and skeletally diverse scaffolds is a powerful tool for the discovery of novel chemotypes. Hence, the development of modular, step- and atom-economic synthetic methods to access stereochemically and skeletally diverse compound collection is particularly important. Herein, we show a metal-free, stereodivergent build/couple/pair strategy that allows access to a unique collection of benzo[5,6][1,4]oxazino[4,3-a]quinazoline, quinolino[1,2-a]quinazoline and benzo[b]benzo [4,5]imidazo[1,2-d][1,4]oxazine scaffolds with complete diastereocontrol and wide distribution of molecular architectures. This metal-free process proceeds via desymmetrization of phenol derivatives. The cascade unites Mannich with aza-Michael addition reactions, providing expeditious entries to diverse classes of molecular shapes in a single operation.
Collapse
Affiliation(s)
- Gourishetty Srikanth
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, P.O. Box 26666, Sharjah 26666, United Arab Emirates
| | - Anil Ravi
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah 27272, United Arab Emirates
| | - Anusha Sebastian
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah 27272, United Arab Emirates
| | - Monther A Khanfar
- College of Science, Department of Chemistry, University of Sharjah, P.O. Box 27272, Sharjah 27272, United Arab Emirates
| | - Imad A Abu-Yousef
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, P.O. Box 26666, Sharjah 26666, United Arab Emirates
| | - Amin F Majdalawieh
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, P.O. Box 26666, Sharjah 26666, United Arab Emirates
| | - Mohammed I El-Gamal
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah 27272, United Arab Emirates
| | - Bilal O Alkubaisi
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah 27272, United Arab Emirates
| | - Afnan I Shahin
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah 27272, United Arab Emirates
| | - Jobi Joseph
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah 27272, United Arab Emirates
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah 27272, United Arab Emirates.,College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah 27272, United Arab Emirates
| |
Collapse
|
18
|
Design, Synthesis and Antifungal Activity of Novel 1,4-Pentadiene-3-one Containing Quinazolinone. Int J Mol Sci 2023; 24:ijms24032599. [PMID: 36768919 PMCID: PMC9916701 DOI: 10.3390/ijms24032599] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Twenty 1,4-pentadiene-3-one derivatives containing quinazolinone (W1-W20) were designed and synthesized. The bioactivity test results showed that some compounds had antifungal activities in vitro. W12 showed excellent bioactivity against Sclerotinia sclerotiorum (S. sclerotiorum) and Phomopsis sp., with EC50 values of 0.70 and 3.84 μg/mL, which are higher than those of the control drug azoxystrobin at 8.15 and 17.25 μg/mL. In vivo activity tests were carried out on oilseed rape and kiwifruit. The protective effect of W12 on oilseed rape infected with S. sclerotiorum (91.7 and 87.3%) was better than that of azoxystrobin (90.2 and 79.8%) at 100 and 50 μg/mL, respectively, and the protective effect on kiwifruit infected with Phomopsis sp. (96.2%) was better than that of azoxystrobin (94.6%) at 200 μg/mL. Scanning electron microscopy results showed the hyphae of S. sclerotiorum treated with compound W12 abnormally collapsed and shriveled, inhibiting the growth of mycelium and, thus, laying the inhibiting effect on S. sclerotiorum. The results of the mechanism research showed that the action of W12 changed the mycelial morphology of S. sclerotiorum, affected the permeability of cells, increased the leakage of cytoplasm and allowed the cell membrane to break down. This study shows that 1,4-pentadiene-3-one derivatives containing quinazolinone have good effects on plant fungi and the potential for becoming new fungicides.
Collapse
|
19
|
Jin J, Shen T, Shu L, Huang Y, Deng Y, Li B, Jin Z, Li X, Wu J. Recent Achievements in Antiviral Agent Development for Plant Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1291-1309. [PMID: 36625507 DOI: 10.1021/acs.jafc.2c07315] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plant virus disease is the second most prevalent plant diseases and can cause extensive loss in global agricultural economy. Extensive work has been carried out on the development of novel antiplant virus agents for preventing and treating plant virus diseases. In this review, we summarize the achievements of the research and development of new antiviral agents in the recent five years and provide our own perspective on the future development in this highly active research field.
Collapse
Affiliation(s)
- Jiamiao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Tingwei Shen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Liangzhen Shu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yixian Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Youlin Deng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Benpeng Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jian Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
20
|
Yuan M, Tian Z, Yin X, Yuan X, Gao J, Yuan W, Lu A, Wang Z, Li L, Wang Q. Structural Optimization of the Natural Product: Discovery of Almazoles C-D and Their Derivatives as Novel Antiviral and Anti-phytopathogenic Fungus Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15693-15702. [PMID: 36479881 DOI: 10.1021/acs.jafc.2c05898] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plant diseases seriously affect the growth of crops and the quality and yield of agricultural products. The search for plant-derived pesticide candidates based on natural products is a hot topic of current research. Marine natural products almazoles C-D were efficiently prepared and selected as the lead compounds in this work. Two series of almazole derivatives were designed and synthesized, and their antiviral and fungicidal activities were systematically evaluated. The results of anti-tobacco mosaic virus (anti-TMV) activity showed that almazoles C-D and their derivatives had good anti-TMV activities. Compounds 6, 15, 16a, 16b, 16g, 16l, 16n, 20a, 20d, 20i, and 20n exhibited better anti-TMV activities than the commercial antiviral agent ribavirin. Anti-TMV mechanism studies showed that compound 16b could induce the polymerization of 20S CP (coat protein, CP), thereby affecting the assembly of TMV virus particles. Molecular docking results showed that compounds 15, 16b, and 20n could combine with amino acid residues through hydrogen bonds to achieve an excellent anti-TMV effect. In addition, most of the almazole derivatives were found to have broad-spectrum fungicidal activities against eight kinds of plant pathogens (Fusarium oxysporum f. sp. cucumeris, Cercospora arachidicola Hori, Physalospora piricola, Rhizoctonia cerealis, Alternaria solani, Pyricularia grisea, Phytophthora capsici, and Sclerotinia sclerotiorum). This study provides an important evidence for the research and development of almazole alkaloids containing indole and oxazole structural groups as novel agrochemicals.
Collapse
Affiliation(s)
- Meiling Yuan
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Zhaoyong Tian
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xiangyang Yin
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xinyu Yuan
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jixuan Gao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Wenying Yuan
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Aidang Lu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Liang Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
21
|
Discovery of Hyrtinadine A and Its Derivatives as Novel Antiviral and Anti-Phytopathogenic-Fungus Agents. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238439. [PMID: 36500532 PMCID: PMC9738573 DOI: 10.3390/molecules27238439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
Plant diseases caused by viruses and fungi have a serious impact on the quality and yield of crops, endangering food security. The use of new, green, and efficient pesticides is an important strategy to increase crop output and deal with the food crisis. Ideally, the best pesticide innovation strategy is to find and use active compounds from natural products. Here, we took the marine natural product hyrtinadine A as the lead compound, and designed, synthesized, and systematically investigated a series of its derivatives for their antiviral and antifungal activities. Compound 8a was found to have excellent antiviral activity against the tobacco mosaic virus (TMV) (inactivation inhibitory effect of 55%/500 μg/mL and 19%/100 μg/mL, curative inhibitory effect of 52%/500 μg/mL and 22%/100 μg/mL, and protection inhibitory effect of 57%/500 μg/mL and 26%/100 μg/mL) and emerged as a novel antiviral candidate. These compound derivatives displayed broad-spectrum fungicidal activities against 14 kinds of phytopathogenic fungi at 50 μg/mL and the antifungal activities of compounds 5c, 5g, 6a, and 6e against Rhizoctonia cerealis are higher than that of the commercial fungicide chlorothalonil. Therefore, this study could lay a foundation for the application of hyrtinadine A derivatives in plant protection.
Collapse
|
22
|
Fan H, Yan X, Fu M, Liu D, Awan AW, Chen P, Rasheed SM, Gao L, Zhang R. Interactive Effect of Biological Agents Chitosan, Lentinan and Ningnanmycin on Papaya Ringspot Virus Resistance in Papaya ( Carica papaya L.). Molecules 2022; 27:7474. [PMID: 36364302 PMCID: PMC9656423 DOI: 10.3390/molecules27217474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 03/23/2024] Open
Abstract
The papaya industry is mainly impacted by viral diseases, especially papaya ringspot disease (PRSD) caused by papaya ringspot virus (PRSV). So far, research on the interaction between Chitosan, Lentinan and Ningnanmycin on PRSD has not been reported. This research studied the controlled and interactive effect of three biological agents, namely, Chitosan (C), Lentinan (L) and Ningnanmycin (N), on PRSV in papaya, individually and collectively. The changes in disease index, controlled effect, Peroxidase (POD), Polyphenol oxidase (PPO), Superoxide dismutase (SOD), growth and development of plants were observed at the seedling stage, in pots, and at the fruiting stage, in the field. The appearance and nutrient contents of fruits were measured during the fruit stage. The disease index of PRSV, at seedling and fruiting stages, was significantly lower for chitosan, lentinan and ningnanmycin and their interactive effect, compared to a control check treatment. The activity of the defense enzymes could be improved by the three kinds of biological agents and their interactive effect, especially lentinan and ningnanmycin. The chlorophyll content, plant height, stem diameter and fruit quality rose significantly under chitosan, lentinan and ningnanmycin treatments. The interaction of LN could inhibit PRSV disease at the seedling and fruiting stages of papaya, and promote the growth of plants and the quality of fruit at the fruit stage. Hence, this study provides the theoretical foundation for the biological control of papaya ringspot disease.
Collapse
Affiliation(s)
- Heling Fan
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Xingxiang Yan
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Mingqing Fu
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Difa Liu
- College of Tropical Crops, Hainan University, Haikou 570228, China
- Tropical Crops Genetic Resources Institute (CATAS), Danzhou 571737, China
| | - Abdul Waheed Awan
- College of Tropical Crops, Hainan University, Haikou 570228, China
- Department of Agriculture, Bacha Khan University, Charsadda 24461, Pakistan
| | - Ping Chen
- College of Horticulture, Hainan University, Haikou 570228, China
| | - Syed Majid Rasheed
- Department of Agriculture, Bacha Khan University, Charsadda 24461, Pakistan
| | - Ling Gao
- Tropical Crops Genetic Resources Institute (CATAS), Danzhou 571737, China
| | - Rongping Zhang
- College of Tropical Crops, Hainan University, Haikou 570228, China
| |
Collapse
|
23
|
Wang X, Chai J, Gu Y, Zhang D, Meng F, Si X, Yang C, Xue W. Expedient Discovery for Novel Antifungal Leads Inhibiting Fusarium graminearum: 3-(Phenylamino)quinazolin-4(3 H)-ones Deriving from Systematic Optimizations on a Tryptanthrin Structure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13165-13175. [PMID: 36194787 DOI: 10.1021/acs.jafc.2c04933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The ever-increasing resistance of Fusarium graminearum has emerged as a pressing agricultural issue that could be settled by developing novel fungicides owning inimitable action mechanisms. With the aim of discovering novel antifungal leads inhibiting F. graminearum, a tryptanthrin structure was dexterously optimized to generate 30 novel quinazolin-4(3H)-one derivatives. The aforementioned optimization generated the molecule C17 that owned exhilarating in vitro anti-F. graminearum effect (EC50 value = 0.76 μg/mL). Whereafter, the in vivo anti-F. graminearum preventative efficacy of the molecule C17 was measured to be 59.5% at 200 μg/mL, which was approximately comparable with that of carbendazim (64.9%). Furthermore, morphological observations indicated that the molecule C17 could cause the hypha to become slender and dense, distort the outline of cell walls, induce an increase in liposome numbers, and cause the reduction of mitochondria numbers. The above results have emerged as an obbligato complement for developing novel antifungal leads that could effectively control Fusarium head blight.
Collapse
Affiliation(s)
- Xiaobin Wang
- College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jianqi Chai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yifei Gu
- College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Di Zhang
- College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Fei Meng
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinxin Si
- College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Chunlong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xue
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
24
|
Borah B, Swain S, Patat M, Chowhan LR. Recent advances and prospects in the organocatalytic synthesis of quinazolinones. Front Chem 2022; 10:991026. [PMID: 36186594 PMCID: PMC9515322 DOI: 10.3389/fchem.2022.991026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022] Open
Abstract
Quinazolinone, a bicyclic compound, comprises a pyrimidine ring fused at 4´ and 8´ positions with a benzene ring and constitutes a substantial class of nitrogen-containing heterocyclic compounds on account of their frequent existence in the key fragments of many natural alkaloids and pharmaceutically active components. Consequently, tremendous efforts have been subjected to the elegant construction of these compounds and have recently received immense interest in synthetic and medicinal chemistry. The domain of synthetic organic chemistry has grown significantly over the past few decades for the construction of highly functionalized therapeutically potential complex molecular structures with the aid of small organic molecules by replacing transition-metal catalysis. The rapid access to this heterocycle by means of organocatalytic strategy has provided new alternatives from the viewpoint of synthetic and green chemistry. In this review article, we have demonstrated a clear presentation of the recent organocatalytic synthesis of quinazolinones of potential therapeutic interests and covered the literature from 2015 to date. In addition to these, a clear presentation and understanding of the mechanistic aspects, features, and limitations of the developed reaction methodologies have been highlighted.
Collapse
|
25
|
Liu T, Peng F, Zhu Y, Cao X, Wang Q, Liu F, Liu L, Xue W. Design, synthesis, biological activity evaluation and mechanism of action of myricetin derivatives containing thioether quinazolinone. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
26
|
Chen J, Luo X, Chen Y, Wang Y, Peng J, Xing Z. Recent Research Progress: Discovery of Anti-Plant Virus Agents Based on Natural Scaffold. Front Chem 2022; 10:926202. [PMID: 35711962 PMCID: PMC9196591 DOI: 10.3389/fchem.2022.926202] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/13/2022] [Indexed: 12/26/2022] Open
Abstract
Plant virus diseases, also known as “plant cancers”, cause serious harm to the agriculture of the world and huge economic losses every year. Antiviral agents are one of the most effective ways to control plant virus diseases. Ningnanmycin is currently the most successful anti-plant virus agent, but its field control effect is not ideal due to its instability. In recent years, great progress has been made in the research and development of antiviral agents, the mainstream research direction is to obtain antiviral agents or lead compounds based on structural modification of natural products. However, no antiviral agent has been able to completely inhibit plant viruses. Therefore, the development of highly effective antiviral agents still faces enormous challenges. Therefore, we reviewed the recent research progress of anti-plant virus agents based on natural products in the past decade, and discussed their structure-activity relationship (SAR) and mechanism of action. It is hoped that this review can provide new inspiration for the discovery and mechanism of action of novel antiviral agents.
Collapse
Affiliation(s)
- Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- *Correspondence: Jixiang Chen,
| | - Xin Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yifang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yu Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Ju Peng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Rice Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Zhifu Xing
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
27
|
Tian J, Ji R, Wang H, Li S, Zhang G. Discovery of Novel α-Aminophosphonates with Hydrazone as Potential Antiviral Agents Combined With Active Fragment and Molecular Docking. Front Chem 2022; 10:911453. [PMID: 37868694 PMCID: PMC10588822 DOI: 10.3389/fchem.2022.911453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/13/2022] [Indexed: 10/24/2023] Open
Abstract
A series of novel α-aminophosphonate derivatives containing hydrazone were designed and synthesized based on active fragments. Bioassay results demonstrated that title compounds possessed good activities against tobacco mosaic virus. Among them, compounds 6a, 6g, 6i, and 6j were equivalent to the commercial antiviral agents like dufulin. On structure optimization-based molecular docking, compound 6k was synthesized and displayed excellent activity with values of 65.1% curative activity, 74.3% protective activity, and 94.3% inactivation activity, which were significantly superior to the commercial antiviral agents dufulin and ningnanmycin. Therefore, this study indicated that new lead compounds could be developed by adopting a joint strategy with active fragments and molecular docking.
Collapse
Affiliation(s)
- Jia Tian
- Chemistry and Material Science College, Huaibei Normal University, Huaibei, China
| | - Renjing Ji
- Chemistry and Material Science College, Huaibei Normal University, Huaibei, China
| | - Huan Wang
- Chemistry and Material Science College, Huaibei Normal University, Huaibei, China
| | - Siyu Li
- Chemistry and Material Science College, Huaibei Normal University, Huaibei, China
| | - Guoping Zhang
- Chemistry and Material Science College, Huaibei Normal University, Huaibei, China
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, China
| |
Collapse
|
28
|
Liu J, Shi Y, Tian Z, Li F, Hao Z, Wen W, Zhang L, Wang Y, Li Y, Fan Z. Bioactivity-Guided Synthesis Accelerates the Discovery of Evodiamine Derivatives as Potent Insecticide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5197-5206. [PMID: 35435667 DOI: 10.1021/acs.jafc.1c08297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pests threaten worldwide food security by decreasing crop yields and damaging their quality. Natural product-based molecular design and structural optimization have been one of the most effective ways to innovate pesticides for integrated insect management. To continue our previous studies on the discovery of insecticidal lead, a series of evodiamine derivatives were designed, synthesized, and evaluated for their insecticidal activities. The bioassay results demonstrated that compounds Ian and Iao exhibited 90 and 80% insecticidal activities against Mythimna separata at 2.5 mg/L, respectively, which were superior to evodiamine (10% at 10 mg/L), matrine (45% at 600 mg/L), and rotenone (30% at 200 mg/L). Compounds Ian-Iap showed 90% insecticidal activities against Plutella xylostella at 1.0 mg/L, far more potent than those of evodiamine, matrine, and rotenone. Compound Ian displayed 60% insecticidal activity against Helicoverpa armigera at 5.0 mg/L, while evodiamine, matrine, and rotenone showed very poor activities. The study on the insecticidal mechanism of action by a calcium imaging experiment indicated that the insect ryanodine receptors (RyRs) could be the potential target of Ian. Furthermore, the molecular docking indicated that Ian anchored in the binding site of the RyR of P. xylostella. The above results manifested the potential of evodiamine derivatives as potent insecticide candidates.
Collapse
Affiliation(s)
- Jingbo Liu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, P. R. China
| | - Yabing Shi
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, P. R. China
| | - Zhicheng Tian
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, P. R. China
| | - Fengyun Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P. R. China
| | - Zesheng Hao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Wen Wen
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, P. R. China
| | - Li Zhang
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, P. R. China
| | - Yuanhong Wang
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, P. R. China
| | - Yuxin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
29
|
Dong J, Gao W, Li K, Hong Z, Tang L, Han L, Wang Z, Fan Z. Design, Synthesis, and Biological Evaluation of Novel Psoralen-Based 1,3,4-Oxadiazoles as Potent Fungicide Candidates Targeting Pyruvate Kinase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3435-3446. [PMID: 35271258 DOI: 10.1021/acs.jafc.1c07911] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pyruvate kinase (PK) has been considered as a promising fungicide target discovered in our previous studies. Natural compounds are important sources for discovery and development of new pesticides. To continue our ongoing studies on the discovery of novel PK-targeted fungicides, a series of novel psoralen derivatives including a 1,3,4-oxadiazole moiety were designed by a computer-aided pesticide molecular design method, synthesized, and evaluated for their fungicidal activity. The bioassay results indicated that compounds 11d, 11e, 11g, 11i, and 12a showed excellent in vitro fungicidal activity against Botrytis cinerea with EC50 values of 4.8, 3.3, 6.3, 5.4, and 3.9 μg/mL, respectively. They were more active than the corresponding positive control YZK-C22 [3-(4-methyl-1,2,3-thiadiazol-5-yl)-6-(trichloromethyl)-[1,2,4]-triazolo-[3,4-b][1,3,4]-thiadiazole] (with an EC50 value of 13.4 μg/mL). Compounds 11g and 11i displayed promising in vivo fungicidal activity against B. cinerea with 80 and 70% inhibition at a concentration of 200 μg/mL, respectively. They possessed much higher fungicidal activity than the positive control psoralen and comparable activity with the positive control pyrisoxazole. Enzymatic assays indicated that 11i showed good BcPK inhibition with an IC50 value of 39.6 μmol/L, comparable to the positive control YZK-C22 (32.4 μmol/L). Molecular docking provided a possible binding mode of 11i in the BcPK active site. Our studies suggested that the psoralen-based 1,3,4-oxadiazole 11i could be used as a new fungicidal lead targeting PK for further structural optimization.
Collapse
Affiliation(s)
- Jingyue Dong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Wei Gao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Kun Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zeyu Hong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Liangfu Tang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lijun Han
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Zhihong Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
30
|
de Fátima Â, Fernandes SA, Ferreira de Paiva W, de Freitas Rego Y. The Povarov Reaction: A Versatile Method to Synthesize Tetrahydroquinolines, Quinolines and Julolidines. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1794-8355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractThe multicomponent Povarov reaction represents a powerful approach for the construction of substances containing N-heterocyclic frameworks. By using the Povarov reaction, in addition to accessing tetrahydroquinolines, quinolines and julolidines in a single step, it is possible to form the following new bonds: two Csp
3–Csp
3 and one Csp
3–Nsp
3, two Csp
2–Csp
2 and one Csp
2–Nsp
2, and four Csp
3–Csp
3 and two Csp
3–Nsp
1, respectively. This short review discusses the main features of the Povarov reaction, including its mechanism, the reaction scope by employing different catalysts and substrates, as well as stereoselective versions.1 Introduction2 Mechanism of the Povarov Reaction3 Tetrahydroquinolines4 Quinolines5 Julolidines6 Concluding Remarks
Collapse
Affiliation(s)
- Ângelo de Fátima
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais
| | | | | | | |
Collapse
|
31
|
Lahmidi S, Sert Y, Şen F, Hafi ME, Ettahiri W, Gökce H, Essassi EM, Mague JT, Ucun F. Synthesis, crystal structure, Hirshfeld surface analysis, spectral characterizations and quantum computational assessments of 1‑hydroxy-3-methyl-11H-pyrido[2,1-b] quinazolin-11-one. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Wang RX, Du SS, Wang JR, Chu QR, Tang C, Zhang ZJ, Yang CJ, He YH, Li HX, Wu TL, Liu YQ. Design, Synthesis, and Antifungal Evaluation of Luotonin A Derivatives against Phytopathogenic Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14467-14477. [PMID: 34843231 DOI: 10.1021/acs.jafc.1c04242] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Crop diseases caused by fungi threaten food security and exacerbate the food crisis. Inspired by the application of fungicide candidates from natural products in agrochemical discovery, a series of luotonin A derivatives were designed, synthesized, and evaluated for their antifungal activities against five plant fungi. Most of these compounds exhibited significant fungicidal activity against Botrytis cinerea in vitro with EC50 values less than 1 μg/mL. Among them, compounds w7, w8, w12, and w15 showed superior antifungal activity against B. cinerea with EC50 values of 0.036, 0.050, 0.042, and 0.048 μg/mL, respectively, which were more potent than boscalid (EC50 = 1.790 μg/mL). Preliminary mechanism studies revealed that compound w7 might pursue its antifungal activity by disrupting the fungal cell membrane and cell wall. Moreover, in vivo bioassay also indicated that compound w7 could be effective for the control of B. cinerea. The above results evidenced the potential of luotonin A derivatives as novel and promising candidate fungicides.
Collapse
Affiliation(s)
- Ren-Xuan Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Sha-Sha Du
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jing-Ru Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Qing-Ru Chu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Chen Tang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Cheng-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ying-Hui He
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hai-Xing Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Tian-Lin Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
33
|
Liu T, Peng F, Cao X, Liu F, Wang Q, Liu L, Xue W. Design, Synthesis, Antibacterial Activity, Antiviral Activity, and Mechanism of Myricetin Derivatives Containing a Quinazolinone Moiety. ACS OMEGA 2021; 6:30826-30833. [PMID: 34805711 PMCID: PMC8600648 DOI: 10.1021/acsomega.1c05256] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/27/2021] [Indexed: 05/08/2023]
Abstract
Plant bacteria such as Xanthomonas axonopodis pv. citri (Xac), Pseudomonas syringae pv. actinidiae (Psa), Xanthomonas oryzae pv. oryzae (Xoo), and tobacco mosaic virus (TMV) have created huge obstacles to the global trade of food and economic crops. However, traditional chemical agents used to control these plant diseases have gradually become disadvantageous due to long-term irregular use. Therefore, finding new and efficient antibacterial and antiviral agents is becoming imperative. In this study, a series of myricetin derivatives containing a quinazolinone moiety were designed and synthesized, and the antibacterial and antiviral activities of these compounds were evaluated. The bioassay results showed that some target compounds exhibited good antibacterial activities in vitro and antiviral activities in vivo. Among them, the median effective concentration (EC50) value of compound L18 against Xac was 16.9 μg/mL, which was better than those of the control drugs bismerthiazol (BT) (62.2 μg/mL) and thiodiazole copper (TC) (97.5 μg/mL). Scanning electron microscopy (SEM) results confirmed that compound L18 inhibited the growth of Xac by affecting the morphology of cells. Microscale thermophoresis (MST) test results indicated that the dissociation constant (K d) value of compound L11 against TMV-CP was 0.012 μM, which was better than that of the control agent ningnanmycin (2.726 μM). This study reveals that myricetin derivatives containing a quinazolinone moiety are potential antibacterial and antiviral agents.
Collapse
Affiliation(s)
| | | | - Xiao Cao
- State Key Laboratory Breeding
Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory
of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Fang Liu
- State Key Laboratory Breeding
Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory
of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Qifan Wang
- State Key Laboratory Breeding
Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory
of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Liwei Liu
- State Key Laboratory Breeding
Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory
of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Wei Xue
- State Key Laboratory Breeding
Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory
of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
34
|
Enhanced Stability and Bioactivity of Natural Anticancer Topoisomerase I Inhibitors through Cyclodextrin Complexation. Pharmaceutics 2021; 13:pharmaceutics13101609. [PMID: 34683902 PMCID: PMC8537677 DOI: 10.3390/pharmaceutics13101609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022] Open
Abstract
The use of cyclodextrins as drug nano-carrier systems for drug delivery is gaining importance in the pharmaceutical industry due to the interesting pharmacokinetic properties of the resulting inclusion complexes. In the present work, complexes of the anti-cancer alkaloids camptothecin and luotonin A have been prepared with β-cyclodextrin and hydroxypropyl-β-cyclodextrin. These cyclodextrin complexes were characterized by nuclear magnetic resonance spectroscopy (NMR). The variations in the 1H-NMR and 13C-NMR chemical shifts allowed to establish the inclusion modes of the compounds into the cyclodextrin cavities, which were supported by docking and molecular dynamics studies. The efficiency of the complexation was quantified by UV-Vis spectrophotometry and spectrofluorimetry, which showed that the protonation equilibria of camptothecin and luotonin A were drastically hampered upon formation of the inclusion complexes. The stabilization of camptothecin towards hydrolysis inside the cyclodextrin cavity was verified by the quantitation of the active lactone form by reverse phase liquid chromatography fluorimetric detection, both in basic conditions and in the presence of serum albumin. The antitumor activity of luotonin A and camptothecin complexes were studied in several cancer cell lines (breast, lung, hepatic carcinoma, ovarian carcinoma and human neuroblastoma) and an enhanced activity was found compared to the free alkaloids, particularly in the case of hydroxypropyl-β-cyclodextrin derivatives. This result shows that the cyclodextrin inclusion strategy has much potential towards reaching the goal of employing luotonin A or its analogues as stable analogues of camptothecin.
Collapse
|
35
|
Tian Z, Liao A, Kang J, Gao Y, Lu A, Wang Z, Wang Q. Toad Alkaloid for Pesticide Discovery: Dehydrobufotenine Derivatives as Novel Agents against Plant Virus and Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9754-9763. [PMID: 34415761 DOI: 10.1021/acs.jafc.1c03714] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plant viruses and fungi are a serious threat to food security and natural ecosystems. The efficient and environment-friendly control methods are urgently needed to help safeguard such resources. Here, we achieved the efficient synthesis of toad alkaloid dehydrobufotenine in eight steps with an overall yield of 8% from 5-methoxyindole. A series of dehydrobufotenine derivatives were designed, synthesized, and evaluated for their antiviral and fungicidal activities systematically. It was found for the first time that these compounds have good anti-plant virus activities and anti-plant pathogen activities. The antiviral activities of 21 compounds were similar to or better than those of ribavirin. Compounds 12 and 17 displayed better antiviral activities than ningnanmycin which is perhaps the most effective anti-plant virus agent. The antiviral mechanism research study of 12 revealed that it could make 20S CP disk fusion and aggregation. Further molecular docking results showed that there are hydrogen bonds between compounds 12, 17, and tobacco mosaic virus CP. The docking results are consistent with the antiviral activity. These compounds also displayed broad-spectrum fungicidal activities against 14 kinds of fungi, especially for Sclerotinia sclerotiorum. In this work, the synthesis, structure optimization, structure-activity relationship studies, and mode of action research of dehydrobufotenine alkaloids were carried out. It provides a reference for the development of the anti-plant virus agent and anti-plant pathogen agent from toad alkaloids.
Collapse
Affiliation(s)
- Zhaoyong Tian
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Ancai Liao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Jin Kang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Yongyue Gao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Aidang Lu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
36
|
Rasapalli S, Sammeta VR, Murphy ZF, Golen JA, Agama K, Pommier Y, Savinov SN. Design and synthesis of C-aryl angular luotonins via a one-pot aza-Nazarov-Friedlander sequence and their Topo-I inhibition studies along with C-aryl vasicinones and luotonins. Bioorg Med Chem Lett 2021; 41:127998. [PMID: 33794318 PMCID: PMC8113096 DOI: 10.1016/j.bmcl.2021.127998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022]
Abstract
A facile one-pot synthesis of C-ring substituted angular luotonins has been realized via a methanesulfonic acid mediated aza-Nazarov-Friedlander condensation sequence on quinazolinonyl enones. Topoisomerase I (topo-I) inhibition studies revealed that the angular luotonin library (7a-7l) and their regioisomeric analogs (linear luotonins, 8a-8l) are weak negative modulators, compared to camptothecin. These results would fare well for the design of topo-I-inert luotonins for non-oncological applications such as anti-fungal and insecticide lead developments. Surprisingly, the tricyclic vasicinones (9h, 9i, and 9j) showed better topo-I inhibition compared to pentacyclic C-aryl luotonins providing a novel pharmacophore for further explorations.
Collapse
Affiliation(s)
- Sivappa Rasapalli
- University of Massachusetts Dartmouth, Department of Chemistry and Biochemistry, 285 Old Westport Rd, North Dartmouth, MA 02747, USA.
| | - Vamshikrishna Reddy Sammeta
- University of Massachusetts Dartmouth, Department of Chemistry and Biochemistry, 285 Old Westport Rd, North Dartmouth, MA 02747, USA
| | - Zachary F Murphy
- University of Massachusetts Dartmouth, Department of Chemistry and Biochemistry, 285 Old Westport Rd, North Dartmouth, MA 02747, USA
| | - James A Golen
- University of Massachusetts Dartmouth, Department of Chemistry and Biochemistry, 285 Old Westport Rd, North Dartmouth, MA 02747, USA
| | - Keli Agama
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4255, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4255, USA
| | - Sergey N Savinov
- Department of Biochemistry and Molecular Biology, UMass Amherst, Amherst, MA 01003, USA
| |
Collapse
|
37
|
Lv Y, Liu H, Wang L, Li K, Gao W, Liu X, Tang L, Kalinina TA, Glukhareva TV, Fan Z. Discovery of Novel 3,4-Dichloroisothiazole-Containing Coumarins as Fungicidal Leads. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4253-4262. [PMID: 33792298 DOI: 10.1021/acs.jafc.1c00132] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natural products are one of the resources for discovering novel fungicidal leads. As a natural fungicide, osthole was used as a coumarin-based lead compound for the development of novel fungicides. Here, a series of 3,4-dichloroisothiazole-containing 7-hydroxycoumarins were rationally designed, synthesized, and characterized by introducing a bioactive substructure, 3,4-dichloroisothiazole, into the coumarin skeleton. In vitro bioassay indicated that compound 7g displayed good activity against Rhizoctonia solani, Physalospora piricola, Sclerotinia sclerotiorum, and Botrytis cinerea. Its median effective concentration (EC50) value against each of these fungi fell between 0.88 and 2.50 μg/mL, which was much lower than that of osthole against the corresponding pathogen (between 7.38 and 74.59 μg/mL). In vivo screening validated that 7k exhibited 100%, 60%, and 20% efficacy against R. solani Kühn at 200, 100, and 50 μg/mL, respectively. RNA sequence analysis implied that growth inhibition of R. solani by 7k might result from potential disruptions of fungal membrane formation and intracellular metabolism. Furthermore, a field experiment with cucumber plants indicated that 7b showed 62.73% and 74.03% efficacy against Pseudoperonospora cubensis (Berk. & Curt.) Rostov. at rates of 12.5 g a.i./ha and 25 g a.i./ha, respectively, which showed no significant difference between 7b and osthole at 30 g a.i./ha. Our studies suggested that 7b, 7g, and 7k might be used as fungicidal leads for further optimization.
Collapse
Affiliation(s)
- You Lv
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Hanlu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lifan Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Kun Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Wei Gao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiaoyu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Liangfu Tang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Tatiana A Kalinina
- The Ural Federal University Named after the First President of Russia B. N. Yeltsin, Yeltsin UrFU, Ekaterinburg 620002, Russia
| | - Tatiana V Glukhareva
- The Ural Federal University Named after the First President of Russia B. N. Yeltsin, Yeltsin UrFU, Ekaterinburg 620002, Russia
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
38
|
Chen YJ, Liu H, Zhang SY, Li H, Ma KY, Liu YQ, Yin XD, Zhou R, Yan YF, Wang RX, He YH, Chu QR, Tang C. Design, Synthesis, and Antifungal Evaluation of Cryptolepine Derivatives against Phytopathogenic Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1259-1271. [PMID: 33496176 DOI: 10.1021/acs.jafc.0c06480] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inspired by the widely antiphytopathogenic application of diversified derivatives from natural sources, cryptolepine and its derivatives were subsequently designed, synthesized, and evaluated for their antifungal activities against four agriculturally important fungi Rhizoctonia solani, Botrytis cinerea, Fusarium graminearum, and Sclerotinia sclerotiorum. The results obtained from in vitro assay indicated that compounds a1-a24 showed great fungicidal property against B. cinerea (EC50 < 4 μg/mL); especially, a3 presented significantly prominent inhibitory activity with an EC50 of 0.027 μg/mL. In the pursuit of further expanding the antifungal spectrum of cryptolepine, ring-opened compound f1 produced better activity with an EC50 of 3.632 μg/mL against R. solani and an EC50 of 5.599 μg/mL against F. graminearum. Furthermore, a3 was selected to be a candidate to investigate its preliminary antifungal mechanism to B. cinerea, revealing that not only spore germination was effectively inhibited and the normal physiological structure of mycelium was severely undermined but also detrimental reactive oxygen was obviously accumulated and the normal function of the nucleus was fairly disordered. Besides, in vivo curative experiment against B. cinerea found that the therapeutic action of a3 was comparable to that of the positive control azoxystrobin. These results suggested that compound a3 could be regarded as a novel and promising agent against B. cinerea for its valuable potency.
Collapse
Affiliation(s)
- Yong-Jia Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hua Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Hu Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Kun-Yuan Ma
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiao-Dan Yin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Rui Zhou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yin-Fang Yan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ren-Xuan Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ying-Hui He
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Qing-Ru Chu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Chen Tang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
39
|
Zou J, Zhao L, Yi P, An Q, He L, Li Y, Lou H, Yuan C, Gu W, Huang L, Hu Z, Hao X. Quinolizidine Alkaloids with Antiviral and Insecticidal Activities from the Seeds of Sophora tonkinensis Gagnep. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15015-15026. [PMID: 33285067 DOI: 10.1021/acs.jafc.0c06032] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The discovery of novel, effective, and botanical pesticides is one of the main strategies for modern plant protection and insect pest control. During the search for novel botanical pesticides from natural sources, the seeds of Sophora tonkinensis were systematically investigated to obtain 11 new matrine-type alkaloids (1-11), including one novel matrine-type alkaloid featuring an unprecedented 5/6/6/6 tetracyclic skeleton (1), along with 16 known compounds (12-27). Their structures were elucidated by comprehensive spectroscopic data analysis (IR, UV, NMR, and HRESIMS), ECD calculations, and single-crystal X-ray diffraction. The anti-tobacco mosaic virus (TMV) activity and insecticidal activities against Aphis fabae and Tetranychus urticae of the compounds were also respectively screened using the half-leaf method and spray method. Biological tests indicated that compounds 2, 4, 6, and 26 displayed significant anti-TMV biological activities compared with the positive control ningnanmycin. Compounds 7, 17, and 26 presented moderate activities against A. fabae with LC50 values of 38.29, 18.63, and 23.74 mg/L, respectively. Moreover, compounds 13 and 26 exhibited weak activities against T. urticae.
Collapse
Affiliation(s)
- Jibin Zou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, PR China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, PR China
| | - Lihua Zhao
- The Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming 650204, PR China
| | - Ping Yi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, PR China
| | - Qiao An
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, PR China
| | - Longxiang He
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, PR China
| | - Yanan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, PR China
| | - Huayong Lou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, PR China
| | - Chunmao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, PR China
| | - Wei Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, PR China
| | - Liejun Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, PR China
| | - Zhanxing Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, PR China
| | - Xiaojiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, PR China
| |
Collapse
|