1
|
Chen K, Song D, Shi D, Li L, Wu Z. Synthesis and Activity of Novel Pyrazole/Pyrrole Carboxamides Containing a Dinitrogen Six-Membered Heterocyclic as Succinate Dehydrogenase and Ergosterol Biosynthesis Inhibitors against Colletotrichum camelliae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10914-10922. [PMID: 40266629 DOI: 10.1021/acs.jafc.5c02618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Pyrazole carboxamide derivatives were initially extensively studied as succinate dehydrogenase inhibitors (SDHIs). In the present study, a series of pyrazole/pyrrole carboxamides containing a dinitrogen six-membered heterocyclic were designed based on our reported active skeletons with dual mode of action. Bioactivity results showed that the target compound Q18 demonstrated superior antifungal efficacy against Colletotrichum camelliae (C. camelliae) with an EC50 value of 6.0 mg/L. The in vivo protective activity of Q18 was 74.7% at 100 mg/L. Scanning electron microscopy and transmission electron microscopy showed that Q18 could disrupt the surface morphology of the mycelia and cause lipid peroxidation of cell membrane, which was further verified by the determination of relative conductivity and malondialdehyde contents. Combined with ergosterol content, docking results between Q18 with SDH and CYP51, and the IC50 value of Q18 for SDH (9.7 mg/L), it is concluded that Q18 is a potential SDHI and ergosterol biosynthesis inhibitor. Thus, the present study provides fresh insight into the study of derivatives of the amides.
Collapse
Affiliation(s)
- Kuai Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Dandan Song
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Detan Shi
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Longju Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Zhibing Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| |
Collapse
|
2
|
Zhang L, Chen Y, Wu W, Li Z, Xu X. Design, Synthesis, and Bioactivity Evaluation of Novel Indene Amino Acid Derivatives as Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10130-10143. [PMID: 40257934 DOI: 10.1021/acs.jafc.5c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Succinate dehydrogenase inhibitors (SDHIs) represent one of the three predominant fungicide categories in contemporary agricultural markets, garnering an increasing level of research interest. Building upon our prior work utilizing aminocyclobutanecarboxylic acid as a linker, we designed and synthesized a novel series of indene amino acid derivatives to optimize hydrophobic interactions with the SDH enzyme. These derivatives demonstrated potent in vitro antifungal activity against Rhizoctonia solani, Botrytis cinerea, and Sclerotinia sclerotiorum, with compound i19 exhibiting efficacy comparable to boscalid against all three pathogens. Structure-activity relationship analysis coupled with 3D-QSAR modeling revealed significant enzymatic inhibition enhancement, particularly in compound i18, which showed a 7.4-fold improvement in porcine heart SDH inhibition (IC50 = 0.5026 μM) versus the parent structure (IC50 = 3.7257 μM). Lipophilicity mapping and molecular docking simulations attribute this enhancement to indene fragment-induced optimization of hydrophobic pocket interactions. Scanning electron microscopy revealed analogous mycelial deformation patterns between i19-treated and fluxapyroxad-treated samples. Complementary DFT calculations and molecular electrostatic potential analysis further corroborated the proposed binding mode, establishing this indene amino acid scaffold as a promising lead structure for next-generation SDHI development.
Collapse
Affiliation(s)
- Letian Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yadi Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wende Wu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Hu Y, Xiong Z, Wei M, Chen P, He X, Luo X, Shaheen HMU, Yan W, Ye Y, He B. Novel Diphenyl Ether Carbonyl Ester Fragment as a Promising Skeleton Targeting Succinate Dehydrogenase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8915-8924. [PMID: 40177803 DOI: 10.1021/acs.jafc.5c02499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Succinate dehydrogenase (SDH) is a globally recognized critical target for fungicides. Our research mainly focuses on discovering novel molecular skeletons targeting SDH. We designed a series of diphenyl ether ester derivatives that exhibit potential efficacy against Rhizoctonia solani by utilizing a bioisosteric approach. These results indicate that compounds with shorter linkers significantly enhance the antifungal activity. Furthermore, the antifungal potential of an ester-linked compound was superior to its amide and N-(alkoxy) counterparts. Specifically, compound ba achieved a remarkable 92% efficacy in controlling R. solani at a dosage of 50 μg/mL with an EC50 value of 0.44 μg/mL, thus outperforming boscalid without negatively impacting rice growth. Moreover, ba caused significant damage to the R. solani mycelium and demonstrated an IC50 value of 1.69 μM against R. solani SDH, exhibiting efficacy comparable to that of boscalid. These results unveil a promising avenue for replacing traditional heterocyclic amide-based inhibitors, potentially heralding a new generation of SDH-targeting fungicides.
Collapse
Affiliation(s)
- Yanhao Hu
- State Key Laboratory of Agricultural and Forestry Biosecurity, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Zhengxi Xiong
- State Key Laboratory of Agricultural and Forestry Biosecurity, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Mian Wei
- State Key Laboratory of Agricultural and Forestry Biosecurity, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Ping Chen
- State Key Laboratory of Agricultural and Forestry Biosecurity, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Xu He
- State Key Laboratory of Agricultural and Forestry Biosecurity, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Xianghui Luo
- State Key Laboratory of Agricultural and Forestry Biosecurity, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Hafiz Muhammad Usama Shaheen
- State Key Laboratory of Agricultural and Forestry Biosecurity, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Wei Yan
- State Key Laboratory of Agricultural and Forestry Biosecurity, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Yonghao Ye
- State Key Laboratory of Agricultural and Forestry Biosecurity, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Bo He
- State Key Laboratory of Agricultural and Forestry Biosecurity, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| |
Collapse
|
4
|
Özkılınç H, Fidanoğlu BT, Öncel S, Kurtuluş E, Kadıoğlu İE. Resistance evolution and local adaptation of Venturia inaequalis to old and new generation SDHI fungicides. Fungal Biol 2025; 129:101543. [PMID: 40023526 DOI: 10.1016/j.funbio.2025.101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 03/04/2025]
Abstract
The use of succinate dehydrogenase inhibitor (SDHI) fungicides is widespread in controlling apple scab disease caused by Venturia inaequalis. However, resistance in populations develops and new SDHIs are generated commercially, thus evaluating this arms-race in local populations is important for appropriate disease management. In this study, in vitro mycelial growth effects of five commercial fungicides, including old and new generation SDHIs on a large V. inaequalis population in Türkiye were investigated. Overall, the entire population was resistant to Boscalid (Cantus®), and the most effective fungicides tested were Isopyrazam (REFLECT®) and Pydiflumetofen (Candidate fungicide, Miravis®). Although the results show the effectiveness of new generation SDHIs, remarkable differences in pathogen resistance responses were detected at local level. There were also differences in colony growth rates among isolates, but this was not associated with fungicide response traits. Furthermore, the intraspecies genetic diversities obtained from the sequence data of the four selected gene regions were depicted with the Neigbour_Joining (NJ) trees. There appeared to be no relationship between NJ-based branching and fungicide response phenotypes. As a result of mating type determinationof the isolates with newly designed primers, 1:1 ratio indicated possible recombination in almost all local groups, with one exception. Additionally, detection of both mating type genes in some isolates was an interesting finding about the reproductive structure of the pathogen. This study, which is the first comprehensive study of V. inaequalis in Türkiye, presents new findings about the pathogen from different perspectives.
Collapse
Affiliation(s)
- Hilal Özkılınç
- Çanakkale Onsekiz Mart University, School of Graduate Studies, MSc Program in Molecular Biology and Genetics, Çanakkale, Türkiye; Çanakkale Onsekiz Mart University, Faculty of Science, Dept. of Molecular Biology and Genetics, Çanakkale, Türkiye.
| | - Baran Taylan Fidanoğlu
- Çanakkale Onsekiz Mart University, School of Graduate Studies, MSc Program in Molecular Biology and Genetics, Çanakkale, Türkiye
| | - Sibel Öncel
- Çanakkale Onsekiz Mart University, School of Graduate Studies, MSc Program in Molecular Biology and Genetics, Çanakkale, Türkiye
| | - Ezgi Kurtuluş
- Syngenta Tarım San. Ve Tic. A. Ş. (Syngenta Agriculture Industry and Trade Inc.), İzmir, Türkiye
| | - İrem Ece Kadıoğlu
- Çanakkale Onsekiz Mart University, School of Graduate Studies, MSc Program in Molecular Biology and Genetics, Çanakkale, Türkiye
| |
Collapse
|
5
|
Tian GM, Yi MY, Yan TS, Liu SS, Huang J, Li H, Bao XP. Design, synthesis, X-ray crystal structure, and antifungal evaluation of new acetohydrazide derivatives containing a 4-thioquinazoline moiety. PEST MANAGEMENT SCIENCE 2025; 81:1624-1637. [PMID: 39629599 DOI: 10.1002/ps.8566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND To find efficient agricultural fungicides, 29 new 4-thioquinazoline-containing acetohydrazide derivatives were prepared and tested for their fungicidal properties. RESULTS All of the target compounds were characterized by 1H and 13C nuclear magnetic resonance and high-resolution mass spectrometry techniques, and the molecular structure of compound A2 was verified by single-crystal X-ray diffraction measurement. The experimental results revealed that many compounds from this series had impressive inhibition efficacies in vitro against the tested fungi. For example, compound A25 was identified as the best fungicidal agent against Rhizoctonia solani with an EC50 (half-maximal effective concentration) value of 0.66 μg mL-1, superior to those of the commercial fungicides chlorothalonil, carbendazim and boscalid. Additionally, this compound displayed favorable protection and curative activities in vivo against rice sheath blight caused by R. solani. Antifungal mechanistic studies on compound A25 indicated that this compound exerted its strong anti-R. solani effects probably through an effective inhibition of fungal succinate dehydrogenase activity [half-maximal inhibitory concentration (IC50) = 4.88 μm] and the impairment of cell membrane integrity, based on the results from enzymatic bioassays, molecular docking studies, and scanning and transmission electron microscopy observations. CONCLUSION Acetohydrazide derivatives containing the 4-thioquinazoline moiety had the potential to be employed as lead compounds for developing more efficient agricultural fungicides in the near future. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guang-Min Tian
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Ming-Yan Yi
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Tai-Sen Yan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Song-Song Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Jian Huang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Hong Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Xiao-Ping Bao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
6
|
Qiu L, Liu Y, Zhang L, Hu A, Ye J, Yan Z. Design, synthesis and antifungal activity of arylhydrazine analogs containing diphenyl ether fragments. PEST MANAGEMENT SCIENCE 2025; 81:990-1002. [PMID: 39467013 DOI: 10.1002/ps.8498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Succinate dehydrogenase (SDH) represents a critical target in the development of novel fungicides. To address the growing issue of resistance and safeguard the economic viability of agricultural production, the pursuit of new succinate dehydrogenase inhibitors (SDHIs) has emerged as a significant focus of contemporary research. RESULTS In this project, 32 arylhydrazine derivatives containing diphenyl ether structural units were synthesized and evaluated for their fungicidal activities against Rhizoctonia solani, Sclerotinia sclerotiorum, Alternaria alternata, Gibberella zeae, Alternaria solani and Colletotrichum gloeosporioides. In an in vitro fungicidal activity assay, compound D6 showed significant inhibitory activity against R. solani with a half-maximum effective concentration (EC50) of 0.09 mg L-1. The in vivo fungicidal activity demonstrated that compound D6 inhibited R. solani by 95.39% in rice leaves, which was significantly better than that of boscalid (85.76%). The results of SDH enzyme assay, molecular docking simulation, mitochondrial membrane potential assay, cytoplasmic release studies and morphological observations demonstrated that the target compound D6 not only had significant SDH inhibitory activity, but also affected the membrane integrity of mycelium. CONCLUSION Bioactivity screening and validation of the mechanism of action indicated that compound D6 was a potentially unique SDHI, acting on SDH while also affecting cell membrane permeability, which deserved further study. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Longjian Qiu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yaru Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Lijuan Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Aixi Hu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Jiao Ye
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Zhongzhong Yan
- Medical College, Anhui University of Science and Technology, Huainan, China
| |
Collapse
|
7
|
Zhang L, Liu Y, Xu Y, Pei M, Yao M, Chen X, Cui Y, Han F, Lu Y, Zhang C, Wang Y, Gao P, Zhu L, Wang J. Fluxapyroxad induced toxicity of earthworms: Insights from multi-level experiments and molecular simulation studies. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135911. [PMID: 39305595 DOI: 10.1016/j.jhazmat.2024.135911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 12/01/2024]
Abstract
Fluxapyroxad, an emerging succinate dehydrogenase inhibitor fungicide, is widely used due to its excellent properties. Given its persistence in soil with a 50 % disappearance time of 183-1000 days, it is crucial to evaluate the long-term effects of low-dose fluxapyroxad on non-target soil organisms such as earthworms (Eisenia fetida). The present study investigated the impacts of fluxapyroxad (0.01, 0.1, and 1 mg kg-1) on Eisenia fetida over 56 days, focusing on oxidative stress, digestive and nervous system functions, and histopathological changes. We also explored the mechanisms of fluxapyroxad-enzyme interactions through molecular docking and dynamics simulations. Results demonstrated a significant dose-response relationship in the integrated biomarker response of 12 biochemical indices. Fluxapyroxad altered expression levels of functional genes and induced histopathological damage in earthworm epidermis and intestines. Molecular simulations revealed that fluxapyroxad is directly bound to active sites of critical enzymes, potentially disrupting their structure and function. Even at low doses, long-term fluxapyroxad exposure significantly impacted earthworm physiology, with effects becoming more pronounced over time. Our findings provide crucial insights into the chronic toxicity of fluxapyroxad and emphasize the importance of long-term, low-dose studies in pesticide risk assessment in soil. This research offers valuable guidance for the responsible management and application of fungicides.
Collapse
Affiliation(s)
- Lanlan Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Yao Liu
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ying Xu
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Mengyuan Pei
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Mengyao Yao
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Xiaoni Chen
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Yifei Cui
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Fengyang Han
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Yubo Lu
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | - Cheng Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Peng Gao
- Department of Environmental and Occupational Health, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
8
|
Zeng LQ, Chen Q, Wei G, Chen W, Zhu XL, Yang GF. Comprehensive Overview of the Amide Linker Modification in the Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26027-26039. [PMID: 39540453 DOI: 10.1021/acs.jafc.4c05854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Succinate dehydrogenase inhibitors (SDHIs) have become one of the most important classes of agrochemical fungicides. According to the data from FRAC, the resistance risk for SDHIs had reached up to medium and even to high. In general, the chemical structure of SDHIs mainly contained three fragments: an acid core, a hydrophobic tail, and an amide linker, corresponding to three modification directions for each fragment. Among them, amide linker modification (ALM) has become a research hotspot for the design of novel SDHIs fungicides in recent years. We presented here a detailed review on the ALM strategy in the past decade, and some of them had entered the market. According to their chemical structures, ALM strategy were classified into four parts: (1) linked aliphatic chain between amide bond and hydrophobic tail, (2) introducing substituents to replacing hydrogen atom in the amide bond, (3) reverse extending the amide linker, and (4) changed with other bioisosteres. Moreover, the structure-activity relationship and the interaction mechanism of ALM-SDHI with SDH were discussed. This review aims to provide a global perspective on research and development of novel SDHIs, as well as suggestions for food safety management.
Collapse
Affiliation(s)
- Ling-Qiang Zeng
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Qi Chen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Ge Wei
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Wei Chen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Xiao-Lei Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| | - Guang-Fu Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
9
|
Cheng L, Zhou C, Yuan Q, Zhang L, Shao X, Xu X, Li Z, Cheng J. 3D-QSAR model-oriented optimization of Pyrazole β-Ketonitrile derivatives with diphenyl ether moiety as novel potent succinate dehydrogenase inhibitors. PEST MANAGEMENT SCIENCE 2024; 80:5299-5306. [PMID: 38940289 DOI: 10.1002/ps.8269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/08/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Succinate dehydrogenase inhibitor (SDHI) fungicides play important roles in the control of plant fungal diseases. However, they are facing serious challenges from issues with resistance and cross-resistance, primarily attributed to their frequent application and structural similarities. There is an urgent need to design and develop SDHI fungicides with novel structures. RESULTS Aiming to discover novel potent SDHI fungicides, 31 innovative pyrazole β-ketonitrile derivatives with diphenyl ether moiety were rationally designed and synthesized, which were guided by a 3D-QSAR model from our previous study. The optimal target compound A23 exhibited not only outstanding in vitro inhibitory activities against Rhizoctonia solani with a half-maximal effective concentration (EC50) value of 0.0398 μg mL-1 comparable to that for fluxapyroxad (EC50 = 0.0375 μg mL-1), but also a moderate protective efficacy in vivo against rice sheath blight. Porcine succinate dehydrogenase (SDH) enzymatic inhibitory assay revealed that A23 is a potent inhibitor of SDH, with a half-maximal inhibitory concentration of 0.0425 μm. Docking study within R. solani SDH indicated that A23 effectively binds into the ubiquinone site mainly through hydrogen-bonds, and cation-π and π-π interactions. CONCLUSION The identified β-ketonitrile compound A23 containing diphenyl ether moiety is a potent SDH inhibitor, which might be a good lead for novel fungicide research and optimization. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liangliang Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Cong Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Qinglong Yuan
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Letian Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
10
|
Moghadam ES, Al-Sadi AM, Moghadam MS, Bayati B, Talebi M, Amanlou M, Amini M, Abdel-Jalil R. Benzimidazole-acrylonitrile hybrid derivatives act as potent urease inhibitors with possible fungicidal activity. Future Med Chem 2024; 16:2151-2168. [PMID: 39297549 PMCID: PMC11559371 DOI: 10.1080/17568919.2024.2393570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/12/2024] [Indexed: 11/13/2024] Open
Abstract
Aim: A series of benzimidazole-acrylonitrile derivatives TM1-TM53 were designed with urease inhibition approach.Materials & methods: TM1-TM53 were synthesized and characterized (1H Nuclear Magnetic Resonance (NMR), 13C NMR, Mass Spectroscopy (MS) and IR) and subjected to urease inhibition assay using commercial assay kit. A molecular docking study was also performed using Autodock tool software.Results: Except six compounds, target molecules exhibited a higher urease inhibition effect (IC50: 1.22-28.45 μM) than hydroxyurea (IC50: 100 μM). kinetic study on TM11, clarified its mode of action as a mixed inhibitor. A molecular docking study on TM6, TM11 and TM21, was performed and the results showed the main residues inside the active site of the enzyme. All TM1-TM53 were also studied in silico using molecular docking techniques to evaluate their potential to inhibit succinate dehydrogenase in comparison to fluxapyroxad as standard. Docking study revealed the high potential of TM1-TM53 as a fungicides.Conclusion: Obtained results exhibited the high activity of benzimidazole-acrylonitrile derivatives as urease inhibitors and their possible potential as fungicide agents. So, it will be beneficial to do more bioactivity investigation on this family of compounds.
Collapse
Affiliation(s)
- Ebrahim Saeedian Moghadam
- Drug Design & Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Chemistry, College of Science, Sultan Qaboos University, PO Box 36, Al-Khod 123, Muscat, Sultanate of Oman
| | - Abdullah Mohammed Al-Sadi
- Department of Crop Sciences, College of Agricultural & Marine Sciences, Sultan Qaboos University, PO Box 34, Al-Khod 123, Muscat, Sultanate of Oman
| | - Mahdis Sadeghi Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Bahareh Bayati
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Meysam Talebi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Massoud Amanlou
- Drug Design & Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Mohsen Amini
- Drug Design & Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Raid Abdel-Jalil
- Department of Chemistry, College of Science, Sultan Qaboos University, PO Box 36, Al-Khod 123, Muscat, Sultanate of Oman
| |
Collapse
|
11
|
Xu D, Lin GT, Huang JC, Sun J, Wang W, Liu X, Xu G. Discovery, Optimization, and Biological Evaluation of Novel Pyrazol-5-yl-phenoxybenzamide Derivatives as Potent Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17608-17616. [PMID: 39046798 DOI: 10.1021/acs.jafc.4c02685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The diphenyl ether molecular pharmacophore has played a significant role in the development of fungicidal compounds. In this study, a variety of pyrazol-5-yl-phenoxybenzamide derivatives were synthesized and evaluated for their potential to act as succinate dehydrogenase inhibitors (SDHIs). The bioassay results indicate certain compounds to display a remarkable and broad-spectrum in their antifungal activities. Notably, compound 12x exhibited significant in vitro activities against Valsa mali, Gaeumannomyces graminis, and Botrytis cinerea, with EC50 values of 0.52, 1.46, and 3.42 mg/L, respectively. These values were lower or comparable to those of Fluxapyroxad (EC50 = 12.5, 1.93, and 8.33 mg/L, respectively). Additionally, compound 12x showed promising antifungal activities against Sclerotinia sclerotiorum (EC50 = 0.82 mg/L) and Rhizoctonia solani (EC50 = 1.86 mg/L), albeit lower than Fluxapyroxad (EC50 = 0.23 and 0.62 mg/L). Further in vivo experiments demonstrated compound 12x to possess effective protective antifungal activities against V. mali and S. sclerotiorum at a concentration of 100 mg/L, with inhibition rates of 66.7 and 89.3%, respectively. In comparison, Fluxapyroxad showed inhibition rates of 29.2 and 96.4% against V. mali and S. sclerotiorum, respectively. Molecular docking analysis revealed that compound 12x interacts with SDH through hydrogen bonding, π-cation, and π-π interactions, providing insights into the probable mechanism of action. Furthermore, compound 12x exhibited greater binding energy and SDH enzyme inhibitory activity than Fluxapyroxad (ΔGcal = -46.8 kcal/mol, IC50 = 1.22 mg/L, compared to ΔGcal = -41.1 kcal/mol, IC50 = 8.32 mg/L). Collectively, our results suggest that compound 12x could serve as a promising fungicidal lead compound for the development of more potent SDHIs for crop protection.
Collapse
Affiliation(s)
- Dan Xu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guo-Tai Lin
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia-Chuan Huang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jian Sun
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, Jilin 130033, China
| | - Wei Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xili Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gong Xu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
12
|
Saeedian Moghadam E, Bonyasi F, Bayati B, Sadeghi Moghadam M, Amini M. Recent Advances in Design and Development of Diazole and Diazine Based Fungicides (2014-2023). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15427-15448. [PMID: 38967261 DOI: 10.1021/acs.jafc.4c02187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
With fungal diseases posing a major threat to agricultural production, the application of fungicides to control related diseases is often considered necessary to ensure the world's food supply. The search for new bioactive agents has long been a priority in crop protection due to the continuous development of resistance against currently used types of active compounds. Heterocyclic compounds are an inseparable part of the core structures of numerous lead compounds, these rings constitute pharmacophores of a significant number of fungicides developed over the past decade by agrochemists. Among heterocycles, nitrogen-based compounds play an essential role. To date, diazole (imidazole and pyrazole) and diazine (pyrimidine, pyridazine, and pyrazine) derivatives make up an important series of synthetic fungicides. In recent years, many reports have been published on the design, synthesis, and study of the fungicidal activity of these scaffolds, but there was a lack of a comprehensive classified review on nitrogen-containing scaffolds. Regarding this issue, here we have reviewed the published articles on the fungicidal activity of the diazole and diazine families. In current review, we have classified the molecules synthesized so far based on the size of the ring.
Collapse
Affiliation(s)
- Ebrahim Saeedian Moghadam
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Fahimeh Bonyasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Bahareh Bayati
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mahdis Sadeghi Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mohsen Amini
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| |
Collapse
|
13
|
Chen Y, Xu W, Du M, Bao L, Li J, Zhai Q, Yan D, Teng H. Design, Synthesis, and Antifungal Activities of Novel Potent Fluoroalkenyl Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14535-14546. [PMID: 38906830 DOI: 10.1021/acs.jafc.3c08693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
The development of new fungicide molecules is a crucial task for agricultural chemists to enhance the effectiveness of fungicides in agricultural production. In this study, a series of novel fluoroalkenyl modified succinate dehydrogenase inhibitors were synthesized and evaluated for their antifungal activities against eight fungi. The results from the in vitro antifungal assay demonstrated that compound 34 exhibited superior activity against Rhizoctonia solani with an EC50 value of 0.04 μM, outperforming commercial fluxapyroxad (EC50 = 0.18 μM) and boscalid (EC50 = 3.07 μM). Furthermore, compound 34 showed similar effects to fluxapyroxad on other pathogenic fungi such as Sclerotinia sclerotiorum (EC50 = 1.13 μM), Monilinia fructicola (EC50 = 1.61 μM), Botrytis cinerea (EC50 = 1.21 μM), and also demonstrated protective and curative efficacies in vivo on rapeseed leaves and tomato fruits. Enzyme activity experiments and protein-ligand interaction analysis by surface plasmon resonance revealed that compound 34 had a stronger inhibitory effect on succinate dehydrogenase compared to fluxapyroxad. Additionally, molecular docking and DFT calculation confirmed that the fluoroalkenyl unit in compound 34 could enhance its binding capacity with the target protein through p-π conjugation and hydrogen bond interactions.
Collapse
Affiliation(s)
- Yu Chen
- College of Chemistry, Huazhong Agricultural University, Wuhan 4430070 Hubei, P. R. China
| | - Weilong Xu
- College of Chemistry, Huazhong Agricultural University, Wuhan 4430070 Hubei, P. R. China
| | - Mian Du
- College of Chemistry, Huazhong Agricultural University, Wuhan 4430070 Hubei, P. R. China
| | - Longzhu Bao
- College of Chemistry, Huazhong Agricultural University, Wuhan 4430070 Hubei, P. R. China
| | - Jun Li
- College of Chemistry, Huazhong Agricultural University, Wuhan 4430070 Hubei, P. R. China
| | - Qianqian Zhai
- College of Chemistry, Huazhong Agricultural University, Wuhan 4430070 Hubei, P. R. China
| | - Dingce Yan
- Analytical and Testing Center, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Huailong Teng
- College of Chemistry, Huazhong Agricultural University, Wuhan 4430070 Hubei, P. R. China
| |
Collapse
|
14
|
Kong W, Sun S, He X, Wang J, Li S. Multidimensional Optimization of R-LE001 for New Leads with Enhanced Antifungal Profiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14984-14992. [PMID: 38907719 DOI: 10.1021/acs.jafc.4c00782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Scaffold hopping and structural fine-tuning are important strategies for agrochemical innovation. Multidimensional optimization of the prevalidated antifungal lead R-LE001 was conducted via the design, synthesis, and bioevaluation of 53 new compounds differing in either scaffold or substituent. The antifungal structure-activity relationship (SAR) revealed that a number of amides containing 2-(2-oxazolinyl) aniline (NHPhOx) or 2-(2-thiazolinyl) aniline (NHPhthiOx) demonstrated a more promising antifungal effect than both R-LE001 and the positive control boscalid. Specifically, compound 10 (encoded LEX-K01) shows an excellent antifungal effect against Botrytis cinerea with an EC50 value lower than 0.11 μM. This small change leads to a significant improvement (over 1 order of magnitude) in bioactivity compared to that of either R-LE001 (EC50 = 1.41 μM) or boscalid (EC50 = 2.01 μM) and fluxapyroxad (EC50 = 4.35 μM). With much lower resistance factors, LEX-K01 (10) was more efficacious against the two boscalid-resistant strains of B. cinerea TZ01 and NJBH2017. A combination of LEX-K01 (10) and boscalid in a ratio of 1:3 showed synergistic effects against resistant B. cinerea TZ01 and NJBH2017, with SR values of 3.01 and 2.55, respectively. LEX-K01 (10) has a curative efficacy (70.3%) more prominent than that of boscalid (51.2%) in controlling disease caused by B. cinerea. The molecular docking simulation of LEX-K01 (10) with the SDH protein of B. cinerea displayed four hydrogen bonds with amino acid residues TYR144, ARG88, TRP81, and SER84, rationalizing a stronger affinity than boscalid. The scanning electron microscopy (SEM) characteristic revealed that it could cause an obvious collapse of B. cinerea mycelium. This work indicates that LEX-K01 (10) has the potential to be further explored as a new antifungal agent.
Collapse
Affiliation(s)
- Wenlong Kong
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shengxin Sun
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiaodan He
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jinbo Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shengkun Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
15
|
Xu Z, Cheng X, Cui H, Cao L, Song Y, Chang X, Wang D, Lv X. Design, selective synthesis and biological activities evaluation of novel thiazol-2-ylbenzamide and thiazole-2-ylbenzimidoyl chloride derivatives. Bioorg Chem 2024; 147:107333. [PMID: 38599055 DOI: 10.1016/j.bioorg.2024.107333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
To promote the development and exploitation of novel antifungal agents, a series of thiazol-2-ylbenzamide derivatives (3A-3V) and thiazole-2-ylbenzimidoyl chloride derivatives (4A-4V) were designed and selective synthesis. The bioassay results showed that most of the target compounds exhibited excellent in vitro antifungal activities against five plant pathogenic fungi (Valsa mali, Sclerotinia scleotiorum, Botrytis cinerea, Rhizoctonia solani and Trichoderma viride). The antifungal effects of compounds 3B (EC50 = 0.72 mg/L) and 4B (EC50 = 0.65 mg/L) against S. scleotiorum were comparable to succinate dehydrogenase inhibitors (SDHIs) thifluzamide (EC50 = 1.08 mg/L) and boscalid (EC50 = 0.78 mg/L). Especially, compounds 3B (EC50 = 0.87 mg/L) and 4B (EC50 = 1.08 mg/L) showed higher activity against R. solani than boscalid (EC50 = 2.25 mg/L). In vivo experiments in rice leaves revealed that compounds 3B (86.8 %) and 4B (85.3 %) exhibited excellent protective activities against R. solani comparable to thifluzamide (88.5 %). Scanning electron microscopy (SEM) results exhibited that compounds 3B and 4B dramatically disrupted the typical structure and morphology of R. solani mycelium. Molecular docking demonstrated that compounds 3B and 4B had significant interactions with succinate dehydrogenase (SDH). Meanwhile, SDH inhibition assay results further proved their potential as SDHIs. In addition, acute oral toxicity tests on A. mellifera L. showed only low toxicity for compounds 3B and 4B to A. mellifera L. populations. These results suggested that these two series of compounds had merit for further investigation as potential low-risk agricultural SDHI fungicides.
Collapse
Affiliation(s)
- Zonghan Xu
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xiang Cheng
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Hongyun Cui
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Linmin Cao
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yaping Song
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xihao Chang
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Dandan Wang
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Xianhai Lv
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Joint Research Center for Food Nutrition and Health of IHM, China.
| |
Collapse
|
16
|
Zhang CQ, Gao S, Bo L, Song HM, Liu LM, Zheng MX, Fu Y, Ye F. Design, Synthesis, and Biological Activity of Novel Triketone-Containing Phenoxy Nicotinyl Inhibitors of HPPD. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11321-11330. [PMID: 38714361 DOI: 10.1021/acs.jafc.3c08705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a crucial target enzyme in albino herbicides. The inhibition of HPPD activity interferes with the synthesis of carotenoids, blocking photosynthesis and resulting in bleaching and necrosis. To develop herbicides with excellent activity, a series of 3-hydroxy-2-(6-substituted phenoxynicotinoyl)-2-cyclohexen-1-one derivatives were designed via active substructure combination. The title compounds were characterized via infrared spectroscopy, 1H and 13C nuclear magnetic resonance spectroscopies, and high-resolution mass spectrometry. The structure of compound III-17 was confirmed via single-crystal X-ray diffraction. Preliminary tests demonstrated that some compounds had good herbicidal activity. Crop safety tests revealed that compound III-29 was safer than the commercial herbicide mesotrione in wheat and peanuts. Moreover, the compound exhibited the highest inhibitory activity against Arabidopsis thaliana HPPD (AtHPPD), with a half-maximal inhibitory concentration of 0.19 μM, demonstrating superior activity compared with mesotrione (0.28 μM) in vitro. A three-dimensional quantitative structure-activity relationship study revealed that the introduction of smaller groups to the 5-position of cyclohexanedione and negative charges to the 3-position of the benzene ring enhanced the herbicidal activity. A molecular structure comparison demonstrated that compound III-29 was beneficial to plant absorption and conduction. Molecular docking and molecular dynamics simulations further verified the stability of the complex formed by compound III-29 and AtHPPD. Thus, this study may provide insights into the development of green and efficient herbicides.
Collapse
Affiliation(s)
- Chen-Qing Zhang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Lin Bo
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Hao-Min Song
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Li-Ming Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Mei-Xin Zheng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
17
|
Luo X, Chen Y, Wang Y, Xing Z, Peng J, Chen J. Design, synthesis and antifungal activity of novel amide derivatives containing a pyrrolidine moiety as potential succinate dehydrogenase inhibitors. Mol Divers 2024; 28:805-816. [PMID: 36787084 DOI: 10.1007/s11030-023-10622-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023]
Abstract
To discover new succinate dehydrogenase inhibitors (SDHI) fungicides, a series of amide derivatives containing a pyrrolidine moiety were designed and synthesized, and their antifungal activities were evaluated against Monilinia fructicola (M. fructicola), Rhizoctonia solani (R. solani), Fusarium graminearum schw (F. graminearum), Fusarium oxysporum (F. oxysporum), and Phytophthora infestans (P. infestans). Some compounds showed excellent antifungal activities against the five fungi. Among them, compound 6 showed broad-spectrum inhibitory activities. The EC50 of compound 6 against M. fructicola, R. solani, F. graminearum, F. oxysporum, and P. infestans were 2.13, 14.42, 1.69, 27.79, and 27.12 mg/L, respectively. In addition, compound 6 can effectively inhibit the spore germination of M. fructicola and has moderate damage to the cell membrane. Compound 6 can effectively inhibit succinate dehydrogenase (SDH) of M. fructicola, and can significantly increase the expression levels of SDHC and SDHD. Compound 6 can be used as a lead structure for developing new SDH inhibitors.
Collapse
Affiliation(s)
- Xin Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Yifang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Yu Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Zhifu Xing
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Ju Peng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry Education, Guizhou University, Huaxi District, Guiyang, 550025, China.
| |
Collapse
|
18
|
Ma YD, Zhou H, Lin GT, Wu KH, Xu G, Liu X, Xu D. Design, Synthesis, and Fungicidal Activities of Novel N-(Pyrazol-5-yl)benzamide Derivatives Containing a Diphenylamine Moiety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6691-6701. [PMID: 38498985 DOI: 10.1021/acs.jafc.3c07567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
To accelerate the development of novel fungicides, a variety of N-(pyrazol-5-yl)benzamide derivatives with a diphenylamine moiety were designed and synthesized using a pharmacophore recombination strategy based on the structure of pyrazol-5-yl-aminophenyl-benzamides. The bioassay results demonstrated that most of the target compounds had excellent in vitro antifungal activities against Sclerotinia sclerotiorum, Valsa mali, and Botrytis cinerea. In particular, compound 5IIIh exhibited remarkable activity against S. sclerotiorum (EC50 = 0.37 mg/L), which was similar to that of fluxapyroxad (EC50 = 0.27 mg/L). In addition, compound 5IIIc (EC50 = 1.32 mg/L) was observed to be more effective against V. mali than fluxapyroxad (EC50 = 12.8 mg/L) and comparable to trifloxystrobin (EC50 = 1.62 mg/L). Furthermore, compound 5IIIh demonstrated remarkable in vivo protective antifungal properties against S. sclerotiorum, with an inhibition rate of 96.8% at 100 mg/L, which was close to that of fluxapyroxad (99.6%). Compounds 5IIIc (66.7%) and 5IIIh (62.9%) exhibited good in vivo antifungal effects against V. mali at 100 mg/L, which were superior to that of fluxapyroxad (11.1%) but lower than that of trifloxystrobin (88.9%). The succinate dehydrogenase (SDH) enzymatic inhibition assay was conducted to confirm the mechanism of action. Molecular docking analysis further revealed that compound 5IIIh has significant hydrogen-bonding, π-π, and p-π conjugation interactions with ARG 43, SER 39, TRP 173, and TYR 58 in the binding site of SDH, and the binding mode was similar to that of the commercial fungicide fluxapyroxad. All of the results suggest that compound 5IIIh could be a potential SDH inhibitor, offering a valuable reference for future studies.
Collapse
Affiliation(s)
- Yi-Dan Ma
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Huan Zhou
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Guo-Tai Lin
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Ke-Huan Wu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Gong Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, People's Republic of China
| | - Xili Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, People's Republic of China
| | - Dan Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
19
|
He B, Chen W, Ma ZT, He X, Hu MX, Hu YH, Zhang XT, Yan W, Liu MX, Zhang ZG, Ye YH. Design and Synthesis of Novel Diphenyl Ether Carboxamide Derivatives To Control the Phytopathogenic Fungus Sclerotinia sclerotiorum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2935-2942. [PMID: 38317284 DOI: 10.1021/acs.jafc.3c04595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Sclerotinia stem rot (SSR) caused by the phytopathogenic fungus Sclerotinia sclerotiorum has led to serious losses in the yields of oilseed rape and other crops every year. Here, we designed and synthesized a series of carboxamide derivatives containing a diphenyl ether skeleton by adopting the scaffold splicing strategy. From the results of the mycelium growth inhibition experiment, inhibition rates of compounds 4j and 4i showed more than 80% to control S. sclerotiorum at a dose of 50 μg/mL, which is close to that of the positive control (flubeneteram, 95%). Then, the results of a structure-activity relationship study showed that the benzyl scaffold was very important for antifungal activity and that introducing a halogen atom on the benzyl ring would improve antifungal activity. Furthermore, the results of an in vitro activity test suggested that these novel compounds can inhibit the activity of succinate dehydrogenase (SDH), and the binding mode of 4j with SDH was basically similar to that of the flutolanil derivative. Morphological observation of mycelium revealed that compound 4j could cause a damage on the mycelial morphology and cell structure of S. sclerotiorum, resulting in inhibition of the growth of mycelia. Furthermore, in vivo antifungal activity assessment of 4j displayed a good control of S. sclerotiorum (>97%) with a result similar to that of the positive control at a concentration of 200 mg/L. Thus, the diphenyl ether carboxamide skeleton is a new starting point for the discovery of new SDH inhibitors and is worthy of further development.
Collapse
Affiliation(s)
- Bo He
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P.R. China
| | - Wang Chen
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P.R. China
| | - Zi-Tao Ma
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P.R. China
| | - Xu He
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P.R. China
| | - Meng-Xu Hu
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P.R. China
| | - Yan-Hao Hu
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P.R. China
| | - Xiao-Tong Zhang
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P.R. China
| | - Wei Yan
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P.R. China
| | - Mu-Xing Liu
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P.R. China
| | - Zheng-Guang Zhang
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P.R. China
| | - Yong-Hao Ye
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, P.R. China
| |
Collapse
|
20
|
Gao Z, Fan W, Zhang R, Li P, Yang X, Gao X, Ji X, Wei Y, Lai M. Synthesis, Thermal Stability and Antifungal Evaluation of Two New Pyrrole Esters. Chem Biodivers 2024; 21:e202301684. [PMID: 38224313 DOI: 10.1002/cbdv.202301684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/16/2024]
Abstract
To develop new chemicals that are stable at high temperatures with biological activity, a pyrrole intermediate was firstly synthesized using glucosamine hydrochloride as raw materials through cyclization and oxidation. Further, two novel pyrrole ester derivatives were prepared via Steglich esterification from pyrrole intermediate with vanillin and ethyl maltol, respectively. Nuclear magnetic resonance (1 H-NMR, 13 C NMR), infrared spectroscopy (IR) and high resolution mass spectrometry (HRMS) were used to confirm the target compounds. Thermal behavior of the compounds was investigated by thermogravimetry (TG), differential scanning calorimeter (DSC) and the pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) methods. The plausible pyrolytic mechanism was proposed. Additionally, their biological activities against the pathogens Fusarium graminearum, Fusarium oxysporum, Fusarium moniliforme, Phytophthora nicotianae, and Rhizoctonia solani were assessed. These target compounds showed outstanding antifungal activities and the highest inhibitor rates of 62.50 % and 68.75 % against R. solani with EC50 values of 0.0296 and 0.0200 mg mL-1 , respectively. SDHI protein sequence was molecularly docked to identify the binding mechanisms in the active pocket and examine the interactions between both the molecules and the SDHI protein.
Collapse
Affiliation(s)
- Ziting Gao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, No. 218, Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, P. R. China
| | - Wenpeng Fan
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, No. 218, Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, P. R. China
- Hubei Zhongyan Industry Co. Ltd., WuHan, 430048, P. R. China
| | - Ruiting Zhang
- Co-construction State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, No. 218, Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, P. R China
| | - Pengyu Li
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, No. 218, Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, P. R. China
| | - Xiaopeng Yang
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, No. 218, Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, P. R. China
| | - Xue Gao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, No. 218, Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, P. R. China
| | - Xiaoming Ji
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, No. 218, Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, P. R. China
| | - Yuewei Wei
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, No. 218, Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, P. R. China
| | - Miao Lai
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, No. 218, Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, P. R. China
| |
Collapse
|
21
|
Huang YH, Wei G, Wang WJ, Liu Z, Yin MX, Guo WM, Zhu XL, Yang GF. Structure-Based Discovery of New Succinate Dehydrogenase Inhibitors via Scaffold Hopping Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18292-18300. [PMID: 37738510 DOI: 10.1021/acs.jafc.3c02158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Scaffold hopping strategy has become one of the most successful methods in the process of molecular design. Seeking to develop novel succinate dehydrogenase inhibitors (SDHIs), we employed a scaffold hopping strategy to design compounds featuring geminate dichloralkenes (gem-dichloralkenes) fragment. After stepwise modifications, a series of N-cyclopropyl-dichloralkenes-pyrazole-carboxamide derivatives was synthesized. Among them, compounds G28 (IC50 = 26.00 nM) and G40 (IC50 = 27.00 nM) were identified as the best inhibitory activity against porcine SDH, with IC50 values reaching the nanomolar range, outperforming the lead compound pydiflumetofen. Additionally, the greenhouse assay indicated that compounds G37 (EC90 = 0.031 mg/L) and G34 (EC90 = 1.67 mg/L) displayed extremely high activities against wheat powdery mildew (WPM) and cucumber powdery mildew (CPM), respectively. Computational results further revealed that the gem-dichloralkene fragment and fluorine substituted pyrazole form an extra hydrophobic interaction and dipolar-dipolar interaction with SDH. In summary, our study provides a novel gem-dichloralkene scaffold with outstanding fungicidal properties, obtained through scaffold hopping, that holds great potential for future research on PM control.
Collapse
Affiliation(s)
- Yuan-Hui Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Ge Wei
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Wen-Jie Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Zheng Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Mao-Xue Yin
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Wei-Min Guo
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Xiao-Lei Zhu
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, People's Republic of China
| |
Collapse
|
22
|
Cheng X, Xu Z, Cui H, Zhang Z, Chen W, Wang F, Li S, Liu Q, Wang D, Lv X, Chang X. Discovery of Pyrazole-5-yl-amide Derivatives Containing Cinnamamide Structural Fragments as Potential Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37922127 DOI: 10.1021/acs.jafc.3c04355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
To promote the development of novel agricultural succinate dehydrogenase inhibitor (SDHI) fungicides, we introduced cinnamamide and nicotinamide structural fragments into the structure of pyrazol-5-yl-amide by carbon chain extension and scaffold hopping, respectively, and synthesized a series of derivatives. The results of the biological activity assays indicated that most of the target compounds exhibited varying degrees of inhibitory activity against the tested fungi. Notably, compounds G22, G28, G34, G38, and G39 exhibited excellent in vitro antifungal activities against Valsa mali with EC50 values of 0.48, 0.86, 0.57, 0.73, and 0.87 mg/L, respectively, and this result was significantly more potent than boscalid (EC50 = 2.80 mg/L) and closer to the specialty control drug tebuconazole (EC50 = 0.30 mg/L). Compounds G22 and G34 also exhibited excellent in vivo protective and curative effects against V. mali at 40 mg/L. The SEM and TEM observations indicated that compounds G22 and G34 may affect normal V. mali mycelial morphology as well as the cellular ultrastructure. Molecular docking analysis results indicated that G22 and boscalid possessed a similar binding mode to that of SDH, and detailed SDH inhibition assays validated the feasibility of the designed compounds as potential SDH inhibitors. Compounds G22 and G3 were selected for theoretical calculations, and the terminal carboxylic acid group of this series of compounds may be a key region influencing the antifungal activity. Furthermore, toxicity tests on Apis mellifera l. revealed that compounds G22 and G34 exhibited low toxicity to A. mellifera l. populations. The above results demonstrated that these series of pyrazole-5-yl-amide derivatives are promising for development as potential low-risk drug-resistance agricultural SDHI fungicides.
Collapse
Affiliation(s)
- Xiang Cheng
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zonghan Xu
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Hongyun Cui
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Zhen Zhang
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Wei Chen
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Fanglei Wang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Shanlu Li
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Qixuan Liu
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Dandan Wang
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Xianhai Lv
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Xihao Chang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- School of Science, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
23
|
Levin N, Goclik L, Walschus H, Antil N, Bordet A, Leitner W. Decarboxylation and Tandem Reduction/Decarboxylation Pathways to Substituted Phenols from Aromatic Carboxylic Acids Using Bimetallic Nanoparticles on Supported Ionic Liquid Phases as Multifunctional Catalysts. J Am Chem Soc 2023; 145:22845-22854. [PMID: 37815193 PMCID: PMC10591467 DOI: 10.1021/jacs.3c09290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 10/11/2023]
Abstract
Valuable substituted phenols are accessible via the selective decarboxylation of hydroxybenzoic acid derivatives using multifunctional catalysts composed of bimetallic iron-ruthenium nanoparticles immobilized on an amine-functionalized supported ionic liquid phase (Fe25Ru75@SILP+IL-NEt2). The individual components of the catalytic system are assembled using a molecular approach to bring metal and amine sites into close contact on the support material, providing high stability and high decarboxylation activity. Operating under a hydrogen atmosphere was found to be essential to achieve high selectivity and yields. As the catalyst materials enable also the selective hydrogenation and hydrodeoxygenation of various additional functional groups (i.e., formyl, acyl, and nitro substituents), direct access to the corresponding phenols can be achieved via integrated tandem reactions. The approach opens versatile synthetic pathways for the production of valuable phenols from a wide range of readily available substrates, including compounds derived from lignocellulosic biomass.
Collapse
Affiliation(s)
- Natalia Levin
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Lisa Goclik
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
- Institut
für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Henrik Walschus
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Neha Antil
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Alexis Bordet
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Walter Leitner
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
- Institut
für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| |
Collapse
|
24
|
Yin YM, Sun ZY, Wang DW, Xi Z. Discovery of Benzothiazolylpyrazole-4-Carboxamides as Potent Succinate Dehydrogenase Inhibitors through Active Fragment Exchange and Link Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14471-14482. [PMID: 37775473 DOI: 10.1021/acs.jafc.3c03646] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Succinate dehydrogenase (SDH) is an attractive target for developing green fungicides to manage agricultural pathogens in modern agriculture research. Herein, in this work, we report the discovery of benzothiazolylpyrazole-4-carboxamides I-III as potent SDH inhibitors using active fragment exchange and link approach. The results of the fungicidal activity assays showed that some of the synthesized compounds exhibited excellent inhibition against the tested fungi. Systematic structure-activity relationship studies led to the discovery of compound Ip, N-(1-((4,6-difluorobenzo[d]thiazol-2-yl)thio)propan-2-yl)-3-(difluoromethyl)-N-methoxy-1-methyl-1H-pyrazole-4-carboxamide, which showed higher fungicidal activity against Fusarium graminearum Schw (EC50 = 0.93 μg/mL) than the commercial fungicides thifluzamide (EC50 > 50 μg/mL) and boscalid (EC50 > 50 μg/mL). The molecular simulation studies suggested that hydrophobic interactions were the primary driving forces between ligands and SDH. Promisingly, we found that Ip could stimulate the growth of wheat seedlings and Arabidopsis thaliana and increase the biomass of the treated plants. Preliminary studies on the plant growth promoter mechanism of Ip indicated that it could increase nitrate reductase activity in planta, that, in turn, stimulates the growth of plants.
Collapse
Affiliation(s)
- Yan-Ming Yin
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Zong-Yue Sun
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Da-Wei Wang
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
25
|
Wang J, Lu T, Xiao T, Cheng W, Jiang W, Yan Y, Tang X. Novel quinolin-2(1H)-one analogues as potential fungicides targeting succinate dehydrogenase: design, synthesis, inhibitory evaluation and molecular modeling. PEST MANAGEMENT SCIENCE 2023; 79:3425-3438. [PMID: 36562216 DOI: 10.1002/ps.7332] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Succinate dehydrogenase is an important target of fungicides. Succinate dehydrogenase inhibitors (SDHIs) have widely been used to combat destructive plant pathogenic fungi because they possess efficient and broad-spectrum antifungal activities and as well as unique mode of action. The research and development of novel SDHIs have been ongoing. RESULTS Thirty-six novel quinolin-2(1H)-one derivatives were designed, synthesized and characterized. The single crystal structure of compound 3c was determined through the X-ray diffraction of single crystals. The bioassay results displayed that most compounds had good antifungal activities at 16 μg mL-1 against Rhizoctonia cerealis, Erysiphe graminis, Botrytis cinerea, Penicillium italicum and Phytophthora infestans. Compounds 6o, 6p and 6r had better antifungal activities than the commercialized fungicide pyraziflumid against Botrytis cinerea. Their half maximal effective concentration (EC50 ) values were 0.398, 0.513, 0.205 and 0.706 μg mL-1 , respectively. Moreover, the inhibiting activities of the bioactive compounds were tested against succinate dehydrogenase. The results indicated that they possessed outstanding activities. Compounds 6o, 6p and 6r also exhibited better inhibiting activities than pyraziflumid against succinate dehydrogenase. Their half maximal inhibitory concentration (IC50 ) values were 0.450, 0.672, 0.232 and 0.858 μg mL-1 , respectively. The results of molecular dynamic (MD) simulations indicated that compound 6r displayed stronger affinity to succinate dehydrogenase than pyraziflumid. CONCLUSION The results of the present study displayed that quinolin-2(1H)-one derivative could be one scaffold of potential SDHIs and will provide some valuable information for the research and development of new SDHIs. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingwen Wang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu, P. R. China
| | - Tong Lu
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu, P. R. China
| | - Tingting Xiao
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu, P. R. China
| | - Wei Cheng
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu, P. R. China
| | - Wenjing Jiang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu, P. R. China
| | - Yingkun Yan
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu, P. R. China
| | - Xiaorong Tang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu, P. R. China
| |
Collapse
|
26
|
Chai JQ, Mei YD, Tai L, Wang XB, Chen M, Kong XY, Lu AM, Li GH, Yang CL. Potential Succinate Dehydrogenase Inhibitors Bearing a Novel Pyrazole-4-sulfonohydrazide Scaffold: Molecular Design, Antifungal Evaluation, and Action Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37294885 DOI: 10.1021/acs.jafc.3c00126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aiming to develop novel antifungal agents with a distinctive molecular scaffold targeting succinate dehydrogenase (SDH), 24 N'-phenyl-1H-pyrazole-4-sulfonohydrazide derivatives were first devised, synthesized, and verified by 1H NMR, 13C NMR, high-resolution mass spectrometry (HRMS), and single-crystal X-ray diffraction analysis. The bioassays revealed that the target compounds possessed highly efficient and broad-spectrum antifungal activities against four tested plant pathogenic fungi Rhizoctonia solani (R. solani), Botrytis cinerea, Fusarium graminearum, and Alternaria sonali. Strikingly, compound B6 was assessed as the selective inhibitor against R. solani, with an in vitro EC50 value (0.23 μg/mL) that was similar to that of thifluzamide (0.20 μg/mL). The in vivo preventative effect of compound B6 (75.76%) at 200 μg/mL against R. solani was roughly comparable to thifluzamide (84.31%) under the same conditions. The exploration of morphological observations indicated that compound B6 could strongly damage the mycelium morphology, obviously increase the permeability of the cell membrane, and dramatically increase the number of mitochondria. Compound B6 also significantly inhibited SDH enzyme activity with an IC50 value of 0.28 μg/mL, and its fluorescence quenching dynamic curves were similar to that of thifluzamide. Molecular docking and molecular dynamics simulations demonstrated that compound B6 could strongly interact with similar residues around the SDH active pocket as thifluzamide. The present study revealed that the novel N'-phenyl-1H-pyrazole pyrazole-4-sulfonohydrazide derivatives are worthy of being further investigated as the promising replacements of traditional carboxamide derivatives targeting SDH of fungi.
Collapse
Affiliation(s)
- Jian-Qi Chai
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu-Dong Mei
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Nanjing Zhuoran Inspection Limited Corporation, Nanjing 210095, China
| | - Lang Tai
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao-Bin Wang
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
- College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Min Chen
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang-Yi Kong
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ai-Min Lu
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Guo-Hua Li
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Chun-Long Yang
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
27
|
Zhao Y, Jiao F, Tang T, Wu S, Wang F, Zhao X. Adverse effects and potential mechanisms of fluxapyroxad in Xenopus laevis on carbohydrate and lipid metabolism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121710. [PMID: 37137408 DOI: 10.1016/j.envpol.2023.121710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/21/2023] [Accepted: 04/22/2023] [Indexed: 05/05/2023]
Abstract
Fungicides are one of significant contributing factors to the rapid decline of amphibian species worldwide. Fluxapyroxad (FLX), an effective and broad-spectrum succinate dehydrogenase inhibitor fungicide, has attracted major concerns due to its long-lasting in the environment. However, the potential toxicity of FLX in the development of amphibians remains mostly unknown. In this research, the potential toxic effects and mechanisms of FLX on Xenopus laevis were investigated. In the acute toxicity test, the 96 h median lethal concentration (LC50) of FLX to X. laevis tadpoles was 1.645 mg/L. Based on the acute toxicity result, tadpoles at the stage 51 were exposed to 0, 0.00822, 0.0822, and 0.822 mg/L FLX during 21 days. Results demonstrated that FLX exposure led to an apparent delay in the growth and development of tadpoles and associated with severe liver injury. Additionally, FLX induced glycogen depletion and lipid accumulation in the liver of X. laevis. The biochemical analysis of plasma and liver indicated that FLX exposure could perturb liver glucose and lipid homeostasis by altering enzyme activity related to glycolysis, gluconeogenesis, fatty acid synthesis, and oxidation. Consistent with the biochemical result, FLX exposure altered the liver transcriptome profile, and the enrichment analysis of differential expression genes highlighted the adverse effects of FLX exposure on steroid biosynthesis, PPAR signaling pathway, glycolysis/gluconeogenesis, and fatty acid metabolism in the tadpole liver. Overall, our study was the first to reveal that sub-lethal concentrations of FLX could induce liver damage and produce obvious interference effects on carbohydrate and lipid metabolism of Xenopus, providing new insight into the potential chronic hazards of FLX for amphibians.
Collapse
Affiliation(s)
- Yang Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fang Jiao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, China
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shenggan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Feidi Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
28
|
Ma Z, Qiu S, Zhang D, Guo X, Lu Y, Fan Y, Chen X. Design, synthesis, and antifungal activity of novel dithiin tetracarboximide derivatives as potential succinate dehydrogenase inhibitors. PEST MANAGEMENT SCIENCE 2023; 79:1922-1930. [PMID: 36658467 DOI: 10.1002/ps.7369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/11/2022] [Accepted: 01/20/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Succinate dehydrogenase inhibitor (SDHI) fungicides are an important class of agricultural fungicides with the advantages of high efficiency and a broad bactericidal spectrum. To pursue novel SDHIs, a series of N-substituted dithiin tetracarboximide derivatives were designed, synthesized, and characterized by 1 H NMR, 13 C NMR, and high resolution mass spectrum (HRMS). RESULTS These engineered compounds displayed potent fungicidal activity against phytopathogens, including Sclerotinia sclerotiorum, Botrytis cinerea, and Rhizoctonia solani, comparable with that of the commercial SDHI fungicide boscalid. In particular, compound 18 stood out with prominent activity against S. sclerotiorum with a half-maximal effective concentration (EC50 ) value of 1.37 μg ml-1 . Compound 1 exhibited the most potent antifungal activity against B. cinerea with EC50 values of 5.02 μg ml-1 . As for R. solani, 12 and 13 exhibited remarkably inhibitory activity with EC50 values of 4.26 and 5.76 μg ml-1 , respectively. In the succinate dehydrogenase (SDH) inhibition assay, 13 presented significant inhibitory activity with a half-maximal inhibitory concentration (IC50 ) value of 15.3 μm, which was approximately equivalent to that of boscalid (14.2 μm). Furthermore, molecular docking studies revealed that 13 could anchor in the binding site of SDH. CONCLUSION Taken together, results suggested that the dithiin tetracarboximide scaffold possessed a huge potential to be developed as novel fungicides and SDHIs. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhi Ma
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Shuo Qiu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Dong Zhang
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xinying Guo
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yuele Lu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yongxian Fan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xiaolong Chen
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
29
|
Li H, Liu Z, Dong Y, Wang YX, Zhu XL. Design, Synthesis, and Fungicidal Evaluation of Novel N-Methoxy Pyrazole-4-Carboxamides as Potent Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2610-2615. [PMID: 36696251 DOI: 10.1021/acs.jafc.2c07031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Succinate dehydrogenase (SDH, EC 1.3.5.1, also known as complex II) has been recognized as one of the most promising targets of fungicides. Here, based on the binding mode of pydiflumetofen with SDH, the carbon-carbon double bond was introduced into the chemical of pydiflumetofen and then produced the target compounds 6a-6o. The enzymatic inhibitory activity and structure-activity relationship (SAR) study showed that the 2-position and 4-position in terminal benzene were positive to increasing activity. Furthermore, fungicidal activity results in greenhouses indicated that compound 6o showed good control effects against wheat powdery mildew (WPM), cucumber powdery mildew (CPM), and southern corn rust (SCR), showing its broad-spectrum property. Especially, compound 6o exhibited 95 and 75% control effects against CPM and SCR at 6.25 mg/L, respectively, which are better than pydiflumetofen (80% control effects against CPM and 15% against SCR), indicating its potency that is worthy of further development.
Collapse
Affiliation(s)
- Hua Li
- Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Anyang Institute of Technology, Anyang, Henan 455000, P.R. China
- Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| | - Zheng Liu
- Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| | - Ying Dong
- Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| | - Yu-Xia Wang
- Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan, Hubei 430079, P.R. China
| |
Collapse
|
30
|
Jiang W, Zhang T, Wang J, Cheng W, Lu T, Yan Y, Tang X. Design, Synthesis, Inhibitory Activity, and Molecular Modeling of Novel Pyrazole-Furan/Thiophene Carboxamide Hybrids as Potential Fungicides Targeting Succinate Dehydrogenase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:729-738. [PMID: 36562616 DOI: 10.1021/acs.jafc.2c05054] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To discover new fungicides targeting succinate dehydrogenase (SDH), 36 new furan/thiophene carboxamides containing 4,5-dihydropyrazole rings were designed, synthesized, and characterized. The crystal structure of compound 5l was determined with the X-ray diffraction (XRD) of single crystals. The antifungal activity of these compounds was studied against Botrytis cinerea, Pyricularia oryzae, Erysiphe graminis, Physalospora piricola, and Penicillium digitatum. Bioassay results were that most compounds had obvious inhibitory activity at 20 μg/mL. Compounds 5j, 5k, and 5l possessed outstanding inhibitory activity against B. cinerea. Their EC50 values were 0.540, 0.676, and 0.392 μg/mL, respectively. They owned better effects than fluxapyroxad (EC50 = 0.791 μg/mL). In the meantime, the inhibitory activity of 16 compounds was evaluated against SDH. It turned out that these compounds displayed excellent activity. The IC50 values of compounds 5j, 5k, and 5l reached 0.738, 0.873, and 0.506 μg/mL, respectively, whereas the IC50 value of fluxapyroxad was 1.031 μg/mL. The results of molecular dynamics (MD) simulation showed that compound 5l possessed a stronger affinity to SDH than fluxapyroxad.
Collapse
Affiliation(s)
- Wenjing Jiang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Tingting Zhang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Jingwen Wang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Wei Cheng
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Tong Lu
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Yingkun Yan
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Xiaorong Tang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| |
Collapse
|
31
|
Sun C, Zhang F, Zhang H, Li P, Jiang L. Design, Synthesis, Fungicidal Activity and Molecular Docking Study of Novel 2-(1-Methyl-1 H-pyrazol-4-yl)pyrimidine-4-carboxamides. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202206008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
32
|
Xu Q, Zhao Z, Liang P, Wang S, Li F, Jin S, Zhang J. Identification of novel nematode succinate dehydrogenase inhibitors: Virtual screening based on ligand-pocket interactions. Chem Biol Drug Des 2023; 101:9-23. [PMID: 34981652 DOI: 10.1111/cbdd.14019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/10/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022]
Abstract
To discover new nematicidal succinate dehydrogenase (SDH) inhibitors with novel structures, we conducted a virtual screening of the ChemBridge library with 1.7 million compounds based on ligand-pocket interactions. The homology model of Caenorhabditis elegans SDH was established, along with a pharmacophore model based on ligand-pocket interactions. After the pharmacophore-based and docking-based screening, 19 compounds were selected for the subsequent enzymatic assays. The results showed that compound 1 (ID: 7607321) exhibited inhibitory activity against SDH with a determined IC50 value of 19.6 μM. Structural modifications and nematicidal activity studies were then carried out, which provided further evidence that compound 1 exhibited excellent nematicidal activity. Molecular dynamics simulations were then conducted to investigate the underlying molecular basis for the potency of these inhibitors against SDH. This work provides a reliable strategy and useful information for the future design of nematode SDH inhibitors.
Collapse
Affiliation(s)
- Qingbo Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Zhixiang Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Peibo Liang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Simin Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Fang Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Shuhui Jin
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Jianjun Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
33
|
Synthesis, thermal property and antifungal evaluation of pyrazine esters. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
34
|
Yang Z, Sun X, Jin D, Qiu Y, Wang S, Gu W. Synthesis and antifungal/anti-oomycete activity of novel camphor-based sulfonate derivatives as potential SDH inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
35
|
Huang YH, Wei G, Liu Z, Lu Q, Jiang JJ, Zhu XL, Yang GF. Discovery of N-Methoxy-(biphenyl-ethyl)-pyrazole-carboxamides as Novel Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14480-14487. [PMID: 36321207 DOI: 10.1021/acs.jafc.2c04770] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Succinate dehydrogenase (SDH) inhibitor is one of the research hotspots for the development of fungicides. Herein, we describe the design and synthesis of N-methoxy-(biphenyl-ethyl)-pyrazole-carboxamide derivatives with enhanced fungicidal activity by employing fragment combination strategy. The SDH enzymatic activity was evaluated for 24 title compounds, and compound 7s was identified as the highest activity against porcine SDH with an IC50 value of 0.014 μM, 205-fold greater than that of fluxapyroxad. Furthermore, the greenhouse experiments showed that compound 7u exhibited potent fungicidal activity against wheat powdery mildew with an EC50 value of 0.633 mg/L, higher activity than fluxapyroxad and benzovindiflupyr. The computational results showed that the fluorine atom substituted on the pyrazole ring formed an extra dipolar-dipolar interaction with C_S42 and then increased the van der Waals interaction between the compound and SDH. The structural and mechanistic insights obtained from the present work will provide a valuable clue to developing novel SDH inhibitors.
Collapse
Affiliation(s)
- Yuan-Hui Huang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Ge Wei
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Zheng Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Qiang Lu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Jia-Jia Jiang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, People's Republic of China
| |
Collapse
|
36
|
Cheng X, Xu Z, Luo H, Chang X, Lv X. Design, Synthesis, and Biological Evaluation of Novel Pyrazol-5-yl-benzamide Derivatives Containing Oxazole Group as Potential Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13839-13848. [PMID: 36270026 DOI: 10.1021/acs.jafc.2c04708] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A series of pyrazol-5-yl-benzamide derivatives containing the oxazole group were designed and synthesized as potential SDH inhibitors. According to the results of the bioassays, most target compounds displayed moderate-to-excellent in vitro antifungal activities against Valsa mali, Sclerotinia scleotiorum, Alternaria alternata, and Botrytis cinerea. Among them, compounds C13, C14, and C16 exhibited more excellently inhibitory activities against S. sclerotiorum than boscalid (EC50 = 0.96 mg/L), with EC50 values of 0.69, 0.26, and 0.95 mg/L, respectively. In vivo experiments on rape leaves and cucumber leaves showed that compounds C13 and C14 exhibited considerable protective effects against S. sclerotiorum than boscalid. SEM analysis indicated that compounds C13 and C14 significantly destroyed the typical structure and morphology of S. scleotiorum hyphae. In the respiratory inhibition effect assays, compounds C13 (28.0%) and C14 (33.9%) exhibited a strong inhibitory effect on the respiration rate of S. sclerotiorum mycelia, which was close to boscalid (30.6%). The results of molecular docking indicated that compounds C13 and C14 could form strong interactions with the key residues TRP O:173, ARG P:43, TYR Q:58, and MET P:43 of the SDH. Furthermore, the antifungal mechanism of these derivatives was demonstrated by the SDH enzymatic inhibition assay. These results demonstrate that compounds C13 and C14 can be developed into novel SDH inhibitors for crop protection.
Collapse
Affiliation(s)
- Xiang Cheng
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Zonghan Xu
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Huisheng Luo
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Xihao Chang
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Xianhai Lv
- School of Science, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
37
|
Synthesis and Anti‐Fungal/Oomycete Activity of Novel Sulfonamide Derivatives Containing Camphor Scaffold. Chem Biodivers 2022; 19:e202200608. [DOI: 10.1002/cbdv.202200608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/25/2022] [Indexed: 11/07/2022]
|
38
|
Choudhary D, Garg S, Kaur M, Sohal HS, Malhi DS, Kaur L, Verma M, Sharma A, Mutreja V. Advances in the Synthesis and Bio-Applications of Pyrazine Derivatives: A Review. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2092873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Dimple Choudhary
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Sonali Garg
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Manvinder Kaur
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Harvinder Singh Sohal
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Dharambeer Singh Malhi
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Loveleen Kaur
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Meenakshi Verma
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Ajay Sharma
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| | - Vishal Mutreja
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Mohali, India
| |
Collapse
|
39
|
Sun Y, Yang Z, Liu Q, Sun X, Chen L, Sun L, Gu W. Design, Synthesis, and Fungicidal Evaluation of Novel 1,3-Benzodioxole-Pyrimidine Derivatives as Potential Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7360-7374. [PMID: 35671047 DOI: 10.1021/acs.jafc.2c00734] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A series of novel 1,3-benzodioxole-pyrimidine derivatives were designed and synthesized. The in vitro bioassay indicated that compounds 4e, 4g, 4n, 5c, and 5e displayed excellent fungicidal activities against test fungal strains. Especially, in the in vitro experiments, 5c exhibited a broad spectrum of fungicidal activity against Botrytis cinerea, Rhizoctonia solani, Fusarium oxysporum, Alternaria solani, and Gibberella zeae with EC50 values of 0.44, 6.96, 6.99, 0.07, and 0.57 mg/L, respectively, which were significantly more potent than those of positive control boscalid (EC50: 5.02, >50, >50, 0.16, and 1.28 mg/L). In vivo testing on tomato fruits and leaves showed that 5c displayed considerable protective and curative efficacy against A. solani. Scanning electron microscopy analysis indicated that 5c possessed a strong ability to destroy the surface morphology of mycelia and seriously interfere with the growth of the fungal pathogen. In the in vitro enzyme inhibition assay, 5c exhibited pronounced succinate dehydrogenase (SDH) inhibitory activity with an IC50 value of 3.41 μM, equivalent to that of boscalid (IC50: 3.40 μM). In addition, fluorescence quenching experiment further confirmed the strong interaction of 5c with SDH. Through chiral resolution, 5c was separated into two enantiomers. Among them, (S)-5c exhibited stronger fungicidal activity (EC50: 0.06 mg/L) and SDH inhibitory (2.92 μM) activity than the R-enantiomer (EC50: 0.17 mg/L and SDH IC50: 3.68 μM), which was in accordance with the molecular docking study (CDOCKER Interaction Energy for (R)-5c and (S)-5c: -28.23 and -29.98 kcal/mol, respectively). These results presented a promising lead for the discovery of novel SDHIs as antifungal pesticides.
Collapse
Affiliation(s)
- Yue Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zihui Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qingsong Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xuebao Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Linlin Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lu Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wen Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
40
|
Wang W, Wang J, Wu J, Jin M, Li J, Jin S, Li W, Xu D, Liu X, Xu G. Rational Design, Synthesis, and Biological Evaluation of Fluorine- and Chlorine-Substituted Pyrazol-5-yl-benzamide Derivatives as Potential Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7566-7575. [PMID: 35674516 DOI: 10.1021/acs.jafc.2c01901] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To develop novel succinate dehydrogenase inhibitors (SDHIs), two series of novel N-4-fluoro-pyrazol-5-yl-benzamide and N-4-chloro-pyrazol-5-yl-benzamide derivatives were designed and synthesized, and their antifungal activities were evaluated against Valsa mali, Sclerotinia sclerotiorum, FusaHum graminearum Sehw, Physalospora piricola, and Botrytis cinerea. The bioassay results showed that some of the target compounds exhibited good antifungal activities in vitro against V. mali and S. sclerotiorum. Remarkably, compound 9Ip displayed good in vitro activity against V. mali with an EC50 value of 0.58 mg/L. This outcome was 21-fold greater than that of fluxapyroxad (12.45 mg/L) and close to that of the commercial fungicide tebuconazole (EC50 = 0.36 mg/L). In addition, in vivo experiments proved that compound 9Ip has good protective fungicidal activity with an inhibitory rate of 93.2% against V. mali at 50 mg/L, which was equivalent to that of the positive control tebuconazole (95.5%). The results of molecular docking indicated that there were obvious hydrogen bonds and p-π interactions between compound 9Ip and succinate dehydrogenase (SDH), which could explain the probable action mechanism. In addition, the SDH enzymatic inhibition assay was carried out to further prove its mode of action. Our studies suggest that compound 9Ip could be a fungicidal lead to discover more potent SDHIs for crop protection.
Collapse
Affiliation(s)
- Wei Wang
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Jianhua Wang
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Jipeng Wu
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Mengyun Jin
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Junling Li
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Shiyang Jin
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Wangxiang Li
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Dan Xu
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xili Liu
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Gong Xu
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
41
|
Fu W, Shao Z, Sun X, Zhou C, Xu Z, Zhang Y, Cheng J, Li Z, Shao X. Reversible Regulation of Succinate Dehydrogenase by Tools of Photopharmacology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4279-4290. [PMID: 35357145 DOI: 10.1021/acs.jafc.1c08198] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Succinate dehydrogenase (SDH) is extremely important in metabolic function and biological processes. Modulation of SDH has been reported to be a promising therapeutic target to SDH mutations. Current measures for the regulation of SDH are scarce, and precise and reversible modulation of SDH still remains challenging. Herein, a powerful tool for reversible optical control of SDH was proposed and evaluated utilizing the technology of photopharmacology. We reported photochromic ligands (PCLs), azobenzene-pyrazole amides (APAs), that exert light-dependent inhibition effects on SDH. Physicochemical property tests and biological assays were conducted to demonstrate the feasibility of modulating SDH. In this paper, common agricultural pathogens were used to develop a procedure by which our PCLs could reversibly and precisely control SDH utilizing green light. This research would help us to understand the target-ligand interactions and provide new insights into modulation of SDH.
Collapse
Affiliation(s)
- Wen Fu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhongli Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xujuan Sun
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Cong Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
42
|
Iftikhar S, Bengyella L, Shahid AA, Nawaz K, Anwar W, Khan AA. Discovery of succinate dehydrogenase candidate fungicides via lead optimization for effective resistance management of Fusarium oxysporum f. sp. capsici. 3 Biotech 2022; 12:102. [PMID: 35463042 PMCID: PMC8960509 DOI: 10.1007/s13205-022-03157-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/06/2022] [Indexed: 12/30/2022] Open
Abstract
Fusarium wilt of chili caused by the fungus Fusarium oxysporum f. sp. capsici (FCO) severely reduces the production of chili worldwide. There is growing evidence of resistance to commercial fungicides targeting succinate dehydrogenase (Sdh) of FCO soliciting the development of new Sdh inhibitors (SdhIs). In the current work, optimized docking and virtual screening were used to mine twelve SdhIs from the ZINC database, followed by in vitro antifungal evaluation on spore and radial mycelium development. Four new promising SdhIs exhibiting a mean mycelium inhibition rate greater than 85.6% (F = 155.8, P = 0.001, P < 0.05) were observed on ten strains of virulent and resistant FCO. Importantly, three of the discovered molecules exhibited potent spore germination inhibition (≥ 80%, P = 0.01, P < 0.05) compared to the commonly used fungicide penthiopyrad. A significant positive correlation (r* ≥ 0.67, P < 0.05) between the activities of the newly discovered SdhIs compared to penthiopyrad against all tested FCO strains indicated a broad-spectrum fungicidal activity. The current findings indicate that the four SdhI's discovered could judiciously replace certain commercial SdhIs that some FCO displays resistance to. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03157-8.
Collapse
|
43
|
Zhu JJ, Wang PY, Long ZQ, Xiang SZ, Zhang JR, Li ZX, Wu YY, Shao WB, Zhou X, Liu LW, Yang S. Design, Synthesis, and Biological Profiles of Novel 1,3,4-Oxadiazole-2-carbohydrazides with Molecular Diversity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2825-2838. [PMID: 35201749 DOI: 10.1021/acs.jafc.1c07190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To unceasingly expand the molecular diversity of 1,3,4-oxadiazole-2-carbohydrazides, herein, small fragments (including -CH2-, -OCH2-, and -SCH2-) were incorporated into the target compounds to screen out the potential succinate dehydrogenase inhibitors (SDHIs). The bioassay results showed that the antifungal effects (expressed by EC50) against Sclerotinia sclerotiorum, Botryosphaeria dothidea, Fusarium oxysporum, and Colletotrichun higginsianum could reach 1.29 (10a), 0.63 (8h), 1.50 (10i), and 2.09 (10i) μg/mL, respectively, which were slightly lower than those of carbendazim (EC50 were 0.69, 0.13, 0.55, and 0.80 μg/mL, respectively). Especially, compound 10h was extremely bioactive against Gibberella zeae (G. z.) with an EC50 value of 0.45 μg/mL. This outcome was better than that of fluopyram (3.76 μg/mL) and was similar to prochloraz (0.47 μg/mL). In vivo trials against the corn scab (infected by G. z.) showed that compound 10h had control activity of 86.8% at 200 μg/mL, which was better than that of boscalid (79.6%). Further investigations found that compound 10h could inhibit the enzymatic activity of SDH in the G. z. strain with an IC50 value of 3.67 μM, indicating that potential SDHIs might be developed. Additionally, the other biological activities of these molecules were screened simultaneously. The anti-oomycete activity toward Phytophthora infestans afforded a minimal EC50 value of 3.22 μg/mL (10h); compound 4d could strongly suppress the growth of bacterial strains Xanthomonas axonopodis pv. citri and Xanthomonas oryzae pv. oryzae with EC50 values of 3.79 and 11.4 μg/mL, respectively; and compound 10a displayed some insecticidal activity toward Plutella xylostella. Given their multipurpose features, these frameworks could be actively studied as potential pesticide leads.
Collapse
Affiliation(s)
- Jian-Jun Zhu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhou-Qing Long
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shu-Zhen Xiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jun-Rong Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhen-Xing Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yuan-Yuan Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wu-Bin Shao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li-Wei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
44
|
Luo B, Ning Y. Comprehensive Overview of Carboxamide Derivatives as Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:957-975. [PMID: 35041423 DOI: 10.1021/acs.jafc.1c06654] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Up to now, a total of 24 succinate dehydrogenase inhibitors (SDHIs) fungicides have been commercialized, and SDHIs fungicides were also one of the most active fungicides developed in recent years. Carboxamide derivatives represented an important class of SDHIs with broad spectrum of antifungal activities. In this review, the development of carboxamide derivatives as SDHIs with great significances were summarized. In addition, the structure-activity relationships (SARs) of antifungal activities of carboxamide derivatives as SDHIs was also summarized based on the analysis of the structures of the commercial SDHIs and lead compounds. Moreover, the cause of resistance of SDHIs and some solutions were also introduced. Finally, the development trend of SDHIs fungicides was prospected. We hope this review will give a guide for the development of novel SDHIs fungicides in the future.
Collapse
Affiliation(s)
- Bo Luo
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| | - Yuli Ning
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| |
Collapse
|
45
|
Design, Synthesis and Antifungal/Nematicidal Activity of Novel 1,2,4-Oxadiazole Derivatives Containing Amide Fragments. Int J Mol Sci 2022; 23:ijms23031596. [PMID: 35163522 PMCID: PMC8836147 DOI: 10.3390/ijms23031596] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/19/2022] Open
Abstract
Plant diseases that are caused by fungi and nematodes have become increasingly serious in recent years. However, there are few pesticide chemicals that can be used for the joint control of fungi and nematodes on the market. To solve this problem, a series of novel 1,2,4-oxadiazole derivatives containing amide fragments were designed and synthesized. Additionally, the bioassays revealed that the compound F15 demonstrated excellent antifungal activity against Sclerotinia sclerotiorum (S. sclerotiorum) in vitro, and the EC50 value of that was 2.9 μg/mL, which is comparable with commonly used fungicides thifluzamide and fluopyram. Meanwhile, F15 demonstrated excellent curative and protective activity against S. sclerotiorum-infected cole in vivo. The scanning electron microscopy results showed that the hyphae of S. sclerotiorum treated with F15 became abnormally collapsed and shriveled, thereby inhibiting the growth of the hyphae. Furthermore, F15 exhibited favorable inhibition against the succinate dehydrogenase (SDH) of the S. sclerotiorum (IC50 = 12.5 μg/mL), and the combination mode and binding ability between compound F15 and SDH were confirmed by molecular docking. In addition, compound F11 showed excellent nematicidal activity against Meloidogyne incognita at 200 μg/mL, the corrected mortality rate was 93.2%, which is higher than that of tioxazafen.
Collapse
|
46
|
Wang W, Wu F, Ma Y, Xu D, Xu G. Study on Synthesis and Antifungal Activity of Novel Benzamides Containing Substituted Pyrazole Unit. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Hu J, Ji X, Su F, Zhao Q, Zhang G, Zhao M, Lai M. Synthesis, odor characteristics and biological evaluation of N-substituted pyrrolyl chalcones. Org Biomol Chem 2022; 20:8747-8755. [DOI: 10.1039/d2ob01561g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Base-mediated transition-metal free α-functionalization of N-substituted acetylpyrroles with commercial alcohols to generate various pyrrolyl chalcones is reported, and several prominent bioactive and flavor molecules were obtained.
Collapse
Affiliation(s)
- Jingyi Hu
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Xiaoming Ji
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Fangyao Su
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Qianrui Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Ganlin Zhang
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Mingqin Zhao
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| | - Miao Lai
- Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, P. R. China
| |
Collapse
|
48
|
Yang Z, Sun Y, Liu Q, Li A, Wang W, Gu W. Design, Synthesis, and Antifungal Activity of Novel Thiophene/Furan-1,3,4-Oxadiazole Carboxamides as Potent Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13373-13385. [PMID: 34735146 DOI: 10.1021/acs.jafc.1c03857] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Succinate dehydrogenase (SDH) is known as an ideal target for the investigations of fungicides. To develop novel SDH inhibitors, 30 novel thiophene/furan-1,3,4-oxadiazole carboxamide derivatives were designed and synthesized. In the in vitro antifungal assay, a majority of the target compounds demonstrated fair to potent antifungal activity against seven tested phytopathogenic fungi. Compounds 4b, 4g, 4h, 4i, and 5j showed remarkable antifungal activity against Sclerotinia sclerotiorum, affording EC50 values ranging from 0.1∼1.1 mg/L. In particular, compound 4i displayed the most potent activity against S. sclerotiorum (EC50 = 0.140 ± 0.034 mg/L), which was superior to that of boscalid (EC50 = 0.645 ± 0.023 mg/L). A further morphological investigation revealed the abnormal mycelia and damaged cell structures of compound 4i-treated S. sclerotiorum by scanning electron microscopy. Furthermore, the in vivo antifungal assay against S. sclerotiorum revealed that compounds 4g and 4i were effective for suppressing rape Sclerotinia rot at a dosage of 200 mg/L. In the SDH inhibition assay, compounds 4g and 4i also presented significant inhibitory activity with IC50 values of 1.01 ± 0.21 and 4.53 ± 0.19 μM, respectively, which were superior or equivalent to that of boscalid (3.51 ± 2.02 μM). Molecular docking and molecular dynamics simulation of compound 4g with SDH revealed that compound 4g could form strong interactions with the key residues of the SDH. These results indicated that this class of derivatives could be a promising scaffold for the discovery and development of novel SDH inhibitors.
Collapse
Affiliation(s)
- Zihui Yang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Yue Sun
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Qingsong Liu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Aliang Li
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Wenyan Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Wen Gu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing210037, P. R. China
| |
Collapse
|
49
|
Li S, Li X, Zhang H, Wang Z, Xu H. The research progress in and perspective of potential fungicides: Succinate dehydrogenase inhibitors. Bioorg Med Chem 2021; 50:116476. [PMID: 34757244 DOI: 10.1016/j.bmc.2021.116476] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/24/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022]
Abstract
Succinate dehydrogenase inhibitors (SDHIs) have become one of the fastest growing classes of new fungicides since entering the market, and have attracted increasing attention as a result of their unique structure, high activity and broad fungicidal spectrum. The mechanism of SDHIs is to inhibit the activity of succinate dehydrogenase, thereby affecting mitochondrial respiration and ultimately killing pathogenic fungi. At present, they have become popular varieties researched and developed by major pesticide companies in the world. In the review, we focused on the mechanism, the history, the representative varieties, structure-activity relationship and resistance of SDHIs. Finally, the potential directions for the development of SDHIs were discussed. It is hoped that this review can strengthen the individuals' understanding of SDHIs and provide some inspiration for the development of new fungicides.
Collapse
Affiliation(s)
- Shuqi Li
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China
| | - Xiangshuai Li
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China
| | - Hongmei Zhang
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China
| | - Zishi Wang
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China.
| | - Hongliang Xu
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China.
| |
Collapse
|
50
|
Li H, Wang YX, Zhu XL, Yang GF. Discovery of a Fungicide Candidate Targeting Succinate Dehydrogenase via Computational Substitution Optimization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13227-13234. [PMID: 34709809 DOI: 10.1021/acs.jafc.1c04536] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Succinate dehydrogenase (SDH, EC 1.3.5.1) has proven to be an important fungicidal target, and the inhibition of SDH is useful in the treatment of plant pathogens. The discovery of a novel active SDH inhibitor is of high value. Herein, we disclose the discovery of a potent, highly active inhibitor as a fungicide candidate by using a computational substitution optimization method, a fast drug design method developed in our laboratory. The greenhouse experiments showed that compound 17c exhibited high protective activity against south corn rust, soybean rust (SBR), and rice sheath blight at a very low dosage of 0.781 mg/L. Moreover, the field trials indicated that compound 17c is comparable to and even better than commercial fungicides against SBR and cucumber powdery mildew at 50 mg/L concentration. Most surprisingly, compound 17c resulted to be strictly better in curative activity than the commercial fungicide benzovindiflupyr. The computation results indicated that 17c could form another hydrogen bond with C_S42 and then lead to strong van der Waals and electronic interactions with SDH. Our results suggested that 17c is a potential fungicide candidate for SDH.
Collapse
Affiliation(s)
- Hua Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Yu-Xia Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, People's Republic of China
| |
Collapse
|