1
|
Li G, Liu X, Wang H, Liang S, Xia B, Sun K, Li X, Dai Y, Yue T, Zhao J, Wang Z, Xing B. Detection, distribution and environmental risk of metal-based nanoparticles in a coastal bay. WATER RESEARCH 2023; 242:120242. [PMID: 37390658 DOI: 10.1016/j.watres.2023.120242] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023]
Abstract
Metal-based nanoparticles (NPs) attract increasing concerns because of their adverse effects on aquatic ecosystems. However, their environmental concentrations and size distributions are largely unknown, especially in marine environments. In this work, environmental concentrations and risks of metal-based NPs were examined in Laizhou Bay (China) using single-particle inductively coupled plasma-mass spectrometry (sp-ICP-MS). First, separation and detection approaches of metal-based NPs were optimized for seawater and sediment samples with high recoveries of 96.7% and 76.3%, respectively. Spatial distribution results showed that Ti-based NPs had the highest average concentrations for all the 24 stations (seawater, 1.78 × 108 particles/L; sediments, 7.75 × 1012 particles/kg), followed by Zn-, Ag-, Cu-, and Au-based NPs. For all the NPs in seawater, the highest abundance occurred around the Yellow River Estuary, resulting from a huge input from Yellow River. In addition, the sizes of metal-based NPs were generally smaller in sediments than those in seawater (22, 20, 17, and 16 of 22 stations for Ag-, Cu-, Ti-, and Zn-based NPs, respectively). Based on the toxicological data of engineered NPs, predicted no-effect concentrations (PNECs) to marine species were calculated as Ag at 72.8 ng/L < ZnO at 2.66 µg/L < CuO at 7.83 µg/L < TiO2 at 72.0 µg/L, and the actual PNECs of the detected metal-based NPs may be higher due to the possible presence of natural NPs. Station 2 (around the Yellow River Estuary) was assessed as "high risk" for Ag- and Ti-based NPs with risk characterization ratio (RCR) values of 1.73 and 1.66, respectively. In addition, RCRtotal values for all the four metal-based NPs were calculated to fully assess the co-exposure environmental risk, with 1, 20, and 1 of 22 stations as "high risk", "medium risk", and "low risk", respectively. This study helps to better understand the risks of metal-based NPs in marine environments.
Collapse
Affiliation(s)
- Guoxin Li
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China
| | - Xia Liu
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China
| | - Hao Wang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China
| | - Shengkang Liang
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Qingdao 266100, PR China
| | - Bin Xia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Ke Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, PR China
| | - Xinyu Li
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China
| | - Yanhui Dai
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology (Ministry of Education), Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, PR China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
2
|
Li Z, Hadioui M, Wilkinson KJ. Extraction of Silicon-Containing Nanoparticles from an Agricultural Soil for Analysis by Single Particle Sector Field and Time-of-Flight Inductively Coupled Plasma Mass Spectrometry. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2049. [PMID: 37513060 PMCID: PMC10383646 DOI: 10.3390/nano13142049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/26/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023]
Abstract
The increased use of silica and silicon-containing nanoparticles (Si-NP) in agricultural applications has stimulated interest in determining their potential migration in the environment and their uptake by living organisms. Understanding the fate and behavior of Si-NPs will require their accurate analysis and characterization in very complex environmental matrices. In this study, we investigated Si-NP analysis in soil using single-particle ICP-MS. A magnetic sector instrument was operated at medium resolution to overcome the impact of polyatomic interferences (e.g., 14N14N and 12C16O) on 28Si determinations. Consequently, a size detection limit of 29 ± 3 nm (diameter of spherical SiO2 NP) was achieved in Milli-Q water. Si-NP were extracted from agricultural soil using several extractants, including Ca(NO3)2, Mg(NO3)2, BaCl2, NaNO3, Na4P2O7, fulvic acid (FA) and Na2H2EDTA. The best extraction efficiency was found for Na4P2O7, for which the size distribution of Si-NP in the leachates was well preserved for at least one month. On the other hand, Ca(NO3)2, Mg(NO3)2 and BaCl2 were relatively less effective and generally led to particle agglomeration. A time-of-flight ICP-MS was also used to examine the nature of the extracted Si-NP on a single-particle basis. Aluminosilicates accounted for the greatest number of extracted NP (~46%), followed by NP where Si was the only detected metal (presumably SiO2, ~30%).
Collapse
Affiliation(s)
- Zhizhong Li
- Department of Chemistry, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montreal, QC H2V 0B3, Canada
| | - Madjid Hadioui
- Department of Chemistry, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montreal, QC H2V 0B3, Canada
| | - Kevin J Wilkinson
- Department of Chemistry, Université de Montréal, 1375 Ave. Thérèse-Lavoie-Roux, Montreal, QC H2V 0B3, Canada
| |
Collapse
|
3
|
Ding K, Liang S, Xie C, Wan Q, Jin C, Wang S, Tang YT, Zhang M, Qiu R. Discrimination and Quantification of Soil Nanoparticles by Dual-Analyte Single Particle ICP-QMS. Anal Chem 2022; 94:10745-10753. [PMID: 35857440 DOI: 10.1021/acs.analchem.2c01379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study presents the new application of dual-analyte single particle inductively coupled plasma quadrupole mass spectrometry (spICP-QMS) to the discrimination and quantification of two typical soil nanoparticles (kaolinite and goethite nanoparticles, abbr. KNPs and GNPs) in three samples (SA, SB, and SC) with three detection events (Al unpaired event, Fe unpaired event, and paired event). SA was mainly composed of KNPs with a concentration of 28 443 ± 817 particle mL-1 and a mean particle size of 140.7 ± 0.2 nm. SB was mainly composed of GNPs with a concentration of 39 283 ± 702 particle mL-1 and a mean particle size of 141.8 ± 2.9. In SC, the concentrations of KNPs and GNPs were 22 4541 ± 1401 and 70 604 ± 1623 particle mL-1, respectively, and the mean particle sizes of KNPs and GNPs were 140.7 ± 0.2 and 60.2 ± 0.3 nm, respectively. The accuracy of dual-analyte spICP-QMS was determined by spiking experiments, comparing these results with the measurements of other techniques, analyzing the samples in different SA and SB proportions and in different SC concentrations. Our results demonstrated that the dual-analyte spICP-QMS is a promising approach to distinguishing different kinds of natural NPs in soils.
Collapse
Affiliation(s)
- Kengbo Ding
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.,Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Shaoxia Liang
- PerkinElmer, Inc., Guangzhou 510370, People's Republic of China
| | - Candie Xie
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Quan Wan
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Chao Jin
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.,Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.,Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Ye-Tao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.,Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Miaoyue Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.,Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.,Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, People's Republic of China
| |
Collapse
|
4
|
Cai W, Wang Y, Feng Y, Liu P, Dong S, Meng B, Gong H, Dang F. Extraction and Quantification of Nanoparticulate Mercury in Natural Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1763-1770. [PMID: 35005907 DOI: 10.1021/acs.est.1c07039] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoparticulate mercury (Hg-NPs) are ubiquitous in nature. However, the lack of data on their concentration in soils impedes reliable risk assessments. This is due to the analytical difficulties resulting from low ambient Hg concentrations and background interferences of heterogeneous soil components. Here, coupled to single particle inductively coupled plasma-mass spectrometry (spICP-MS), a standardized protocol was developed for extraction and quantification of Hg-NPs in natural soils with a wide range of properties. High particle number-, particle mass-, and total mass-based recoveries were obtained for spiked HgS-NPs (74-120%). Indigenous Hg-NPs across soils were within 107-1011 NPs g-1, corresponding to 3-40% of total Hg on a mass basis. Metacinnabar was the primary Hg species in extracted samples from the Wanshan mercury mining site, as characterized by X-ray absorption spectroscopy and transmission electron microscopy. In agreement with the spICP-MS analysis, electron microscopy revealed comparable size distribution for nanoparticles larger than 27 nm. These indigenous Hg-NPs contributed to 5-65% of the measured methylmercury in soils. This work paves the way for experimental determinations of indigenous Hg-NPs in natural soils, which is critical to understand the biogeochemical cycling of mercury and thereby the methylation processes governing the public exposure to methylmercury.
Collapse
Affiliation(s)
- Weiping Cai
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Feng
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Peng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Shuofei Dong
- Agilent Technologies Co., Ltd (China), Beijing 100102, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Hua Gong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Wei WJ, Yang Y, Li XY, Huang P, Wang Q, Yang PJ. Cloud point extraction (CPE) combined with single particle -inductively coupled plasma-mass spectrometry (SP-ICP-MS) to analyze and characterize nano-silver sulfide in water environment. Talanta 2021; 239:123117. [PMID: 34890942 DOI: 10.1016/j.talanta.2021.123117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/21/2021] [Accepted: 11/28/2021] [Indexed: 10/19/2022]
Abstract
Silver Nanoparticles (Ag-NPs), an emerging type of pollutant, might occur various physical and chemical transformations, which would affect its environmental fate, transformation and biological effects. Sulfurization is the most common conversion of Ag-NPs, accompanied by the formation of nano-silver sulfide (Ag2S-NPs). The method of Ag2S-NPs analysis and characterization is of great significance for assessing the environmental risks of Ag. In this study, cloud point extraction (CPE) and Single Particle-Inductively Coupled Plasma-Mass Spectrometry (SP-ICP-MS) were used in combination to establish a simple and reliable analysis method to quantify Ag2S-NPs in water, with the morphology unchanged. Non-Ag2S-NPs were dissociated into Ag+ firstly, and Ag2S-NPs and Ag+ were separated by CPE, followed by SP-ICP-MS analysis. The extraction rate based on particle number concentration was between (76.19 ± 0.56) % to (106.35 ± 0.00) % in environmental waters. Compared with the (76.96 ± 2.18) nm Ag2S-NPs spiked, the particle size extracted increased slightly with (94.19 ± 2.72) nm- (97.25 ± 0.22) nm as the large-size Ag2S-NPs originally presented in waters, instead of agglomeration. This method could be generally applicable to the analysis of Ag2S-NPs in waters, and provide ideas for other metal sulfide nanoparticles (MS-NPs), which has certain significance.
Collapse
Affiliation(s)
- Wen-Jing Wei
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha, 410083, Hunan, PR China
| | - Yuan Yang
- International Joint Laboratory of Hunan Agricultural Typical Pollution Restoration and Water Resources Safety Utilization, College of Resources and Environment, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, 410128, PR China
| | - Xin-Yuan Li
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha, 410083, Hunan, PR China
| | - Peng Huang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha, 410083, Hunan, PR China
| | - Qiang Wang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, No. 932 Lushan Nan Road, Yuelu District, Changsha, 410083, Hunan, PR China; State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, PR China.
| | - Ping-Jian Yang
- Chinese Research Academy of Environmental Sciences, Dayangfang 8, Anwai, Chaoyang District, Beijing, 100012, PR China.
| |
Collapse
|
6
|
Jiao C, Dong C, Xie C, Luo W, Zhang J, Fan S, Liu Y, Ma Y, He X, Zhang Z. Dissolution and Retention Process of CeO 2 Nanoparticles in Soil with Dynamic Redox Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14649-14657. [PMID: 34652129 DOI: 10.1021/acs.est.1c04660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The time-course association of soil physicochemical properties and fate of CeO2 nanoparticles (NPs) is not well understood. This study for the first time investigated the dissolution and retention of CeO2 NPs (<25 nm) during soil short-term (6 h) and long-term (30 d) aging processes with dynamic redox conditions. Under the additional reductant-induced initial reductive condition, theoretically, up to 220‰ of Ce(IV) was temporarily reductively dissolved within 10 min, accompanied by a slow retention process (180 min) of Ce species in soil solutions. Conversely, the dissolution and slow retention of Ce species were not significant in soil solutions without added reductant. X-ray absorption near edge spectroscopy (XANES) shows that most of Ce species were present as Ce(IV) (94.0%-97.8%) in all soils after a long-term aging process. These results indicate that the soil dynamic redox conditions induced by oxidant/reductant intrinsically determined the different time-course dissolution and retention of CeO2 NPs, highlighting the occasional reductive condition in soil solution that may contribute to the migration and diffusion of Ce species. The time-course study should be also adopted to develop a comprehensive understanding of the nano-soil interactions.
Collapse
Affiliation(s)
- Chunlei Jiao
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaonan Dong
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Changjian Xie
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhe Luo
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Junzhe Zhang
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Shixian Fan
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yabo Liu
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhui Ma
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao He
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyong Zhang
- Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Current and emergent analytical methods for monitoring the behavior of agricultural functional nanoparticles in relevant matrices: a review. Curr Opin Chem Eng 2021. [DOI: 10.1016/j.coche.2021.100706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|