1
|
Dou Y, Wang B, Chang L, Wei Y, Li X, Li X, Wang T, Qiao R, Wang K, Yang F, Bai J, Zhang Y, Yu T, Han X. Effects of circPICALM-miR-132-PHKB regulated by METTL3 on proliferation of porcine skeletal muscle satellite cells. Int J Biol Macromol 2025; 306:141767. [PMID: 40054808 DOI: 10.1016/j.ijbiomac.2025.141767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/17/2025] [Accepted: 03/03/2025] [Indexed: 05/11/2025]
Abstract
Circular RNA (circRNA) is ubiquitously expressed in highly differentiated eukaryotes, playing an extremely vital regulatory role in muscle growth and development. In this study, we identified circPICALM, a novel circRNA which consists of exons 5 to 9 of the PICALM gene, exhibiting differential expression in the longissimus dorsi muscle (LD) of adult (QA) and newborn (QN) Queshan Black pigs. CircPICALM is resistant to RNase R, mainly located in the cytoplasm with potential coding capacities. When circPICALM was over-expressed in porcine skeletal muscle satellite cells (PSMSCs), there was a significant decrease in the expression levels of PCNA, CDK4, CDK1 and CCND1, which consequently inhibited the proliferation of PSMSCs. Conversely, miR-132, a target molecule of circPICALM, was found to promote the proliferation of PSMSCs. In addition, circPICALM can up-regulate the expression of the target gene PHKB by competitively adsorbing miR-132. The circPICALM-ssc-miR-132-PHKB regulatory axis is regulated by METTL3, which increases the m6A level of both PSMSCs and circPICALM, thereby promoting the proliferation of PSMSCs. Overall, this study furnishes a fundamental reference for further in-depth exploration of the specific molecular mechanisms underlying m6A modification and circPICALM in muscle development and progression.
Collapse
Affiliation(s)
- Yaqing Dou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Bingjie Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Lebin Chang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yilin Wei
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xinjian Li
- Sanya Institute, Hainan Academy of Agricultural Science, Sanya 572025, China
| | - Xiuling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Tengfei Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Feng Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Jun Bai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yongqian Zhang
- Henan Yifa Animal Husbandry Co., Ltd, Hebi 458000, China
| | - Tong Yu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.
| | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Cheng H, Li D, Tang Y, Hu T, Wu B. Circ-ECH1 May Compete With miR-708-5p to Regulate Ntrk2 in Bronchopulmonary Dysplasia. J Cell Biochem 2025; 126:e30678. [PMID: 39587803 DOI: 10.1002/jcb.30678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024]
Abstract
Bronchopulmonary dysplasia (BPD) affects patients' quality of life. Circular RNAs participated in BPD. However, circ-ECH1's role in BPD has not been reported yet. This study aimed to explore the role and mechanism of circ-ECH1 in BPD. Hyperoxia-treated type II alveolar epithelial cells (L2 cells) were used as the in vitro BPD model. CCK-8, flow cytometry, and reactive oxygen species (ROS) were used to evaluate cell viability. Fluorescence in situ hybridization confirmed the subcellular localization. Circ-ECH1 overexpression (or inhibited) and miR-708-5p mimics were used to investigate the roles of circ-ECH1 and miR-708-5p in BPD. Quantitative reverse-transcription polymerase reaction (qRT-PCR) detected the expressions of circ-ECH1, miR-708-5p, and neurotrophic receptor tyrosine kinase 2 (Ntrk2). Ntrk2 expression was evaluated by Western blot analysis. Changes in lung tissues were evaluated by hematoxylin and eosin staining. Pulmonary fibrosis was examined by Mason staining. TUNEL staining was performed to evaluate cell apoptosis in lung tissues. RNA sequencing was performed in the lung tissues of BPD rats. The binding between circ-ECH1 and miR-708-5p was confirmed through dual luciferase activity. Hyperoxia reduced cell viability and increased cell apoptosis and ROS accumulation. In addition, hyperoxia decreased the expression levels of circ-ECH1, which is mainly located in the cytoplasm. Circ-ECH1 overexpression increased cell viability but reduced cell apoptosis and ROS accumulation. On the contrary, interference with circ-ECH1 further promoted cell apoptosis and reduced cell activity. Furthermore, circ-ECH1 overexpression reduced the incidence of pulmonary fibrosis and lung cell apoptosis. RNA sequencing, followed by qRT-PCR, confirmed that the expressions of Ntrk2 and miR-708-5p were affected by circ-ECH1. miR-708-5p mimics reversed the role of circ-ECH1 in the BPD. Mechanistically, circ-ECH1 may bind with miR-708-5p to regulate Ntrk2 expression. Circ-ECH1 may compet with miR-708-5p to regulate Ntrk2 expression in BPD. The findings provided a new target for BPD treatment.
Collapse
Affiliation(s)
- Hanrong Cheng
- Institute of Respiratory Diseases, Department of Sleep Medicine, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Dongcai Li
- Department of Otolaryngology, Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T., Institute of E.N.T., Shenzhen, China
| | - Yuming Tang
- Institute of Respiratory Diseases, Department of Sleep Medicine, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Tianyong Hu
- Department of Otolaryngology, Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T., Institute of E.N.T., Shenzhen, China
| | - Benqing Wu
- Department of Pediatric, Shenzhen Guangming District People's Hospital, Shenzhen, China
| |
Collapse
|
3
|
Cheng J, Xing Q, Pan Y, Yang Y, Zhang R, Shi D, Deng Y. CircTEC Inhibits the Follicular Atresia in Buffalo ( Bubalus bubalis) via Targeting miR-144-5p/FZD3 Signaling Axis. Int J Mol Sci 2024; 26:153. [PMID: 39796015 PMCID: PMC11719787 DOI: 10.3390/ijms26010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
The specific expression profile and function of circular RNA (circRNA) in follicular atresia remain largely unknown. Here, the circRNA expression profiles of granulosa cells derived from healthy follicles (HFs) and antral follicles (AFs) in buffalo were analyzed by RNA-seq, and the mechanism of a differentially expressed circRNA (DEcircRNA) circTEC regulating the granulosa cell function that affects follicular atresia was further explored. RNA-seq results showed that a total of 112 DEcircRNAs were identified. Among them, circTEC was highly expressed in HF, and its circular structure was confirmed by RNase R digestion assay, reversed PCR and Sanger sequencing. Functional experiments demonstrated that circTEC promotes the proliferation and steroid hormone synthesis of buffalo granulosa cells (bGCs), and it also inhibits their apoptosis. In-depth mechanism analysis showed that the expression level of circTEC in bGCs from AFs was adversely related to miR-144-5p and consistent with FZD3. CircTEC acts as an endogenous sponge of miR-144-5p to regulate the expression of the target gene FZD3 in AFs, which promotes the proliferation of bGCs and inhibits bGCs apoptosis, thereby inhibiting follicular atresia in buffalo. In summary, our study revealed the regulatory role of the circTEC/miR-144-5p/FZD3 axis during follicular atresia in buffalo. These results provided new insights into the biological mechanism underlying follicular atresia.
Collapse
Affiliation(s)
- Juanru Cheng
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.C.); (Q.X.); (Y.Y.); (R.Z.)
| | - Qinghua Xing
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.C.); (Q.X.); (Y.Y.); (R.Z.)
| | - Yu Pan
- Chongqing Academy of Animal Sciences, Chongqing 402460, China;
| | - Yanyan Yang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.C.); (Q.X.); (Y.Y.); (R.Z.)
| | - Ruimen Zhang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.C.); (Q.X.); (Y.Y.); (R.Z.)
| | - Deshun Shi
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.C.); (Q.X.); (Y.Y.); (R.Z.)
| | - Yanfei Deng
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (J.C.); (Q.X.); (Y.Y.); (R.Z.)
| |
Collapse
|
4
|
Yang Y, Huang K, Jiang H, Wang S, Xu X, Liu Y, Liu Q, Wei M, Li Z. Unveiling the role of circRBBP7 in myoblast proliferation and differentiation: A novel regulator of muscle development. FASEB J 2024; 38:e23808. [PMID: 38994637 DOI: 10.1096/fj.202302599rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024]
Abstract
Muscle development is a multistep process regulated by diverse gene networks, and circRNAs are considered novel regulators mediating myogenesis. Here, we systematically analyzed the role and underlying regulatory mechanisms of circRBBP7 in myoblast proliferation and differentiation. Results showed that circRBBP7 has a typical circular structure and encodes a 13 -kDa protein. By performing circRBBP7 overexpression and RNA interference, we found that the function of circRBBP7 was positively correlated with the proliferation and differentiation of myoblasts. Using RNA sequencing, we identified 1633 and 532 differentially expressed genes (DEGs) during myoblast proliferation or differentiation, respectively. The DEGs were found mainly enriched in cell cycle- and skeletal muscle development-related pathways, such as the MDM2/p53 and PI3K-Akt signaling pathways. Further co-IP and IF co-localization analysis revealed that VEGFR-1 is a target of circRBBP7 in myoblasts. qRT-PCR and WB analysis further confirmed the positive correlation between VEGFR-1 and circRBBP7. Moreover, we found that in vivo transfection of circRBBP7 into injured muscle tissues significantly promoted the regeneration and repair of myofibers in mice. Therefore, we speculate that circRBBP7 may affect the activity of MDM2 by targeting VEGFR-1, altering the expression of muscle development-related genes by mediating p53 degradation, and ultimately promoting myoblast development and muscle regeneration. This study provides essential evidence that circRBBP7 can serve as a potential target for myogenesis regulation and a reference for the application of circRBBP7 in cattle genetic breeding and muscle injury treatment.
Collapse
Affiliation(s)
- Yufeng Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- The Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Guangxi Agricultural Vocational University, Nanning, China
| | - Kongwei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hancai Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Shuwan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiaoxian Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yang Liu
- Guangxi Zhuang Autonomous Region Center for Analysis and Test Research, Nanning, China
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Mingsong Wei
- The Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Guangxi Agricultural Vocational University, Nanning, China
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
5
|
Lin Z, Xie F, He X, Wang J, Luo J, Chen T, Jiang Q, Xi Q, Zhang Y, Sun J. A novel protein encoded by circKANSL1L regulates skeletal myogenesis via the Akt-FoxO3 signaling axis. Int J Biol Macromol 2024; 257:128609. [PMID: 38056741 DOI: 10.1016/j.ijbiomac.2023.128609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/01/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Skeletal muscle is one the largest organs of the body and is involved in animal production and human health. Circular RNAs (circRNAs) have been implicated in skeletal myogenesis through largely unknown mechanisms. Herein, we report the phenotypic and metabolomic analysis of porcine longissimus dorsi muscles in Lantang and Landrace piglets, revealing a high-content of slow-oxidative fibers responsible for high-quality meat product in Lantang piglets. Using single-cell transcriptomics, we identified four myogenesis-related cell types, and the Akt-FoxO3 signaling axis was the most significantly enriched pathway in each subpopulation in the different pig breeds, as well as in fast-twitch glycolytic fibers. Using the multi-dimensional bioinformatic tools of circRNAome-seq and Ribo-seq, we identified a novel circRNA, circKANSL1L, with a protein-coding ability in porcine muscles, whose expression level correlated with myoblast proliferation and differentiation in vitro, as well as the transformation between distinct mature myofibers in vivo. The protein product of circKANSL1L could interact with Akt to decrease the phosphorylation level of FoxO3, which subsequently promoted FoxO3 transcriptional activity to regulate skeletal myogenesis. Our results established the existence of a protein encoded by circKANSL1L and demonstrated its potential functions in myogenesis.
Collapse
Affiliation(s)
- Zekun Lin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Fang Xie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiao He
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
6
|
Huang K, Li Z, Zhong D, Yang Y, Yan X, Feng T, Wang X, Zhang L, Shen X, Chen M, Luo X, Cui K, Huang J, Rehman SU, Jiang Y, Shi D, Pauciullo A, Tang X, Liu Q, Li H. A Circular RNA Generated from Nebulin (NEB) Gene Splicing Promotes Skeletal Muscle Myogenesis in Cattle as Detected by a Multi-Omics Approach. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2300702. [PMID: 38036415 PMCID: PMC10797441 DOI: 10.1002/advs.202300702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 10/16/2023] [Indexed: 12/02/2023]
Abstract
Cattle and the draught force provided by its skeletal muscle have been integral to agro-ecosystems of agricultural civilization for millennia. However, relatively little is known about the cattle muscle functional genomics (including protein coding genes, non-coding RNA, etc.). Circular RNAs (circRNAs), as a new class of non-coding RNAs, can be effectively translated into detectable peptides, which enlightened us on the importance of circRNAs in cattle muscle physiology function. Here, RNA-seq, Ribosome profiling (Ribo-seq), and peptidome data are integrated from cattle skeletal muscle, and detected five encoded peptides from circRNAs. It is further identified and functionally characterize a 907-amino acids muscle-specific peptide that is named circNEB-peptide because derived by the splicing of Nebulin (NEB) gene. This peptide localizes to the nucleus and cytoplasm and directly interacts with SKP1 and TPM1, key factors regulating physiological activities of myoblasts, via ubiquitination and myoblast fusion, respectively. The circNEB-peptide is found to promote myoblasts proliferation and differentiation in vitro, and induce muscle regeneration in vivo. These findings suggest circNEB-peptide is an important regulator of skeletal muscle regeneration and underscore the possibility that more encoding polypeptides derived by RNAs currently annotated as non-coding exist.
Collapse
Affiliation(s)
- Kongwei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and EngineeringFoshan UniversityFoshan528225China
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhou510641China
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Dandan Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Yufeng Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Xiuying Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Tong Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Xiaobo Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Liyin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Xinyue Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Mengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Xier Luo
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and EngineeringFoshan UniversityFoshan528225China
| | - Kuiqing Cui
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and EngineeringFoshan UniversityFoshan528225China
| | - Jieping Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Saif Ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityYangling712100China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Alfredo Pauciullo
- Department of Agricultural, Forest and Food SciencesUniversity of TorinoGrugliasco (TO)10095Italy
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition and Feeding,Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijing100193China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and EngineeringFoshan UniversityFoshan528225China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| |
Collapse
|
7
|
Wu G, Qiu X, Jiao Z, Yang W, Pan H, Li H, Bian Z, Geng Q, Wu H, Jiang J, Chen Y, Cheng Y, Chen Q, Chen S, Man C, Du L, Li L, Wang F. Integrated Analysis of Transcriptome and Metabolome Profiles in the Longissimus Dorsi Muscle of Buffalo and Cattle. Curr Issues Mol Biol 2023; 45:9723-9736. [PMID: 38132453 PMCID: PMC10741837 DOI: 10.3390/cimb45120607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Buffalo meat is gaining popularity for its nutritional properties, such as its low fat and cholesterol content. However, it is often unsatisfactory to consumers due to its dark color and low tenderness. There is currently limited research on the regulatory mechanisms of buffalo meat quality. Xinglong buffalo are raised in the tropical Hainan region and are undergoing genetic improvement from draught to meat production. For the first time, we evaluated the meat quality traits of Xinglong buffalo using the longissimus dorsi muscle and compared them to Hainan cattle. Furthermore, we utilized a multi-omics approach combining transcriptomics and metabolomics to explore the underlying molecular mechanism regulating meat quality traits. We found that the Xinglong buffalo had significantly higher meat color redness but lower amino acid content and higher shear force compared to Hainan cattle. Differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were identified, with them being significantly enriched in nicotinic acid and nicotinamide metabolic and glycine, serine, and threonine metabolic pathways. The correlation analysis revealed that those genes and metabolites (such as: GAMT, GCSH, PNP, L-aspartic acid, NADP+, and glutathione) are significantly associated with meat color, tenderness, and amino acid content, indicating their potential as candidate genes and biological indicators associated with meat quality. This study contributes to the breed genetic improvement and enhancement of buffalo meat quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Lianbin Li
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (G.W.); (X.Q.); (Z.J.); (W.Y.); (H.P.); (Q.G.); (H.W.); (Y.C.); (S.C.); (L.D.)
| | - Fengyang Wang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (G.W.); (X.Q.); (Z.J.); (W.Y.); (H.P.); (Q.G.); (H.W.); (Y.C.); (S.C.); (L.D.)
| |
Collapse
|
8
|
Zhu W, Huang Y, Yu C. The emerging role of circRNAs on skeletal muscle development in economical animals. Anim Biotechnol 2023; 34:2778-2792. [PMID: 36052979 DOI: 10.1080/10495398.2022.2118130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
CircRNAs are a novel type of closed circular molecules formed through a covalent bond lacking a 5'cap and 3' end tail, which mainly arise from mRNA precursor. They are widely distributed in plants and animals and are characterized by stable structure, high conservativeness in cells or tissues, and showed the expression specificity at different stages of development in different tissues. CircRNAs have been gradually attracted wide attention with the development of RNA sequencing, which become a new research hotspot in the field of RNA. CircRNAs play an important role in gene expression regulation. Presently, the related circRNAs research in the regulation of animal muscle development is still at the initial stage. In this review, the formation, properties, biological functions of circRNAs were summarized. The recent research progresses of circRNAs in skeletal muscle growth and development from economic animals including livestock, poultry and fishes were introduced. Finally, we proposed a prospective for further studies of circRNAs in muscle development, and we hope our research could provide new ideas, some theoretical supports and helps for new molecular genetic markers exploitation and animal genetic breeding in future.
Collapse
Affiliation(s)
- Wenwen Zhu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, China
| | - Yong Huang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Chuan Yu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, China
| |
Collapse
|
9
|
An Q, Zhang RM, Wei Y, Zhang YW, Wang LY, Ma SN, Zhang EK, Zou CX, Yang SF, Shi DS, Wei YM, Deng YF. CircRRAS2 promotes myogenic differentiation of bovine MuSCs and is a novel regulatory molecule of muscle development. Anim Biotechnol 2023; 34:4783-4792. [PMID: 37022008 DOI: 10.1080/10495398.2023.2196311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
The proliferation and myogenic differentiation of muscle stem cells (MuSCs) are important factors affecting muscle development and beef quality. There is increasing evidence that circRNAs can regulate myogenesis. We found a novel circRNA, named circRRAS2 that is significantly upregulated in the differentiation phase of bovine MuSCs. Here, we aimed to determine its roles in the proliferation and myogenic differentiation of these cells. The results showed that circRRAS2 was expressed in several bovine tissues. CircRRAS2 inhibited MuSCs proliferation and promoted myoblast differentiation. In addition, chromatin isolation by using RNA purification and mass spectrometry in differentiated muscle cells identified 52 RNA-binding proteins that could potentially bind to circRRAS2, in order to regulate their differentiation. The results suggest that circRRAS2 could be a specific regulator of myogenesis in bovine muscle.HighlightsCircRRAS2 expression is higher in DM cells than in GM cells.CircRRAS2 could significantly inhibit the proliferation and apoptosis of bovine MuSCs.CircRRAS2 promotes the differentiation of bovine MuSCs into myotubes.CircRRAS2 may exert regulatory effects through multiple RNA binding proteins.
Collapse
Affiliation(s)
- Qiang An
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, P. R. China
| | - Rui-Men Zhang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, P. R. China
| | - Yao Wei
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, P. R. China
| | - Yong-Wang Zhang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, P. R. China
| | - Le-Yi Wang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, P. R. China
| | - Shi-Nan Ma
- Hubei Key Laboratory of Embryonic Stem Cell Research, Tai-He Hospital, Hubei University of Medicine, Shiyan, Hubei, P. R. China
| | - Er-Kang Zhang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, P. R. China
| | - Chao-Xia Zou
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, P. R. China
| | - Su-Fang Yang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, P. R. China
| | - De-Shun Shi
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, P. R. China
| | - Ying-Ming Wei
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, P. R. China
| | - Yan-Fei Deng
- Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, P. R. China
| |
Collapse
|
10
|
Qi K, Dou Y, Li C, Liu Y, Song C, Li X, Wang K, Qiao R, Li X, Yang F, Han X. CircGUCY2C regulates cofilin 1 by sponging miR-425-3p to promote the proliferation of porcine skeletal muscle satellite cells. Arch Anim Breed 2023; 66:285-298. [PMID: 38039333 PMCID: PMC10655074 DOI: 10.5194/aab-66-285-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 09/07/2023] [Indexed: 12/03/2023] Open
Abstract
Circular ribonucleic acids (or circRNAs) are an emerging class of endogenous noncoding RNAs that are involved in physiological and pathological processes. Increasing evidence suggests that circRNAs play an important regulatory role in skeletal muscle development and meat quality regulation. In this study, it was found that circGUCY2C exhibits a high expression level in the longissimus dorsi muscle. It shows resistance to RNase R and additionally promotes the mRNA expression of cyclin-dependent kinase 2 (CDK2) and proliferating cell nuclear antigen (PCNA). Specifically, it was observed that the overexpression of circGUCY2C could promote the transition of porcine skeletal muscle satellite cells into the S and G2 phases of the cell cycle and that it regulates the proliferation of porcine skeletal muscle satellite cells. In contrast, miR-425-3p plays the opposite role and has an inhibitory effect on the proliferation of porcine skeletal muscle satellite cells. MiR-425-3p has been described as a target of circGUCY2C; consequently, the depletion of miR-425-3p promoted the proliferation of porcine skeletal muscle satellite cells. CFL1 (cofilin 1) is a target of miR-425-3p, and circGUCY2C upregulated CFL1 expression by inhibiting miR-425-3p. Collectively, our research outcomes demonstrate that circGUCY2C significantly influences the proliferation of porcine skeletal muscle satellite cells by selectively targeting the miR-425-3p-CFL1 axis, and our work partially clarified the role of circGUCY2C in porcine skeletal muscle satellite cells. Thus, the study provides new insight into the function of circGUCY2C and adds to the knowledge of the post-transcriptional regulation of pork quality.
Collapse
Affiliation(s)
- Kunlong Qi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yaqing Dou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Chenlei Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yingke Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Chenglei Song
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xinjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiuling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Feng Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
11
|
Wang M, Wu J, Wu P, Li Y. Emerging roles of circular RNAs in stem cells. Genes Dis 2023; 10:1920-1936. [PMID: 37492713 PMCID: PMC10363585 DOI: 10.1016/j.gendis.2022.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/05/2022] [Accepted: 05/14/2022] [Indexed: 10/18/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel class of noncoding RNAs that widely exist in eukaryotes. As a new focus in the field of molecular regulation, circRNAs have attracted much attention in recent years. Previous studies have confirmed that circRNAs are associated with many physiological and pathological processes. CircRNAs also participate in the regulation of stem cells. Stem cells have the properties of self-renewal and differentiation, which make stem cell therapy popular. CircRNAs may serve as new targets in stem cell therapy due to their regulation in stem cells. However, the underlying relationships between circRNAs and stem cells are still being explored. In this review, we briefly summarize the effects of circRNAs on stem cells, in the context of biological activities, aging and apoptosis, and aberrant changes. Moreover, we also examine the biological roles of stem cell-derived exosomal circRNAs. We believe our review will provide insights into the effects of circRNAs on stem cells.
Collapse
Affiliation(s)
- Mengru Wang
- Department of Cell Biology, Army Medical University, Chongqing 400038, China
| | - Juan Wu
- Department of Cell Biology, Army Medical University, Chongqing 400038, China
| | - Pan Wu
- Department of Cell Biology, Army Medical University, Chongqing 400038, China
| | - Yuhong Li
- Department of Cell Biology, Army Medical University, Chongqing 400038, China
| |
Collapse
|
12
|
Yang C, Wu L, Guo Y, Li Y, Deng M, Liu D, Liu G, Sun B. Expression profile and bioinformatics analysis of circRNA and its associated ceRNA networks in longissimus dorsi from Lufeng cattle and Leiqiong cattle. BMC Genomics 2023; 24:499. [PMID: 37644462 PMCID: PMC10466722 DOI: 10.1186/s12864-023-09566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 08/08/2023] [Indexed: 08/31/2023] Open
Abstract
This paper aims to explore the role of circRNA expression profiles and circRNA-associated ceRNA networks in the regulation of myogenesis in the longissimus dorsi of cattle breeds surviving under subtropical conditions in southern China by RNA sequencing and bioinformatics analysis. It also aims to provide comprehensive understanding of the differences in muscle fibers in subtropical cattle breeds and to expand the knowledge of the molecular networks that regulate myogenesis. With regard to meat quality indicators, results showed that the longissimus dorsi of LQC had lower pH (P < 0.0001), lower redness (P < 0.01), lower shear force (P < 0.05), and higher brightness (P < 0.05) than the longissimus dorsi of LFC. With regard to muscle fiber characteristics, the longissimus dorsi of LQC had a smaller diameter (P < 0.0001) and higher density of muscle fibers (P < 0.05). The analysis results show that the function of many circRNA-targeted mRNAs was related to myogenesis and metabolic regulation. Furthermore, in the analysis of the function of circRNA source genes, we hypothesized that btacirc_00497 and btacirc_034497 may regulate the function and type of myofibrils by affecting the expression of MYH6, MYH7, and NEB through competitive linear splicing.
Collapse
Affiliation(s)
- Chuang Yang
- College of Animal Science, South China Agricultural University, No.483 Wushan Road, Guangzhou, 510642, China
| | - Longfei Wu
- College of Animal Science, South China Agricultural University, No.483 Wushan Road, Guangzhou, 510642, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, No.483 Wushan Road, Guangzhou, 510642, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, No.483 Wushan Road, Guangzhou, 510642, China
| | - Ming Deng
- College of Animal Science, South China Agricultural University, No.483 Wushan Road, Guangzhou, 510642, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, No.483 Wushan Road, Guangzhou, 510642, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, No.483 Wushan Road, Guangzhou, 510642, China.
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, No.483 Wushan Road, Guangzhou, 510642, China.
| |
Collapse
|
13
|
Zhong D, Huang K, Zhang L, Cai Y, Li H, Liu Q, Shi D, Li H, Jiang Y. Circ2388 regulates myogenesis and muscle regeneration. Cell Tissue Res 2023; 393:149-161. [PMID: 37221302 DOI: 10.1007/s00441-023-03787-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/11/2023] [Indexed: 05/25/2023]
Abstract
The formation of skeletal muscle is a complex process that is coordinated by many regulatory factors, such as myogenic factors and noncoding RNAs. Numerous studies have proved that circRNA is an indispensable part of muscle development. However, little is known about circRNAs in bovine myogenesis. In this study, we discovered a novel circRNA, circ2388, formed by reverse splicing of the fourth and fifth exons of the MYL1 gene. The expression of circ2388 was different between fetal and adult cattle muscle. This circRNA is 99% homologous between cattle and buffalo and is localized in the cytoplasm. Thoroughly, we proved that circ2388 had no effect on cattle and buffalo myoblast proliferation but promotes myoblast differentiation and myotube fusion. Furthermore, circ2388 in vivo stimulated skeletal muscle regeneration in mouse muscle injury model. Taken together, our findings suggest that circ2388 promotes myoblast differentiation and promotes the recovery and regeneration of damaged muscles.
Collapse
Affiliation(s)
- Dandan Zhong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 712100, Xianyang, Yangling, Shaanxi, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources , College of Animal Science and Technology, Guangxi University, 530004, Nanning, China
| | - Kongwei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources , College of Animal Science and Technology, Guangxi University, 530004, Nanning, China
| | - Liyin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources , College of Animal Science and Technology, Guangxi University, 530004, Nanning, China
| | - Yudong Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 712100, Xianyang, Yangling, Shaanxi, China
| | - Huiren Li
- Animal Husbandry Station of Chongzuo City, 532200, Chongzuo, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources , College of Animal Science and Technology, Guangxi University, 530004, Nanning, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, 528225, Foshan, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources , College of Animal Science and Technology, Guangxi University, 530004, Nanning, China
| | - Hui Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 712100, Xianyang, Yangling, Shaanxi, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources , College of Animal Science and Technology, Guangxi University, 530004, Nanning, China.
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 712100, Xianyang, Yangling, Shaanxi, China
| |
Collapse
|
14
|
Zhang C, Huang Y, Gao X, Ren H, Gao S, Zhu W. Biological functions of circRNAs and their advance on skeletal muscle development in bovine. 3 Biotech 2023; 13:133. [PMID: 37096117 PMCID: PMC10121973 DOI: 10.1007/s13205-023-03558-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 01/10/2023] [Indexed: 04/26/2023] Open
Abstract
The development of skeletal muscle in animals is a complex biological process, which are strictly and precisely regulated by many genes and non-coding RNAs. Circular RNA (circRNA) was found as a novel class of functional non-coding RNA with ring structure in recent years, which appears in the process of transcription and is formed by covalent binding of single-stranded RNA molecules. With the development of sequencing and bioinformatics analysis technology, the functions and regulation mechanisms of circRNAs have attracted great attention due to its high stability characteristics. The role of circRNAs in skeletal muscle development have been gradually revealed, where circRNAs were involved in various biological processes, such as proliferation, differentiation, and apoptosis of skeletal muscle cells. In this review, we summarized the current studies advance of circRNAs involved in skeletal muscle development in bovine, and hope to gain a deeper understanding of the functional roles of the circRNAs in muscle growth. Our results will provide some theoretical supports and great helps for the genetic breeding of this species, and aiming at improving bovine growth and development and preventing muscle diseases.
Collapse
Affiliation(s)
- Cai Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023 China
| | - Yong Huang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023 China
| | - Xiaochan Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023 China
| | - Hongtao Ren
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023 China
| | - Shiyang Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023 China
| | - Wenwen Zhu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, 471023 China
| |
Collapse
|
15
|
Dong X, Xing J, Liu Q, Ye M, Zhou Z, Li Y, Huang R, Li Z, Nie Q. CircPLXNA2 Affects the Proliferation and Apoptosis of Myoblast through circPLXNA2/gga-miR-12207-5P/MDM4 Axis. Int J Mol Sci 2023; 24:ijms24065459. [PMID: 36982536 PMCID: PMC10049439 DOI: 10.3390/ijms24065459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
CircRNAs are newly identified special endogenous RNA molecules that covalently close a loop by back-splicing with pre-mRNA. In the cytoplasm, circRNAs would act as molecular sponges to bind with specific miRNA to promote the expression of target genes. However, knowledge of circRNA functional alternation in skeletal myogenesis is still in its infancy. In this study, we identified a circRNA–miRNA–mRNA interaction network in which the axis may be implicated in the progression of chicken primary myoblasts’ (CPMs) myogenesis by multi-omics (i.e., circRNA-seq and ribo-seq). In total, 314 circRNA–miRNA–mRNA regulatory axes containing 66 circRNAs, 70 miRNAs, and 24 mRNAs that may be relevant to myogenesis were collected. With these, the circPLXNA2-gga-miR-12207-5P-MDM4 axis aroused our research interest. The circPLXNA2 is highly differentially expressed during differentiation versus proliferation. It was demonstrated that circPLXNA2 inhibited the process of apoptosis while at the same time stimulating cell proliferation. Furthermore, we demonstrated that circPLXNA2 could inhibit the repression of gga-miR-12207-5p to MDM4 by directing binding to gga-miR-12207-5p, thereby restoring MDM4 expression. In conclusion, circPLXNA2 could function as a competing endogenous RNA (ceRNA) to recover the function of MDM4 by directing binding to gga-miR-12207-5p, thereby regulating the myogenesis.
Collapse
Affiliation(s)
- Xu Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Jiabao Xing
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Qingchun Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Mao Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Zhen Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Yantao Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Rongqin Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Zhenhui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
- Correspondence:
| | - Qinghua Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| |
Collapse
|
16
|
Yan S, Pei Y, Li J, Tang Z, Yang Y. Recent Progress on Circular RNAs in the Development of Skeletal Muscle and Adipose Tissues of Farm Animals. Biomolecules 2023; 13:biom13020314. [PMID: 36830683 PMCID: PMC9953704 DOI: 10.3390/biom13020314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/15/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Circular RNAs (circRNAs) are a highly conserved and specifically expressed novel class of covalently closed non-coding RNAs. CircRNAs can function as miRNA sponges, protein scaffolds, and regulatory factors, and play various roles in development and other biological processes in mammals. With the rapid development of high-throughput sequencing technology, thousands of circRNAs have been discovered in farm animals; some reportedly play vital roles in skeletal muscle and adipose development. These are critical factors affecting meat yield and quality. In this review, we have highlighted the recent advances in circRNA-related studies of skeletal muscle and adipose in farm animals. We have also described the biogenesis, properties, and biological functions of circRNAs. Furthermore, we have comprehensively summarized the functions and regulatory mechanisms of circRNAs in skeletal muscle and adipose development in farm animals and their effects on economic traits such as meat yield and quality. Finally, we propose that circRNAs are putative novel targets to improve meat yield and quality traits during animal breeding.
Collapse
Affiliation(s)
- Shanying Yan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528231, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yangli Pei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Jiju Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan 528231, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Zhonglin Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan 528226, China
- Correspondence: (Z.T.); (Y.Y.)
| | - Yalan Yang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan 528226, China
- Correspondence: (Z.T.); (Y.Y.)
| |
Collapse
|
17
|
Tang W, Xu QH, Chen X, Guo W, Ao Z, Fu K, Ji T, Zou Y, Chen JJ, Zhang Y. Transcriptome sequencing reveals the effects of circRNA on testicular development and spermatogenesis in Qianbei Ma goats. Front Vet Sci 2023; 10:1167758. [PMID: 37180060 PMCID: PMC10172654 DOI: 10.3389/fvets.2023.1167758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023] Open
Abstract
Circular RNAs (circRNAs) play an important role in regulating the mammalian reproductive system, especially testicular development and spermatogenesis. However, their functions in testicular development and spermatogenesis in the Qianbei Ma goat, the Guizhou endemic breed are still unclear. In this study, tissue sectioning and circRNAs transcriptome analysis were conducted to compare the changes of morphology and circular RNAs gene expression profile at four different developmental stages (0Y, 0-month-old; 6Y, 6-month-old; 12Y, 12-month-old; 18Y, 18-month-old). The results showed that the circumferences and area of the seminiferous tubule gradually increased with age, and the lumen of the seminiferous tubule in the testis differentiated significantly. 12,784 circRNAs were detected from testicular tissues at four different developmental stages by RNA sequencing, and 8,140 DEcircRNAs (differentially expressed circRNAs) were found in 0Y vs. 6Y, 6Y vs. 12Y, 12Y vs. 18Y and 0Y vs. 18Y, 0Y vs. 12Y, 6Y vs. 18Y Functional enrichment analysis of the source genes showed that they were mainly enriched in testicular development and spermatogenesis. In addition, the miRNAs and mRNAs associated with DECircRNAs in 6 control groups were predicted by bioinformatics, and 81 highly expressed DECircRNAs and their associated miRNAs and mRNAs were selected to construct the ceRNA network. Through functional enrichment analysis of the target genes of circRNAs in the network, some candidate circRNAs related to testicular development and spermatogenesis were obtained. Such as circRNA_07172, circRNA_04859, circRNA_07832, circRNA_00032 and circRNA_07510. These results will help to reveal the mechanism of circRNAs in testicular development and spermatogenesis, and also provide some guidance for goat reproduction.
Collapse
Affiliation(s)
- Wen Tang
- College of Life Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Qiang Hou Xu
- College of Life Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
- *Correspondence: Qiang Hou Xu,
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
- Xiang Chen,
| | - Wei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Zheng Ao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Kaibin Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Taotao Ji
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Yue Zou
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Jing Jia Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Yuan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
18
|
Chen M, Liu Q, Song M, Liu X, Huang K, Zhong D, Chen Y, Jiang M, Sun J, Ouyang Y, Sooranna SR, Shi D, Li H. CircCLTH promotes skeletal muscle development and regeneration. Epigenetics 2022; 17:2296-2317. [PMID: 36043316 PMCID: PMC9665157 DOI: 10.1080/15592294.2022.2117115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 11/03/2022] Open
Abstract
Buffalo holds an excellent potential for beef production, and circRNA plays an important role in regulating myogenesis. However, the regulatory mechanism of circRNAs during buffalo skeletal muscle development has not been fully explored. In this study, circRNA expression profiles during the proliferation and differentiation stages of buffalo myoblasts were analysed by RNA-seq. Here, a total of 3,142 circRNAs candidates were identified, and 110 of them were found to be differentially expressed in the proliferation and differentiation stages of buffalo myoblast libraries. We focused on a 347 nt circRNA subsequently named circCLTH. It consists of three exons and is expressed specifically in muscle tissues. It is a highly conserved non-coding RNA with about 95% homology to both the human and the mouse circRNAs. The results of cell experiments and RNA pull-down assays indicated that circCLTH may capture PLEC protein, promote the proliferation and differentiation of myoblasts as well as inhibit apoptosis. Overexpression of circCLTH in vivo suggests that circCLTH is involved in the stimulation of skeletal muscle regeneration. In conclusion, we identified a novel noncoding regulator, circCLTH, that promotes proliferation and differentiation of myoblasts and skeletal muscles.
Collapse
Affiliation(s)
- Mengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Mingming Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xingyu Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kongwei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Dandan Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yaling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Mingsheng Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Yiqiang Ouyang
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Suren R Sooranna
- Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
19
|
Wang J, Chen JF, Ma Q, Mo DL, Sun JJ, Ren QL, Zhang JQ, Lu QX, Xing BS. Identification and characterization of circRNAs related to meat quality during embryonic development of the longissimus dorsi muscle in two pig breeds. Front Genet 2022; 13:1019687. [PMID: 36457752 PMCID: PMC9705349 DOI: 10.3389/fgene.2022.1019687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/27/2022] [Indexed: 11/26/2023] Open
Abstract
Meat quality, an important economic trait, is regulated by many factors, especially by genetic factors, including coding genes, miRNAs, and lncRNAs. Recent studies have elucidated that circRNAs also play a key role in muscle development and lipid deposition. However, the functions and regulatory mechanisms of circRNAs in meat quality remain mostly unknown. The circRNA expression profiles between Huainan pigs (Chinese indigenous pigs, fat-type, Huainan HN) and Large White pigs (Western commercial pigs, lean-type, LW) in the longissimus dorsi (LD) muscle at 38, 58, and 78 days post conception (dpc) were compared by sequencing. In total, 39,887 circRNAs were identified in 18 samples, and 60, 78, and 86 differentially expressed circRNAs (DECs) were found at the three stages mentioned above between these two breeds. The parent genes of DECs were enriched in myogenesis, proliferation, adipogenesis and muscle fiber-type transition. The circRNA-miRNA interaction networks included 38 DECs and 47 miRNAs, and these miRNAs were involved in muscle development and lipid metabolism. Two shared DECs (circ_0030593 and circ_0032760) of these three stages were selected, their head-to-tail junction sites were validated by Sanger sequencing, and RT‒qPCR results suggested that these two DECs might be involved in intramuscular fat deposition. These findings provide a basis for understanding the role of circRNAs in meat quality.
Collapse
Affiliation(s)
- Jing Wang
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jun-Feng Chen
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qiang Ma
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - De-Lin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-Jie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Laboratory for Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qiao-Ling Ren
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jia-Qing Zhang
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qing-Xia Lu
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Bao-Song Xing
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
20
|
Zhang S, Jiang E, Kang Z, Bi Y, Liu H, Xu H, Wang Z, Lei C, Chen H, Lan X. CircRNA Profiling Reveals an Abundant circBDP1 that Regulates Bovine Fat Development by Sponging miR-181b/miR-204 Targeting Sirt1/TRARG1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14312-14328. [PMID: 36269615 DOI: 10.1021/acs.jafc.2c05939] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The proliferation and differentiation of preadipocytes is an important factor determining bovine fat development, which is closely related to the feed conversion ratio, carcass traits, and beef quality. The purpose of this study was to identify the effects of candidate circRNA and miRNA on the proliferation and differentiation of bovine preadipocytes in order to provide basic materials for molecular breeding in cattle. circRNA sequencing was performed on bovine adipocyte samples at different differentiation time points, and a total of 1830 differentially expressed circRNAs were identified. Among them, circBDP1, derived from the bovine BDP1 gene, has potential binding sites for miR-204 (known as a regulator of bovine fat development) and miR-181b, which gives us a hint that circBDP1 may regulate bovine fat development by adsorbing miR-204 and miR-181b. Here, our results revealed that circBDP1 overexpression promoted the proliferation and differentiation of bovine preadipocytes. The miRNA profile of bovine adipocytes at different differentiation time points was also analyzed using the small RNA sequencing method, and a total of 89 differentially expressed miRNAs were identified, including miR-204 and miR-181b. As expected, dual-luciferase reporter results showed that circBDP1 competitively adsorbed miR-181b and miR-204. Overexpression and interference of miR-181b in bovine preadipocytes and 3T3-L1 showed that miR-181b promoted the proliferation and differentiation of preadipocytes. Further results displayed that miR-181b and miR-204 simultaneously targeted the SIRT1 gene, and miR-204 also targeted the 3' UTR region of the TRARG1 gene. In summary, this study found that miR-181b and miR-204 were involved in fat development by targeting SIRT1 and TRARG1. The results of this study will lay a foundation for the research of fat development and beef cattle industry.
Collapse
Affiliation(s)
- Sihuan Zhang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei230036, P.R. China
| | - Enhui Jiang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Zihong Kang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100193, China
| | - Yi Bi
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Hongfei Liu
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Han Xu
- School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong510006, China
| | - Zhen Wang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Chuzhao Lei
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Hong Chen
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
| | - Xianyong Lan
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi712100, China
| |
Collapse
|
21
|
Sun X, Kang Y, Li M, Li Y, Song J. The emerging regulatory mechanisms and biological function of circular RNAs in skeletal muscle development. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - GENE REGULATORY MECHANISMS 2022; 1865:194888. [DOI: 10.1016/j.bbagrm.2022.194888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022]
|
22
|
Zhang J, Raza SHA, Wei D, Yaping S, Chao J, Jin W, Almohaimeed HM, A Batarfi M, Assiri R, Aggad WS, Ghalib SH, Ageeli AA. Roles of MEF2A and MyoG in the transcriptional regulation of bovine LATS2 gene. Res Vet Sci 2022; 152:417-426. [PMID: 36126508 DOI: 10.1016/j.rvsc.2022.08.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/16/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022]
Abstract
As an important downstream effector gene in the hippo signaling pathway, large tumor suppressor gene 2 (LATS2) is involved in cell proliferation and differentiation, organ size and tissue regeneration, and plays an important role in regulating the growth and development of animal muscles. The purpose of this study is to explore the temporal expression of bovine LATS2 gene, and determine the key transcription factors for regulating bovine LATS2 gene. The result showed that bovine LATS2 gene was highly expressed in liver and longissimus dorsi, and was up-regulated in infancy muscle. In addition, it was highly expressed on the 2th day during the differentiation stage of myoblast. The upstream 1.7 Kb sequence of the 5 'translation region of bovine LATS2 gene was cloned, and 7 different deletion fragments were amplified by the upstream primers. These fragments were constructed into double luciferase reporter vectors and transfected into myoblasts and myotubes cells, respectively to detect the core promoter regions. In addition, the key transcription factors of the core promoter sequence of the bovine LATS2 gene were analyzed and predicted by online software. Combining with site-directed mutations, siRNA interference and chromatin immunoprecipitation technology, it was identified that MEF2A and MyoG combined in core promoter region (-248/-56) to regulate the transcription activity of bovine LATS2 gene. The results have laid a theoretical foundation for exploring the molecular regulation mechanism of LATS2 gene in the process of muscle growth.
Collapse
Affiliation(s)
- Jiupan Zhang
- Institute of Animal Sciences, Ningxia Academy of agricultural and Forestry Sciences, Yinchuan 750021, China
| | | | - Dawei Wei
- School of Agriculture, Ningxia University, Yinchuan 750021, China.
| | - Song Yaping
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Jiang Chao
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Wang Jin
- Institute of Animal Sciences, Ningxia Academy of agricultural and Forestry Sciences, Yinchuan 750021, China
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Munirah A Batarfi
- Department of Anatomy, Basic medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Rasha Assiri
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Waheeb S Aggad
- Department of Anatomy, College of Medicine, University of Jeddah, P.O. Box 8304, Jeddah 23234, Saudi Arabia
| | - Samirah H Ghalib
- Chemistry department, Collage of Science (female section), Jazan University, Jazan 82621, Saudi Arabia
| | - Abeer A Ageeli
- Chemistry department, Collage of Science (female section), Jazan University, Jazan 82621, Saudi Arabia
| |
Collapse
|
23
|
Ma L, Chen W, Li S, Qin M, Zeng Y. Identification and Functional Prediction of Circular RNAs Related to Growth Traits and Skeletal Muscle Development in Duroc pigs. Front Genet 2022; 13:858763. [PMID: 36118900 PMCID: PMC9478749 DOI: 10.3389/fgene.2022.858763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine skeletal muscle is a highly heterogeneous tissue type, and the Longissimus Dorsi muscle (LDM), as the most economical and physiologically metabolized skeletal muscle in pigs, has always been the focus of research and improvement in pig molecular breeding. Circular RNA, as an important new member of regulatory non-coding RNA after microRNA, has become a frontier hot spot in life science research. This study aims to explore candidate circRNAs related to growth, meat quality, and skeletal muscle development among Duroc pigs with different average daily gain (ADG). Eight pigs were selected and divided into two groups: H group (high-ADG) and L group (low-ADG), followed by RNA-Seq analysis to identify circRNAs. The results showed that backfat at 6-7 rib (BF) and Intramuscular fat (IMF) content in the H group was significantly lower than L group, but ribeye area (REA) in the H group was higher than in the L group. In RNA-seq, 296 Differentially expressed (DE) circRNAs (157 upregulated and 139 downregulated) were identified and exons flanking long introns are easier to circularize to produce circRNAs. Most of the DE circRNAs were enriched in Quantitative trait locus (QTL) regions related to meat quality and growth traits. In addition, a gene can produce one or more circRNA transcripts. It was also found that the source genes of DE circRNAs were enriched in MAPK, FoXO, mTOR, PI3K-Akt, and Wnt signaling pathways. The results showed that different ADG, carcass, and meat quality traits among half-sibling Duroc pigs with the same diet may be due to the DE circRNAs related to skeletal muscle growth and development.
Collapse
Affiliation(s)
- Lixia Ma
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an City, China
| | - Wei Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an City, China
| | - Shiyin Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an City, China
| | - Ming Qin
- Institute of Animal Science and Veterinary Medicine, Yantai Academy of Agricultural Sciences, Yantai City, China
| | - Yongqing Zeng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an City, China
- *Correspondence: Yongqing Zeng,
| |
Collapse
|
24
|
Gao Y, Wang S, Ma Y, Lei Z, Ma Y. Circular RNA regulation of fat deposition and muscle development in cattle. Vet Med Sci 2022; 8:2104-2113. [PMID: 35689831 PMCID: PMC9514475 DOI: 10.1002/vms3.857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Circular RNAs (circRNAs) are important transcriptional regulatory RNA molecule that can regulate the transcription of downstream genes by competitive binding of miRNAs or coding proteins or by blocking mRNAs translation. Numerous studies have shown that circRNAs are extensively involved in cell proliferation, differentiation and apoptosis, gene transcription and signal transduction. Fat deposition and muscle development have important effects on beef traits. CircRNAs are involved in regulating bovine fat and muscle cells and are differentially expressed in the tissues composed of these cells, suggesting that circRNAs play an important role in regulating bovine fat formation and muscle development. This review describes differential expression of circRNAs in bovine fat and muscle tissues, research progress in understanding how circRNAs regulate the proliferation and differentiation of bovine fat and muscle cells through competing endogenous RNAs networks, and provide a reference for the subsequent research on the molecular mechanism of circRNAs in regulating fat deposition and muscle development in cattle.
Collapse
Affiliation(s)
- Yuhong Gao
- Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia Hui Autonomous Region, School of Agriculture Ningxia University Yinchuan China
| | - Shuzhe Wang
- Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia Hui Autonomous Region, School of Agriculture Ningxia University Yinchuan China
| | - Yanfen Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia Hui Autonomous Region, School of Agriculture Ningxia University Yinchuan China
| | - Zhaoxiong Lei
- Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia Hui Autonomous Region, School of Agriculture Ningxia University Yinchuan China
| | - Yun Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia Hui Autonomous Region, School of Agriculture Ningxia University Yinchuan China
| |
Collapse
|
25
|
Zhang N, Xu G, Sun P, Wang S, Zhu Y, Duan S, Jiang M, Li H, Wei X, Ma Y. Buffalo long non-coding RNA gene11007 promotes myoblasts proliferation. Front Vet Sci 2022; 9:857044. [PMID: 36032282 PMCID: PMC9404873 DOI: 10.3389/fvets.2022.857044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022] Open
Abstract
Buffalo meat is of good quality because it is lean and tender, and could bring significant cardiovascular benefits. The underlying difference in muscle development and meat quality is a complex and precisely orchestrated process which has been demonstrated to be regulated by long non-coding RNAs (lncRNAs). However, the regulatory role of lncRNAs in the growth and development of buffalo skeletal muscle is still unclear. In this study, the Ribo-Zero RNA-Seq method was used to explore the lncRNA expression profiles of buffalo myoblasts during the proliferation and differentiation phases. A specific set of 9,978 lncRNAs was found. By comparing the expression profiles of lncRNAs, it was found that there were 1,576 differentially expressed lncRNAs (DELs) during buffalo myoblast differentiation. Twelve DELs were chosen and subsequently verified in eight different buffalo tissues during fetal and adult stages by using qPCR. Gene11007 was found to be one of the most down-regulated lncRNAs during buffalo myoblasts differentiation and it was subsequently characterized. EdU, CCK-8, qPCR and western blotting assays showed that gene11007 promoted the proliferation of buffalo myoblasts but it had no effect on cell differentiation. Our research may enrich the genome annotations of buffalo and provide a new molecular target for the in-depth understanding of the regulation of lncRNAs in skeletal muscle.
Collapse
Affiliation(s)
- Ning Zhang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Gaoxiao Xu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Ping Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Shuzhe Wang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Yunchang Zhu
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, China
| | - Saixing Duan
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Mingsheng Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xuefeng Wei
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, China
- *Correspondence: Xuefeng Wei
| | - Yun Ma
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, China
- Yun Ma
| |
Collapse
|
26
|
Zhang R, Pan Y, Feng W, Zhao Y, Yang Y, Wang L, Zhang Y, Cheng J, Jiang Q, Zheng Z, Jiang M, Yang S, Deng Y, Shi D, Wei Y. HDAC11 Regulates the Proliferation of Bovine Muscle Stem Cells through the Notch Signaling Pathway and Inhibits Muscle Regeneration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9166-9178. [PMID: 35837734 DOI: 10.1021/acs.jafc.2c03384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Myogenesis is an essential process that can affect the yield and quality of beef. Transcriptional studies have shown that histone deacetylase 11 (HDAC11) was differentially expressed in muscle tissues of 6 and 18 month old Longlin cattle, but its role in the regulation of myogenesis remains unclear. This study aimed to determine the role of HDAC11 in the proliferation and differentiation of bovine muscle stem cells (MuSCs). HDAC11 promoted MuSC proliferation by activating Notch signaling and inhibited myoblast differentiation by reducing MyoD1 transcription. In addition, overexpression of HDAC11 inhibited the repair regeneration process of muscle in mice. HDAC11 was found to be a novel key target for the control of myogenesis, and this is a theoretical basis for the development of HDAC11-specific modulators as a new strategy to regulate myogenesis.
Collapse
Affiliation(s)
- Ruimen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Yu Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Wanyou Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Yimin Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Yanyan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Leyi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Yongwang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Juanru Cheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Qinyang Jiang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zihua Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Institute for Agricultural and Animal Husbandry Industry Development, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Mingsheng Jiang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Sufang Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, International Zhuang Medical Hospital Affiliated to Guangxi University Chinese Medicine, Nanning, Guangxi 530000, People's Republic of China
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Yingming Wei
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| |
Collapse
|
27
|
Huang J, Guo D, Zhu R, Feng Y, Li R, Yang X, Shi D. FATP1 Exerts Variable Effects on Adipogenic Differentiation and Proliferation in Cells Derived From Muscle and Adipose Tissue. Front Vet Sci 2022; 9:904879. [PMID: 35898540 PMCID: PMC9310014 DOI: 10.3389/fvets.2022.904879] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
In livestock, intramuscular adipose tissue is highly valued whereas adipose tissue in other depots is considered as waste. Thus, genetic factors that favor fat deposition in intramuscular compartments over that in other adipose depots are highly desirable in meat-producing animals. Fatty acid transport 1 (FATP1) has been demonstrated to promote cellular fatty acid uptake and metabolism; however, whether it also influences cellular lipid accumulation remains unclear. In the present study, we investigated the effects of FATP1 on the differentiation and proliferation of adipocytes in five types of cells derived from muscle and adipose tissue and estimated the effects of FATP1 on intramuscular fat (IMF) deposition. We showed that FATP1 is mainly expressed in heart and muscle tissue in buffaloes as well as cells undergoing adipogenic differentiation. Importantly, we found that FATP1 promoted the adipogenic differentiation of muscle-derived cells (buffalo myocytes and intramuscular preadipocytes and mouse C2C12 cells) but did not affect, or even inhibited, that of adipose-derived cells (buffalo subcutaneous preadipocytes and mouse 3T3-L1 cells, respectively). Correspondingly, our results further indicated that FATP1 promotes IMF deposition in mice in vivo. Meanwhile, FATP1 was found to enhance the proliferative activity of all the assessed cells, except murine 3T3-L1 cells. These results provide new insights into the potential effects of FATP1 on IMF deposition, especially regarding its positive effects on meat quality in buffaloes and other livestock.
Collapse
|
28
|
Zhang X, Yang S, Kang Z, Ru W, Shen X, Li M, Lan X, Chen H. circMEF2D Negatively Regulated by HNRNPA1 Inhibits Proliferation and Differentiation of Myoblasts via miR-486-PI3K/AKT Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8145-8163. [PMID: 35749701 DOI: 10.1021/acs.jafc.2c01888] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Circular RNA (circRNA) is a form of endogenous RNA that can regulate gene expression and participate in the regulation of myogenesis. However, the molecular mechanisms and potential roles of circRNAs in bovine muscle development remain largely unknown. Nevertheless, the RNA splicing factors regulating the biogenesis of bovine circRNA have not yet been characterized. In this study, we identified a novel circRNA, circMEF2D, formed by back-splicing of constitutive exons (exons 5-7) of the bovine MEF2D gene. Functional assays showed that circMEF2D inhibited the proliferation and differentiation of bovine myoblasts. Importantly, we showed that circMEF2D regulated the PI3K-AKT signaling pathway through direct and competitive binding to miR-486. Furthermore, to explore the formation mechanism of circMEF2D, we explored the MEF2D gene alternative splicing progress. Four alternative linear variants of MEF2D were found. Due to its role in alternative splicing, the RNA-binding protein HNRNPA1 was selected for further study and the modulation of HNRNPA1 levels showed that it negatively regulated both back-splicing and linear splicing of MEF2D gene. Overall, in addition to the characterization of bovine circRNAs, these findings revealed the crucial role of HNRNPA1 in MEF2D gene alternative splicing and demonstrated a regulatory circMEF2D-miR-486-PI3K-AKT axis.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Shuling Yang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Zihong Kang
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Wenxiu Ru
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Xuemei Shen
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Meng Li
- Cargill Animal Nutrition (Shaanxi) Co., Ltd, Yangling, 712100 Shaanxi, China
| | - Xianyong Lan
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Hong Chen
- Key laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
29
|
Bai Y, Ding X, Liu Z, Shen J, Huang Y. Identification and functional analysis of circRNAs in the skeletal muscle of juvenile and adult largemouth bass (Micropterus salmoides). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100969. [PMID: 35150971 DOI: 10.1016/j.cbd.2022.100969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/06/2022] [Accepted: 01/28/2022] [Indexed: 12/13/2022]
Abstract
Circular RNA (circRNA) is a novel emerging type of endogenous regulatory non-coding RNA molecules with a covalent closed-loop configuration, which exerts important functions in multiple biological processes. CircRNAs are known to regulate gene expression as functional regulators interacting with miRNAs by sponge, which have been reported to regulate skeletal muscle development. Nevertheless, the information of circRNAs involved in regulating muscle growth and development in fish is largely unknown. Here, we first identified 312 and 511 circRNAs in skeletal muscle of juvenile and adult largemouth bass (LMB) using RNA sequencing, respectively. The differentially expressed circRNAs (DE-circRNAs) analysis showed that there are 44 DE-circRNAs at two different skeletal muscle growth stages. Six circRNAs were chosen randomly and their relative expression levels in juvenile and adult LMB were confirmed by real-time PCR, indicating that these circRNAs were existed authenticity. In addition, Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis showed that these hose genes (their linear mRNAs) of DE-circRNAs were mainly enriched in the regulation of actin cytoskeleton signaling pathways. The circRNA-miRNA interaction regulatory networks indicated that one circRNA can regulate one or more miRNA. For instance, more than 30 miRNAs were regulated by two circRNAs (circRNA389 and circRNA399). Of them, the muscle-related miRNAs including the let-7 family, miR-133 and miR-26 and so on were found acting as miRNAs sponge regulated by circRNAs, indicating the roles of circRNAs in regulating muscle growth-related genes expression. Overall, these findings will not only broaden our understanding of circRNAs regulation mechanisms underlying muscle growth and development in LMB but also provides a novel clue for further functional research in carnivorous fish genetic breeding.
Collapse
Affiliation(s)
- Yuhe Bai
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Xinyu Ding
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Zezhong Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Junfei Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Yong Huang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China.
| |
Collapse
|
30
|
Wei N, Song H. Circ‐0002814 participates in proliferation and migration through miR‐210 and FUS/VEGF pathway of preeclampsia. J Obstet Gynaecol Res 2022; 48:1698-1709. [PMID: 35644449 DOI: 10.1111/jog.15297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/10/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Na Wei
- Department of Obstetrics, Guizhou Provincial People's Hospital Guiyang Guizhou China
| | - Hongbi Song
- Department of Obstetrics, Guizhou Provincial People's Hospital Guiyang Guizhou China
| |
Collapse
|
31
|
Bao G, Zhao F, Wang J, Liu X, Hu J, Shi B, Wen Y, Zhao L, Luo Y, Li S. Characterization of the circRNA–miRNA–mRNA Network to Reveal the Potential Functional ceRNAs Associated With Dynamic Changes in the Meat Quality of the Longissimus Thoracis Muscle in Tibetan Sheep at Different Growth Stages. Front Vet Sci 2022; 9:803758. [PMID: 35433904 PMCID: PMC9011000 DOI: 10.3389/fvets.2022.803758] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/23/2022] [Indexed: 01/22/2023] Open
Abstract
Circular RNAs (circRNAs) have a regulatory role in animal skeletal muscle development. In this study, RNA sequencing was performed to reveal the temporal regularity of circRNA expression and the effect of the circRNA–miRNA–mRNA ceRNA regulatory network on the meat quality of longissimus thoracis (LT) muscle in Tibetan sheep at different growth stages (4 months old, 4 m; 1.5 years old, 1.5 y; 3.5 years old, 3.5 y; 6 years old, 6 y). There were differences in the carcass performance and meat quality of Tibetan sheep at different ages. Especially, the meat tenderness significantly decreased (p < 0.05) with the increase of age. GO functional enrichment indicated that the source genes of the DE circRNAs were mainly involved in the protein binding, and myofibril and organelle assembly. Moreover, there was a significant KEGG enrichment in the adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway, as well as the calcium signaling pathway, regulating the pluripotency of the stem cells. The circRNA–miRNA–mRNA ceRNA interaction network analysis indicated that circRNAs such as circ_000631, circ_000281, and circ_003400 combined with miR-29-3p and miR-185-5p regulate the expression of LEP, SCD, and FASN related to the transformation of muscle fiber types in the AMPK signaling pathway. The oxidized muscle fibers were transformed into the glycolytic muscle fibers with the increase of age, the content of intramuscular fat (IMF) was lowered, and the diameter of the muscle fiber was larger in the glycolytic muscle fibers, ultimately increasing the meat tenderness. The study revealed the role of the circRNAs in the transformation of skeletal muscle fiber types in Tibetan sheep and its influence on meat quality. It improves our understanding of the role of circRNAs in Tibetan sheep muscle development.
Collapse
Affiliation(s)
- Gaoliang Bao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fangfang Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuliang Wen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Li Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
32
|
Xu G, Hu Y, Yu D, Chen X, Li X, Duan S, Zhang N, Xu G, Hu J, Yang G, Sun S, Liu Y. Discovery of Differentially Expressed MicroRNAs in Porcine Ovaries With Smaller and Larger Litter Size. Front Genet 2022; 13:762124. [PMID: 35222529 PMCID: PMC8864311 DOI: 10.3389/fgene.2022.762124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
The number of live births in a litter is an important reproductive trait, and is one of the main indicators which reflect the production level and economic benefit of a pig farm. The ovary is an important reproductive organ of the sow, and it undergoes a series of biological processes during each estrous cycle. A complex transcriptional network containing coding and non-coding RNAs in the ovary closely regulates the reproductive capability of sows. However, the molecular regulation mechanisms affecting sow litter size are still unclear. We investigated the expression profiles of microRNAs (miRNAs) in porcine ovaries from sows with smaller than average litter sizes (SLS) and those with larger litter sizes (LLS). In total, 411 miRNAs were identified, and of these 17 were significantly down-regulated and 16 miRNAs were up-regulated when comparing sows with LLS and SLS, respectively. We further characterized the role of miR-183 which was one of the most up-regulated miRNAs. CCK-8, EdU incorporation and western blotting assays demonstrated that miR-183 promoted the proliferation of granulosa cells (GCs) in pig ovaries. Moreover, miR-183 inhibited the synthesis of estradiol in GCs and promoted the synthesis of progesterone. These results will help in gaining understanding of the role of miRNAs in regulating porcine litter size.
Collapse
Affiliation(s)
- Gaoxiao Xu
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, China
- Teaching and Research Section of Biotechnology, Nanning University, Nanning, China
| | - Yamei Hu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A and F University, Yangling, China
| | - Dongling Yu
- Teaching and Research Section of Biotechnology, Nanning University, Nanning, China
| | - Xingfa Chen
- Nanning Dabeinong Feed Technology Co., Ltd., Nanning, China
| | - Xiao Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A and F University, Yangling, China
| | - Saixing Duan
- Teaching and Research Section of Biotechnology, Nanning University, Nanning, China
| | - Ning Zhang
- Nanning Dabeinong Feed Technology Co., Ltd., Nanning, China
| | - Gaoyu Xu
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, China
| | - Jianhong Hu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A and F University, Yangling, China
| | - Gongshe Yang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A and F University, Yangling, China
| | - Shiduo Sun
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A and F University, Yangling, China
| | - Yong Liu
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, China
- *Correspondence: Yong Liu,
| |
Collapse
|
33
|
Yang Y, Wang Y, Shan H, Zheng Y, Xuan Z, Hu J, Wei M, Wang Z, Liu Q, Li Z. Novel Insights into the Differences in Nutrition Value, Gene Regulation and Network Organization between Muscles from Pasture-Fed and Barn-Fed Goats. Foods 2022; 11:381. [PMID: 35159531 PMCID: PMC8834483 DOI: 10.3390/foods11030381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/04/2022] Open
Abstract
The physiological and biochemical characters of muscles derived from pasture-fed or barn-fed black goats were detected, and RNA-seq was performed to reveal the underlying molecular mechanisms to identify how the pasture feeding affected the nutrition and flavor of the meat. We found that the branched chain amino acids, unsaturated fatty acids, and zinc in the muscle of pasture-fed goats were significantly higher than those in the barn-fed group, while the heavy metal elements, cholesterol, and low-density lipoprotein cholesterol were significantly lower. RNA-seq results showed that 1761 genes and 147 lncRNA transcripts were significantly differentially expressed between the pasture-fed and barn-fed group. Further analysis found that the differentially expressed genes were mainly enriched in the myogenesis and Glycerophospholipid metabolism pathway. A functional analysis of the lncRNA transcripts further highlighted the difference in fatty acid metabolism between the two feeding models. Our study provides novel insights into the gene regulation and network organization of muscles and could be potentially used for improving the quality of mutton.
Collapse
Affiliation(s)
- Yufeng Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.Y.); (Y.W.); (H.S.); (Y.Z.); (J.H.); (Z.W.); (Q.L.)
| | - Yan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.Y.); (Y.W.); (H.S.); (Y.Z.); (J.H.); (Z.W.); (Q.L.)
| | - Huiquan Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.Y.); (Y.W.); (H.S.); (Y.Z.); (J.H.); (Z.W.); (Q.L.)
| | - Yalin Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.Y.); (Y.W.); (H.S.); (Y.Z.); (J.H.); (Z.W.); (Q.L.)
| | - Zeyi Xuan
- The Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning 530010, China; (Z.X.); (M.W.)
| | - Jinling Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.Y.); (Y.W.); (H.S.); (Y.Z.); (J.H.); (Z.W.); (Q.L.)
| | - Mingsong Wei
- The Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning 530010, China; (Z.X.); (M.W.)
| | - Zhiqiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.Y.); (Y.W.); (H.S.); (Y.Z.); (J.H.); (Z.W.); (Q.L.)
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.Y.); (Y.W.); (H.S.); (Y.Z.); (J.H.); (Z.W.); (Q.L.)
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.Y.); (Y.W.); (H.S.); (Y.Z.); (J.H.); (Z.W.); (Q.L.)
| |
Collapse
|
34
|
Zhang Z, Fan Y, Deng K, Liang Y, Zhang G, Gao X, El-Samahy MA, Zhang Y, Deng M, Wang F. Circular RNA circUSP13 sponges miR-29c to promote differentiation and inhibit apoptosis of goat myoblasts by targeting IGF1. FASEB J 2021; 36:e22097. [PMID: 34935184 DOI: 10.1096/fj.202101317r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/10/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022]
Abstract
Circular RNAs (circRNAs) are an indispensable element of post-transcriptional gene regulation, influencing a variety of biological processes including myogenic differentiation; however, little is known about the function of circRNA in goat myogenic differentiation. Using RNA-sequencing data from our laboratory, we explored the influences of circUSP13, as a candidate circRNA, on myoblast differentiation since its expression is higher in myoblasts of lamb (first day of age) than that of the fetus (75th day of pregnancy). In in vitro experiments, circUSP13 significantly promoted differentiation and inhibited apoptosis in goat primary myoblasts. Mechanistically, circUSP13 localized with miR-29c in the cytoplasm of goat myoblasts to regulate IGF1 expression. We further demonstrated that circUSP13 sponges miR-29c, promoting IGF1 expression that upregulated the expression of MyoG and MyHC. Thus, our results identified circUSP13 as a molecular marker for breeding programs of mutton production, as well as the circUSP13-miR-29c-IGF1 axis as a potential therapeutic target for combating muscle wasting.
Collapse
Affiliation(s)
- Zhen Zhang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Yixuan Fan
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Kaiping Deng
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Yaxu Liang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Guomin Zhang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Xiaoxiao Gao
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - M A El-Samahy
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Yanli Zhang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Mingtian Deng
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Feng Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
35
|
Qi K, Liu Y, Li C, Li X, Li X, Wang K, Qiao R, Han X. Construction of circRNA-related ceRNA networks in longissimus dorsi muscle of Queshan Black and Large White pigs. Mol Genet Genomics 2021; 297:101-112. [PMID: 34792645 DOI: 10.1007/s00438-021-01836-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/06/2021] [Indexed: 11/24/2022]
Abstract
Circular RNA (circRNA) is a class of non-coding RNA (ncRNA) that plays an important regulatory role in various biological processes of the organisms and has a major function in muscle growth and development. However, its molecular mechanisms of how it regulates pork quality remain unclear at present. In this study, we compared the longissimus dorsi (LD) muscle expression profiles of Queshan Black (QS) and Large White (LW) pigs to explore the role of circRNAs in meat quality using transcriptome sequencing. A total of 62 differentially expressed circRNAs (DECs), including 46 up- and 16 down-regulated, 39 differentially expressed miRNAs (DEmiRNAs), including 21 up- and 18 down-regulated and 404 differentially expressed mRNAs (DEMs), including 174 up- and 230 down-regulated were identified, and most circRNAs were composed of exons. Our results indicated that the DEC parent genes and DEMs were enriched in the positive regulation of fast-twitch skeletal muscle fiber contraction, relaxation of skeletal muscle, regulation of myoblast proliferation, AMPK signaling pathway, Wnt and Jak-STAT signaling pathway. Furthermore, circSETBP1/ssc-miR-149/PIK3CD and circGUCY2C/ssc-miR-425-3p/CFL1 were selected by constructing the competitive endogenous RNA (ceRNA) regulatory network, circSETBP1, circGUCY2C, PIK3CD and CFL1 had low expression level in QS, while ssc-miR-149 and ssc-miR-425-3p had higher expression level than LW, our analysis revealed that circSETBP1, circGUCY2C, ssc-miR-149, ssc-miR-425-3p, PIK3CD and CFL1 were associated with lipid regulation, cell proliferation and differentiation, so the two ceRNAs regulatory networks may play an important role in regulating intramuscular fat (IMF) deposition, thereby affecting pork quality. In conclusion, we described the gene regulation by the circRNA-miRNA-mRNA ceRNA networks by comparing QS and LW pigs LD muscle transcriptome, and the two new circRNA-associated ceRNA regulatory networks that could help to elucidate the formation mechanism of pork quality. The results provide a theoretical basis for further understanding the genetic mechanism of meat quality formation.
Collapse
Affiliation(s)
- Kunlong Qi
- College of Animal Science and Technology, Henan Agricultural University, No.218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, China
| | - Yingke Liu
- College of Animal Science and Technology, Henan Agricultural University, No.218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, China
| | - Chenlei Li
- College of Animal Science and Technology, Henan Agricultural University, No.218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, China
| | - Xinjian Li
- College of Animal Science and Technology, Henan Agricultural University, No.218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, China
| | - Xiuling Li
- College of Animal Science and Technology, Henan Agricultural University, No.218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, No.218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, China
| | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, No.218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, China
| | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, No.218 Ping'an Avenue, Zhengdong New District, Zhengzhou, 450046, China.
| |
Collapse
|
36
|
Zhang R, Wang J, Xiao Z, Zou C, An Q, Li H, Zhou X, Wu Z, Shi D, Deng Y, Yang S, Wei Y. The Expression Profiles of mRNAs and lncRNAs in Buffalo Muscle Stem Cells Driving Myogenic Differentiation. Front Genet 2021; 12:643497. [PMID: 34306003 PMCID: PMC8294193 DOI: 10.3389/fgene.2021.643497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Buffalo breeding has become an important branch of the beef cattle industry. Hence, it is of great significance to study buffalo meat production and meat quality. However, the expression profiles of mRNA and long non-coding RNAs (lncRNA) molecules in muscle stem cells (MuSCs) development in buffalo have not been explored fully. We, therefore, performed mRNA and lncRNA expression profiling analysis during the proliferation and differentiation phases of MuSCs in buffalo. The results showed that there were 4,820 differentially expressed genes as well as 12,227 mRNAs and 1,352 lncRNAs. These genes were shown to be enriched in essential biological processes such as cell cycle, p53 signaling pathway, RNA transport and calcium signaling pathway. We also identified a number of functionally important genes, such as MCMC4, SERDINE1, ISLR, LOC102394806, and LOC102403551, and found that interference with MYLPF expression significantly inhibited the differentiation of MuSCs. In conclusion, our research revealed the characteristics of mRNA and lncRNA expression during the differentiation of buffalo MuSCs. This study can be used as an important reference for the study of RNA regulation during muscle development in buffalo.
Collapse
Affiliation(s)
- Ruimen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Jinling Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Zhengzhong Xiao
- The Animal Husbandry Research Institute of Guangxi Autonomous, Nanning, China
| | - Chaoxia Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Qiang An
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Xiaoqing Zhou
- The Animal Husbandry Research Institute of Guangxi Autonomous, Nanning, China
| | - Zhuyue Wu
- The Animal Husbandry Research Institute of Guangxi Autonomous, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Sufang Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China.,International Zhuang Medical Hospital Affiliated to Guangxi University Chinese Medicine, Nanning, China
| | - Yingming Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| |
Collapse
|
37
|
Yang Z, He T, Chen Q. The Roles of CircRNAs in Regulating Muscle Development of Livestock Animals. Front Cell Dev Biol 2021; 9:619329. [PMID: 33748107 PMCID: PMC7973088 DOI: 10.3389/fcell.2021.619329] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/18/2021] [Indexed: 12/25/2022] Open
Abstract
The muscle growth and development of livestock animals is a complex, multistage process, which is regulated by many factors, especially the genes related to muscle development. In recent years, it has been reported frequently that circular RNAs (circRNAs) are involved widely in cell proliferation, cell differentiation, and body development (including muscle development). However, the research on circRNAs in muscle growth and development of livestock animals is still in its infancy. In this paper, we briefly introduce the discovery, classification, biogenesis, biological function, and degradation of circRNAs and focus on the molecular mechanism and mode of action of circRNAs as competitive endogenous RNAs in the muscle development of livestock and poultry. In addition, we also discuss the regulatory mechanism of circRNAs on muscle development in livestock in terms of transcription, translation, and mRNAs. The purpose of this article is to discuss the multiple regulatory roles of circRNAs in the process of muscle development in livestock, to provide new ideas for the development of a new co-expression regulation network, and to lay a foundation for enriching livestock breeding and improving livestock economic traits.
Collapse
Affiliation(s)
- Zhenguo Yang
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Tianle He
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Qingyun Chen
- Laboratory for Bio-Feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
38
|
Functional Role of circRNAs in the Regulation of Fetal Development, Muscle Development, and Lactation in Livestock. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5383210. [PMID: 33688493 PMCID: PMC7914090 DOI: 10.1155/2021/5383210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 01/23/2021] [Accepted: 02/05/2021] [Indexed: 01/04/2023]
Abstract
circRNAs are a class of endogenous noncoding RNA molecules with closed loop structures. They are mainly responsible for regulating gene expression in eukaryotic cells. With the emergence of high-throughput RNA sequencing (RNA-Seq) and new types of bioinformatics tools, thousands of circRNAs have been discovered, making circRNA one of the research hotspots. Recent studies have shown that circRNAs play an important regulatory role in the growth, reproduction, and formation of livestock products. They can not only regulate mammalian fetal growth and development but also have important regulatory effects on livestock muscle development and lactation. In this review, we briefly introduce the putative biogenic pathways and regulatory functions of circRNA and highlight our understanding of circRNA and its latest advances in fetal development, muscle development, and lactation biogenesis as well as expression in livestock. This review will provide a theoretical basis for the research and development of related industries.
Collapse
|