1
|
Wang G, Liang S, Lang J, Ying J, Shan Z, Lv L, Li B, Yang H. Design, synthesis and structure-activity relationship of novel pyrazole-4-carboxamide derivatives. PEST MANAGEMENT SCIENCE 2025; 81:119-126. [PMID: 39243160 DOI: 10.1002/ps.8410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/13/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Plant diseases seriously decrease the yield and quality of agricultural crops. Fungicide treatments remain the main means of field fungi control. However, the residual activity of fungicides is rapidly reduced due to various factors in the natural environment, therefore the development of agents with novel modes of action is desirable. It is highly required to design and develop new fungicides to address the resistance issue. Designing low impact chemicals to safely and sustainably address needs of agriculture. RESULTS In this work, we used the highly active fluxapyroxad and flutolanil as parent structures, to design and synthesize a series of pyrazole-4-carboxamide derivatives. Some of the pyrazole-4-carboxamide derivatives exhibit fungicidal activities that are comparable to or higher than those of the commercialized fungicides fluxapyroxad and bixafen. In particular, compounds TM-1, TM-2, TM-3, TM-4, TM-5, TM-7 and TM-8 showed excellent fungicidal activities against corn rust that were 2-4 times higher than those of fluxapyroxad and bixafen. Field trial results demonstrated that at the same dosage levels, compound TM-2 exhibited comparable field control efficacy against wheat rust as compared to triadimefon and pyrazophenamide. Molecular docking simulations reveal that compound TM-2 interacts with TRP 173 of succinate dehydrogenase (SDH) through hydrogen bonding, which could explain the probable mechanism of action between compound TM-2 and the target protein. CONCLUSION These results indicate that compound TM-2 may be a promising fungicide candidate and provide valuable reference for further investigation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Company Ltd, Shenyang, P. R. China
| | - Shuang Liang
- State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Company Ltd, Shenyang, P. R. China
| | - Jie Lang
- State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Company Ltd, Shenyang, P. R. China
| | - Junwu Ying
- State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Company Ltd, Shenyang, P. R. China
| | - Zhonggang Shan
- State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Company Ltd, Shenyang, P. R. China
| | - Liang Lv
- State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Company Ltd, Shenyang, P. R. China
| | - Bin Li
- State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Company Ltd, Shenyang, P. R. China
| | - Huibin Yang
- State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Company Ltd, Shenyang, P. R. China
| |
Collapse
|
2
|
Panayides JL, Riley DL, Hasenmaile F, van Otterlo WAL. The role of silicon in drug discovery: a review. RSC Med Chem 2024; 15:3286-3344. [PMID: 39430101 PMCID: PMC11484438 DOI: 10.1039/d4md00169a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/07/2024] [Indexed: 10/22/2024] Open
Abstract
This review aims to highlight the role of silicon in drug discovery. Silicon and carbon are often regarded as being similar with silicon located directly beneath carbon in the same group in the periodic table. That being noted, in many instances a clear dichotomy also exists between silicon and carbon, and these differences often lead to vastly different physiochemical and biological properties. As a result, the utility of silicon in drug discovery has attracted significant attention and has grown rapidly over the past decade. This review showcases some recent advances in synthetic organosilicon chemistry and examples of the ways in which silicon has been employed in the drug-discovery field.
Collapse
Affiliation(s)
- Jenny-Lee Panayides
- Pharmaceutical Technologies, Future Production: Chemicals, Council for Scientific and Industrial Research (CSIR) Meiring Naude Road, Brummeria Pretoria South Africa
| | - Darren Lyall Riley
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria Lynnwood Road Pretoria South Africa
| | - Felix Hasenmaile
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| |
Collapse
|
3
|
Zhang W, Guo P, Zhang Y, Zhou Q, Sun Y, Xu H. Application of Difluoromethyl Isosteres in the Design of Pesticide Active Molecules. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21344-21363. [PMID: 39305256 DOI: 10.1021/acs.jafc.4c04239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Difluoromethyl (CF2H) groups have been found in many listed pesticides due to their unique physical and chemical properties and outstanding biological activity. In pesticide molecules, compared with the drastic changes brought by trifluoromethyl, difluoromethyl usually moderately regulates the metabolic stability, lipophilicity, bioavailability, and binding affinity of compounds. Therefore, difluoromethylation has become an effective means to modify the biological activity of pesticide molecules. This paper reviews the representative literatures and patents containing difluoromethyl groups in the past 10 years, and introduces the research progress. The aim is to provide an effective reference value for the study of difluoromethyl in pesticides.
Collapse
Affiliation(s)
- Wanjie Zhang
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Pengxiang Guo
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Yannian Zhang
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Qin Zhou
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Yan Sun
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Hongliang Xu
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
4
|
Cheng L, Zhou C, Yuan Q, Zhang L, Shao X, Xu X, Li Z, Cheng J. 3D-QSAR model-oriented optimization of Pyrazole β-Ketonitrile derivatives with diphenyl ether moiety as novel potent succinate dehydrogenase inhibitors. PEST MANAGEMENT SCIENCE 2024; 80:5299-5306. [PMID: 38940289 DOI: 10.1002/ps.8269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/08/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Succinate dehydrogenase inhibitor (SDHI) fungicides play important roles in the control of plant fungal diseases. However, they are facing serious challenges from issues with resistance and cross-resistance, primarily attributed to their frequent application and structural similarities. There is an urgent need to design and develop SDHI fungicides with novel structures. RESULTS Aiming to discover novel potent SDHI fungicides, 31 innovative pyrazole β-ketonitrile derivatives with diphenyl ether moiety were rationally designed and synthesized, which were guided by a 3D-QSAR model from our previous study. The optimal target compound A23 exhibited not only outstanding in vitro inhibitory activities against Rhizoctonia solani with a half-maximal effective concentration (EC50) value of 0.0398 μg mL-1 comparable to that for fluxapyroxad (EC50 = 0.0375 μg mL-1), but also a moderate protective efficacy in vivo against rice sheath blight. Porcine succinate dehydrogenase (SDH) enzymatic inhibitory assay revealed that A23 is a potent inhibitor of SDH, with a half-maximal inhibitory concentration of 0.0425 μm. Docking study within R. solani SDH indicated that A23 effectively binds into the ubiquinone site mainly through hydrogen-bonds, and cation-π and π-π interactions. CONCLUSION The identified β-ketonitrile compound A23 containing diphenyl ether moiety is a potent SDH inhibitor, which might be a good lead for novel fungicide research and optimization. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liangliang Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Cong Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Qinglong Yuan
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Letian Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
5
|
Yin YM, Zhang XM, Shang XY, Gao ZH, Liang ZB, Wang DW, Xi Z. Discovery of Benzothiazol-2-ylthiophenylpyrazole-4-carboxamides as Novel Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17802-17812. [PMID: 39092526 DOI: 10.1021/acs.jafc.4c01739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Succinate dehydrogenase (SDH) has been considered an ideal target for discovering fungicides. To develop novel SDH inhibitors, in this work, 31 novel benzothiazol-2-ylthiophenylpyrazole-4-carboxamides were designed and synthesized using active fragment exchange and a link approach as promising SDH inhibitors. The findings from the tests on antifungal activity indicated that most of the synthesized compounds displayed remarkable inhibition against the fungi tested. Compound Ig N-(2-(((5-chlorobenzo[d]thiazol-2-yl)thio)methyl)phenyl)-3-(difluoromethyl)-1-methyl-1H-yrazole-4-carboxamide, with EC50 values against four kinds of fungi tested below 10 μg/mL and against Cercospora arachidicola even below 2 μg/mL, showed superior antifungal activity than that of commercial fungicide thifluzamide, and specifically compounds Ig and Im were found to show preventative potency of 90.6% and 81.3% against Rhizoctonia solani Kühn, respectively, similar to the positive fungicide thifluzamide. The molecular simulation studies suggested that hydrophobic interactions were the main driving forces between ligands and SDH. Encouragingly, we found that compound Ig can effectively promote the wheat seedlings and the growth of Arabidopsis thaliana. Our further studies indicated that compound Ig could stimulate nitrate reductase activity in planta and increase the biomass of plants.
Collapse
Affiliation(s)
- Yan-Ming Yin
- Frontiers Science Center for New Organic Matter, National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiao-Ming Zhang
- Frontiers Science Center for New Organic Matter, National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiao-Yue Shang
- Frontiers Science Center for New Organic Matter, National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zi-Han Gao
- Frontiers Science Center for New Organic Matter, National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zheng-Bei Liang
- Frontiers Science Center for New Organic Matter, National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Da-Wei Wang
- Frontiers Science Center for New Organic Matter, National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhen Xi
- Frontiers Science Center for New Organic Matter, National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
6
|
Xu D, Lin GT, Huang JC, Sun J, Wang W, Liu X, Xu G. Discovery, Optimization, and Biological Evaluation of Novel Pyrazol-5-yl-phenoxybenzamide Derivatives as Potent Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17608-17616. [PMID: 39046798 DOI: 10.1021/acs.jafc.4c02685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The diphenyl ether molecular pharmacophore has played a significant role in the development of fungicidal compounds. In this study, a variety of pyrazol-5-yl-phenoxybenzamide derivatives were synthesized and evaluated for their potential to act as succinate dehydrogenase inhibitors (SDHIs). The bioassay results indicate certain compounds to display a remarkable and broad-spectrum in their antifungal activities. Notably, compound 12x exhibited significant in vitro activities against Valsa mali, Gaeumannomyces graminis, and Botrytis cinerea, with EC50 values of 0.52, 1.46, and 3.42 mg/L, respectively. These values were lower or comparable to those of Fluxapyroxad (EC50 = 12.5, 1.93, and 8.33 mg/L, respectively). Additionally, compound 12x showed promising antifungal activities against Sclerotinia sclerotiorum (EC50 = 0.82 mg/L) and Rhizoctonia solani (EC50 = 1.86 mg/L), albeit lower than Fluxapyroxad (EC50 = 0.23 and 0.62 mg/L). Further in vivo experiments demonstrated compound 12x to possess effective protective antifungal activities against V. mali and S. sclerotiorum at a concentration of 100 mg/L, with inhibition rates of 66.7 and 89.3%, respectively. In comparison, Fluxapyroxad showed inhibition rates of 29.2 and 96.4% against V. mali and S. sclerotiorum, respectively. Molecular docking analysis revealed that compound 12x interacts with SDH through hydrogen bonding, π-cation, and π-π interactions, providing insights into the probable mechanism of action. Furthermore, compound 12x exhibited greater binding energy and SDH enzyme inhibitory activity than Fluxapyroxad (ΔGcal = -46.8 kcal/mol, IC50 = 1.22 mg/L, compared to ΔGcal = -41.1 kcal/mol, IC50 = 8.32 mg/L). Collectively, our results suggest that compound 12x could serve as a promising fungicidal lead compound for the development of more potent SDHIs for crop protection.
Collapse
Affiliation(s)
- Dan Xu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guo-Tai Lin
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia-Chuan Huang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jian Sun
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, Jilin 130033, China
| | - Wei Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xili Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gong Xu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
7
|
Quan X, Shen K, Yang WL, Li Z, Maienfisch P. Design, Synthesis, and Biological Activity of Silicon-Containing Carboxamide Fungicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17260-17270. [PMID: 39057603 DOI: 10.1021/acs.jafc.4c03001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Bioisosteric silicon replacement has proven to be a valuable strategy in the design of bioactive molecules for crop protection and drug development. Twenty-one novel carboxamides possessing a silicon-containing biphenyl moiety were synthesized and tested for their antifungal activity and succinate dehydrogenase (SDH) enzymatic inhibitory activity. Among these novel succinate dehydrogenase inhibitors (SDHIs), compounds 3a, 3e, 4l, and 4o possessing appropriate clog P and topological polar surface area values showed excellent inhibitory effects against Rhizoctonia solani, Sclerotinia sclerotiorum, Botrytis cinerea, and Fusarium graminearum at 10 mg/L in vitro, and the EC50 values of 4l and 4o were 0.52 and 0.16 mg/L against R. solani and 0.066 and 0.054 mg/L against S. sclerotiorum, respectively, which were superior to those of Boscalid. Moreover, compound 3a demonstrated superior SDH enzymatic inhibitory activity (IC50 = 8.70 mg/L), exhibiting 2.54-fold the potency of Boscalid (IC50 = 22.09 mg/L). Docking results and scanning electron microscope experiments revealed similar mode of action between compound 3a and Boscalid. The new silicon-containing carboxamide 3a is a promising SDHI candidate that deserves further investigation.
Collapse
Affiliation(s)
- Xiaocao Quan
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Kunkun Shen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wu-Lin Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Peter Maienfisch
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- CreInSol Consulting & Biocontrols, CH-4118 Rodersdorf, Switzerland
| |
Collapse
|
8
|
Su Y, Zhang T, An X, Ma H, Wang M. Design, synthesis, antifungal activity and molecular docking of novel pyrazole-4-carboxamides containing tertiary alcohol and difluoromethyl moiety as potential succinate dehydrogenase inhibitors. PEST MANAGEMENT SCIENCE 2024; 80:2032-2041. [PMID: 38105405 DOI: 10.1002/ps.7937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Resistance problems with the long-term and frequent use of existing fungicides, and the lack of structure diversity of traditional pyrazole-4-carboxamide succinate dehydrogenase inhibitors, it is highly required to design and develop new fungicides to address the resistance issue. RESULTS Different from previous pyrazole-4-carboxamide succinate dehydrogenase inhibitors by breaking the norm of difluoromethyl at the C-3 position of pyrazole and introducing a tertiary alcohol group at the C-3 position, 27 novel pyrazole-4-carboxamide derivatives were designed, synthesized and characterized by proton (1 H) nuclear magnetic resonance (NMR), carbon-13 (13 C) NMR, fluorine-19 (19 F) NMR and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). The crystal structures of compounds A14 and C5 were analyzed by single crystal X-ray diffraction. Their in vitro antifungal activities were evaluated against phytopathogen Fusarium graminearum, Botrytis cinerea, Phytophthora capsica, Sclerotinia sclerotiorum, Thanatephorus cucumeris. The results displayed that most of them exhibited significant antifungal activities against S. sclerotiorum at 50 mg/L, the half maximal effective concentration (EC50 ) data of A8 and A14 were 3.96 and 2.52 mg/L, respectively. Their in vivo antifungal activities were evaluated against Pseudoperonospora cubensis, Puccinia sorghi Schw, Colletotrichum gloeosporioides, F. graminearum, Erysiphe graminis, Thanatephorus cucumeris, the control efficacies of A6, B3, C3, and C6 against E. graminis reached 100% at a concentration of 400 mg/L. The molecular docking results showed that the binding mode of the target compounds containing tertiary alcohols were similar to that of fluxapyroxad in succinate dehydrogenase. In addition, tertiary alcohols were involved in the formation of hydrogen bonds. CONCLUSION The excellent in vitro and in vivo inhibitory activities of novel pyrazole-4-carboxamide derivatives against succinate dehydrogenase were reported for the first time, and they could be used as the potential lead compounds. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanhao Su
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Tingting Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Xinkun An
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Haoyun Ma
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Mingan Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Sun XP, Yu CS, Min LJ, Cantrell CL, Hua X, Sun NB, Liu XH. Discovery of Highly Efficient Novel Antifungal Lead Compounds Targeting Succinate Dehydrogenase: Pyrazole-4-carboxamide Derivatives with an N-Phenyl Substituted Amide Fragment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19312-19323. [PMID: 38018356 DOI: 10.1021/acs.jafc.3c04842] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Developing environmentally friendly fungicides is crucial to tackle the issue of rising pesticide resistance. In this study, a series of novel pyrazole-4-carboxamide derivatives containing N-phenyl substituted amide fragments were designed and synthesized. The structures of target compounds were confirmed by 1H NMR, 13C NMR, and HRMS, and the crystal structure of the most active compound N-(1-(4-(4-(tert-butyl)benzamido)phenyl)propan-2-yl)-3-(difluoromethyl)-N-methoxy-1-methyl-1H-pyrazole-4-carboxamide (U22) was further determined by X-ray single-crystal diffraction. The bioassay results indicated that the 26 target compounds possessed good in vitro antifungal activity against Sclerotinia sclerotiorum with EC50 values for compounds U12, U13, U15, U16, U18, U22, and U23 being 4.17 ± 0.46, 8.04 ± 0.71, 7.01 ± 0.71, 12.77 ± 1.00, 8.11 ± 0.70, 0.94 ± 0.11, and 9.48 ± 0.83 μg·mL-1, respectively, which were the similar to controls bixafen (6.70 ± 0.47 μg·mL-1), fluxapyroxad (0.71 ± 0.14 μg·mL-1), and pydiflumetofen (0.06 ± 0.01 μg·mL-1). Furthermore, in vivo antifungal activity results against S. sclerotiorum indicated that compounds U12 (80.6%) and U22 (89.9%) possessed excellent preventative efficacy at 200 μg·mL-1, which was the same as the control pydiflumetofen (82.4%). Scanning electron microscopy and transmission electron microscopy studies found that the compound U22 could destroy the hyphal morphology and damage mitochondria, cell membranes, and vacuoles. The results of molecular docking of compound U22 and pydiflumetofen with succinate dehydrogenase (SDH) indicated they interact well with the active site of SDH. This study validated our approach and design strategy to produce compounds with an enhanced biological activity as compared to the parent structure.
Collapse
Affiliation(s)
- Xin-Peng Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, Zhejiang China
| | - Chen-Sheng Yu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Li-Jing Min
- College of Life Science, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou 313000, Zhejiang, China
| | - Charles L Cantrell
- United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, Oxford, Mississippi 38677, United States
| | - Xuewen Hua
- College of Agriculture, Liaocheng University, Liaocheng 252000, Shandong, China
| | - Na-Bo Sun
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, Zhejiang China
| | - Xing-Hai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
10
|
Zhou C, Li Z, Qian X, Cheng J, Maienfisch P. Novel Acaricidal Silico-Containing Pyrazolyl Acrylonitrile Derivatives Identified through Rational Carbon-Silicon Bioisosteric Replacement Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18239-18249. [PMID: 37722018 DOI: 10.1021/acs.jafc.3c03898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The identification of novel pyrazolyl acrylonitrile acaricides with improved properties is of great value for the control of phytophagous mites. A series of innovative silicon-containing pyrazolyl acrylonitriles were rationally designed by applying a bioisosteric carbon-silicon replacement strategy and prepared based on novel synthetic methodology. As a result of our research, we discovered compound A25 which possesses outstanding acaricidal activity. With an LC50 value of 0.062 mg/L, compound A25 was found to be 2.3-fold and 1.9-fold more potent than the commercial acaricides cyenopyrafen and cyetpyrafen, respectively. Enzymatic inhibitory assay indicated that the active principle M1 of compound A25 possesses an IC50 value of 2.32 μM against Tetranychus cinnabarinus SDH, which was about twofold superior compared to the active metabolites of cyenopyrafen (IC50 = 4.72 μM). Molecular docking study showed that the active metabolites 2 and 3 and their corresponding silicon counterparts form H-bonds and cation-π interaction with the residues of Trp165, Tyr433, and Arg279.
Collapse
Affiliation(s)
- Cong Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xuhong Qian
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Peter Maienfisch
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- CreInSol MCB, Aegertenstrasse 21, CH-4118 Rodersdorf, Switzerland
| |
Collapse
|
11
|
Huang YH, Wei G, Wang WJ, Liu Z, Yin MX, Guo WM, Zhu XL, Yang GF. Structure-Based Discovery of New Succinate Dehydrogenase Inhibitors via Scaffold Hopping Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18292-18300. [PMID: 37738510 DOI: 10.1021/acs.jafc.3c02158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Scaffold hopping strategy has become one of the most successful methods in the process of molecular design. Seeking to develop novel succinate dehydrogenase inhibitors (SDHIs), we employed a scaffold hopping strategy to design compounds featuring geminate dichloralkenes (gem-dichloralkenes) fragment. After stepwise modifications, a series of N-cyclopropyl-dichloralkenes-pyrazole-carboxamide derivatives was synthesized. Among them, compounds G28 (IC50 = 26.00 nM) and G40 (IC50 = 27.00 nM) were identified as the best inhibitory activity against porcine SDH, with IC50 values reaching the nanomolar range, outperforming the lead compound pydiflumetofen. Additionally, the greenhouse assay indicated that compounds G37 (EC90 = 0.031 mg/L) and G34 (EC90 = 1.67 mg/L) displayed extremely high activities against wheat powdery mildew (WPM) and cucumber powdery mildew (CPM), respectively. Computational results further revealed that the gem-dichloralkene fragment and fluorine substituted pyrazole form an extra hydrophobic interaction and dipolar-dipolar interaction with SDH. In summary, our study provides a novel gem-dichloralkene scaffold with outstanding fungicidal properties, obtained through scaffold hopping, that holds great potential for future research on PM control.
Collapse
Affiliation(s)
- Yuan-Hui Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Ge Wei
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Wen-Jie Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Zheng Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Mao-Xue Yin
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Wei-Min Guo
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Xiao-Lei Zhu
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, People's Republic of China
| |
Collapse
|
12
|
Quan X, Xu L, Li Z, Maienfisch P. Design, Synthesis, and Properties of Silicon-Containing meta-Diamide Insecticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18188-18196. [PMID: 37191337 DOI: 10.1021/acs.jafc.3c01342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Silicon-containing compounds are sporadically used in crop protection and drug discovery and have demonstrated to increase the biological efficacy as well as to reduce toxicity, improve physicochemical properties, and favorably impact the environmental profile. As part of our research, we have investigated the application of bioisosteric silicon replacements in meta-diamide insecticides and studied the biological activity and molecular properties of the corresponding novel compounds. At all meaningful structural elements of the meta-diamides, silicon-containing substituents were introduced and synthetic methodology was developed for their syntheses. As the most promising compound, silicon-containing meta-diamide II-18 emerged, which exhibits a very low LC50 value of 2.00 mg/L against Mythimna separata and compares well to the reference compounds 28 (LC50 = 0.17 mg/L) and II-20 (LC50 = 0.27 mg/L). Our research on silicon-containing crop protection compounds once again confirmed that the biological activity can be beneficially affected by the insertion of silicone substituents and that the introduction of well-chosen silicone motifs is an excellent strategy for agrochemical research.
Collapse
Affiliation(s)
- Xiaocao Quan
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Liu Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Peter Maienfisch
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
- CreInSol Consulting & Biocontrols, CH-4118 Rodersdorf, Switzerland
| |
Collapse
|
13
|
Li Y, Yang H, Ma Y, Cao Y, Xu D, Liu X, Xu G. Discovery of Novel Pyrazol-5-yl-benzamide Derivatives Containing a Thiocyanato Group as Broad-Spectrum Fungicidal Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17700-17712. [PMID: 37939232 DOI: 10.1021/acs.jafc.3c04869] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
In an effort to promote the development of new fungicides, a series of 48 novel N-(1-methyl-4-thiocyanato-1H-pyrazol-5-yl)-benzamide derivatives A1-A36 and B1-B12 were designed and synthesized by incorporating a thiocyanato group into the pyrazole ring, and their fungicidal activities were evaluated against Sclerotinia sclerotiorum, Valsa mali, Botrytis cinerea, Rhizoctonia solani, and Phytophthora capsici. In the in vitro antifungal/antioomycete assay, many of the target compounds exhibited good broad-spectrum fungicidal activities. Among them, compound A36 displayed the best antifungal activity against V. mali with an EC50 value of 0.37 mg/L, which was significantly higher than that of the positive controls fluxapyroxad (13.3 mg/L) and dimethomorph (10.3 mg/L). Meanwhile, compound B6 exhibited the best antioomycete activity against P. capsici with an EC50 value of 0.41 mg/L, which was higher than that of azoxystrobin (29.2 mg/L) but lower than that of dimethomorph (0.13 mg/L). Notably, compound A27 displayed broad-spectrum inhibitory activities against V. mali, B. cinerea, R. solani, S. sclerotiorum, and P. capsici with respective EC50 values of 0.71, 1.44, 1.78, 0.87, and 1.61 mg/L. The in vivo experiments revealed that compounds A27 and B6 presented excellent protective and curative efficacies against P. capsici, similar to that of the positive control dimethomorph. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses showed that compound B6 could change the mycelial morphology and severely damage the ultrastructure of P. capsici. The results of the in vitro SDH enzymatic inhibition experiments indicated that compounds A27 and B6 could effectively inhibit the activity of P. capsici SDH (PcSDH). Furthermore, molecular docking analysis demonstrated significant hydrogen bonds and Pi-S bonding between the target compounds and the key amino acid residues of PcSDH, which could explain the probable mechanism of action. Collectively, these studies provide a valuable approach to expanding the fungicidal spectrum of pyrazol-5-yl-benzamide derivatives.
Collapse
Affiliation(s)
- Yantao Li
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Han Yang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yidan Ma
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuan Cao
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dan Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, Shaanxi, China
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xili Liu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Gong Xu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling 712100, Shaanxi, China
| |
Collapse
|
14
|
Cheng X, Xu Z, Cui H, Zhang Z, Chen W, Wang F, Li S, Liu Q, Wang D, Lv X, Chang X. Discovery of Pyrazole-5-yl-amide Derivatives Containing Cinnamamide Structural Fragments as Potential Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37922127 DOI: 10.1021/acs.jafc.3c04355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
To promote the development of novel agricultural succinate dehydrogenase inhibitor (SDHI) fungicides, we introduced cinnamamide and nicotinamide structural fragments into the structure of pyrazol-5-yl-amide by carbon chain extension and scaffold hopping, respectively, and synthesized a series of derivatives. The results of the biological activity assays indicated that most of the target compounds exhibited varying degrees of inhibitory activity against the tested fungi. Notably, compounds G22, G28, G34, G38, and G39 exhibited excellent in vitro antifungal activities against Valsa mali with EC50 values of 0.48, 0.86, 0.57, 0.73, and 0.87 mg/L, respectively, and this result was significantly more potent than boscalid (EC50 = 2.80 mg/L) and closer to the specialty control drug tebuconazole (EC50 = 0.30 mg/L). Compounds G22 and G34 also exhibited excellent in vivo protective and curative effects against V. mali at 40 mg/L. The SEM and TEM observations indicated that compounds G22 and G34 may affect normal V. mali mycelial morphology as well as the cellular ultrastructure. Molecular docking analysis results indicated that G22 and boscalid possessed a similar binding mode to that of SDH, and detailed SDH inhibition assays validated the feasibility of the designed compounds as potential SDH inhibitors. Compounds G22 and G3 were selected for theoretical calculations, and the terminal carboxylic acid group of this series of compounds may be a key region influencing the antifungal activity. Furthermore, toxicity tests on Apis mellifera l. revealed that compounds G22 and G34 exhibited low toxicity to A. mellifera l. populations. The above results demonstrated that these series of pyrazole-5-yl-amide derivatives are promising for development as potential low-risk drug-resistance agricultural SDHI fungicides.
Collapse
Affiliation(s)
- Xiang Cheng
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Zonghan Xu
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Hongyun Cui
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Zhen Zhang
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Wei Chen
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Fanglei Wang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Shanlu Li
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Qixuan Liu
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Dandan Wang
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Xianhai Lv
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Xihao Chang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
- School of Science, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
15
|
Gao W, Zhang J, Zhang Y, Huang Y, Wang C, Liang Q, Yu Z, Fan R, Tang L, Fan Z. CoMFA Directed Molecular Design for Significantly Improving Fungicidal Activity of Novel [1,2,4]-Triazolo-[3,4- b][1,3,4]-thiadizoles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14125-14136. [PMID: 37750514 DOI: 10.1021/acs.jafc.3c02444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Target based molecular design via the aid of computation is one of the most efficient methods in the discovery of novel pesticides. Here, a combination of the comparative molecular field analysis (CoMFA) and molecular docking was applied for discovery of potent fungicidal [1,2,4]-triazolo-[3,4-b][1,3,4]-thiadiazoles. Bioassay results indicated that the synthesized target compounds 3a, 3b, and 3c exhibited good activity against Alternaria solani, Botrytis cinerea, Cercospora arachidicola, Fusarium graminearum, Physalospora piricola, Rhizoctonia solani, and Sclerotinia sclerotiorum with an EC50 value falling between 0.64 and 16.10 μg/mL. Specially, 3c displayed excellent fungicidal activity against C. arachidicola and R. solani, which was 5 times more potent than the lead YZK-C22. The enzymatic inhibition assay and fluorescence quenching analysis with R. solani pyruvate kinase (RsPK) showed a weaker binding affinity between RsPK and 3a, 3b, or 3c. Transcriptomic analyses showed that 3c exerted its fungicidal activity by disrupting steroid biosynthesis and ribosome biogenesis in eukaryotes. These findings support that 3c is a promising fungicide candidate, and a fine modification from a lead may lead to a totally different mode of action.
Collapse
Affiliation(s)
- Wei Gao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Jin Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Yue Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Yuting Huang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Conglin Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Qiming Liang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Zecong Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Ruihang Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Liangfu Tang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin 300071, P. R. China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, No. 94, Weijin Road, Nankai District, Tianjin 300071, P. R. China
| |
Collapse
|
16
|
Wang J, Lu T, Xiao T, Cheng W, Jiang W, Yan Y, Tang X. Novel quinolin-2(1H)-one analogues as potential fungicides targeting succinate dehydrogenase: design, synthesis, inhibitory evaluation and molecular modeling. PEST MANAGEMENT SCIENCE 2023; 79:3425-3438. [PMID: 36562216 DOI: 10.1002/ps.7332] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Succinate dehydrogenase is an important target of fungicides. Succinate dehydrogenase inhibitors (SDHIs) have widely been used to combat destructive plant pathogenic fungi because they possess efficient and broad-spectrum antifungal activities and as well as unique mode of action. The research and development of novel SDHIs have been ongoing. RESULTS Thirty-six novel quinolin-2(1H)-one derivatives were designed, synthesized and characterized. The single crystal structure of compound 3c was determined through the X-ray diffraction of single crystals. The bioassay results displayed that most compounds had good antifungal activities at 16 μg mL-1 against Rhizoctonia cerealis, Erysiphe graminis, Botrytis cinerea, Penicillium italicum and Phytophthora infestans. Compounds 6o, 6p and 6r had better antifungal activities than the commercialized fungicide pyraziflumid against Botrytis cinerea. Their half maximal effective concentration (EC50 ) values were 0.398, 0.513, 0.205 and 0.706 μg mL-1 , respectively. Moreover, the inhibiting activities of the bioactive compounds were tested against succinate dehydrogenase. The results indicated that they possessed outstanding activities. Compounds 6o, 6p and 6r also exhibited better inhibiting activities than pyraziflumid against succinate dehydrogenase. Their half maximal inhibitory concentration (IC50 ) values were 0.450, 0.672, 0.232 and 0.858 μg mL-1 , respectively. The results of molecular dynamic (MD) simulations indicated that compound 6r displayed stronger affinity to succinate dehydrogenase than pyraziflumid. CONCLUSION The results of the present study displayed that quinolin-2(1H)-one derivative could be one scaffold of potential SDHIs and will provide some valuable information for the research and development of new SDHIs. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingwen Wang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu, P. R. China
| | - Tong Lu
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu, P. R. China
| | - Tingting Xiao
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu, P. R. China
| | - Wei Cheng
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu, P. R. China
| | - Wenjing Jiang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu, P. R. China
| | - Yingkun Yan
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu, P. R. China
| | - Xiaorong Tang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu, P. R. China
| |
Collapse
|
17
|
Yang C, Sun S, Li W, Mao Y, Wang Q, Duan Y, Csuk R, Li S. Bioactivity-Guided Subtraction of MIQOX for Easily Available Isoquinoline Hydrazides as Novel Antifungal Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11341-11349. [PMID: 37462275 DOI: 10.1021/acs.jafc.3c02096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The discovery of novel and easily available leads provides a convincing solution to agrochemical innovation. A bioassay-guided scaffold subtraction of the previous "Chem-Bio Model" isoquinoline-3-oxazoline MIQOX was conducted for identifying the easily available isoquinoline-3-hydrazide as a novel antifungal scaffold. The special and practical potential of this model was demonstrated by a phenotypic antifungal bioassay, molecular docking, and cross-resistance evaluation. A panel of antifungal leads (LW2, LW3, and LW11) was acquired, showing much better antifungal performance than the positive controls. Specifically, compound LW3 exhibited a broad antifungal spectrum holding EC50 values as low as 0.54, 0.09, 1.52, and 2.65 mg/L against B. cinerea, R. solani, S. sclerotiorum , and F. graminearum, respectively. It demonstrated a curative efficacy better than that of boscalid in controlling the plant disease caused by B. cinerea. The candidate LW3 did not show cross-resistance to the extensively used succinate dehydrogenase inhibitor (SDHI) fungicides and can efficiently inhibit resistant B. cinerea strains. The molecular docking of compound LW3 is quite different from that of the positive controls boscalid and fluopyram. This progress highlights the practicality of isoquinoline hydrazide as a novel model in fungicide innovation.
Collapse
Affiliation(s)
- Chen Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shengxin Sun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wei Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Weigang 1, Xuanwu District, Nanjing 210095, People's Republic of China
| | - Yushuai Mao
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Weigang 1, Xuanwu District, Nanjing 210095, People's Republic of China
| | - Qiao Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Weigang 1, Xuanwu District, Nanjing 210095, People's Republic of China
| | - Yabing Duan
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Weigang 1, Xuanwu District, Nanjing 210095, People's Republic of China
| | - René Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, Halle (Saale) D-06120, Germany
| | - Shengkun Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
18
|
Chai JQ, Mei YD, Tai L, Wang XB, Chen M, Kong XY, Lu AM, Li GH, Yang CL. Potential Succinate Dehydrogenase Inhibitors Bearing a Novel Pyrazole-4-sulfonohydrazide Scaffold: Molecular Design, Antifungal Evaluation, and Action Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37294885 DOI: 10.1021/acs.jafc.3c00126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aiming to develop novel antifungal agents with a distinctive molecular scaffold targeting succinate dehydrogenase (SDH), 24 N'-phenyl-1H-pyrazole-4-sulfonohydrazide derivatives were first devised, synthesized, and verified by 1H NMR, 13C NMR, high-resolution mass spectrometry (HRMS), and single-crystal X-ray diffraction analysis. The bioassays revealed that the target compounds possessed highly efficient and broad-spectrum antifungal activities against four tested plant pathogenic fungi Rhizoctonia solani (R. solani), Botrytis cinerea, Fusarium graminearum, and Alternaria sonali. Strikingly, compound B6 was assessed as the selective inhibitor against R. solani, with an in vitro EC50 value (0.23 μg/mL) that was similar to that of thifluzamide (0.20 μg/mL). The in vivo preventative effect of compound B6 (75.76%) at 200 μg/mL against R. solani was roughly comparable to thifluzamide (84.31%) under the same conditions. The exploration of morphological observations indicated that compound B6 could strongly damage the mycelium morphology, obviously increase the permeability of the cell membrane, and dramatically increase the number of mitochondria. Compound B6 also significantly inhibited SDH enzyme activity with an IC50 value of 0.28 μg/mL, and its fluorescence quenching dynamic curves were similar to that of thifluzamide. Molecular docking and molecular dynamics simulations demonstrated that compound B6 could strongly interact with similar residues around the SDH active pocket as thifluzamide. The present study revealed that the novel N'-phenyl-1H-pyrazole pyrazole-4-sulfonohydrazide derivatives are worthy of being further investigated as the promising replacements of traditional carboxamide derivatives targeting SDH of fungi.
Collapse
Affiliation(s)
- Jian-Qi Chai
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu-Dong Mei
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Nanjing Zhuoran Inspection Limited Corporation, Nanjing 210095, China
| | - Lang Tai
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao-Bin Wang
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
- College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Min Chen
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang-Yi Kong
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ai-Min Lu
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Guo-Hua Li
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Chun-Long Yang
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory of Pesticide Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
19
|
Adamovich SN, Ushakov IA, Oborina EN, Lukyanova SV, Komarov VY. New 3-Aminopropylsilatrane Derivatives: Synthesis, Structure, Properties, and Biological Activity. Int J Mol Sci 2023; 24:9965. [PMID: 37373114 DOI: 10.3390/ijms24129965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The biologically active compound 3-aminopropylsilatrane (a compound with a pentacoordinated silicon atom) underwent an aza-Michael reaction with various acrylates and other Michael acceptors. Depending on the molar ratio, the reaction yielded Michael mono- or diadducts (11 examples) containing functional groups (silatranyl, carbonyl, nitrile, amino, etc.). These compounds were characterized via IR and NMR spectroscopy, mass spectrometry, X-ray diffraction, and elemental analysis. Calculations (using in silico, PASS, and SwissADMET online software) revealed that the functionalized (hybrid) silatranes were bioavailable, druglike compounds that exhibited pronounced antineoplastic and macrophage-colony-stimulating activity. The in vitro effect of silatranes on the growth of pathogenic bacteria (Listeria, Staphylococcus, and Yersinia) was studied. It was found that the synthesized compounds exerted inhibitory and stimulating effects in high and low concentrations, respectively.
Collapse
Affiliation(s)
- Sergey N Adamovich
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia
| | - Igor A Ushakov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia
| | - Elizaveta N Oborina
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia
| | - Svetlana V Lukyanova
- Irkutsk Antiplague Research Institute of Siberia and Far East, 78 Trilisser Street, 664047 Irkutsk, Russia
| | - Vladislav Y Komarov
- A.V. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Prospekt, 630090 Novosibirsk, Russia
| |
Collapse
|
20
|
Zhou C, Sun X, Fu W, Li Z, Cheng J, Maienfisch P. Rational Exploration of Novel SDHI Fungicide through an Amide-β-ketonitrile Bioisosteric Replacement Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5483-5495. [PMID: 36975160 DOI: 10.1021/acs.jafc.2c08606] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The identification of succinate dehydrogenase inhibitor (SDHI) fungicides bearing a novel scaffold is of great importance to control pathogenic fungi. Difluoromethyl-pyrazole β-ketonitrile derivatives were rationally designed through an innovative amide-β-ketonitrile bioisosteric replacement strategy and evaluated for their antifungal activities. In preliminary fungicidal screening, our new β-ketonitrile compounds showed outstanding in vitro activity. Compounds A7 and A14 exhibited EC50 values of 0.116 and 0.165 μg/mL against Sclerotinia sclerotiorum, respectively, and A14 also displayed an EC50 of 0.0774 μg/mL against Rhizoctonia solani. Furthermore, A14 exhibited moderate in vivo protective activity against rice sheath blight on rice plants. Results from SDH enzymatic assays demonstrated that A14 possesses significant inhibitory effect toward porcine heart SDH, with an IC50 value of 0.183 μM, which was 20-fold more potent than that of fluxapyroxad (IC50 = 3.76 μM). A docking study indicated that H-bonds, cation-π interactions, and edge-to-face π-π interactions play key roles in the binding of A14 with R. solani SDH. The CoMSIA model guided the approach to further structural optimizations and indicated that hydrophobic and steric substituents on the benzene ring have decisive effects on the fungicidal activity against R. solani. The present work describes for the first time the successful bioisosteric replacement of the common SDHI amide moiety by a β-ketonitrile group and highlights the potential of β-ketonitriles as an innovative novel SDHI subclass.
Collapse
Affiliation(s)
- Cong Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xujuan Sun
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wen Fu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Peter Maienfisch
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- CreInSol MCB, Aegertenstrasse 21, Rodersdorf CH-4118, Switzerland
| |
Collapse
|
21
|
Jiang W, Zhang T, Wang J, Cheng W, Lu T, Yan Y, Tang X. Design, Synthesis, Inhibitory Activity, and Molecular Modeling of Novel Pyrazole-Furan/Thiophene Carboxamide Hybrids as Potential Fungicides Targeting Succinate Dehydrogenase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:729-738. [PMID: 36562616 DOI: 10.1021/acs.jafc.2c05054] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To discover new fungicides targeting succinate dehydrogenase (SDH), 36 new furan/thiophene carboxamides containing 4,5-dihydropyrazole rings were designed, synthesized, and characterized. The crystal structure of compound 5l was determined with the X-ray diffraction (XRD) of single crystals. The antifungal activity of these compounds was studied against Botrytis cinerea, Pyricularia oryzae, Erysiphe graminis, Physalospora piricola, and Penicillium digitatum. Bioassay results were that most compounds had obvious inhibitory activity at 20 μg/mL. Compounds 5j, 5k, and 5l possessed outstanding inhibitory activity against B. cinerea. Their EC50 values were 0.540, 0.676, and 0.392 μg/mL, respectively. They owned better effects than fluxapyroxad (EC50 = 0.791 μg/mL). In the meantime, the inhibitory activity of 16 compounds was evaluated against SDH. It turned out that these compounds displayed excellent activity. The IC50 values of compounds 5j, 5k, and 5l reached 0.738, 0.873, and 0.506 μg/mL, respectively, whereas the IC50 value of fluxapyroxad was 1.031 μg/mL. The results of molecular dynamics (MD) simulation showed that compound 5l possessed a stronger affinity to SDH than fluxapyroxad.
Collapse
Affiliation(s)
- Wenjing Jiang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Tingting Zhang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Jingwen Wang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Wei Cheng
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Tong Lu
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Yingkun Yan
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| | - Xiaorong Tang
- School of Science, Asymmetric Synthesis and Chirotechnology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, P. R. China
| |
Collapse
|
22
|
Sun C, Zhang F, Zhang H, Li P, Jiang L. Design, Synthesis, Fungicidal Activity and Molecular Docking Study of Novel 2-(1-Methyl-1 H-pyrazol-4-yl)pyrimidine-4-carboxamides. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202206008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
23
|
Xu Q, Zhao Z, Liang P, Wang S, Li F, Jin S, Zhang J. Identification of novel nematode succinate dehydrogenase inhibitors: Virtual screening based on ligand-pocket interactions. Chem Biol Drug Des 2023; 101:9-23. [PMID: 34981652 DOI: 10.1111/cbdd.14019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/10/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022]
Abstract
To discover new nematicidal succinate dehydrogenase (SDH) inhibitors with novel structures, we conducted a virtual screening of the ChemBridge library with 1.7 million compounds based on ligand-pocket interactions. The homology model of Caenorhabditis elegans SDH was established, along with a pharmacophore model based on ligand-pocket interactions. After the pharmacophore-based and docking-based screening, 19 compounds were selected for the subsequent enzymatic assays. The results showed that compound 1 (ID: 7607321) exhibited inhibitory activity against SDH with a determined IC50 value of 19.6 μM. Structural modifications and nematicidal activity studies were then carried out, which provided further evidence that compound 1 exhibited excellent nematicidal activity. Molecular dynamics simulations were then conducted to investigate the underlying molecular basis for the potency of these inhibitors against SDH. This work provides a reliable strategy and useful information for the future design of nematode SDH inhibitors.
Collapse
Affiliation(s)
- Qingbo Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Zhixiang Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Peibo Liang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Simin Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Fang Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Shuhui Jin
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Jianjun Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
24
|
Huang YH, Wei G, Liu Z, Lu Q, Jiang JJ, Zhu XL, Yang GF. Discovery of N-Methoxy-(biphenyl-ethyl)-pyrazole-carboxamides as Novel Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14480-14487. [PMID: 36321207 DOI: 10.1021/acs.jafc.2c04770] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Succinate dehydrogenase (SDH) inhibitor is one of the research hotspots for the development of fungicides. Herein, we describe the design and synthesis of N-methoxy-(biphenyl-ethyl)-pyrazole-carboxamide derivatives with enhanced fungicidal activity by employing fragment combination strategy. The SDH enzymatic activity was evaluated for 24 title compounds, and compound 7s was identified as the highest activity against porcine SDH with an IC50 value of 0.014 μM, 205-fold greater than that of fluxapyroxad. Furthermore, the greenhouse experiments showed that compound 7u exhibited potent fungicidal activity against wheat powdery mildew with an EC50 value of 0.633 mg/L, higher activity than fluxapyroxad and benzovindiflupyr. The computational results showed that the fluorine atom substituted on the pyrazole ring formed an extra dipolar-dipolar interaction with C_S42 and then increased the van der Waals interaction between the compound and SDH. The structural and mechanistic insights obtained from the present work will provide a valuable clue to developing novel SDH inhibitors.
Collapse
Affiliation(s)
- Yuan-Hui Huang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Ge Wei
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Zheng Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Qiang Lu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Jia-Jia Jiang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, People's Republic of China
| |
Collapse
|
25
|
Zhang MY, Hong DK, Chen YH, Gao SJ, Fu HY, Zheng HK, Fang Y, Wang JD. Synergistic Effects of Organosilicon and Cu(OH) 2 in Controlling Sugarcane Leaf Scald Disease. Int J Mol Sci 2022; 23:13532. [PMID: 36362319 PMCID: PMC9657692 DOI: 10.3390/ijms232113532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 05/12/2024] Open
Abstract
Sugarcane leaf scald is a systemic disease caused by Xanthomonas albilineans that limits sugarcane yield and quality. Previous research has shown that exogenous application of copper hydroxide to plants is effective in controlling this disease. However, long-term bactericide use causes serious "3R" problems: resistance, resurgence, and residue. It is therefore urgent to discover new methods for the improvement of bactericide efficiency and efficacy. In the present study, disease index values for leaf scald were measured in sugarcane seedlings over time to determine the effects of different concentrations of copper hydroxide, types of silicon additive, and treatment timing after inoculation with X. albilineans on controlling sugarcane leaf scald disease. Our results show copper hydroxide mixed with organosilicon additive could improve the bactericide efficiency and efficacy and reduce the growth of pathogenic bacteria, even at a reduced concentration in both laboratory and field conditions. This study provides an important practical model for controlling sugarcane leaf scald disease by reducing the concentration of bactericide and increasing its efficacy in sugarcane fields.
Collapse
Affiliation(s)
- Ming-Yang Zhang
- National Engineering Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou 350002, China
- National Engineering Research Center of Juncao, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Ding-Kai Hong
- National Engineering Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou 350002, China
- Putian Agricultural Science Research Institute, Fujian Academy of Agriculture Science, Putian 351106, China
| | - Yao-Hui Chen
- National Engineering Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - San-Ji Gao
- National Engineering Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Hua-Ying Fu
- National Engineering Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Hua-Kun Zheng
- National Engineering Research Center of Juncao, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Yong Fang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agriculture Science, Changsha 410125, China
| | - Jin-Da Wang
- National Engineering Research Center of Sugarcane, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| |
Collapse
|
26
|
Cheng X, Xu Z, Luo H, Chang X, Lv X. Design, Synthesis, and Biological Evaluation of Novel Pyrazol-5-yl-benzamide Derivatives Containing Oxazole Group as Potential Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13839-13848. [PMID: 36270026 DOI: 10.1021/acs.jafc.2c04708] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A series of pyrazol-5-yl-benzamide derivatives containing the oxazole group were designed and synthesized as potential SDH inhibitors. According to the results of the bioassays, most target compounds displayed moderate-to-excellent in vitro antifungal activities against Valsa mali, Sclerotinia scleotiorum, Alternaria alternata, and Botrytis cinerea. Among them, compounds C13, C14, and C16 exhibited more excellently inhibitory activities against S. sclerotiorum than boscalid (EC50 = 0.96 mg/L), with EC50 values of 0.69, 0.26, and 0.95 mg/L, respectively. In vivo experiments on rape leaves and cucumber leaves showed that compounds C13 and C14 exhibited considerable protective effects against S. sclerotiorum than boscalid. SEM analysis indicated that compounds C13 and C14 significantly destroyed the typical structure and morphology of S. scleotiorum hyphae. In the respiratory inhibition effect assays, compounds C13 (28.0%) and C14 (33.9%) exhibited a strong inhibitory effect on the respiration rate of S. sclerotiorum mycelia, which was close to boscalid (30.6%). The results of molecular docking indicated that compounds C13 and C14 could form strong interactions with the key residues TRP O:173, ARG P:43, TYR Q:58, and MET P:43 of the SDH. Furthermore, the antifungal mechanism of these derivatives was demonstrated by the SDH enzymatic inhibition assay. These results demonstrate that compounds C13 and C14 can be developed into novel SDH inhibitors for crop protection.
Collapse
Affiliation(s)
- Xiang Cheng
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Zonghan Xu
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Huisheng Luo
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Xihao Chang
- School of Science, Anhui Agricultural University, Hefei 230036, China
| | - Xianhai Lv
- School of Science, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
27
|
Zhou C, Wang X, Quan X, Cheng J, Li Z, Maienfisch P. Silicon-Containing Complex II Acaricides─Design, Synthesis, and Pharmacological Optimization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11063-11074. [PMID: 35575634 DOI: 10.1021/acs.jafc.2c00804] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bioisosteric replacement has been proven to be a powerful strategy in life science research. In this review, general aspects of carbon-silicon bioisosteric substitution and its applications in pharmaceutical and crop protection research are described. Carbon and their silicon analogues possess similar intrinsic properties. Replacing carbon with silicon in pharmaceuticals and pesticides has shown to result in positive effects on efficacy and selectivity, physicochemical properties, and bioavailability and also to eliminate or improve human or environmental safety properties as well as to provide novelty and new intellectual property in many cases. Furthermore, the application of carbon-silicon substitution in the search for new complex II acaricides is highlighted. This research led to the discovery of sila-cyflumetofen 23a and other silicon-containing analogues of cyflumetofen that match or exceed the acaricidal activity of cyflumetofen. The molecular design strategy, synthetic aspects, biological activity, computational modeling work, and structure-activity relationships will be discussed.
Collapse
Affiliation(s)
- Cong Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Xin Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Xiaocao Quan
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Peter Maienfisch
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
- CreInSol MCB, CH-4118 Rodersdorf, Switzerland
| |
Collapse
|
28
|
Cao X, Yang H, Liu C, Zhang R, Maienfisch P, Xu X. Bioisosterism and Scaffold Hopping in Modern Nematicide Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11042-11055. [PMID: 35549340 DOI: 10.1021/acs.jafc.2c00785] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The application of agrochemicals is critical to global food safety. Nowadays, environmentally friendly green agrochemicals are the trend in field crop protection. The research and development of nematicides absorbed more attention as a typical representation of agrochemicals. This review describes the origin of recently commercialized nematicides, the application of bioisosterism and scaffold hopping in the discovery and optimization of agrochemicals, especially nematicides, and novel bioisosteric design strategies for the identification of fluensulfone analogues. Pesticide repurposing, high-throughput screening, computer-aided drug design, and incorporation of known pharmacophoric fragments have been the most successful approach for the discovery of new nematicides. As outlined, the strategies of bioisosteric replacements and scaffold hopping have been very successful approaches in the search for new nematicides for sustainable crop protection. In the exploration of novel fluensulfone analogues with nematicidal activity, bioisosteric replacement of sulfone by amide, chain extension by insertion of a methylene group, and reversal of the amide group have proven to be successful approaches and yielded new and highly active fluensulfone analogues. These attempts might result in compounds with an optimal balance of steric, hydrophobic, electronic, and hydrogen-bonding properties and contribute to deal with the complex problem during the research and development of new nematicides. Further ideas are also put forward to provide new approaches for the molecular design of nematicides.
Collapse
Affiliation(s)
- Xiaofeng Cao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Haiping Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Cheng Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Ruifeng Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Peter Maienfisch
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
- CreInSol Consulting & Biocontrols, CH-4118 Rodersdorf, Switzerland
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|
29
|
Wang W, Wang J, Wu J, Jin M, Li J, Jin S, Li W, Xu D, Liu X, Xu G. Rational Design, Synthesis, and Biological Evaluation of Fluorine- and Chlorine-Substituted Pyrazol-5-yl-benzamide Derivatives as Potential Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7566-7575. [PMID: 35674516 DOI: 10.1021/acs.jafc.2c01901] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To develop novel succinate dehydrogenase inhibitors (SDHIs), two series of novel N-4-fluoro-pyrazol-5-yl-benzamide and N-4-chloro-pyrazol-5-yl-benzamide derivatives were designed and synthesized, and their antifungal activities were evaluated against Valsa mali, Sclerotinia sclerotiorum, FusaHum graminearum Sehw, Physalospora piricola, and Botrytis cinerea. The bioassay results showed that some of the target compounds exhibited good antifungal activities in vitro against V. mali and S. sclerotiorum. Remarkably, compound 9Ip displayed good in vitro activity against V. mali with an EC50 value of 0.58 mg/L. This outcome was 21-fold greater than that of fluxapyroxad (12.45 mg/L) and close to that of the commercial fungicide tebuconazole (EC50 = 0.36 mg/L). In addition, in vivo experiments proved that compound 9Ip has good protective fungicidal activity with an inhibitory rate of 93.2% against V. mali at 50 mg/L, which was equivalent to that of the positive control tebuconazole (95.5%). The results of molecular docking indicated that there were obvious hydrogen bonds and p-π interactions between compound 9Ip and succinate dehydrogenase (SDH), which could explain the probable action mechanism. In addition, the SDH enzymatic inhibition assay was carried out to further prove its mode of action. Our studies suggest that compound 9Ip could be a fungicidal lead to discover more potent SDHIs for crop protection.
Collapse
Affiliation(s)
- Wei Wang
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Jianhua Wang
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Jipeng Wu
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Mengyun Jin
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Junling Li
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Shiyang Jin
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Wangxiang Li
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
| | - Dan Xu
- College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xili Liu
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Gong Xu
- College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
30
|
Zhou M, Liu J, Deng R, Wang Q, Wu S, Zheng P, Chi YR. Construction of Tetrasubstituted Silicon-Stereogenic Silanes via Conformational Isomerization and N-Heterocyclic Carbene-Catalyzed Desymmetrization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mali Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jianjian Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Rui Deng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Qingyun Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shuquan Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Pengcheng Zheng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yonggui Robin Chi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
31
|
Wang W, Liu XJ, Lin GT, Wu JP, Xu G, Xu D. Novel N-(1H-Pyrazol-5-yl)nicotinamide Derivatives: Design, Synthesis and Antifungal Activity. Chem Biodivers 2022; 19:e202101032. [PMID: 35275425 DOI: 10.1002/cbdv.202101032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/11/2022] [Indexed: 11/03/2022]
Abstract
To discover more effective antifungal agents, twenty N-(1H-pyrazol-5-yl)nicotinamide derivatives were designed, synthesized, and structurally confirmed by 1 H-NMR, 13 C-NMR, and ESI-MS. All target compounds were evaluated for their antifungal activities by mycelia growth inhibition. Preliminary screening results displayed that many of these compounds had good fungicidal activity to S. sclerotiorum and V. mali. Compound B4 exhibited antifungal activity against S. sclerotiorum and V. mali with EC50 values of 10.35 and 17.01 mg/L, respectively. The experiment in vivo identified that compound B4 was effective for suppressing rape sclerotinia rot caused by S. sclerotiorum at 50 mg/L. The molecular docking study and scanning electron microscopy preliminary clarified the possible antifungal mechanism of compound B4.
Collapse
Affiliation(s)
- Wei Wang
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiang-Jia Liu
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Guo-Tai Lin
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ji-Peng Wu
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Gong Xu
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Dan Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China.,College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
32
|
Xu Y, Wang H, Du X. Design, synthesis, and fungicidal activity of novel N-substituted piperazine-containing phenylpyridines against cucumber downy mildew. PEST MANAGEMENT SCIENCE 2022; 78:1806-1814. [PMID: 35023277 DOI: 10.1002/ps.6798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cucumber downy mildew (CDM) is a severe plant disease and affects the yield of cucumber production worldwide. As the resistance toward conventional fungicides is emerging as a ubiquitous issue, it is urgent to discover efficient fungicides with unique structures. RESULTS In this study, a series of novel phenylpyridine derivatives were designed and synthesized. Bioassays revealed that most of these compounds possessed excellent fungicidal activities against CDM. Among the phenylpyridine compounds, 2-(4-(4-(tert-butyl)benzyl)piperazin-1-yl)-6-phenylnicotinonitrile (C8) [half-maximal effective concentration (EC50 ) = 4.40 mg L-1 ] displayed the highest activity, which was better than those of the commercial fungicides, such as azoxystrobin (EC50 = 42.77 mg L-1 ) and flumorph (EC50 = 41.94 mg L-1 ). Furthermore, the molecular electrostatic potential of high-activity compound C8 indicated that nitrogen atom of the cyano group on the pyridine ring was in the negative region and may easily form hydrogen bonds and allow for electrostatic interactions with potential receptors. CONCLUSIONS This study demonstrated that the novel N-substituted piperazine-containing phenylpyridine derivatives could be further developed as a candidate compound to control CDM.
Collapse
Affiliation(s)
- Ying Xu
- Catalytic Hydrogenation Research Center, Zhejiang Key Laboratory of Green Pesticides and Cleaner Production Technology, Zhejiang Green Pesticide Collaborative Innovation Center, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Hongtao Wang
- Catalytic Hydrogenation Research Center, Zhejiang Key Laboratory of Green Pesticides and Cleaner Production Technology, Zhejiang Green Pesticide Collaborative Innovation Center, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Xiaohua Du
- Catalytic Hydrogenation Research Center, Zhejiang Key Laboratory of Green Pesticides and Cleaner Production Technology, Zhejiang Green Pesticide Collaborative Innovation Center, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
33
|
Fu W, Shao Z, Sun X, Zhou C, Xu Z, Zhang Y, Cheng J, Li Z, Shao X. Reversible Regulation of Succinate Dehydrogenase by Tools of Photopharmacology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4279-4290. [PMID: 35357145 DOI: 10.1021/acs.jafc.1c08198] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Succinate dehydrogenase (SDH) is extremely important in metabolic function and biological processes. Modulation of SDH has been reported to be a promising therapeutic target to SDH mutations. Current measures for the regulation of SDH are scarce, and precise and reversible modulation of SDH still remains challenging. Herein, a powerful tool for reversible optical control of SDH was proposed and evaluated utilizing the technology of photopharmacology. We reported photochromic ligands (PCLs), azobenzene-pyrazole amides (APAs), that exert light-dependent inhibition effects on SDH. Physicochemical property tests and biological assays were conducted to demonstrate the feasibility of modulating SDH. In this paper, common agricultural pathogens were used to develop a procedure by which our PCLs could reversibly and precisely control SDH utilizing green light. This research would help us to understand the target-ligand interactions and provide new insights into modulation of SDH.
Collapse
Affiliation(s)
- Wen Fu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhongli Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xujuan Sun
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Cong Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
34
|
Iftikhar S, Bengyella L, Shahid AA, Nawaz K, Anwar W, Khan AA. Discovery of succinate dehydrogenase candidate fungicides via lead optimization for effective resistance management of Fusarium oxysporum f. sp. capsici. 3 Biotech 2022; 12:102. [PMID: 35463042 PMCID: PMC8960509 DOI: 10.1007/s13205-022-03157-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/06/2022] [Indexed: 12/30/2022] Open
Abstract
Fusarium wilt of chili caused by the fungus Fusarium oxysporum f. sp. capsici (FCO) severely reduces the production of chili worldwide. There is growing evidence of resistance to commercial fungicides targeting succinate dehydrogenase (Sdh) of FCO soliciting the development of new Sdh inhibitors (SdhIs). In the current work, optimized docking and virtual screening were used to mine twelve SdhIs from the ZINC database, followed by in vitro antifungal evaluation on spore and radial mycelium development. Four new promising SdhIs exhibiting a mean mycelium inhibition rate greater than 85.6% (F = 155.8, P = 0.001, P < 0.05) were observed on ten strains of virulent and resistant FCO. Importantly, three of the discovered molecules exhibited potent spore germination inhibition (≥ 80%, P = 0.01, P < 0.05) compared to the commonly used fungicide penthiopyrad. A significant positive correlation (r* ≥ 0.67, P < 0.05) between the activities of the newly discovered SdhIs compared to penthiopyrad against all tested FCO strains indicated a broad-spectrum fungicidal activity. The current findings indicate that the four SdhI's discovered could judiciously replace certain commercial SdhIs that some FCO displays resistance to. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03157-8.
Collapse
|
35
|
Luo B, Ning Y. Comprehensive Overview of Carboxamide Derivatives as Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:957-975. [PMID: 35041423 DOI: 10.1021/acs.jafc.1c06654] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Up to now, a total of 24 succinate dehydrogenase inhibitors (SDHIs) fungicides have been commercialized, and SDHIs fungicides were also one of the most active fungicides developed in recent years. Carboxamide derivatives represented an important class of SDHIs with broad spectrum of antifungal activities. In this review, the development of carboxamide derivatives as SDHIs with great significances were summarized. In addition, the structure-activity relationships (SARs) of antifungal activities of carboxamide derivatives as SDHIs was also summarized based on the analysis of the structures of the commercial SDHIs and lead compounds. Moreover, the cause of resistance of SDHIs and some solutions were also introduced. Finally, the development trend of SDHIs fungicides was prospected. We hope this review will give a guide for the development of novel SDHIs fungicides in the future.
Collapse
Affiliation(s)
- Bo Luo
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| | - Yuli Ning
- College of Life Sciences, Xinyang Normal University, Tea Plant Biology Key Laboratory of Henan Province, Xinyang 464000, China
| |
Collapse
|
36
|
Fluorine-containing agrochemicals in the last decade and approaches for fluorine incorporation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
37
|
Wang W, Wu F, Ma Y, Xu D, Xu G. Study on Synthesis and Antifungal Activity of Novel Benzamides Containing Substituted Pyrazole Unit. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Li S, Li X, Zhang H, Wang Z, Xu H. The research progress in and perspective of potential fungicides: Succinate dehydrogenase inhibitors. Bioorg Med Chem 2021; 50:116476. [PMID: 34757244 DOI: 10.1016/j.bmc.2021.116476] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/24/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022]
Abstract
Succinate dehydrogenase inhibitors (SDHIs) have become one of the fastest growing classes of new fungicides since entering the market, and have attracted increasing attention as a result of their unique structure, high activity and broad fungicidal spectrum. The mechanism of SDHIs is to inhibit the activity of succinate dehydrogenase, thereby affecting mitochondrial respiration and ultimately killing pathogenic fungi. At present, they have become popular varieties researched and developed by major pesticide companies in the world. In the review, we focused on the mechanism, the history, the representative varieties, structure-activity relationship and resistance of SDHIs. Finally, the potential directions for the development of SDHIs were discussed. It is hoped that this review can strengthen the individuals' understanding of SDHIs and provide some inspiration for the development of new fungicides.
Collapse
Affiliation(s)
- Shuqi Li
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China
| | - Xiangshuai Li
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China
| | - Hongmei Zhang
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China
| | - Zishi Wang
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China.
| | - Hongliang Xu
- Engineering Research Center of Pesticide of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 150080 Harbin, China.
| |
Collapse
|
39
|
Li H, Wang YX, Zhu XL, Yang GF. Discovery of a Fungicide Candidate Targeting Succinate Dehydrogenase via Computational Substitution Optimization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13227-13234. [PMID: 34709809 DOI: 10.1021/acs.jafc.1c04536] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Succinate dehydrogenase (SDH, EC 1.3.5.1) has proven to be an important fungicidal target, and the inhibition of SDH is useful in the treatment of plant pathogens. The discovery of a novel active SDH inhibitor is of high value. Herein, we disclose the discovery of a potent, highly active inhibitor as a fungicide candidate by using a computational substitution optimization method, a fast drug design method developed in our laboratory. The greenhouse experiments showed that compound 17c exhibited high protective activity against south corn rust, soybean rust (SBR), and rice sheath blight at a very low dosage of 0.781 mg/L. Moreover, the field trials indicated that compound 17c is comparable to and even better than commercial fungicides against SBR and cucumber powdery mildew at 50 mg/L concentration. Most surprisingly, compound 17c resulted to be strictly better in curative activity than the commercial fungicide benzovindiflupyr. The computation results indicated that 17c could form another hydrogen bond with C_S42 and then lead to strong van der Waals and electronic interactions with SDH. Our results suggested that 17c is a potential fungicide candidate for SDH.
Collapse
Affiliation(s)
- Hua Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Yu-Xia Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health of Ministry of Science and Technology, Central China Normal University, Wuhan 430079, People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, People's Republic of China
| |
Collapse
|
40
|
Staveness D, Breunig M, Ortiz V, Sang H, Collins JL, McAtee RC, Chilvers MI, Stephenson CR. Photochemically derived 1-aminonorbornanes provide structurally unique succinate dehydrogenase inhibitors with in vitro and in planta activity. CELL REPORTS. PHYSICAL SCIENCE 2021; 2:100548. [PMID: 34604820 PMCID: PMC8486155 DOI: 10.1016/j.xcrp.2021.100548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Agrochemical fungicidal leads have been prepared from photochemically derived 1-aminonorbornane building blocks. The unique 1-aminonorbornane core is generated via direct excitation of a Schiff base precursor, leveraging the N-centered radical character of the excited state species to facilitate a series of radical reactions that construct the norbornane core. This process requires no exogenous reagents, only solvent and photons; thus, it represents an exceptionally simple and efficient means of generating the key building blocks. These (hetero) arene-fused 1-aminonorbornanes are unprecedented in both the agrochemical and pharmaceutical discovery literature; therefore, photochemical advances have provided the unique opportunity to explore the functional utility of novel chemical space. Toward this end, the 1-aminonorbornanes were used to generate next-generation succinate dehydrogenase inhibitors. In vitro fungicidal activity is demonstrated against three fungal plant pathogens affecting field crops, specifically: Fusarium graminearum, Sclerotinia sclerotiorum, and Macrophomina phaseolina. The in vitro performance against F. graminearum was shown to translate into a greenhouse setting. The discovery of in planta fungicidal activity illustrates the interdisciplinary value available via photochemical innovation.
Collapse
Affiliation(s)
- Daryl Staveness
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mikaela Breunig
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Viviana Ortiz
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Hyunkyu Sang
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Department of Integrative Food, Bioscience, and Biotechnology, Chonnam National University, Gwangju 61186, Korea
| | - James L. Collins
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rory C. McAtee
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Martin I. Chilvers
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Corey R.J. Stephenson
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Lead contact
| |
Collapse
|
41
|
Lu T, Yan Y, Zhang T, Zhang G, Xiao T, Cheng W, Jiang W, Wang J, Tang X. Design, Synthesis, Biological Evaluation, and Molecular Modeling of Novel 4 H-Chromene Analogs as Potential Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10709-10721. [PMID: 34476938 DOI: 10.1021/acs.jafc.1c03304] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thirty-one new 4H-chromene derivatives were designed and synthesized. Their structures were identified with IR, 1H NMR, 13C NMR, and HRMS. The crystal structure of compound 2a was determined by single-crystal X-ray diffraction. Their antifungal activities were evaluated against Pyricularia oryzae, Erysiphe graminis, Coniella diplodiella, Pseudoperonospora cubensis, and Sclerotinia sclerotiorum. These results demonstrated that most compounds exhibited remarkable inhibitory activities at 20 μg/mL. Compounds 4b and 4c displayed excellent antifungal activity against S. sclerotiorum and possessed better efficacy than fluopyram. At the same time, the inhibitory activity of the bioactive compounds was evaluated against succinate dehydrogenase (SDH). The results showed that these compounds possessed outstanding activity. Compounds 4b and 4c displayed better inhibitory activity than fluopyram. The molecular modeling results revealed that compound 4c had stronger affinity to SDH than fluopyram. It is the first time that the inhibitory activity of 4H-chromene analogs against SDH has been reported.
Collapse
Affiliation(s)
- Tong Lu
- School of Science, Xihua University, Chengdu 610039, P.R. China
| | - Yingkun Yan
- School of Science, Xihua University, Chengdu 610039, P.R. China
| | - Tingting Zhang
- School of Science, Xihua University, Chengdu 610039, P.R. China
| | - Guilan Zhang
- School of Science, Xihua University, Chengdu 610039, P.R. China
| | - Tingting Xiao
- School of Science, Xihua University, Chengdu 610039, P.R. China
| | - Wei Cheng
- School of Science, Xihua University, Chengdu 610039, P.R. China
| | - Wenjing Jiang
- School of Science, Xihua University, Chengdu 610039, P.R. China
| | - Jingwen Wang
- School of Science, Xihua University, Chengdu 610039, P.R. China
| | - Xiaorong Tang
- School of Science, Xihua University, Chengdu 610039, P.R. China
| |
Collapse
|