1
|
Guoqiang G, Liang Q, Yani Z, Pengyun W, Fanzhuo K, Yuyang Z, Zhiyuan L, Xing N, Xue Z, Qiongya L, Bin Z. Recent advances in glucose monitoring utilizing oxidase electrochemical biosensors integrating carbon-based nanomaterials and smart enzyme design. Front Chem 2025; 13:1591302. [PMID: 40357127 PMCID: PMC12066265 DOI: 10.3389/fchem.2025.1591302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 04/09/2025] [Indexed: 05/15/2025] Open
Abstract
Glucose oxidase (GOx), as a molecular recognition element of glucose biosensors, has high sensitivity and selectivity advantages. As a type of biosensor, the glucose oxidase electrode exhibits advantages such as ease of operation, high sensitivity, and strong specificity, promising broad application prospects in biomedical science, the food industry, and other fields. In recent years, with the advancement of nanotechnology, research efforts to enhance the performance of GOx biosensors have primarily focused on improving the conductive properties and specific surface area of nanomaterials, while neglecting the potential to modify the structure of the core component, GOx itself, to improve biosensor performance. Rapid modification of the GOx surface through chemical modification techniques yields a new modified enzyme (mGOx). Meanwhile, composite techniques involving carbon nanomaterials can be employed to further enhance sensor performance. This article reviews the construction methods and optimization strategies of glucose oxidase electrodes in recent years, along with research progress in their application in electrochemical sensing for glucose detection, and provides an outlook for future developments.
Collapse
Affiliation(s)
- Guan Guoqiang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Qu Liang
- School of Food and Bioengineering, Wuhu Institute of Technology, Wuhu, China
| | - Zhao Yani
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Wang Pengyun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Kong Fanzhuo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Zhang Yuyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lin Zhiyuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ni Xing
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Zhang Xue
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lu Qiongya
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Zou Bin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Zhou L, Huang J, Du Y, Li F, Xu W, Zhou C, Liu S. Non-Thermal Stabilization Strategies for Rice Bran: Mechanistic Insights, Technological Advances, and Implications for Industrial Applications. Foods 2025; 14:1448. [PMID: 40361531 PMCID: PMC12071984 DOI: 10.3390/foods14091448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/14/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Rice bran, a major byproduct of rice processing, is rich in unsaturated fatty acids, high-quality proteins, and bioactive compounds such as γ-oryzanol and ferulic acid. However, its poor storage stability and susceptibility to hydrolytic and oxidative rancidity critically limit industrial exploitation. Recent advances in non-thermal stabilization technologies-valued for their energy efficiency, scalability, and nutrient preservation-offer promising solutions. This review systematically elucidates the enzymatic and microbial mechanisms driving bran rancidity, emphasizing lipase and lipoxygenase activity, and critically evaluates the efficacy of emerging non-thermal strategies. Key findings highlight the superiority of non-thermal methods: cold plasma reduces lipase activity by 70% within 5 min via reactive oxygen species-induced structural disruption; ultra-high pressure preserves 95% of γ-oryzanol by selectively breaking hydrogen bonds in enzymes; high-energy electron beam irradiation suppresses rancidity markers by 45-78%; and enzymatic stabilization with immobilized papain achieves 78% lipase inactivation while retaining <5% nutrient loss. Compared to thermal approaches, non-thermal technologies enhance bioactive retention, while extending shelf-life by 2-3 weeks. By addressing challenges such as microbial synergy, parameter optimization, and industrial scalability, this review provides actionable insights for deploying green, energy-efficient strategies to valorize rice bran into functional foods and nutraceuticals, aligning with global demands for sustainable ingredient innovation.
Collapse
Affiliation(s)
- Lu Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiangqi Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yutong Du
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fanghao Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wenbin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chenguang Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Siyao Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Qu L, Lu Q, Zhang L, Kong F, Zhang Y, Lin Z, Ni X, Zhang X, Zhao Y, Zou B. Research Progress on the Enhancement of Immobilized Enzyme Catalytic Performance and Its Application in the Synthesis of Vitamin E Succinate. Molecules 2025; 30:1241. [PMID: 40142017 PMCID: PMC11944737 DOI: 10.3390/molecules30061241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Vitamin E succinate is a more mature vitamin E derivative, and its chemical stability and many effects have been improved compared with vitamin E, which can not only make up for the shortcomings of vitamin E application but also broaden the application field of vitamin E. At present, in developed countries such as Europe, America, and Japan, vitamin E succinate is widely used in health foods, and due to its good water solubility and stability, the vitamin E added to most nutritional supplements (tablets and hard capsules) is vitamin E succinate. At the same time, vitamin E succinate used in the food and pharmaceutical industries is mainly catalyzed by enzymatic catalysis. In this paper, Candida rugosa lipase (CRL) was studied. Chemical modification and immobilization were used to improve the enzymatic properties of CRL, and immobilized lipase with high stability and high activity was obtained. It was applied to the enzymatic synthesis of vitamin E succinate, and the reaction conditions were optimized to improve the yield and reduce the production cost. The review covered the research progress of the methods for enhancing the catalytic performance of immobilized enzymes and discussed its application in the synthesis of vitamin E succinate, providing new ideas and technical support for the catalytic performance enhancement of immobilized enzymes and its application in the synthesis of vitamin E succinate and promoting the production and application of vitamin E succinate.
Collapse
Affiliation(s)
- Liang Qu
- School of Food and Bioengineering, Wuhu Institute of Technology, Wuhu 241003, China;
| | - Qiongya Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Q.L.); (L.Z.); (F.K.); (Y.Z.); (Z.L.); (X.N.); (X.Z.); (Y.Z.)
| | - Liming Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Q.L.); (L.Z.); (F.K.); (Y.Z.); (Z.L.); (X.N.); (X.Z.); (Y.Z.)
| | - Fanzhuo Kong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Q.L.); (L.Z.); (F.K.); (Y.Z.); (Z.L.); (X.N.); (X.Z.); (Y.Z.)
| | - Yuyang Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Q.L.); (L.Z.); (F.K.); (Y.Z.); (Z.L.); (X.N.); (X.Z.); (Y.Z.)
| | - Zhiyuan Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Q.L.); (L.Z.); (F.K.); (Y.Z.); (Z.L.); (X.N.); (X.Z.); (Y.Z.)
| | - Xing Ni
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Q.L.); (L.Z.); (F.K.); (Y.Z.); (Z.L.); (X.N.); (X.Z.); (Y.Z.)
| | - Xue Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Q.L.); (L.Z.); (F.K.); (Y.Z.); (Z.L.); (X.N.); (X.Z.); (Y.Z.)
| | - Yani Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Q.L.); (L.Z.); (F.K.); (Y.Z.); (Z.L.); (X.N.); (X.Z.); (Y.Z.)
| | - Bin Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Q.L.); (L.Z.); (F.K.); (Y.Z.); (Z.L.); (X.N.); (X.Z.); (Y.Z.)
| |
Collapse
|
4
|
Liu S, Chao H, He D, Wang Y, Yang Y. Biomimetic co-immobilization of β-glucosidase, glucose oxidase, and horseradish peroxidase to construct a multi-enzyme biosensor for determination of amygdalin. Int J Biol Macromol 2025; 297:139868. [PMID: 39814275 DOI: 10.1016/j.ijbiomac.2025.139868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/03/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Accurate, specific, and cost-effective detection of toxic cyanogenic glycosides is crucial for ensuring biological health and food safety. In this study, a novel biosensor based on co-immobilized multi-enzyme system was constructed by artificial antibody-antigen-directed immobilization for the colorimetric detection of amygdalin through a cascade reaction catalyzed by β-glucosidase, glucose oxidase, and horseradish peroxidase. Artificial antibodies and antigens were prepared using catechol and 3,4-dihydroxybenzaldehyde, respectively, to generate mutual affinity recognition ability for enzyme immobilization. On this basis, the biosensing system showed a complete response to amygdalin within 4 min, with a linear range from 2 to 10 μM, a detection limit of 0.18 μM, and a quantification limit of 0.6 μM. In addition, this sensor had good precision, reproducibility, stability, and reusability. This study proposed a method for detecting cyanogenic glycosides, providing a successful case for the application of cascade biosensors in food safety detection.
Collapse
Affiliation(s)
- Shuo Liu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Hongli Chao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Dajun He
- Analysis and Testing Centre, Shihezi University, Shihezi 832003, China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
5
|
Wang Y, Chen P, Yang X, Wang F. Synthesis of chiral alcohol (S)-CHBE by co-immobilization of double enzymes based on organic-inorganic hybrid nanoflower. Int J Biol Macromol 2025; 297:139645. [PMID: 39826750 DOI: 10.1016/j.ijbiomac.2025.139645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
The chiral alcohols (S)-4-chloro-3-hydroxy-butyric acid ethyl ester ((S)-CHBE) is a critical intermediate in the synthesis of various active pharmaceutical ingredients. This study presents the first investigation of the efficient production of (S)-CHBE using organic-inorganic hybrid nanoflowers (GDH-CR@HNFs) for the co-immobilization of glucose dehydrogenase (BsGDH) and carbonyl reductase (BsCR). By optimizing immobilization conditions, we significantly enhanced the catalytic activity and immobilization efficiency of the hybrid nanoflowers. The GDH-CR@HNFs exhibited superior catalytic performance compared to the free dual enzyme system, demonstrating a higher affinity for the substrate COBE (47-fold lower Km value), increased maximum reaction rate (Vmax), and improved catalytic efficiency (Kcat/Km). Additionally, the GDH-CR@HNFs displayed enhanced temperature adaptability, pH stability, and storage stability. The GDH-CR@HNFs retained over 60 % of their initial catalytic activity after 8 cycles of reuse. The hydrophobic nature of the substrate COBE can lead to substrate inhibition of the free enzyme. However, GDH-CR@HNFs exhibited excellent substrate tolerance, maintaining a high conversion rate (65 %) even at a substrate concentration of 200 mM, significantly outperforming the free enzyme system (13.8 % conversion rate). The hybrid nanoflower co-immobilization strategy offers a novel approach to addressing substrate and product inhibition issues in enzyme-catalyzed reactions, paving the way for the industrial production scale of (S)-CHBE.
Collapse
Affiliation(s)
- Yadong Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Peng Chen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xinpeng Yang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Fenghuan Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
6
|
Yuan P, Wang Q, Deng X, Zhang X, Fan D, Bai Y. Coimmobilized Dual Enzymes in a Continuous Flow Reactor for the Efficient Synthesis of Optically Pure γ/δ-Lactones. ACS APPLIED MATERIALS & INTERFACES 2025; 17:867-879. [PMID: 39693126 DOI: 10.1021/acsami.4c14644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Enzyme catalysis is a promising method for producing chiral chemicals with high stereoselectivity under mild conditions. However, the traditional batch reaction suffers from low enzyme stability, low cofactor recycling, and poor enzyme reusability. Here, we present a continuous-flow method using coimmobilized dual enzymes for the synthesis of chiral γ-/δ-lactones, which are widely used in fragrances and flavors. Typically, a carbonyl reductase mutant SmCRM5 from Serratia marcescens, was coimmobilized by covalent binding with BmGDH, a glucose dehydrogenase capable of recovering and recycling the cofactor NADPH. After immobilization, SmCRM5 and BmGDH exhibited a 8.9-/8.7-fold increase in catalytic efficiency (kcat/Km) and a 57-/15-fold increase in half-life at 30 °C, respectively. We demonstrated that coimmobilized dual enzymes used in a continuous flow reactor showed a higher reaction rate and a higher space-time yield (1586 g·L-1 d-1) than free enzymes and immobilized enzymes in a batch reaction for the production of (R)-δ-decalactone. This continuous flow reactor can run continuously for more than 650 h with 99% ee and 80% conversion, and the total volume exceeds 1500 reactor volumes. The robustness of this continuous-flow immobilized enzyme system provides a green and efficient method for the synthesis of high value-added chiral chemicals.
Collapse
Affiliation(s)
- Pengyu Yuan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Qing Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Xuelei Deng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyan Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Daidi Fan
- Shaanxi R&D Centre of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yunpeng Bai
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
- Shaanxi R&D Centre of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| |
Collapse
|
7
|
Yang W, Sun H, Cui Z, Chen L, Ji Y, Lu F, Liu Y. Spatially sequential co-immobilization of phosphorylases in tiny environments and its application in the synthesis of glucosyl glycerol. Int J Biol Macromol 2024; 279:135139. [PMID: 39208907 DOI: 10.1016/j.ijbiomac.2024.135139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
2-O-(α-d-glucopyranosyl)-sn-glycerol (2-αGG) has been applied in the food industry due to its numerous physiological benefits. The synthesis of 2-αGG can be achieved through a cascade catalytic reaction involving sucrose phosphorylase (SP) and 2-O-α-glucosylglycerol phosphorylase (GGP). However, the low substrate transfer rates between free enzymes have hindered the efficiency of 2-αGG synthesis. To address this issue, a novel technology was developed to prepare sequential multi-enzyme nanoflowers via chemical crosslinking and protein assembly, thus overcoming diffusion limitations. Specifically, spatially sequential co-immobilized enzymes, referred to as SP-GGP@Cap, were created through the targeted assembly of Bifidobacterium adolescentis SP and Marinobacter adhaerens GGP on Ca2+. This assembly was facilitated by the spontaneous protein reaction between SpyTag and SpyCatcher. Compared to free SP-GGP, SP-GGP@Cap demonstrated improved thermal and pH stability. Moreover, SP-GGP@Cap enhanced the biosynthesis of 2-αGG, achieving a relative concentration of 98 %. Additionally, it retained the ability to catalyze the substrate to yield 61 % relative concentration of 2-αGG even after ten cycles of recycling. This study presents a strategy for the spatially sequential co-immobilization of multiple enzymes in a confined environment and provides an exceptional biocatalyst for the potential industrial production of 2-αGG.
Collapse
Affiliation(s)
- Wenhua Yang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Hui Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhihan Cui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lei Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yuan Ji
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
8
|
Mukheja Y, Kethavath SN, Banoth L, Pawar SV. Lignin: The green powerhouse for enzyme immobilization in biocatalysis and biosensing. Int J Biol Macromol 2024; 280:135940. [PMID: 39322172 DOI: 10.1016/j.ijbiomac.2024.135940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/31/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Enzymes play an important role in diverse industries and are critical components of many industrial products, yet, their application is limited due to their sensitivity to environmental conditions, recovery challenges, and susceptibility to inhibition. Immobilizing enzymes onto a suitable support matrix imparts higher resistance and improves operational flexibility, recyclability, and reusability. Lignin, a renewable and abundant biopolymer derived from the paper and pulp industry, has emerged as one of the prominent materials to be incorporated in support matrices. The distinctive characteristics of lignin include high mechanical strength, ease of separation, chemical stability, robust matrix for securing enzyme binding, biocompatibility, and ease of surface functionalization, making it a promising alternative to traditional synthetic materials. Research studies suggest the effectiveness of various lignin-based materials for immobilizing enzymes and significantly improving their stability, reusability, and catalytic activity. This article critically examines the unique properties of lignin and highlights significant contributions made in the development of enzyme immobilization for biocatalysis and biosensing applications. Additionally, the roles of hybrid materials, multienzyme immobilization, and innovative strategies like interfacial activation and enzyme shielding are discussed for overcoming the current challenges and developing sustainable, efficient, and robust biocatalytic and biosensing processes for industrial applications.
Collapse
Affiliation(s)
- Yashdeep Mukheja
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Santhosh Nayak Kethavath
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Chemical Engineering & Process Technology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Linga Banoth
- Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sandip V Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
| |
Collapse
|
9
|
Liu X, Li X, Xie Q, Lu C, Xie Z, Zhou X, Chen L, Qiu C, Jin Z, Long J. Precise Immobilization Strategy Combined with Rational Design to Improve β-Agarase Stability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23366-23378. [PMID: 39393787 DOI: 10.1021/acs.jafc.4c06466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Recently, the orientational immobilization of enzymes has attracted extensive attention. In this study, we report the development of a strategy combined with rational design to achieve precise site-specific covalent immobilization of β-agarase. We first rationally screened six surface sites that can be mutated to cysteine by combining molecular dynamics simulation and energy calculation. Site-specific immobilization was successfully achieved by Michael addition reaction of mutant enzymes and maleimide-modified magnetic nanoparticles (MAL-MNPs). The enzyme activity retention rate of R66C-MAL-MNPs and K588C-MAL-MNPs was greater than 96%. The thermal deactivation kinetics study revealed that the site-specific immobilization strategy significantly improved the thermal stability of Aga50D, resulting in a substantial increase in its antidenaturation activity at elevated temperatures, and the highest t1/2 of the immobilized mutant enzymes was increased by an impressive 21.25-fold at 40 °C. The immobilized mutant enzymes also showed significantly enhanced tolerance to metal ions and organic reagents. For instance, all of the immobilized enzymes maintained over 90% of their enzymatic activity in the 50% (v/v) acetone/water solution. The present work may pave the way for the design of precisely immobilized enzymes, which can help promote green manufacturing.
Collapse
Affiliation(s)
- Xuewu Liu
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xingfei Li
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Qiaoling Xie
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Cheng Lu
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Bioengineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengjun Xie
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xing Zhou
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Long Chen
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Chao Qiu
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Jie Long
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
10
|
Zhao C, Huang W, Su J, Zhang X, Xue J, Zhang C, Han J, Zhou Y, Wang Y. Purification and characterization of recombinant human superoxide dismutase integrated with resilin-like polypeptide. Protein Expr Purif 2024; 222:106535. [PMID: 38901714 DOI: 10.1016/j.pep.2024.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Human superoxide dismutase (hSOD1) plays an important role in the aerobic metabolism and free radical eliminating process in the body. However, the production of existing SOD faces problems such as complex purification methods, high costs, and poor product stability. This experiment achieved low-cost, rapid, and simple purification of hSOD1 through ammonium sulfate precipitation method and heat resistance of recombinant protein. We constructed a recombinant protein hSOD1-LR containing a resilin-like polypeptide tag and expressed it. The interest protein was purified by ammonium sulfate precipitation method, and the results showed that the purification effect of 1.5 M (NH4)2SO4 was the best, with an enzyme activity recovery rate of 80 % after purification. Then, based on its thermal stability, further purification of the interest protein at 60 °C revealed a purification fold of up to 24 folds, and the purification effect was similar to that of hSOD1-6xHis purified by nickel column affinity chromatography. The stability of hSOD1-LR showed that the recombinant protein hSOD1-LR has better stability than hSOD-6xHis. hSOD1-LR can maintain 76.57 % activity even after 150 min of reaction at 70 °C. At same time, hSOD1-LR had activity close to 80 % at pH < 5, indicating good acid resistance. In addition, after 28 days of storage at 4 °C and 40 °C, hSOD1-LR retained 92 % and 87 % activity, respectively. Therefore, the method of purifying hSOD1-LR through salt precipitation may have positive implications for the study of SOD purification.
Collapse
Affiliation(s)
- Chengli Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Wenrui Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jiayi Su
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Xinshuang Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Jingli Xue
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Cailiang Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Juan Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Yang Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Yun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
11
|
Liu X, Li X, Xie Z, Zhou X, Chen L, Qiu C, Lu C, Jin Z, Long J. Co-immobilization of β-agarase and α-agarase for degradation of agarose to prepare bioactive 3,6-anhydro- L-galactose. Int J Biol Macromol 2024; 277:133960. [PMID: 39029832 DOI: 10.1016/j.ijbiomac.2024.133960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/29/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Agarose from biomass can be used to synthesize the rare sugar 3,6-anhydro-L-galactose (L-AHG), and the new synthesis route and functional properties of L-AHG have always been the focus of research. Here we developed a novel method to co-immobilize Aga50D and BpGH117 onto streptavidin-coated magnetic nanoparticles and achieved the conversion of agarose to bioactive L-AHG in one pot. Results showed that enzymes were successfully immobilized on the carrier. The activity of co-immobilized enzymes was 2.5-fold higher than that of single immobilized enzymes. Compared with free enzymes, co-immobilized enzymes exhibited enhanced thermal stability. The co-immobilized enzymes retained 79.45 % relative activity at 40 °C for 3 h, while the free enzymes only possessed 21.40 % residual activity. After eight cycles, the co-immobilized enzymes still retained 73.47 % of the initial activity. After silica gel chromatography, the purity of L-AHG obtained by co-immobilized enzymes hydrolysis reached 83.02 %. Furthermore, bioactivity experiments demonstrated that L-AHG displayed better antioxidant and antibacterial effects than neoagarobiose. L-AHG had broad-spectrum antibacterial activity, while neoagarobiose and D-galactose did not show an obvious antibacterial effect. This study provides a feasible method for the production of L-AHG by a co-immobilized multi-enzyme system and confirms that L-AHG plays a key role in the bioactivity of neoagarobiose.
Collapse
Affiliation(s)
- Xuewu Liu
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xingfei Li
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Zhengjun Xie
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xing Zhou
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Long Chen
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Chao Qiu
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Cheng Lu
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Bioengineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Jie Long
- The State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
12
|
Zhang W, Han Y, Yang F, Guan L, Lu F, Mao S, Tian K, Yao M, Qin HM. A customized self-assembled synergistic biocatalyst for plastic depolymerization. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135380. [PMID: 39088944 DOI: 10.1016/j.jhazmat.2024.135380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
The enzymatic degradation of plastic offers a green, sustainable strategy and scalable circular carbon route for solving polyester waste. Among the earlies discovered plastic-degrading enzymes are PET hydrolase (PETase) and MHET hydrolase (MHETase), which act synergistically. To promote the adsorption of enzymes on PET surfaces, increase their robustness, and enable directly depolymerization, we designed hydrophobin HFBI fused-PETase and MHETase. A customized self-assembled synergistic biocatalyst (MC@CaZn-MOF) was further developed to promote the two-step depolymerization process. The tailored catalysts showed better adhesion to the PET surface and desirable durability, retaining over 70% relative activity after incubation at pH 8.0 and 60 °C for 120 h. Importantly, MC@CaZn-MOF could directly decompose untreated AGf-PET to generate 9.5 mM TPA with weight loss over 90%. The successful implementation of a bifunctional customized catalyst makes the large-scale biocatalytic degradation of PET feasible, contributing to polymer upcycling and environmental sustainability.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology; National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China
| | - Yuying Han
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology; National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China
| | - Feng Yang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology; National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China
| | - Lijun Guan
- Institute of Food Processing, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology; National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China
| | - Shuhong Mao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology; National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China
| | - Kangming Tian
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology; National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China.
| | - Mingdong Yao
- Key Laboratory of Systems Bioengineering (Ministry of Education); School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology; National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, China.
| |
Collapse
|
13
|
Li R, Wu Z, Liu X, Chen H, Li X, Fan D, Wu Z. Increasing Multienzyme Cascade Efficiency and Stability of MOF via Partitioning Immobilization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33235-33245. [PMID: 38885355 DOI: 10.1021/acsami.4c07487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Enhancing the stability of multienzyme cascade reactions in metal-organic frameworks (MOFs) is a challenging task in the fields of biotechnology and chemistry. However, addressing this challenge could yield far-reaching benefits across the application range in the biomedical, food, and environmental sectors. In this study, multienzyme partitioning immobilization that sequentially immobilizes cascade enzymes with hierarchical MOFs is proposed to reduce substrate diffusion resistance. Conversion results of ginsenosides indicate that this strategy improves the cascade efficiency up to 1.26 times. The substrate diffusion model is used to investigate the dual-interenzyme mass transfer behavior of substrates in the restricted domain space and evaluate the substrate channeling effect under partitioning immobilization. Molecular docking and kinetic simulations reveal that the MOFs effectively limit the conformational changes of cascade enzymes at high temperatures and in organic solvents while maintaining a large pocket of active centers. This phenomenon increased efficient substrate docking to the enzyme molecules, further optimizing cascade efficiency. The results of the immobilization of GOX and horseradish peroxidase as model enzymes indicate that the partitioned MOF immobilization strategy could be used for universal adaptation of cascade enzymes.
Collapse
Affiliation(s)
- Runze Li
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, P. R. China
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Zheng Wu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Xiaochen Liu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Hongxiu Chen
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Xue Li
- School of Chemical Engineering, Shaanxi Key Laboratory of Degradable Biomedical Materials, Northwest University, Xi'an 710069, P. R. China
| | - Daidi Fan
- School of Chemical Engineering, Shaanxi Key Laboratory of Degradable Biomedical Materials, Northwest University, Xi'an 710069, P. R. China
| | - Zhansheng Wu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, P. R. China
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| |
Collapse
|
14
|
Wang Z, Wang R, Geng Z, Luo X, Jia J, Pang S, Fan X, Bilal M, Cui J. Enzyme hybrid nanoflowers and enzyme@metal-organic frameworks composites: fascinating hybrid nanobiocatalysts. Crit Rev Biotechnol 2024; 44:674-697. [PMID: 37032548 DOI: 10.1080/07388551.2023.2189548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/06/2023] [Indexed: 04/11/2023]
Abstract
Hybrid nanomaterials have recently emerged as a new interface of nanobiocatalysis, serving as a host platform for enzyme immobilization. Enzyme immobilization in inorganic crystal nanoflowers and metal-organic frameworks (MOFs) has sparked the bulk of scientific interest due to their superior performances. Many breakthroughs have been achieved recently in the preparation of various types of enzyme@MOF and enzyme-hybrid nanoflower composites. However, it is unfortunate that there are few reviews in the literature related to enzyme@MOF and enzyme-hybrid nanoflower composites and their improved synthesis strategies and their applications in biotechnology. In this review, innovative synthetic strategies for enzyme@MOF composites and enzyme-hybrid nanoflower composites are discussed. Enzyme@MOF composites and enzyme-hybrid nanoflower composites are reviewed in terms of biotechnological applications and potential research directions. We are convinced that a fundamental study and application of enzyme@MOF composites and enzyme-hybrid nanoflower composites will be understood by the reader as a result of this work. The summary of different synthetic strategies for enzyme@MOF composites and enzyme-hybrid nanoflower composites and the improvement of their synthetic strategies will also benefit the readers and provide ideas and thoughts in the future research process.
Collapse
Affiliation(s)
- Zichen Wang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), Tianjin, China
| | - Ruirui Wang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), Tianjin, China
| | - Zixin Geng
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), Tianjin, China
| | - Xiuyan Luo
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), Tianjin, China
| | - Jiahui Jia
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), Tianjin, China
| | - Saizhao Pang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), Tianjin, China
| | - Xianwei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guang Xi University, Nanning, China
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Poznan, Poland
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), Tianjin, China
| |
Collapse
|
15
|
Zhang C, Ma X, Xue J, Liu S, Feng C, Han J, Wu J, Wang L, Wang Y. "Microflower-Templated" Janus Sheets: Synthesis and Application in Stabilizing Foams. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8981-8991. [PMID: 38627903 DOI: 10.1021/acs.langmuir.4c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
In this study, we proposed a method for fabricating Janus sheets using biological "microflowers" as a sacrificial template. The microflower-templated Janus sheets (MF-JNSs) were employed as a foam stabilizer in foam separation of the whey soybean protein (WSP). The MF-JNSs took inorganic hybrid microflowers (BSA@Cu3 (PO4)2-MF) as template, followed by the sequential attachment of protamine and silica to the surface of the BSA@Cu3(PO4)2-MF. Subsequently, the template was removed using ethylenediaminetetraacetic acid after the silicon dioxide was modified by 3-(methacryloyloxy) propyl trimethoxysilane. Upon template dissolution, the modified silica layer, lacking support from the core, fractured to form the MF-JNSs. This method omitted the step of treating the hollow ball by external force and obtained Janus sheets in one step, indicating that it was simple and feasible. The morphology, structure, and composition of the MF-JNSs were analyzed by SEM, TEM, AFM, XRD, and FT-IR. The MF-JNSs were found to delay the breakage time of the Pickering emulsion, demonstrating their emulsion stabilizing capability. Importantly, they significantly enhanced the foam half-life and foam height of soybean whey wastewater (SWW). Moreover, the recovery percentage and enrichment ratio of WSP, separated from SWW by foam separation, were improved to 81 ± 0.28 and 1.20 ± 0.05%, respectively.
Collapse
Affiliation(s)
- Cailiang Zhang
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinnan Ma
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jingli Xue
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shiyuan Liu
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chengxiang Feng
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Juan Han
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiacong Wu
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lei Wang
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yun Wang
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
16
|
Ma X, Li S, Tong X, Liu K. An overview on the current status and future prospects in Aspergillus cellulase production. ENVIRONMENTAL RESEARCH 2024; 244:117866. [PMID: 38061590 DOI: 10.1016/j.envres.2023.117866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
Cellulase is a new research point besides glucoamylase, amylase, and protease in the enzyme industry. Cellulase can decompose lignocellulosic biomass into small-molecule sugars, which facilitates microbial utilization; thus, it has a vast market potential in the field of feed, food, energy, and chemistry. The Aspergillus was the first strain used in cellulase preparation because of its safety and non-toxicity, strong growth ability, and high enzyme yield. This review provides the latest research and advances on preparing cellulase from Aspergillus. The metabolic mechanisms of cellulase secretion by Aspergillus, the selection of fermentation substrates, the comparison of the fermentation modes, and the effect of fermentation conditions have been discussed in this review. Also, the subsequent separation and purification techniques of Aspergillus cellulase, including salting out, organic solvent precipitation, ultrafiltration, and chromatography, have been declared. Further, bottlenecks in Aspergillus cellulase preparation and corresponding feasible approaches, such as genetic engineering, mixed culture, and cellulase immobilization, have also been proposed in this review. This paper provides theoretical support for the efficient production and application of Aspergillus cellulase.
Collapse
Affiliation(s)
- Xiaoyu Ma
- China Institute of Geo-Environment Monitoring, China Geological Survey, Beijing 100081, China
| | - Shengpin Li
- China Institute of Geo-Environment Monitoring, China Geological Survey, Beijing 100081, China
| | - Xiaoxia Tong
- China Institute of Geo-Environment Monitoring, China Geological Survey, Beijing 100081, China
| | - Kun Liu
- China Institute of Geo-Environment Monitoring, China Geological Survey, Beijing 100081, China.
| |
Collapse
|
17
|
Xu C, Tong S, Sun L, Gu X. Cellulase immobilization to enhance enzymatic hydrolysis of lignocellulosic biomass: An all-inclusive review. Carbohydr Polym 2023; 321:121319. [PMID: 37739542 DOI: 10.1016/j.carbpol.2023.121319] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 09/24/2023]
Abstract
Cellulase-mediated lignocellulosic biorefinery plays a crucial role in the production of high-value biofuels and chemicals, with enzymatic hydrolysis being an essential component. The advent of cellulase immobilization has revolutionized this process, significantly enhancing the efficiency, stability, and reusability of cellulase enzymes. This review offers a thorough analysis of the fundamental principles underlying immobilization, encompassing various immobilization approaches such as physical adsorption, covalent binding, entrapment, and cross-linking. Furthermore, it explores a diverse range of carrier materials, including inorganic, organic, and hybrid/composite materials. The review also focuses on emerging approaches like multi-enzyme co-immobilization, oriented immobilization, immobilized enzyme microreactors, and enzyme engineering for immobilization. Additionally, it delves into novel carrier technologies like 3D printing carriers, stimuli-responsive carriers, artificial cellulosomes, and biomimetic carriers. Moreover, the review addresses recent obstacles in cellulase immobilization, including molecular-level immobilization mechanism, diffusion limitations, loss of cellulase activity, cellulase leaching, and considerations of cost-effectiveness and scalability. The knowledge derived from this review is anticipated to catalyze the evolution of more efficient and sustainable biocatalytic systems for lignocellulosic biomass conversion, representing the current state-of-the-art in cellulase immobilization techniques.
Collapse
Affiliation(s)
- Chaozhong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Shanshan Tong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Liqun Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xiaoli Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
18
|
Anwar A, Imran M, Iqbal HM. Smart chemistry and applied perceptions of enzyme-coupled nano-engineered assemblies to meet future biocatalytic challenges. Coord Chem Rev 2023; 493:215329. [DOI: 10.1016/j.ccr.2023.215329] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
19
|
Zhu H, Chen J, Zhang Y, Goh KL, Wan C, Zheng D, Zheng M. Preparation and investigation of novel endopeptidase-exopeptidase co-immobilized nanoflowers with improved cascade hydrolysis. Int J Biol Macromol 2023; 246:125622. [PMID: 37392925 DOI: 10.1016/j.ijbiomac.2023.125622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/05/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Enzymatic hydrolysis is a promising approach for protein and food processing. However, the efficiency of this approach is constrained by the self-hydrolysis, self-agglomeration of free enzymes and the limited applicability resulted from enzymes' selectivityt. Here, novel organic-inorganic hybrid nanoflowers (AY-10@AXH-HNFs) were prepared by coordinating Cu2+ with both endopeptidase of PROTIN SD-AY10 and exopeptidase of Prote AXH. The results indicate that the AY-10@AXH-HNFs exhibited 4.1 and 9.6 times higher catalytic activity than free Prote AXH and PROTIN SD-AY10, respectively, for the enzymatic hydrolysis of N-benzoyl-L-arginine ethyl ester (BAEE). The kinetic parameters of Km, Vmax and Kcat/Km by AY-10@AXH-HNFs were determined to be 0.6 mg/mL, 6.8 mL·min/mg and 6.1 mL/(min·mg), respectively, surpassing the values obtained from free endopeptidase and exopeptidase. Furthermore, the ability of AY-10@AXH-HNFs to retain 41 % of their initial catalytic activity after undergoing 5 cycles of repeated use confirmed their stability and reusability. This study introduces a novel approach of co-immobilizing endopeptidase and exopeptidase on nanoflowers, resulting in significantly enhanced stability and reusability of the protease in catalytic applications.
Collapse
Affiliation(s)
- Hao Zhu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Hongshan Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China; College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Key Laboratory of Cognitive Science (State Ethnic Affairs Commission), South-Central MinZu University, Wuhan 430074, China
| | - Jinhang Chen
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Hongshan Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Yi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Hongshan Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China.
| | - Kheng-Lim Goh
- Newcastle University in Singapore, 172A Ang Mo Kio Avenue 8 #05-01, 599493, Singapore
| | - Chuyun Wan
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Hongshan Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China
| | - Dongyun Zheng
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Key Laboratory of Cognitive Science (State Ethnic Affairs Commission), South-Central MinZu University, Wuhan 430074, China
| | - Mingming Zheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Hongshan Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, China.
| |
Collapse
|
20
|
Jin X, Wang JK, Wang Q. Microbial β-glucanases: production, properties, and engineering. World J Microbiol Biotechnol 2023; 39:106. [PMID: 36847914 DOI: 10.1007/s11274-023-03550-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023]
Abstract
Lignocellulosic biomass, which mainly consists of cellulose and hemicellulose, is the most abundant renewable biopolymer on earth. β-Glucanases are glycoside hydrolases (GHs) that hydrolyze β-glucan, one of the dominant components of the plant cell wall, into cello-oligosaccharides and glucose. Among them, endo-β-1,4-glucanase (EC 3.2.1.4), exo-glucanase/cellobiohydrolase (EC 3.2.1.91), and β-glucosidase (EC 3.2.1.21) play critical roles in the digestion of glucan-like substrates. β-Glucanases have attracted considerable interest within the scientific community due to their applications in the feed, food, and textile industries. In the past decade, there has been considerable progress in the discovery, production, and characterization of novel β-glucanases. Advances in the development of next-generation sequencing techniques, including metagenomics and metatranscriptomics, have unveiled novel β-glucanases isolated from the gastrointestinal microbiota. The study of β-glucanases is beneficial for research and development of commercial products. In this study, we review the classification, properties, and engineering of β-glucanases.
Collapse
Affiliation(s)
- Xinyi Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058, China.,Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jia-Kun Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058, China.,Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qian Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058, China. .,Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
21
|
Tan Z, Cheng H, Chen G, Ju F, Fernández-Lucas J, Zdarta J, Jesionowski T, Bilal M. Designing multifunctional biocatalytic cascade system by multi-enzyme co-immobilization on biopolymers and nanostructured materials. Int J Biol Macromol 2023; 227:535-550. [PMID: 36516934 DOI: 10.1016/j.ijbiomac.2022.12.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/01/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
In recent decades, enzyme-based biocatalytic systems have garnered increasing interest in industrial and applied research for catalysis and organic chemistry. Many enzymatic reactions have been applied to sustainable and environmentally friendly production processes, particularly in the pharmaceutical, fine chemicals, and flavor/fragrance industries. However, only a fraction of the enzymes available has been stepped up towards industrial-scale manufacturing due to low enzyme stability and challenging separation, recovery, and reusability. In this context, immobilization and co-immobilization in robust support materials have emerged as valuable strategies to overcome these inadequacies by facilitating repeated or continuous batch operations and downstream processes. To further reduce separations, it can be advantageous to use multiple enzymes at once in one pot. Enzyme co-immobilization enables biocatalytic synergism and reusability, boosting process efficiency and cost-effectiveness. Several studies on multi-enzyme immobilization and co-localization propose kinetic advantages of the enhanced turnover number for multiple enzymes. This review spotlights recent progress in developing versatile biocatalytic cascade systems by multi-enzyme co-immobilization on environmentally friendly biopolymers and nanostructured materials and their application scope in the chemical and biotechnological industries. After a succinct overview of carrier-based and carrier-free immobilization/co-immobilizations, co-immobilization of enzymes on a range of biopolymer and nanomaterials-based supports is thoroughly compiled with contemporary and state-of-the-art examples. This study provides a new horizon in developing effective and innovative multi-enzymatic systems with new possibilities to fully harness the adventure of biocatalytic systems.
Collapse
Affiliation(s)
- Zhongbiao Tan
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, PR China.
| | - Hairong Cheng
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Gang Chen
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, PR China
| | - Fang Ju
- Sateri (Jiangsu) Fiber Co. Ltd., Suqian 221428, PR China
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, 28670 Villaviciosa de Odón, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002 Barranquilla, Colombia
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695 Poznan, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695 Poznan, Poland.
| | - Muhammad Bilal
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, PR China
| |
Collapse
|
22
|
Xu K, Appiah B, Zhang BW, Yang ZH, Quan C. Recent advances in enzyme immobilization based on nanoflowers. J Catal 2023. [DOI: 10.1016/j.jcat.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
23
|
Dynamic Changes in Cell Wall Polysaccharides during Fruit Development and Ripening of Two Contrasting Loquat Cultivars and Associated Molecular Mechanisms. Foods 2023; 12:foods12020309. [PMID: 36673402 PMCID: PMC9858128 DOI: 10.3390/foods12020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Loquats have drawn much attention due to their essential nutrients and unusual phenology, which fills a market gap in early spring. Fruit firmness (FF) is one of the most important quality attributes. Dynamic changes in FF, cell wall (CW) polysaccharides, CW hydrolase activity, and expression of CW metabolism-related genes during the fruit development and ripening stages of two contrasting loquat cultivars were compared. Although the two cultivars possessed similar FF at the initial fruitlet stage, Dawuxing was significantly firmer than Ninghaibai at all subsequent time points. FF was positively correlated with the contents of covalent-soluble pectin and hemicellulose, activity of peroxidase, and gene expressions of PME, EG, CAD6, and POD; and negatively correlated with the contents of water-soluble pectin, activities of polygalacturonase, endo-glucanase, cellobiohydrolase, and xylanase, and gene expressions of PG, EG2, PAL1, PAL3, and CAD5. Identifying molecular mechanisms underlying the differences in FF is useful for fundamental research and crop improvement in future.
Collapse
|
24
|
Organic-inorganic hybrid nanoflowers: The known, the unknown, and the future. Adv Colloid Interface Sci 2022; 309:102780. [DOI: 10.1016/j.cis.2022.102780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 01/10/2023]
|
25
|
Rajendran DS, Venkataraman S, Kumar PS, Rangasamy G, Bhattacharya T, Nguyen Vo DV, Vaithyanathan VK, Cabana H, Kumar VV. Coimmobilized enzymes as versatile biocatalytic tools for biomass valorization and remediation of environmental contaminants - A review. ENVIRONMENTAL RESEARCH 2022; 214:114012. [PMID: 35952747 DOI: 10.1016/j.envres.2022.114012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Due to stringent regulatory norms, waste processing faces confrontations and challenges in adapting technology for effective management through a convenient and economical system. At the global level, attempts are underway to achieve a green and sustainable treatment for the valorization of lignocellulosic biomass as well as organic contaminants in wastewater. Enzymatic treatment in the environmental aspect thrived on being the promising rapid strategy that appeased the aforementioned predicament. On that account, coimmobilization of various enzymes on single support enhances the catalytic activity ensuing operational stability with industrial applications. This review pivoted towards the coimmobilization of enzymes on diverse supports and their applications in biomass conversion to industrial value-added products and removal of contaminants in wastewater. The limelight of this study chronicles the unique breakthroughs in biotechnology for the production of reusable biocatalysts, which inculcating various enzymes towards the scope of environment application.
Collapse
Affiliation(s)
- Devi Sri Rajendran
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai - 603203, India
| | - Swethaa Venkataraman
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai - 603203, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam- 603 110, Chennai, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam- 603 110, Chennai, India.
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Trishita Bhattacharya
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai - 603203, India
| | - Dai-Viet Nguyen Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Vasanth Kumar Vaithyanathan
- University of Sherbrooke Water Research Group, Environmental Engineering Laboratory, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. de L'Université, Sherbrooke, Quebec, J1K 2R1, Canada
| | - Hubert Cabana
- University of Sherbrooke Water Research Group, Environmental Engineering Laboratory, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. de L'Université, Sherbrooke, Quebec, J1K 2R1, Canada
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai - 603203, India; University of Sherbrooke Water Research Group, Environmental Engineering Laboratory, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. de L'Université, Sherbrooke, Quebec, J1K 2R1, Canada.
| |
Collapse
|
26
|
Sulman AM, Matveeva VG, Bronstein LM. Cellulase Immobilization on Nanostructured Supports for Biomass Waste Processing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3796. [PMID: 36364572 PMCID: PMC9656580 DOI: 10.3390/nano12213796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Nanobiocatalysts, i.e., enzymes immobilized on nanostructured supports, received considerable attention because they are potential remedies to overcome shortcomings of traditional biocatalysts, such as low efficiency of mass transfer, instability during catalytic reactions, and possible deactivation. In this short review, we will analyze major aspects of immobilization of cellulase-an enzyme for cellulosic biomass waste processing-on nanostructured supports. Such supports provide high surface areas, increased enzyme loading, and a beneficial environment to enhance cellulase performance and its stability, leading to nanobiocatalysts for obtaining biofuels and value-added chemicals. Here, we will discuss such nanostructured supports as carbon nanotubes, polymer nanoparticles (NPs), nanohydrogels, nanofibers, silica NPs, hierarchical porous materials, magnetic NPs and their nanohybrids, based on publications of the last five years. The use of magnetic NPs is especially favorable due to easy separation and the nanobiocatalyst recovery for a repeated use. This review will discuss methods for cellulase immobilization, morphology of nanostructured supports, multienzyme systems as well as factors influencing the enzyme activity to achieve the highest conversion of cellulosic biowaste into fermentable sugars. We believe this review will allow for an enhanced understanding of such nanobiocatalysts and processes, allowing for the best solutions to major problems of sustainable biorefinery.
Collapse
Affiliation(s)
- Aleksandrina M. Sulman
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina St., 170026 Tver, Russia
| | - Valentina G. Matveeva
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina St., 170026 Tver, Russia
- Regional Technological Centre, Tver State University, Zhelyabova St., 33, 170100 Tver, Russia
| | - Lyudmila M. Bronstein
- Department of Chemistry, Indiana University, 800 E. Kirkwood Av., Bloomington, IN 47405, USA
- Department of Physics, Faculty of Science, King Abdulaziz University, P.O. Box 80303, Jeddah 21589, Saudi Arabia
| |
Collapse
|
27
|
Chen K, Dong X, Sun Y. Sequentially co-immobilized PET and MHET hydrolases via Spy chemistry in calcium phosphate nanocrystals present high-performance PET degradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129517. [PMID: 35809363 DOI: 10.1016/j.jhazmat.2022.129517] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Accumulation of polyethylene terephthalate (PET) has brought an enormous threat to the ecosystem. The recently reported PET hydrolase (DuraPETase) and MHET hydrolase (MHETase) can synergistically catalyze the complete PET degradation. Hence, this work was designed to develop a bienzymatic cascade catalysis by co-immobilizing the two enzymes for PET biodegradation. DuraPETase and MHETase were sequentially co-immobilized in calcium phosphate nanocrystals (CaP) through SpyTag/SpyCatcher system. MHETase-SpyCatcher was first embedded inside the nanocrystals via biomimetic mineralization, and DuraPETase-SpyTag was then conjugated on the outlayer (~1.5 µm). The bienzyme compartmentalization facilitated DuraPETase interaction with the solid substrate, and the layered structures of the nanocrystals protected the enzymes, thus enhancing their stability. The high specific surface area of the nanocrystals and the proximity effects from the bienzymatic cascade were beneficial to the improved enzyme activity. Experimental data and molecular dynamics simulations revealed the activation effect of Ca2+ on DuraPETase. Taken together, the final results indicate that the PET degradation efficiency of DuraPETase-MHETase@CaP increased by 6.1 and 1.5 times over the free bienzyme system within 10 d at 40 °C and 50 °C, with weight losses at 32.2% and 50.3%, respectively. The bienzymatic cascade with DuraPETase-MHETase@CaP can completely degrade PET, contributing to the recycling of PET.
Collapse
Affiliation(s)
- Kun Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
28
|
Xu H, Liang H. Chitosan-regulated biomimetic hybrid nanoflower for efficiently immobilizing enzymes to enhance stability and by-product tolerance. Int J Biol Macromol 2022; 220:124-134. [PMID: 35961558 DOI: 10.1016/j.ijbiomac.2022.08.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/18/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022]
Abstract
Organic-inorganic hybrid nano-materials have been considered to be promising immobilization matrixes for enzymes due to their significantly enhanced reusability and stability of enzymes. Herein, we constructed a novel organic-inorganic hybrid nanoflower via biomacromolecule-regulated biomimetic mineralization to immobilize sucrose phosphorylase (SPase). It was found that chitosan (CS) effectively regulated the biomimetic mineralization of calcium phosphate (CaP), leading to the formation of flower-like hybrid materials for the entrapment of SPase via self-assembly to establish a nano-biocatalyst (CS-CaP@SPase). Upon immobilization, the obtained CS-CaP@SPase exhibited excellent pH, by-product and organic solvents tolerance, and storage stability. Specifically, at acidic condition (pH 4), CS-CaP@SPase performed over 80 % of initial activity, which was 2.42-folds higher than that of free SPase. The catalytic activity of free SPase was severely inhibited about 30 % in the presence of fructose (1.2 M), but CS-CaP@SPase only lost 5 % relative activity. The CS-CaP@SPase retained over 80 % of its relative activity, while the free SPase maintained <20 % of its relative activity in acetonitrile. The relative activity of CS-CaP@SPase was still retained about 80 % after 10 cycles and maintained 75 % after 15 days. Based on Raman spectra analysis, it was also found that the increased β-folding component of SPase in the secondary structure after immobilization was the main factor for its enhanced stability. It is reasonable to believe that biomacromolecule-regulated biomimetic mineralization could be potentially used as a promising method to immobilize enzymes with excellent stability and recyclability, thereby facilitating the preparation of highly efficient catalysts for industrial biocatalysts, biosensing, and biomedicine.
Collapse
Affiliation(s)
- Haichang Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
29
|
Chen Y, Liu P, Wu J, Yan W, Xie S, Sun X, Ye BC, Chu X. N-acylhomoserine lactonase-based hybrid nanoflowers: a novel and practical strategy to control plant bacterial diseases. J Nanobiotechnology 2022; 20:347. [PMID: 35883097 PMCID: PMC9327166 DOI: 10.1186/s12951-022-01557-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The disease caused by plant pathogenic bacteria in the production, transportation, and storage of many crops has brought huge losses to agricultural production. N-acylhomoserine lactonases (AHLases) can quench quorum-sensing (QS) by hydrolyzing acylhomoserine lactones (AHLs), which makes them the promising candidates for controlling infections of QS-dependent pathogenic bacteria. Although many AHLases have been isolated and considered as a potentially effective preventive and therapeutic agents for bacterial diseases, the intrinsically poor ambient stability has seriously restricted its application. RESULTS Herein, we showed that a spheroid enzyme-based hybrid nanoflower (EHNF), AhlX@Ni3(PO4)2, can be easily synthesized, and it exhibited 10 times AHL (3OC8-HSL) degradation activity than that with free AhlX (a thermostable AHL lactonase). In addition, it showed intriguing stability even at the working concentration, and retained ~ 100% activity after incubation at room temperature (25 °C) for 40 days and approximately 80% activity after incubation at 60 °C for 48 h. Furthermore, it exhibited better organic solvent tolerance and long-term stability in a complicated ecological environment than that of AhlX. To reduce the cost and streamline production processes, CSA@Ni3(PO4)2, which was assembled from the crude supernatants of AhlX and Ni3(PO4)2, was synthesized. Both AhlX@Ni3(PO4)2 and CSA@Ni3(PO4)2 efficiently attenuated pathogenic bacterial infection. CONCLUSIONS In this study, we have developed N-acylhomoserine lactonase-based hybrid nanoflowers as a novel and efficient biocontrol reagent with significant control effect, outstanding environmental adaptability and tolerance. It was expected to overcome the bottlenecks of poor stability and limited environmental tolerance that have existed for over two decades and pioneered the practical application of EHNFs in the field of biological control.
Collapse
Affiliation(s)
- Yan Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Pengfu Liu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Jiequn Wu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Wanqing Yan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Saixue Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Bang-Ce Ye
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
| | - Xiaohe Chu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
30
|
Zhang Y, Gao S, Qi X, Zhu S, Xu S, Liang Y, Kong F, Yang S, Wang R, Wang Y, An Y. Novel biocatalytic strategy of levan: His-ELP-intein-tagged protein purification and biomimetic mineralization. Carbohydr Polym 2022; 288:119398. [DOI: 10.1016/j.carbpol.2022.119398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/19/2022] [Indexed: 01/13/2023]
|