1
|
Liu T, Ma M, Wu Y, Asif IM, Chen D, Liu L, Zhang M, Chen Y, Li B, Wang L. Protective Effects of Fucoidan on Iodoacetamide-Induced Functional Dyspepsia via Modulation of 5-HT Metabolism and Microbiota. Int J Mol Sci 2025; 26:3273. [PMID: 40244137 PMCID: PMC11989908 DOI: 10.3390/ijms26073273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/26/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
As the major polysaccharide in brown algae, fucoidan possesses broad biological abilities and has been reported to improve gastrointestinal health. Functional dyspepsia, a common non-organic disease, is a complex of symptoms mainly characterized by pathogenesis, such as visceral hypersensitivity, gastric dysmotility, and inflammation. To date, the effects of fucoidan in regulating functional dyspepsia with visceral sensitivity remains unclear. In the current study, iodoacetamide was employed to establish a mouse model of visceral hypersensitivity. Meanwhile, fucoidan was orally administrated for fourteen days. Indicators were conducted to evaluate the potential of fucoidan as the ingredient of complementary and alternative medicine for functional dyspepsia, such as levels of serum hormones, expression of receptors, and gut microbial profile. The results show that oral administration of fucoidan led to significant reductions in the secretion of 5-hydroxytryptamine, cortisol, and corticosterone. Additionally, it decreased the expression of 5-hydroxytryptamine-3 receptors, with regulation of 5-hydroxytryptamine metabolism and improvement of gut microbial imbalance. The above results suggest fucoidan could ameliorate visceral hypersensitivity by modulating 5-HT metabolism and microbiota. The current findings indicate that fucoidan has potential as a biological component in the adjuvant treatment of functional dyspepsia and for its expanded utilization in the food and medical fields.
Collapse
Affiliation(s)
- Tianxu Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.L.); (M.M.)
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Muyuan Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.L.); (M.M.)
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Yonglin Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.L.); (M.M.)
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Ismail Muhammad Asif
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.L.); (M.M.)
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Daosen Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.L.); (M.M.)
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Lichong Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.L.); (M.M.)
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Minghui Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.L.); (M.M.)
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Yijie Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.L.); (M.M.)
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.L.); (M.M.)
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Ling Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.L.); (M.M.)
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| |
Collapse
|
2
|
Zheng X, Chen Q, Liang X, Xie J, Loor A, Dong H, Yang J, Zhang J. The effects of citral on the intestinal health and growth performance of American bullfrogs (Aquarana catesbeiana). BMC Vet Res 2025; 21:49. [PMID: 39901183 PMCID: PMC11789344 DOI: 10.1186/s12917-025-04498-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/15/2025] [Indexed: 02/05/2025] Open
Abstract
Bullfrogs (Aquarana catesbeiana) are increasingly cultivated for their high nutritional value and adaptability to intensive aquaculture systems. However, ensuring optimal intestinal health and growth performance remains a challenge due to poor water quality and high stocking densities. This study evaluated the effects of varying dietary concentrations of citral, a natural compound from lemongrass essential oil, on the intestinal health, microbiota, antioxidant capacity, and growth performance of juvenile bullfrogs. A total of 200 juvenile bullfrogs (initial weight 6.85 ± 0.71 g) were randomly assigned into six groups, each receiving diets supplemented with citral at 0, 1, 2, 4, 8, and 16 mL/kg feed for 8 weeks. Citral supplementation significantly improved intestinal morphology, with goblet cell numbers, mucosal thickness, and villus-to-crypt ratios peaking at 2-4 mL/kg (P < 0.05). Optimal doses of 2-4 mL/kg also enhanced digestive enzyme activities, with α-amylase, lipase, and pepsin activities showing significant increases compared to the control group (P < 0.05). Antioxidant markers, including total antioxidant capacity (T-AOC) and glutathione (GSH), were highest at 2 mL/kg, while higher citral concentrations reduced superoxide dismutase (SOD) and catalase (CAT) activities, indicating potential oxidative stress at 8-16 mL/kg (P < 0.05). Citral also modulated the intestinal microbiota, increasing the relative abundance of beneficial bacteria such as Cetobacterium at 1-2 mL/kg (P < 0.05). However, microbial diversity decreased significantly at concentrations above 4 mL/kg. Growth performance analysis revealed that 4 mL/kg citral supplementation significantly improved weight gain rate (WGR), specific growth rate (SGR), carcass weight (CW), and feed efficiency (FE), while survival rates declined at 16 mL/kg (P < 0.05). A linear regression model determined the optimal dietary citral concentration to be 3.216-3.942 mL/kg. This study concludes that dietary citral at 2-4 mL/kg optimally enhances growth performance, intestinal health, and antioxidant capacity in juvenile bullfrogs, while higher concentrations may disrupt gut health and oxidative balance. These findings provide valuable insights into the use of natural compounds like citral for sustainable aquaculture practices.
Collapse
Affiliation(s)
- Xiaoting Zheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Qiuyu Chen
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Xueying Liang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Jingyi Xie
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Alfredo Loor
- Faculty of Maritime Engineering and Marine Sciences (FIMCM), Escuela Superior Politecnica del Litoral (ESPOL), Guayaquil, 09015863, Ecuador
| | - Hongbiao Dong
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya, 572018, China
| | - Jinlong Yang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiasong Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
- Sanya Tropical Fisheries Research Institute, Sanya, 572018, China.
| |
Collapse
|
3
|
Oliyaei N, Zekri S, Iraji A, Oliyaei A, Tanideh R, Mussin NM, Tamadon A, Tanideh N. Health benefits of algae and marine-derived bioactive metabolites for modulating ulcerative colitis symptoms. J Funct Foods 2025; 125:106690. [DOI: 10.1016/j.jff.2025.106690] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
|
4
|
Wang T, Huang Y, Jiang P, Yuan X, Long Q, Yan X, Huang Y, Wang Z, Li C. Research progress on anti-inflammatory drugs for preventing colitis-associated colorectal cancer. Int Immunopharmacol 2025; 144:113583. [PMID: 39580861 DOI: 10.1016/j.intimp.2024.113583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
Colorectal cancer (CRC) is the third most prevalent malignancy worldwide. Inflammatory bowel diseases (IBD) encompass a group of chronic intestinal inflammatory disorders, including ulcerative colitis (UC) and Crohn's disease (CD). As a chronic inflammatory bowel disease, UC may persist and elevate the risk of malignancy, thereby contributing to the development of colorectal cancer, known as colitis-associated colorectal cancer (CAC). Chronic intestinal inflammation is a significant risk factor for colorectal cancer, and the incidence of colitis-associated colorectal cancer continues to rise. Current studies indicate that therapeutic agents targeting inflammation and key molecules or signaling pathways involved in the inflammatory process may effectively prevent and treat CAC. Mechanistically, drugs with anti-inflammatory or modulatory effects on inflammation-related pathways may exert preventive or therapeutic roles in CAC through multiple molecules or signaling pathways implicated in tumor development. Moreover, the development or discovery of novel drugs with anti-inflammatory properties to prevent or delay CAC progression is becoming an emerging field in fighting against CRC. Therefore, this review aims to summarize drugs that prevent or delay CAC through modulating anti-inflammatory pathways. First, we categorize the published studies exploring the role of anti-inflammatory in CAC prevention. Second, we highlight the specific molecular mechanisms underlying the anti-inflammatory effect of the above-mentioned drugs. Finally, we discuss the potential and challenges associated with clinical application of these drugs. It is hoped that this review offers new insights for further drug development and mechanism exploration.
Collapse
Affiliation(s)
- Tong Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | | | - Peng Jiang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Xin Yuan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Qian Long
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Xiaochen Yan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Yuwei Huang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Zongkui Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China.
| | - Changqing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China.
| |
Collapse
|
5
|
Liu Z, Wang M, Li J, Liang Y, Jiang K, Hu Y, Gong W, Guo X, Guo Q, Zhu B. Hizikia fusiforme polysaccharides synergized with fecal microbiota transplantation to alleviate gut microbiota dysbiosis and intestinal inflammation. Int J Biol Macromol 2024; 283:137851. [PMID: 39566790 DOI: 10.1016/j.ijbiomac.2024.137851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/10/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Ulcerative colitis (UC) is closely associated with disruptions in gut microbiota. Restoring balance to gut microbiota and reducing intestinal inflammation has become a promising therapeutic approach for UC. However, challenges remain, including limited efficacy in some treatments. This study explores the synergistic effects and underlying mechanisms of Hizikia fusiforme polysaccharides (HFP) combined with fecal microbiota transplantation (FMT) to improve UC symptoms. Seven-week-old C57/BL6J mice were induced with UC using dextran sodium sulfate (DSS). Supplementation with either FMT alone or in combination with HFP effectively alleviated UC symptoms, reduced colonic inflammation, and corrected gut microbiota imbalance. Notably, HFP combined with FMT yielded showed better effects in ameliorating DSS-induced UC in mice than did FMT alone. Enrichment of probiotics, such as Bifidobacterium, and upregulation of beneficial metabolites, such as betaine, were identified as potential mechanisms for the enhanced effects of HFP combined with FMT against DSS-induced UC. These findings suggest that the combination of Hizikia fusiforme polysaccharides with FMT has potential applications in rectifying dysbiosis and ameliorating inflammatory bowel diseases.
Collapse
Affiliation(s)
- Zhengqi Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China; National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Menghui Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Jinjin Li
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Yuxuan Liang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Kaiyu Jiang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Yuanyuan Hu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Wei Gong
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Qingbin Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China; National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China; National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
6
|
Biswas I, Precilla S D, Kuduvalli SS, K B, R S, T S A. Ultrastructural and immunohistochemical insights on the anti-glioma effects of a dual-drug cocktail in an in vivo experimental model. J Chemother 2024; 36:593-606. [PMID: 38240036 DOI: 10.1080/1120009x.2024.2302741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 10/23/2024]
Abstract
Glioma coined as 'butterfly tumor' exhibits intense heterogeneity at the molecular and cellular levels. Although, Temozolomide exerted a long-ranging and prevailing therapeutic effect against glioma, albeit it has provided modest survival outcome. Fucoidan, (marine brown algal derivative) has demonstrated potent anti-tumor effects including glioma. Nevertheless, there is paucity of studies conducted on Fucoidan to enhance the anti-glioma efficacy of Temozolomide. The present study aimed to explore the plausible synergistic anti-glioma efficacy of Fucoidan in combination with Temozolomide in an in vivo experimental model. The dual-drug combination significantly inhibited tumor growth in in vivo and prolonged the survival rate when compared with the other treatment and tumor-control groups, via down-regulation of inflammatory cascade- IL-6/T LR4 and JAK/STAT3 as per the immunohistochemistry findings. Furthermore, the ultrastructural analysis indicated that the combinatorial treatment had restored the normal neuronal architecture of glioma-induced rats. Overall, the dual-drug cocktail might enhance the therapeutic outcome in glioma patients.
Collapse
Affiliation(s)
- Indrani Biswas
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Daisy Precilla S
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Shreyas S Kuduvalli
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Bhavani K
- Department of Pathology, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | | | - Anitha T S
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| |
Collapse
|
7
|
Yang C, Wusigale, You L, Li X, Kwok LY, Chen Y. Inflammation, Gut Microbiota, and Metabolomic Shifts in Colorectal Cancer: Insights from Human and Mouse Models. Int J Mol Sci 2024; 25:11189. [PMID: 39456970 PMCID: PMC11508446 DOI: 10.3390/ijms252011189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/09/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Colorectal cancer (CRC) arises from aberrant mutations in colorectal cells, frequently linked to chronic inflammation. This study integrated human gut metagenome analysis with an azoxymethane and dextran sulfate sodium-induced CRC mouse model to investigate the dynamics of inflammation, gut microbiota, and metabolomic profiles throughout tumorigenesis. The analysis of stool metagenome data from 30 healthy individuals and 40 CRC patients disclosed a significant escalation in both gut microbiota diversity and abundance in CRC patients compared to healthy individuals (p < 0.05). Marked structural disparities were identified between the gut microbiota of healthy individuals and those with CRC (p < 0.05), characterized by elevated levels of clostridia and diminished bifidobacteria in CRC patients (p < 0.05). In the mouse model, CRC mice exhibited distinct gut microbiota structures and metabolite signatures at early and advanced tumor stages, with subtle variations noted during the intermediate phase. Additionally, inflammatory marker levels increased progressively during tumor development in CRC mice, in contrast to their stable levels in healthy counterparts. These findings suggest that persistent inflammation might precipitate gut dysbiosis and altered microbial metabolism. Collectively, this study provides insights into the interplay between inflammation, gut microbiota, and metabolite changes during CRC progression, offering potential biomarkers for diagnosis. While further validation with larger cohorts is warranted, the data obtained support the development of CRC prevention and diagnosis strategies.
Collapse
Affiliation(s)
- Chengcong Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Y.); (W.); (L.Y.); (X.L.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wusigale
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Y.); (W.); (L.Y.); (X.L.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lijun You
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Y.); (W.); (L.Y.); (X.L.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiang Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Y.); (W.); (L.Y.); (X.L.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Y.); (W.); (L.Y.); (X.L.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yongfu Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China; (C.Y.); (W.); (L.Y.); (X.L.); (L.-Y.K.)
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
8
|
Cheong KL, Xie XT, Zhou T, Malairaj S, Veeraperumal S, Zhong S, Tan K. Exploring the therapeutic potential of porphyran extracted from Porphyra haitanensis in the attenuation of DSS-induced intestinal inflammation. Int J Biol Macromol 2024; 271:132578. [PMID: 38788872 DOI: 10.1016/j.ijbiomac.2024.132578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Ulcerative colitis is a chronic, spontaneous inflammatory bowel disease that primarily affects the colon. This study aimed to explore how Porphyra haitanensis porphyran (PHP) modulates the immune response and the associated mechanisms that alleviate dextran sulphate sodium-induced colitis in mice. Histological assessments via H&E staining and AB-PAS staining revealed that PHP intervention partially restored the number of goblet cells and improved intestinal mucosal function. Immunohistochemical and Western blot analyses of claudin-1, occludin, and MUC-2 demonstrated that PHP could repair the intestinal barrier and reduce colon damage by upregulating the expression of these proteins. PHP intervention was associated with a decrease in pro-inflammatory cytokine expression and an increase in anti-inflammatory cytokine expression. Moreover, the expression of proteins involved in intestinal immune homing, such as CCR-9, CCL-25, MAdCAM-1, and α4β7, was significantly suppressed in response to PHP treatment. Conversely, PHP upregulates the expression of CD40 and TGF-β1, both of these can promote healing and reduce inflammation in the gut lining. This study demonstrates that PHP can ameliorate ulcerative colitis by enhancing the intestinal barrier and modulating immune responses. These findings offer valuable insights into the potential utility of P. haitanensis as a promising natural product for managing ulcerative colitis.
Collapse
Affiliation(s)
- Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China; Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China.
| | - Xu-Ting Xie
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China
| | - Tao Zhou
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Sathuvan Malairaj
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China
| | - Suresh Veeraperumal
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China.
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, China.
| |
Collapse
|
9
|
Zhong Z, Zhang Y, Wei Y, Li X, Ren L, Li Y, Zhang X, Chen C, Yin X, Liu R, Wang Q. Fucoidan Improves Early Stage Diabetic Nephropathy via the Gut Microbiota-Mitochondria Axis in High-Fat Diet-Induced Diabetic Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9755-9767. [PMID: 38635872 DOI: 10.1021/acs.jafc.3c08503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Diabetic nephropathy (DN) is a common microvascular complication of diabetes. Fucoidan, a polysaccharide containing fucose and sulfate group, ameliorates DN. However, the underlying mechanism has not been fully understood. This study aimed to explore the effects and mechanism of fucoidan on DN in high-fat diet-induced diabetic mice. A total of 90 C57BL/6J mice were randomly assigned to six groups (n = 15) as follows: normal control (NC), diabetes mellitus (DM), metformin (MTF), low-dose fucoidan (LFC), medium-dose fucoidan (MFC), and high-dose fucoidan (HFC). A technique based on fluorescein isothiocyanate (FITC-sinistin) elimination kinetics measured percutaneously was applied to determine the glomerular filtration rate (GFR). After 24 weeks, the mice were sacrificed and an early stage DN model was confirmed by GFR hyperfiltration, elevated urinary creatinine, normal urinary albumin, tubulointerstitial fibrosis, and glomerular hypertrophy. Fucoidan significantly improved the GFR hyperfiltration and renal fibrosis. An enriched SCFAs-producing bacteria and increased acetic concentration in cecum contents were found in fucoidan groups, as well as increased renal ATP levels and improved mitochondrial dysfunction. The renal inflammation and fibrosis were ameliorated through inhibiting the MAPKs pathway. In conclusion, fucoidan improved early stage DN targeting the microbiota-mitochondria axis by ameliorating mitochondrial oxidative stress and inhibiting the MAPKs pathway.
Collapse
Affiliation(s)
- Zhaoyi Zhong
- School of Public health, Qingdao University, Qingdao 266071, China
- . Hedong District Center for Disease Control and Prevention, Tianjin 300171, China
| | - Yangting Zhang
- School of Public health, Qingdao University, Qingdao 266071, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266071, China
| | - Yuan Wei
- . Qingdao Eighth People's Hospital, Qingdao 266041, China
| | - Xiaona Li
- School of Public health, Qingdao University, Qingdao 266071, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266071, China
| | - Lisheng Ren
- . The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yan Li
- School of Public health, Qingdao University, Qingdao 266071, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266071, China
| | - Xueqian Zhang
- School of Public health, Qingdao University, Qingdao 266071, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266071, China
| | - Chengyu Chen
- School of Public health, Qingdao University, Qingdao 266071, China
| | - Xueru Yin
- School of Public health, Qingdao University, Qingdao 266071, China
| | - Run Liu
- School of Public health, Qingdao University, Qingdao 266071, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266071, China
| | - Qiuzhen Wang
- School of Public health, Qingdao University, Qingdao 266071, China
- Institute of Nutrition & Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
10
|
Wang H, Li M, Jiao F, Ge W, Liu R, Zhi Z, Wu T, Sui W, Zhang M. Soluble dietary fibers from solid-state fermentation of wheat bran by the fungus Cordyceps cicadae and their effects on colitis mice. Food Funct 2024; 15:516-529. [PMID: 38167692 DOI: 10.1039/d3fo03851c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Ulcerative colitis is a chronic inflammatory disease with a complex pathogenesis for which there is no definitive therapeutic agent. Fermentation, as a green and efficient bioprocessing technique, has been shown to enhance the biological activity of food ingredients. Soluble dietary fiber isolated from plants is thought to have the potential to prevent and alleviate ulcerative colitis. This work was designed to study the differences in the chemical properties of the soluble dietary fiber from wheat bran fermented by Isaria cicadae Miq. (FSDF) and the unfermented soluble dietary fiber from wheat bran (UFSDF) and their effects on colitis mice. The results showed that FSDF and UFSDF differed in molecular weight, monosaccharide compositions, and surface morphology. In addition, supplementation with UFSDF and FSDF ameliorated the symptoms of DSS-induced colitis in mice by attenuating body weight loss, decreasing the disease activity index and splenic index, shortening the length of the colon, and attenuating colonic tissue damage. UFSDF and FSDF also increased the production of the anti-inflammatory cytokine IL-10 and inhibited the expression of IL-6, IL-1β, and TNF-α. The results of gut flora and short-chain fatty acid analyses showed that UFSDF and FSDF improved the diversity of gut microbiota, up-regulated the abundance of some beneficial bacteria such as Akkermansia and Muribaculaceae, increased the levels of acetic acid, propionic acid, and butyric acid, and restored dextran sodium sulfate (DSS)-induced dysbiosis of the intestinal flora in mice. These findings provide guidance for the development of FSDF and UFSDF as functional foods for the relief of ulcerative colitis.
Collapse
Affiliation(s)
- Hua Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Menglin Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Furong Jiao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Wenxiu Ge
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Zijian Zhi
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China.
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, PR China
| |
Collapse
|
11
|
Li J, Liu T, Wang J, Wang G, Chen X, Zhang X, Xia Q, Li N. Polystyrene may alter the cooperation mechanism of gut microbiota and immune system through co-exposure with DCBQ. CHEMOSPHERE 2023; 340:139814. [PMID: 37586486 DOI: 10.1016/j.chemosphere.2023.139814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/08/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
The toxicity of Polystyrene (PS) may be higher through co-exposure with other pollutants. Human can simultaneously face the challenges from the various pollutants. Nevertheless, little research has been done on the combined effects of PS and 2,6-dichloro-p-benzoquinone (DCBQ) disinfection byproduct. Considering the potential risk of PS and DCBQ, we aimed to illustrate the effects of PS in combination with DCBQ on the immune responses of mice. We found that cotreatment of DCBQ and PS may inhibit the activity of spleen CD4+ T cells and interfere with the normal function of the immune system. Further research found that DCBQ + PS resulted in increasing amount of the inflammatory cells in intestine via histopathological evaluation. The reason might be that DCBQ + PS has changed the composition of intestinal flora, abnormally activated intestinal macrophage, and inhibited the expression of immune-related genes, thus leading to intestinal immune disorders and triggering intestinal inflammation. In summary, PS may alter the cooperation mechanism of gut microbiota and immune system through co-exposure with DCBQ. Current results suggested that more attention should be paid to the combined toxic effects of environmental contaminants.
Collapse
Affiliation(s)
- Jinhua Li
- Department of Health Toxicology, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Ting Liu
- Department of Health Toxicology, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Jun Wang
- Department of Health Toxicology, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Gaihua Wang
- Department of Health Toxicology, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Xin Chen
- Department of Health Toxicology, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Xu Zhang
- Department of Health Toxicology, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Qianfeng Xia
- Department of Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China.
| | - Na Li
- Department of Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China.
| |
Collapse
|
12
|
Wang L, Oh JY, Yang HW, Hyun J, Ahn G, Fu X, Xu J, Gao X, Cha SH, Jeon YJ. Protective Effect of Sargassum fusiforme Fucoidan against Ethanol-Induced Oxidative Damage in In Vitro and In Vivo Models. Polymers (Basel) 2023; 15:polym15081912. [PMID: 37112059 PMCID: PMC10145573 DOI: 10.3390/polym15081912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Our previous studies have evaluated the bioactivities of a fucoidan isolated from Sargassum fusiforme (SF-F). To further investigate the health benefit of SF-F, in the present study, the protective effect of SF-F against ethanol (EtOH)-induced oxidative damage has been evaluated in in vitro and in vivo models. SF-F effectively improved the viability of EtOH-treated Chang liver cells by suppressing apoptosis. In addition, the in vivo test results indicate that SF-F significantly and dose-dependently increased the survival rate of zebrafish treated with EtOH. Further research results show that this action works through decreasing cell death via reduced lipid peroxidation by scavenging intracellular reactive oxygen species in EtOH-stimulated zebrafish. These results indicate that SF-F effectively protected Chang liver cells and zebrafish against EtOH-induced oxidative damage and suggest the potential of SF-F to be used as an ingredient in the functional food industry.
Collapse
Affiliation(s)
- Lei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jae-Young Oh
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Hye-Won Yang
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Jimin Hyun
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Ginnae Ahn
- Department of Marine Bio Food Science, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Xiaoting Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jiachao Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xin Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Seon-Heui Cha
- Department of Marine Bio and Medical Sciences, Hanseo University, Seosan-si 31962, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
- Marine Science Institute, Jeju National University, Jeju 63333, Republic of Korea
| |
Collapse
|
13
|
In vivo immunomodulatory activity of fucoidan from brown alga Undaria pinnatifida in sarcoma 180-bearing mice. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
14
|
Wang S, Zhang B, Chang X, Zhao H, Zhang H, Zhao T, Qi H. Potential use of seaweed polysaccharides as prebiotics for management of metabolic syndrome: a review. Crit Rev Food Sci Nutr 2023; 64:7707-7727. [PMID: 36971135 DOI: 10.1080/10408398.2023.2191135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Seaweed polysaccharides (SPs) obtained from seaweeds are a class of functional prebiotics. SPs can regulate glucose and lipid anomalies, affect appetite, reduce inflammation and oxidative stress, and therefore have great potential for managing metabolic syndrome (MetS). SPs are poorly digested by the human gastrointestinal tract but are available to the gut microbiota to produce metabolites and exert a series of positive effects, which may be the mechanism by which SPs render their anti-MetS effects. This article reviews the potential of SPs as prebiotics in the management of MetS-related metabolic disturbances. The structure of SPs and studies related to the process of their degradation by gut bacteria and their therapeutic effects on MetS are highlighted. In summary, this review provides new perspectives on SPs as prebiotics to prevent and treat MetS.
Collapse
Affiliation(s)
- Shaopeng Wang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong, PR China
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Bo Zhang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Xintao Chang
- Department of Pharmacy, People's Hospital of Zhangqiu District, Jinan, Shandong, PR China
| | - Hailing Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Haojun Zhang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Tingting Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Huimin Qi
- College of Pharmacy, Weifang Medical University, Weifang, Shandong, PR China
| |
Collapse
|
15
|
Flórez-Fernández N, Vaamonde-García C, Torres MD, Buján M, Muíños A, Muiños A, Lamas-Vázquez MJ, Meijide-Faílde R, Blanco FJ, Domínguez H. Relevance of the Extraction Stage on the Anti-Inflammatory Action of Fucoidans. Pharmaceutics 2023; 15:pharmaceutics15030808. [PMID: 36986669 PMCID: PMC10058023 DOI: 10.3390/pharmaceutics15030808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The anti-inflammatory action of fucoidans is well known, based on both in vitro and some in vivo studies. The other biological properties of these compounds, their lack of toxicity, and the possibility of obtaining them from a widely distributed and renewable source, makes them attractive novel bioactives. However, fucoidans’ heterogeneity and variability in composition, structure, and properties depending on seaweed species, biotic and abiotic factors and processing conditions, especially during extraction and purification stages, make it difficult for standardization. A review of the available technologies, including those based on intensification strategies, and their influence on fucoidan composition, structure, and anti-inflammatory potential of crude extracts and fractions is presented.
Collapse
Affiliation(s)
- Noelia Flórez-Fernández
- CINBIO, Departamento de Ingeniería Química, Campus Ourense, Universidade de Vigo, 32004 Ourense, Spain
| | - Carlos Vaamonde-García
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain
| | - Maria Dolores Torres
- CINBIO, Departamento de Ingeniería Química, Campus Ourense, Universidade de Vigo, 32004 Ourense, Spain
| | - Manuela Buján
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain
| | - Alexandra Muíños
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain
| | - Antonio Muiños
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, Cerceda, 15185 A Coruña, Spain
| | - María J. Lamas-Vázquez
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain
| | - Rosa Meijide-Faílde
- Grupo de Terapia Celular y Medicina Regenerativa, Universidade da Coruña, CICA-Centro Interdisciplinar de Química y Biología, Complexo Hospitalario Universitario A Coruña, Campus Oza, 15006 A Coruña, Spain
| | - Francisco J. Blanco
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain
| | - Herminia Domínguez
- CINBIO, Departamento de Ingeniería Química, Campus Ourense, Universidade de Vigo, 32004 Ourense, Spain
- Correspondence:
| |
Collapse
|
16
|
Feng X, Li Z, Guo W, Hu Y. The effects of traditional Chinese medicine and dietary compounds on digestive cancer immunotherapy and gut microbiota modulation: A review. Front Immunol 2023; 14:1087755. [PMID: 36845103 PMCID: PMC9945322 DOI: 10.3389/fimmu.2023.1087755] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/17/2023] [Indexed: 02/09/2023] Open
Abstract
Digestive tract-related cancers account for four of the top ten high-risk cancers worldwide. In recent years, cancer immunotherapy, which exploits the innate immune system to attack tumors, has led to a paradigm shifts in cancer treatment. Gut microbiota modification has been widely used to regulate cancer immunotherapy. Dietary compounds and traditional Chinese medicine (TCM) can alter the gut microbiota and its influence on toxic metabolite production, such as the effect of iprindole on lipopolysaccharide (LPS), and involvement in various metabolic pathways that are closely associated with immune reactions. Therefore, it is an effective strategy to explore new immunotherapies for gastrointestinal cancer to clarify the immunoregulatory effects of different dietary compounds/TCMs on intestinal microbiota. In this review, we have summarized recent progress regarding the effects of dietary compounds/TCMs on gut microbiota and their metabolites, as well as the relationship between digestive cancer immunotherapy and gut microbiota. We hope that this review will act as reference, providing a theoretical basis for the clinical immunotherapy of digestive cancer via gut microbiota modulation.
Collapse
Affiliation(s)
- Xiaoli Feng
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zhenhao Li
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Weihong Guo
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China,*Correspondence: Weihong Guo, ; Yanfeng Hu,
| | - Yanfeng Hu
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China,*Correspondence: Weihong Guo, ; Yanfeng Hu,
| |
Collapse
|
17
|
Eswar K, Mukherjee S, Ganesan P, Kumar Rengan A. Immunomodulatory Natural Polysaccharides: An Overview of the Mechanisms Involved. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
18
|
Ji X, Li R, Hu X, Tian Y, Liu L, Zhang C, Xu L, Chen Y, Xie H, Mao L, Cai T, Li W. Construction of model animals to explore intestinal microbiome for detection of breast cancer. PLoS One 2023; 18:e0280971. [PMID: 37195935 DOI: 10.1371/journal.pone.0280971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Breast cancer ranks first among female cancers and has become a major public health problem in the current society. More studies indicated that these cancers are related to the change in the gut microbiome that can cause metabolic and immune system disorders in the body. However, there are few studies on the changes in gut microbiome caused by the onset of breast cancer, and the relationship between breast cancer and gut microbiome needs to be further clarified. In this study, we inoculated 4T1 breast cancer cells to induce breast cancer tumorigenesis in mice and collected their feces samples at different stages during this process. These intestinal florae were analyzed using 16S rRNA gene amplicon sequencing, and the results showed that at the phylum level, the ratio of Firmicutes/Bacteroidetes decreased with the development of the tumor; at the family level, the intestinal microbiome had obvious variations of Lachnospiraceae, Bacteroidaceae, Erysipelotrichaceae, etc. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and COG annotation demonstrated that decreased abundance of cancer-related signaling pathways. This study elucidated the relationship between breast cancer and intestinal microbiome, and the research results can be used as an important biomarker for the diagnosis of breast cancer.
Collapse
Affiliation(s)
- Xia Ji
- School of Life Science, Huizhou University, Huizhou, China
| | - Ruipeng Li
- School of Life Science, Huizhou University, Huizhou, China
| | - Xiaoyu Hu
- School of Life Science, Huizhou University, Huizhou, China
| | - Yufang Tian
- School of Life Science, Huizhou University, Huizhou, China
| | - Liqiong Liu
- School of Life Science, Huizhou University, Huizhou, China
| | - Chenyu Zhang
- School of Life Science, Huizhou University, Huizhou, China
| | - Liangxiong Xu
- School of Life Science, Huizhou University, Huizhou, China
| | - Yongzhi Chen
- School of Life Science, Huizhou University, Huizhou, China
| | - Haiwei Xie
- School of Life Science, Huizhou University, Huizhou, China
| | - Lutian Mao
- School of Life Science, Huizhou University, Huizhou, China
| | - Tianshu Cai
- Huizhou Health Sciences Polytechnic, Huizhou, China
| | - Weiwei Li
- Huizhou Health Sciences Polytechnic, Huizhou, China
| |
Collapse
|
19
|
Liu X, Zhang Y, Li W, Zhang B, Yin J, Liuqi S, Wang J, Peng B, Wang S. Fucoidan Ameliorated Dextran Sulfate Sodium-Induced Ulcerative Colitis by Modulating Gut Microbiota and Bile Acid Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14864-14876. [PMID: 36378195 DOI: 10.1021/acs.jafc.2c06417] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Gut dysbiosis and bile acid (BA) metabolism disturbance are involved in the pathogenesis of ulcerative colitis. This study aimed to investigate the effect of fucoidan on BA metabolism and gut microbiota in dextran sulfate sodium-induced colitis mice. Our results showed that fucoidan effectively suppressed colonic inflammation and repaired the gut barrier. In addition, fucoidan increased the relative abundance of the Lachnospiraceae family, such as Turicibacter, Muribaculum, Parasutterella, and Colidextribacter, followed by an increase in short-chain fatty acids, especially in butyrate. Moreover, fucoidan modulated bile acid metabolism by elevating cholic acid, ursodeoxycholic acid, deoxycholic acid, and lithocholic acid and decreasing β-muricholic acid, which led to activation of FXR and TGR5 and further enhanced the gut barrier and suppressed colonic inflammation. Our results revealed that the effect of fucoidan alleviating colitis was largely mediated by gut microbiota, which was confirmed by the fecal transplantation experiment. Collectively, these findings provided the basis for fucoidan as a potential functional food for colitis.
Collapse
Affiliation(s)
- Xiaoxia Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yunhui Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Wanhua Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jia Yin
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Sijing Liuqi
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Bo Peng
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
20
|
Ahmad T, Ishaq M, Karpiniec S, Park A, Stringer D, Singh N, Ratanpaul V, Wolfswinkel K, Fitton H, Caruso V, Eri R. Oral Macrocystis pyrifera Fucoidan Administration Exhibits Anti-Inflammatory and Antioxidant Properties and Improves DSS-Induced Colitis in C57BL/6J Mice. Pharmaceutics 2022; 14:2383. [PMID: 36365201 PMCID: PMC9693024 DOI: 10.3390/pharmaceutics14112383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 07/30/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex and multifactorial disorder characterised by relapsing and remitting inflammation of the intestinal tract. Oxidative stress (OS) is the result of an imbalance between production and accumulation of reactive oxygen species (ROS), which has been associated with inflammatory responses and implicated in the exacerbation of IBD. Fucoidan, a sulfated polysaccharide from brown seaweed, is a well-known anti-inflammatory agent and emerging evidence indicates that fucoidan extracts from Macrocystis pyrifera (MPF and DP-MPF) may also modulate oxidative stress. This study investigated the impact of fucoidan extracts, MPF and DP-MPF in a dextran sodium sulphate (DSS)-induced mouse model of acute colitis. 3% DSS was administered in C57BL/6J male mice over a period of 7 days, and MPF and DP-MPF were co-administered orally at a dose of 400 mg/kg body weight. Our results indicated that MPF and DP-MPF significantly prevented body weight loss, improved the disease activity index (DAI), restored colon lengths, reduced the wet colon weight, reduced spleen enlargement, and improved the overall histopathological score. Consistent with the reported anti-inflammatory functions, fucoidan extracts, MPF and DP-MPF significantly reduced the colonic levels of myeloperoxidase (MPO), nitric oxide (NO), malondialdehyde (MDA) and increased the levels of antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT). In addition, MPF and DP-MPF significantly inhibited levels of pro-inflammatory cytokines in colon-derived tissues. Collectively, our results indicate that MPF and DP-MPF exhibited anti-inflammatory and antioxidant effects representing a promising therapeutic strategy for the cure of IBD.
Collapse
Affiliation(s)
- Tauseef Ahmad
- College of Health and Medicine, University of Tasmania, Newnham, TAS 7248, Australia
| | - Muhammad Ishaq
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | | | - Ahyoung Park
- Marinova Pty Ltd., Cambridge, TAS 7170, Australia
| | | | - Neeraj Singh
- College of Health and Medicine, University of Tasmania, Newnham, TAS 7248, Australia
| | - Vishal Ratanpaul
- School of Science, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia
| | - Karen Wolfswinkel
- Department of Pathology, Launceston General Hospital (LGH), Launceston, TAS 7250, Australia
| | | | - Vanni Caruso
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
- Istituto di Formazione e Ricerca in Scienze Algologiche (ISAL), Torre Pedrera, 47922 Rimini, Italy
| | - Rajaraman Eri
- College of Health and Medicine, University of Tasmania, Newnham, TAS 7248, Australia
- School of Science, RMIT University, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia
| |
Collapse
|
21
|
Liu Y, Cummins SF, Zhao M. A Genomics Resource for 12 Edible Seaweeds to Predict Seaweed-Secreted Peptides with Potential Anti-Cancer Function. BIOLOGY 2022; 11:biology11101458. [PMID: 36290362 PMCID: PMC9598510 DOI: 10.3390/biology11101458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Seaweeds are multicellular marine macroalgae with natural compounds that have potential anticancer activity. To date, the identification of those compounds has relied on purification and assay, yet few have been documented. Additionally, the genomes and associated proteomes of edible seaweeds that have been identified thus far are scattered among different resources and with no systematic summary available, which hinders the development of a large-scale omics analysis. To enable this, we constructed a comprehensive genomics resource for the edible seaweeds. These data could be used for systematic metabolomics and a proteome search for anti-cancer compound and peptides. In brief, we integrated and annotated 12 publicly available edible seaweed genomes (8 species and 268,071 proteins). In addition, we integrate the new seaweed genomic resources with established cancer bioinformatics pipelines to help identify potential seaweed proteins that could help mitigate the development of cancer. We present 7892 protein domains that were predicted to be associated with cancer proteins based on a protein domain-domain interaction. The most enriched protein families were associated with protein phosphorylation and insulin signalling, both of which are recognised to be crucial molecular components for patient survival in various cancers. In addition, we found 6692 seaweed proteins that could interact with over 100 tumour suppressor proteins, of which 147 are predicted to be secreted proteins. In conclusion, our genomics resource not only may be helpful in exploring the genomics features of these edible seaweed but also may provide a new avenue to explore the molecular mechanisms for seaweed-associated inhibition of human cancer development.
Collapse
Affiliation(s)
- Yining Liu
- The School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 510180, China
| | - Scott F. Cummins
- Seaweed Research Group, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Min Zhao
- Seaweed Research Group, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
- Correspondence: ; Tel.: +61-07-54563402
| |
Collapse
|