1
|
Zhou T, Qiao Y, Wang L, Li Z, Zhang H, Zhang L, Liao S, Li M, Zhang C, Zhang W. Discovery of MK8383s with Antifungal Activity from Mangrove Endophytic Fungi Medicopsis sp. SCSIO 40440 Against Fusarium Wilt of Banana. Mar Drugs 2025; 23:88. [PMID: 39997212 PMCID: PMC11857101 DOI: 10.3390/md23020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 02/26/2025] Open
Abstract
Fusarium wilt of banana (FWB), caused by Fusarium oxysporum f. sp. cubense (Foc) tropical race 4 (TR4), poses a severe threat to the global banana industry. The screening of endophytic fungi from the mangrove plant led to the identification of Medicopsis sp. SCSIO 40440, which exhibited potent antifungal activity against Fusarium. The further fraction of the extract yielded ten compounds, including MK8383 (1) and nine new analogues, MK8383s B-J (2-10). The structures of 1-10 were elucidated using extensive spectroscopic data and single-crystal X-ray diffraction analysis. In vitro antifungal assays revealed that 1 showed strongly antifungal activities against Foc TR4, with an EC50 of 0.28 μg/mL, surpassing nystatin and hygromycin B (32 and 16 μg/mL, respectively). Pot experiments showed that 1 or spores of SCSIO 40440 could significantly reduce the virulence of Foc TR4 on Cavendish banana.
Collapse
Affiliation(s)
- Tianyu Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; (T.Z.); (Y.Q.); (L.W.); (H.Z.); (L.Z.); (S.L.)
| | - Yulei Qiao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; (T.Z.); (Y.Q.); (L.W.); (H.Z.); (L.Z.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; (T.Z.); (Y.Q.); (L.W.); (H.Z.); (L.Z.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zifeng Li
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China;
| | - Haibo Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; (T.Z.); (Y.Q.); (L.W.); (H.Z.); (L.Z.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liping Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; (T.Z.); (Y.Q.); (L.W.); (H.Z.); (L.Z.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengrong Liao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; (T.Z.); (Y.Q.); (L.W.); (H.Z.); (L.Z.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minhui Li
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China;
| | - Changsheng Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; (T.Z.); (Y.Q.); (L.W.); (H.Z.); (L.Z.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China; (T.Z.); (Y.Q.); (L.W.); (H.Z.); (L.Z.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Fu JX, Jiao J, Gai QY, Gao J, Wang XQ, Zhang ZY, He J, Wen MN, Fu YJ. A Novel Endophytic Fungus Fusarium falciforme R-423 for the Control of Rhizoctonia solani Root Rot in Pigeon Pea as Reflected by the Alleviation of Reactive Oxygen Species-Mediated Host Defense Responses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3373-3388. [PMID: 39884855 DOI: 10.1021/acs.jafc.4c09886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Rhizoctonia solani root rot is a devastating fungal disease that causes significant yield losses in legume crops. A novel endophytic fungus Fusarium falciforme R-423 isolated from pigeon pea had a significant antagonistic capacity against R. solani. F. falciforme R-423 extracts could inhibit R. solani growth and cause it to die. Four host-specific and 15 genus-specific metabolites were identified as potential antimicrobial compounds. F. falciforme R-423's inoculation effectively controlled R. solani root rot in pigeon pea seedlings and promoted root growth. Co-inoculation of F. falciforme R-423 and R. solani reduced the levels of oxidative stress, pathogenesis- and biosynthesis-related gene expression, and phenolic compound accumulation in roots compared to those infected with R. solani, confirming that reactive oxygen species-mediated host defense responses were alleviated due to the effective control of R. solani by F. falciforme R-423. Overall, F. falciforme R-423 was a promising biocontrol agent against R. solani root rot in legume crops.
Collapse
Affiliation(s)
- Jin-Xian Fu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Jiao Jiao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Qing-Yan Gai
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Jie Gao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Xiao-Qing Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Zi-Yi Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Jing He
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Mo-Nan Wen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, People's Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Yu-Jie Fu
- College of Forestry, Beijing Forestry University, Beijing 100083, People's Republic of China
| |
Collapse
|
3
|
Li P, Wei F, Feng H, Zhao L, Zhang Y, Zhou J, Feng Z, Zhu H. Talaromyces purpureogenus CEF642 N as a Promising Biocontrol Agent for Cotton Disease Control. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2760-2772. [PMID: 39838964 DOI: 10.1021/acs.jafc.4c06739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Endophytic fungi live in healthy plant tissues and organs and are a major source of natural bioactive compounds. In this study, we found that an endophytic fungus, Talaromyces purpureogenus CEF642N, isolated from the healthy cotton roots, suppressed Verticillium dahliae by up to 53% after 15 days in a confrontation culture. Genome sequencing of CEF642N and mass spectrometry study of its metabolites were used to identify its primary antagonists. To further elucidate the antagonistic mechanism, transcriptome analysis and ultrastructure observation of the pathogen were performed. The antagonists were shown to act on the mitochondria and cell membranes of the pathogen. In addition, CEF642N also had mycoparasitic effects on V. dahliae. These results suggest that CEF642N has the potential to be an important biocontrol agent for efficiently managing Verticillium wilt, a severe disease affecting cotton.
Collapse
Affiliation(s)
- Peng Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Feng Wei
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang 831100, China
| | - Hongjie Feng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang 831100, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang 831100, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang 831100, China
| | - Jinglong Zhou
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang 831100, China
| | - Zili Feng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang 831100, China
| | - Heqin Zhu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang 831100, China
| |
Collapse
|
4
|
Takahashi M, Hoshino K, Hamada M, Tamura T, Moriuchi R, Dohra H, Nakagawa Y, Kokubo S, Yamazaki M, Nakagawa H, Hayakawa M, Kodani S, Yamamura H. Streptomyces yaizuensis sp. nov., a berninamycin C-producing actinomycete isolated from sponge. J Antibiot (Tokyo) 2025; 78:35-44. [PMID: 39443749 DOI: 10.1038/s41429-024-00782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
While screening for antibiotics in a marine sample, we discovered a berninamycin C-producing actinomycete, designated YSPA8T, isolated from a sponge. A polyphasic approach was used to determine the taxonomic position of the strain. Strain YSPA8T formed sympodially branched aerial mycelia that ultimately segment into chains of spores. Comparative and phylogenetic analyses of the 16S rRNA gene sequence showed that strain YSPA8T were closely related to Streptomyces clavuligerus ATCC 27064T (99.66%), Streptomyces amakusaensis NRRL B-3351T (98.69%), Streptomyces inusitatus NBRC 13601T (98.48%), and 'Streptomyces jumonjinensis' JCM 4947 (98.41%). The phylogenetic tree using the 16S rRNA gene sequences, and both phylogenomic trees suggested that the closest relative of strain YSPA8T was S. clavuligerus ATCC 27064T. The average nucleotide identity, digital DNA-DNA hybridization, and average amino acid identity values between strain YSPA8T and S. clavuligerus ATCC 27064T were 84.1%, 28.9%, and 82.5%, respectively, which were below the thresholds of 95%, 70%, and 95% for a prokaryotic conspecific assignment. The G + C of the strain YSPA8T was 72.6%. Whole-cell hydrolysates of strain YSPA8T contained LL-diaminopimelic acid. The predominant menaquinones were MK-9(H6) (49%) and MK-9(H8) (48%), and the major fatty acids were C16:0 (26.8%), C16:1 ω7c/ω6c (17.2%), iso-C16:0 (16.0%), and iso-C15:0 (12.5%). The major phospholipids were diphosphatidylglycerol, phosphatidylethanolamine, and other unidentified phospholipids. Based on the phenotypic, phylogenetic, genomic, and chemotaxonomic data, strain YSPA8T represents a novel species of the genus Streptomyces, and the proposed name for this species is Streptomyces yaizuensis sp. nov. The type strain is YSPA8T (=NBRC 115866T = TBRC 17196T).
Collapse
Affiliation(s)
- Miku Takahashi
- Department of Biotechnology, Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Japan
| | - Kanata Hoshino
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Faculty of Agriculture, Shizuoka University, Suruga-ku, Shizuoka, Japan
| | - Moriyuki Hamada
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Kisarazu, Chiba, Japan
| | - Tomohiko Tamura
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Kisarazu, Chiba, Japan
| | - Ryota Moriuchi
- Shizuoka Instrumental Analysis Center, Shizuoka University, Suruga-ku, Shizuoka, Japan
| | - Hideo Dohra
- Shizuoka Instrumental Analysis Center, Shizuoka University, Suruga-ku, Shizuoka, Japan
- Shizuoka Institute for the Study of Marine Biology and Chemistry, Shizuoka University, Suruga-ku, Shizuoka, Japan
- Academic Institute, Shizuoka University, Suruga-ku, Shizuoka, Japan
- Research Institute of Green Sceience and Technology, Shizuoka University, Suruga-ku, Shizuoka, Japan
| | - Youji Nakagawa
- Department of Biotechnology, Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Japan
| | - Susumu Kokubo
- Department of Biotechnology, Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Japan
| | - Motoyuki Yamazaki
- Shizuoka Prefectural Research Institute of Fishery and Ocean, Yaizu, Shizuoka, Japan
| | - Hiroyuki Nakagawa
- Research Center for Advanced Analysis, Core Technology Research Headquarters, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Masayuki Hayakawa
- Department of Biotechnology, Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Japan
- Yamanashi Prefectural University, Kofu, Japan
| | - Shinya Kodani
- Faculty of Agriculture, Shizuoka University, Suruga-ku, Shizuoka, Japan.
- Shizuoka Institute for the Study of Marine Biology and Chemistry, Shizuoka University, Suruga-ku, Shizuoka, Japan.
- Academic Institute, Shizuoka University, Suruga-ku, Shizuoka, Japan.
| | - Hideki Yamamura
- Department of Biotechnology, Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Japan.
| |
Collapse
|
5
|
Yang Z, Qiao Y, Strøbech E, Morth JP, Walther G, Jørgensen TS, Lum KY, Peschel G, Rosenbaum MA, Previtali V, Clausen MH, Lukassen MV, Gotfredsen CH, Kurzai O, Weber T, Ding L. Alligamycin A, an antifungal β-lactone spiroketal macrolide from Streptomyces iranensis. Nat Commun 2024; 15:9259. [PMID: 39461983 PMCID: PMC11513958 DOI: 10.1038/s41467-024-53695-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Fungal infections pose a great threat to public health and there are only four main types of antifungal drugs, which are often limited with toxicity, drug-drug interactions and antibiotic resistance. Streptomyces is an important source of antibiotics, represented by the clinical drug amphotericin B. Here we report the discovery of alligamycin A (1) as an antifungal compound from the rapamycin-producer Streptomyces iranensis through genome-mining, genetics and natural product chemistry approaches. Alligamycin A harbors a unique chemical scaffold with 13 chiral centers, featuring a β-lactone moiety, a [6,6]-spiroketal ring, and an unreported 7-oxo-octylmalonyl-CoA extender unit incorporated by a potential crotonyl-CoA carboxylase/reductase. It is biosynthesized by a type I polyketide synthase which is confirmed through CRISPR-based gene editing. Alligamycin A displayed potent antifungal effects against numerous clinically relevant filamentous fungi, including resistant Aspergillus and Talaromyces species. β-Lactone ring is essential for the antifungal activity since alligamycin B (2) with disruption in the ring abolished the antifungal effect. Proteomics analysis revealed alligamycin A potentially disrupts the integrity of fungal cell walls and induces the expression of stress-response proteins in Aspergillus niger. Discovery of the potent antifungal candidate alligamycin A expands the limited antifungal chemical space.
Collapse
Affiliation(s)
- Zhijie Yang
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Yijun Qiao
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Emil Strøbech
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Jens Preben Morth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Grit Walther
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Tue Sparholt Jørgensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Kah Yean Lum
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Gundela Peschel
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Miriam A Rosenbaum
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| | - Viola Previtali
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | | | | | | | - Oliver Kurzai
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Ling Ding
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
6
|
Lu J, Huang Y, Liu R, Liang Y, Zhang H, Shen N, Yang D, Jiang M. Antimicrobial mechanisms and antifungal activity of compounds generated by banana rhizosphere Pseudomonas aeruginosa Gxun-2 against fusarium oxysporum f. sp. cubense. Front Microbiol 2024; 15:1456847. [PMID: 39386368 PMCID: PMC11461210 DOI: 10.3389/fmicb.2024.1456847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Fusarium wilt of banana, also recognized as Panama disease, is caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense tropical race 4 (FOC TR4). In recent years, strategies utilizing biocontrol agents, comprising antifungal microorganisms and their associated bioactive compounds from various environments, have been implemented to control this destructive disease. Our previous study showed that Pseudomonas aeruginosa Gxun-2 had significant antifungal effects against FOC TR4. However, there has been little scientific investigation of the antibacterial or antifungal activity. The aim of this study was to isolate, identify and evaluate the inhibition strength of active compounds in P. aeruginosa Gxun-2, so as to explain the mechanism of the strain inhibition on FOC TR4 from the perspective of compounds. Methods The main antibacterial compounds of strain Gxun-2 were isolated, purified and identified using by fermentation extraction, silica gel column chromatography, thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), and nuclear magnetic resonance (NMR) techniques. The effect of the compounds on the mycelial growth, morphology and spore germination of strain FOC TR4 was observed by 96-well plate method and AGAR diffusion method. Results Among the metabolites produced by the strain, four antifungal compounds which were identified phenazine (C12H8N2), phenazine-1-carboxylic acid (PCA) (C13H8N2O2), 2-acetamidophenol (C8H9NO2) and aeruginaldehyde (C10H7NO2S) were identified through HPLC and NMR. Of these compounds, phenazine and PCA exhibited the most pronounced inhibitory effects on the spore germination and mycelial growth of FOC TR4. Phenazine demonstrated potent antifungal activity against FOC TR4 with a minimum inhibitory concentration (MIC) of 6.25 mg/L. The half-maximal effective concentration (EC50) was calculated to be 26.24 mg/L using the toxicity regression equation. PCA exhibited antifungal activity against FOC TR4 with an MIC of 25 mg/L and an EC50 of 89.63 mg/L. Furthermore, phenazine and PCA triggered substantial morphological transformations in the mycelia of FOC TR4, encompassing folding, bending, fracturing, and diminished spore formation. Discussion These findings indicate that strain Gxun-2 plays a crucial role in controlling FOC TR4 pathogenesis, predominantly through producing the antifungal compounds phenazine and PCA, and possesses potential as a cost-efficient and sustainable biocontrol agent against Fusarium wilt of banana in forthcoming times.
Collapse
Affiliation(s)
- Junming Lu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Yanbing Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Rui Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Ying Liang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Hongyan Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Naikun Shen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| |
Collapse
|
7
|
Tian X, Hu L, Jia R, Cao S, Sun Y, Dong X, Wang Y. Streptomyces pratensis S10 Promotes Wheat Plant Growth and Induces Resistance in Wheat Seedlings against Fusarium graminearum. J Fungi (Basel) 2024; 10:578. [PMID: 39194904 DOI: 10.3390/jof10080578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Fusarium graminearum, a devastating fungal pathogen, causes great economic losses to crop yields worldwide. The present study investigated the potential of Streptomyces pratensis S10 to alleviate F. graminearum stress in wheat seedlings based on plant growth-promoting and resistance-inducing assays. The bioassays revealed that S10 exhibited multiple plant growth-promoting properties, including the production of siderophores, 1-aminocyclopropane-1-carboxylic acid deaminase (ACC), and indole-3-acetic acid (IAA), phosphate solubilization, and nitrogen fixation. Meanwhile, the pot experiment demonstrated that S10 improved wheat plant development, substantially enhancing wheat height, weight, root activity, and chlorophyll content. Consistently, genome mining identified abundant genes associated with plant growth promotion. S10 induced resistance against F. graminearum in wheat seedlings. The disease incidence and disease index reduced by nearly 52% and 65% in S10 pretreated wheat seedlings, respectively, compared with those infected with F. graminearum only in the non-contact inoculation assay. Moreover, S10 enhanced callose deposition and reactive oxygen species (ROS) accumulation and induced the activities of CAT, SOD, POD, PAL, and PPO. Furthermore, the quantitative real-time PCR (qRT-PCR) results indicated that S10 pretreatment increased the expression of SA- (PR1.1, PR2, PR5, and PAL1) and JA/ET-related genes (PR3, PR4a, PR9, and PDF1.2) in wheat seedlings upon F. graminearum infection. In summary, S. pratensis S10 could be an integrated biological agent and biofertilizer in wheat seedling blight management and plant productivity enhancement.
Collapse
Affiliation(s)
- Xiaoman Tian
- College of Bioengineering, Yangling Vocation & Technical College, Yangling, Xianyang 712100, China
| | - Lifang Hu
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Ruimin Jia
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Shang Cao
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yan Sun
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Xiaomin Dong
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Yang Wang
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
8
|
Chen Y, Li X, Zhou D, Wei Y, Feng J, Cai B, Qi D, Zhang M, Zhao Y, Li K, Pan Z, Wang W, Xie J. Streptomyces-Secreted Fluvirucin B6 as a Potential Bio-Fungicide for Managing Banana Fusarium Wilt and Mycotoxins and Modulating the Soil Microbial Community Structure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17890-17902. [PMID: 39083645 DOI: 10.1021/acs.jafc.4c04077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc TR4) is the most destructive soil-borne fungal disease. Until now, there has been a lack of effective measures to control the disease. It is urgent to explore biocontrol agents to control Foc TR4 and the secretion of mycotoxin. In this study, fluvirucin B6 was screened from Streptomyces solisilvae using an activity-guided method. Fluvirucin B6 exhibited strong antifungal activity against Foc TR4 (0.084 mM of EC50 value) and significantly inhibited mycelial growth and spore germination. Further studies demonstrated that fluvirucin B6 could cause the functional loss of mitochondria, the disorder of metabolism of Foc TR4 cells, and the decrease of enzyme activities in the tricarboxylic acid cycle and electron transport chain, ultimately inhibiting mycotoxin metabolism. In a pot experiment, the application of fluvirucin B6 significantly decreased the incidence of banana Fusarium wilt and the amount of Foc TR4 and controlled fungal toxins in the soil. Additionally, fluvirucin B6 could positively regulate the changes in the structure of the banana rhizosphere microbial community, significantly enriching beneficial microbes associated with disease resistance. In summary, this study identifies fluvirucin B6, which plays versatile roles in managing fungal diseases and mycotoxins.
Collapse
Affiliation(s)
- Yufeng Chen
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - XiaoJuan Li
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Dengbo Zhou
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yongzan Wei
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Junting Feng
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Bingyu Cai
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Dengfeng Qi
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Miaoyi Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yankun Zhao
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Kai Li
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Zhiqiang Pan
- Agricultural Research Service, Natural Products Utilization Research Unit, U.S. Department of Agriculture, University of Mississippi, University, Mississippi 38677, United States
| | - Wei Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jianghui Xie
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
9
|
Maimone NM, Apaza-Castillo GA, Quecine MC, de Lira SP. Accessing the specialized metabolome of actinobacteria from the bulk soil of Paullinia cupana Mart. on the Brazilian Amazon: a promising source of bioactive compounds against soybean phytopathogens. Braz J Microbiol 2024; 55:1863-1882. [PMID: 38421597 PMCID: PMC11153476 DOI: 10.1007/s42770-024-01286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/10/2024] [Indexed: 03/02/2024] Open
Abstract
The Amazon rainforest, an incredibly biodiverse ecosystem, has been increasingly vulnerable to deforestation. Despite its undeniable importance and potential, the Amazonian microbiome has historically received limited study, particularly in relation to its unique arsenal of specialized metabolites. Therefore, in this study our aim was to assess the metabolic diversity and the antifungal activity of actinobacterial strains isolated from the bulk soil of Paullinia cupana, a native crop, in the Brazilian Amazon Rainforest. Extracts from 24 strains were subjected to UPLC-MS/MS analysis using an integrative approach that relied on the Chemical Structural and Compositional Similarity (CSCS) metric, GNPS molecular networking, and in silico dereplication tools. This procedure allowed the comprehensive understanding of the chemical space encompassed by these actinobacteria, which consists of features belonging to known bioactive metabolite classes and several unannotated molecular families. Among the evaluated strains, five isolates exhibited bioactivity against a panel of soybean fungal phytopathogens (Rhizoctonia solani, Macrophomina phaseolina, and Sclerotinia sclerotiorum). A focused inspection led to the annotation of pepstatins, oligomycins, hydroxamate siderophores and dorrigocins as metabolites produced by these bioactive strains, with potentially unknown compounds also comprising their metabolomes. This study introduces a pragmatic protocol grounded in established and readily available tools for the annotation of metabolites and the prioritization of strains to optimize further isolation of specialized metabolites. Conclusively, we demonstrate the relevance of the Amazonian actinobacteria as sources for bioactive metabolites useful for agriculture. We also emphasize the importance of preserving this biome and conducting more in-depth studies on its microbiota.
Collapse
Affiliation(s)
- Naydja Moralles Maimone
- College of Agriculture "Luiz de Queiroz", Department of Exact Sciences, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Gladys Angélica Apaza-Castillo
- College of Agriculture "Luiz de Queiroz", Department of Genetics, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Maria Carolina Quecine
- College of Agriculture "Luiz de Queiroz", Department of Genetics, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Simone Possedente de Lira
- College of Agriculture "Luiz de Queiroz", Department of Exact Sciences, University of São Paulo, Piracicaba, SP, 13418-900, Brazil.
| |
Collapse
|
10
|
Zhang M, Li X, Pan Y, Qi D, Zhou D, Chen Y, Feng J, Wei Y, Zhao Y, Li K, Wang W, Zhang L, Xie J. Biocontrol mechanism of Bacillus siamensis sp. QN 2MO-1 against tomato fusarium wilt disease during fruit postharvest and planting. Microbiol Res 2024; 283:127694. [PMID: 38520836 DOI: 10.1016/j.micres.2024.127694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Tomato fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici (Fol) is a highly destructive disease, resulting in severe economic losses of global tomato production annually. An eco-friendly alternative to chemical fungicide using biological control agents (BCAs) is urgently needed. Here, Bacillus siamensis QN2MO-1 was isolated from Noli fruit and had a strong antagonistic activity against Fol in vitro and in vivo. Strain QN2MO-1 also exhibited a broad-spectrum antifungal activity against the selected 14 phytopathogenic fungi. The crude protein produced by strain QN2MO-1 could inhibit the spore germination of Fol and destroy the spore structure. It was closely related with the generation of chitinase and β-1,3-glucanase secreted by strain QN2MO-1. In a pot experiment, the application of B. siamensis QN2MO-1 effectively alleviated the yellowing and wilting symptoms of tomato plants. The disease index and incidence rate were decreased by 72.72% and 80.96%, respectively. The rhizospheric soil in tomato plants owed a high abundance of microbial community. Moreover, strain QN2MO-1 also enhanced the plant growth and improved the fruit quality of tomato. Therefore, B. siamensis QN2MO-1 will be explored as a potential biocontrol agent and biofertilizer.
Collapse
Affiliation(s)
- Miaoyi Zhang
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China
| | - Xiaojuan Li
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China
| | - Yongbo Pan
- Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570314, China
| | - Dengfeng Qi
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China
| | - Dengbo Zhou
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China
| | - Yufeng Chen
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China
| | - Junting Feng
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China
| | - Yongzan Wei
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China
| | - Yankun Zhao
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China
| | - Kai Li
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China
| | - Wei Wang
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China.
| | - Lu Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158, China.
| | - Jianghui Xie
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China.
| |
Collapse
|
11
|
de Souza Rodrigues R, de Souza AQL, Feitoza MDO, Alves TCL, Barbosa AN, da Silva Santiago SRS, de Souza ADL. Biotechnological potential of actinomycetes in the 21st century: a brief review. Antonie Van Leeuwenhoek 2024; 117:82. [PMID: 38789815 DOI: 10.1007/s10482-024-01964-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/07/2024] [Indexed: 05/26/2024]
Abstract
This brief review aims to draw attention to the biotechnological potential of actinomycetes. Their main uses as sources of antibiotics and in agriculture would be enough not to neglect them; however, as we will see, their biotechnological application is much broader. Far from intending to exhaust this issue, we present a short survey of the research involving actinomycetes and their applications published in the last 23 years. We highlight a perspective for the discovery of new active ingredients or new applications for the known metabolites of these microorganisms that, for approximately 80 years, since the discovery of streptomycin, have been the main source of antibiotics. Based on the collected data, we organize the text to show how the cosmopolitanism of actinomycetes and the evolutionary biotic and abiotic ecological relationships of actinomycetes translate into the expression of metabolites in the environment and the richness of biosynthetic gene clusters, many of which remain silenced in traditional laboratory cultures. We also present the main strategies used in the twenty-first century to promote the expression of these silenced genes and obtain new secondary metabolites from known or new strains. Many of these metabolites have biological activities relevant to medicine, agriculture, and biotechnology industries, including candidates for new drugs or drug models against infectious and non-infectious diseases. Below, we present significant examples of the antimicrobial spectrum of actinomycetes, which is the most commonly investigated and best known, as well as their non-antimicrobial spectrum, which is becoming better known and increasingly explored.
Collapse
Affiliation(s)
- Rafael de Souza Rodrigues
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil.
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil.
| | - Antonia Queiroz Lima de Souza
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
- Faculdade de Ciências Agrárias, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | | | | | - Anderson Nogueira Barbosa
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
| | - Sarah Raquel Silveira da Silva Santiago
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
| | - Afonso Duarte Leão de Souza
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Av. General Rodrigo Octavio Jordão Ramos, 6200, Coroado I, Manaus, Amazonas, CEP 69.077-000, Brazil
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| |
Collapse
|
12
|
Díaz-Cruz GA, Bignell DRD. Exploring the specialized metabolome of the plant pathogen Streptomyces sp. 11-1-2. Sci Rep 2024; 14:10414. [PMID: 38710735 DOI: 10.1038/s41598-024-60630-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Streptomyces bacteria are notable for producing chemically diverse specialized metabolites that exhibit various bioactivities and mediate interactions with different organisms. Streptomyces sp. 11-1-2 is a plant pathogen that produces nigericin and geldanamycin, both of which display toxic effects against various plants. Here, the 'One Strain Many Compounds' approach was used to characterize the metabolic potential of Streptomyces sp. 11-1-2. Organic extracts were prepared from 11-1-2 cultures grown on six different agar media, and the extracts were tested in antimicrobial and plant bioassays and were subjected to untargeted metabolomics and molecular networking. Most extracts displayed strong bioactivity against Gram-positive bacteria and yeast, and they exhibited phytotoxic activity against potato tuber tissue and radish seedlings. Several known specialized metabolites, including musacin D, galbonolide B, guanidylfungin A, meridamycins and elaiophylin, were predicted to be present in the extracts along with closely related compounds with unknown structure and bioactivity. Targeted detection confirmed the presence of elaiophylin in the extracts, and bioassays using pure elaiophylin revealed that it enhances the phytotoxic effects of geldanamycin and nigericin on potato tuber tissue. Overall, this study reveals novel insights into the specialized metabolites that may mediate interactions between Streptomyces sp. 11-1-2 and other bacteria and eukaryotic organisms.
Collapse
Affiliation(s)
- Gustavo A Díaz-Cruz
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
- Phytopathology Department, Plant Protection Research Center (CIPROC), Agronomy School, Universidad de Costa Rica, San Jose, Costa Rica
| | - Dawn R D Bignell
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
13
|
Pang C, Xu Y, Ma X, Li S, Zhou S, Tian H, Wang M, Han B. Design, synthesis, and evaluation of novel arecoline-linked amino acid derivatives for insecticidal and antifungal activities. Sci Rep 2024; 14:9392. [PMID: 38658769 PMCID: PMC11043403 DOI: 10.1038/s41598-024-60053-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
A series of arecoline derivatives with amino acid moieties were designed and synthesised using an acylamide condensation strategy, taking arecoline as the foundational structure. The insecticidal efficacy of these compounds against Aphis craccivora and Tetranychus cinnabarinus was evaluated. Notably, derivatives 3h and 3i demonstrated superior insecticidal activity compared with arecoline. Additionally, 3h and 3i showed good fungicidal effectiveness against two types of plant fungi. Moreover, molecular docking analyses suggested that 3h and 3i could affect the nervous systems of A. craccivora and T. cinnabarinus by binding to neuronal nicotinic acetylcholine receptors. These findings suggest that compounds 3h and 3i represent promising leads for further development in insecticide and fungicide research.
Collapse
Affiliation(s)
- Chaohai Pang
- Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Haikou, 571101, China.
| | - Yuan Xu
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan provincial key laboratory of research and development on tropical herbs, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Xionghui Ma
- Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Haikou, 571101, China.
| | - Shuhuai Li
- Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Haikou, 571101, China.
| | - Shengfu Zhou
- Shenzhen Bay Laboratory, BayRay Innovation Center, Shenzhen, 518000, China
| | - Hai Tian
- Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Haikou, 571101, China
| | - Mingyue Wang
- Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Haikou, 571101, China
| | - Bingjun Han
- Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control of Subtropical Fruits and Vegetables, Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Haikou, 571101, China
| |
Collapse
|
14
|
Park HS, Kang SH, Choi SS, Kim ES. Isolation of Streptomyces inhibiting multiple-phytopathogenic fungi and characterization of lucensomycin biosynthetic gene cluster. Sci Rep 2024; 14:7757. [PMID: 38565875 PMCID: PMC10987574 DOI: 10.1038/s41598-024-57888-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
Soil microorganisms with diverse bioactive compounds such as Streptomyces are appreciated as valuable resources for the discovery of eco-friendly fungicides. This study isolated a novel Streptomyces from soil samples collected in the organic green tea fields in South Korea. The isolation process involved antifungal activity screening around 2400 culture extracts, revealing a strain designated as S. collinus Inha504 with remarkable antifungal activity against diverse phytopathogenic fungi. S. collinus Inha504 not only inhibited seven phytopathogenic fungi including Fusarium oxysporum and Aspergillus niger in bioassays and but also showed a control effect against F. oxysporum infected red pepper, strawberry, and tomato in the in vivo pot test. Genome mining of S. collinus Inha504 revealed the presence of the biosynthetic gene cluster (BGC) in the chromosome encoding a polyene macrolide which is highly homologous to the lucensomycin (LCM), a compound known for effective in crop disease control. Through genetic confirmation and bioassays, the antifungal activity of S. collinus Inha504 was attributed to the presence of LCM BGC in the chromosome. These results could serve as an effective strategy to select novel Streptomyces strains with valuable biological activity through bioassay-based screening and identify biosynthetic gene clusters responsible for the metabolites using genome mining approach.
Collapse
Affiliation(s)
- Heung-Soon Park
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Seung-Hoon Kang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Si-Sun Choi
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Eung-Soo Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
15
|
Li X, Zhang L, Zhao Y, Feng J, Chen Y, Li K, Zhang M, Qi D, Zhou D, Wei Y, Wang W, Xie J. Biocontrol potential of volatile organic compounds produced by Streptomyces corchorusii CG-G2 to strawberry anthracnose caused by Colletotrichum gloeosporioides. Food Chem 2024; 437:137938. [PMID: 37948803 DOI: 10.1016/j.foodchem.2023.137938] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Colletotrichum gloeosporioides is a fungal disease of strawberry fruit. Biocontrol strategies holds tremendous promise in alleviating fruit decay. Here, 30 actinomycetes were isolated from rhizosphere soil of Calotropis gigantea. A strain labeled with CG-G2 exhibited the strongest antagonistic activity against C. gloeosporioides and was assigned as Streptomyces corchorusii. Compared to strain CG-G2 extracts, the volatile organic compounds (VOCs) had a high antifungal activity against anthracnose. These volatiles effectively inhibited mycelial growth and spore germination of C. gloeosporioides. The hyphal and conidial structure was severely destroyed. Metabolomics analysis revealed that VOCs inhibited C. gloeosporioides via inducing flavonoids metabolism contributing to antifungal activity. Three main antagonistic compounds in VOCs were identified as methyl 2-methyl butyrate, hexanenitrile and methyl 2-Ethyl hexanoate. Especially, methyl 2-methyl butyrate demonstrated a remarkable efficacy in inhibiting fruit decay and preserving fruit quality. Hence, S. corchorusii CG-G2 will be a potential biocontrol agent for controlling anthracnose on harvested fruits.
Collapse
Affiliation(s)
- Xiaojuan Li
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Lu Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan 571158, China.
| | - Yankun Zhao
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Junting Feng
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Yufeng Chen
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Kai Li
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Miaoyi Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Dengfeng Qi
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Dengbo Zhou
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yongzan Wei
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Wei Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Jianghui Xie
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
16
|
Liu Z, Sun W, Hu Z, Wang W, Zhang H. Marine Streptomyces-Derived Novel Alkaloids Discovered in the Past Decade. Mar Drugs 2024; 22:51. [PMID: 38276653 PMCID: PMC10821133 DOI: 10.3390/md22010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/21/2024] [Accepted: 01/21/2024] [Indexed: 01/27/2024] Open
Abstract
Natural alkaloids originating from actinomycetes and synthetic derivatives have always been among the important suppliers of small-molecule drugs. Among their biological sources, Streptomyces is the highest and most extensively researched genus. Marine-derived Streptomyces strains harbor unconventional metabolic pathways and have been demonstrated to be efficient producers of biologically active alkaloids; more than 60% of these compounds exhibit valuable activity such as antibacterial, antitumor, anti-inflammatory activities. This review comprehensively summarizes novel alkaloids produced by marine Streptomyces discovered in the past decade, focusing on their structural features, biological activity, and pharmacological mechanisms. Future perspectives on the discovery and development of novel alkaloids from marine Streptomyces are also provided.
Collapse
Affiliation(s)
| | | | | | | | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (Z.L.); (W.S.); (Z.H.); (W.W.)
| |
Collapse
|
17
|
Long W, Chen Y, Wei Y, Feng J, Zhou D, Cai B, Qi D, Zhang M, Zhao Y, Li K, Liu YZ, Wang W, Xie J. A newly isolated Trichoderma Parareesei N4-3 exhibiting a biocontrol potential for banana fusarium wilt by Hyperparasitism. FRONTIERS IN PLANT SCIENCE 2023; 14:1289959. [PMID: 37941669 PMCID: PMC10629295 DOI: 10.3389/fpls.2023.1289959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/29/2023] [Indexed: 11/10/2023]
Abstract
Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense tropical race4 (Foc TR4) is one of the most destructive soil-borne fungal diseases and currently threatens banana production around the world. Until now, there is lack of an effective method to control banana Fusarium wilt. Therefore, it is urgent to find an effective and eco-friendly strategy against the fungal disease. In this study, a strain of Trichoderma sp. N4-3 was isolated newly from the rhizosphere soil of banana plants. The isolate was identified as Trichoderma parareesei through analysis of TEF1 and RPB2 genes as well as morphological characterization. In vitro antagonistic assay demonstrated that strain N4-3 had a broad-spectrum antifungal activity against ten selected phytopathogenic fungi. Especially, it demonstrated a strong antifungal activity against Foc TR4. The results of the dual culture assay indicated that strain N4-3 could grow rapidly during the pre-growth period, occupy the growth space, and secrete a series of cell wall-degrading enzymes upon interaction with Foc TR4. These enzymes contributed to the mycelial and spore destruction of the pathogenic fungus by hyperparasitism. Additionally, the sequenced genome proved that strain N4-3 contained 21 genes encoding chitinase and 26 genes encoding β-1,3-glucanase. The electron microscopy results showed that theses cell wall-degrading enzymes disrupted the mycelial, spore, and cell ultrastructure of Foc TR4. A pot experiment revealed that addition of strain N4-3 significantly reduced the amount of Foc TR4 in the rhizosphere soil of bananas at 60 days post inoculation. The disease index was decreased by 45.00% and the fresh weight was increased by 63.74% in comparison to the control. Hence, Trichoderma parareesei N4-3 will be a promising biological control agents for the management of plant fungal diseases.
Collapse
Affiliation(s)
- Weiqiang Long
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yufeng Chen
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Yongzan Wei
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Junting Feng
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Dengbo Zhou
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Bingyu Cai
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Dengfeng Qi
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Miaoyi Zhang
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Yankun Zhao
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Kai Li
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Yong-Zhong Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wei Wang
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jianghui Xie
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
18
|
Huang Y, Hu W, Huang S, Chu J, Liang Y, Tao Z, Wang G, Zhuang J, Zhang Z, Zhou X, Pan X. Taxonomy and anticancer potential of Streptomyces niphimycinicus sp. nov. against nasopharyngeal carcinoma cells. Appl Microbiol Biotechnol 2023; 107:6325-6338. [PMID: 37566161 DOI: 10.1007/s00253-023-12707-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/16/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
Streptomyces species are ubiquitous, Gram-positive, spore-forming bacteria with the ability to produce various clinically relevant compounds. The strain 4503 T was isolated from mangrove sediments, showing morphological and chemical properties which were consistent with those of members of the genus Streptomyces. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate was primarily identified as members of the genus Streptomyces, sharing more than 99% sequence identity to Streptomyces yatensis DSM 41771 T, S. antimycoticus NBRC 12839 T, and S. melanosporofaciens NBRC 13061 T. Average nucleotide identities (ANI) and digital DNA-DNA hybridization (dDDH) values between strain 4503 T and its close relatives were all below 95-96% and 75% of the novel species threshold, respectively. Results from phylogenetic, genomic, phenotypic, and chemotaxonomic characteristics analyses confirmed that the isolate represented a novel species of the genus Streptomyces, for which the name Streptomyces niphimycinicus sp. nov. 4503 T (= MCCC 1K04557T = JCM 34996 T) is proposed. The bioassay-guided fractionation of the extract of strain 4503 T resulted in the isolation of a known compound niphimycin C, which showed cytotoxic activity against nasopharyngeal carcinoma (NPC) cell lines TW03 and 5-8F with half maximal inhibitory concentration (IC50) values of 12.24 µg/mL and 9.44 µg/mL, respectively. Further experiments revealed that niphimycin C not only exhibited the capacity of anti-proliferation, anti-metastasis, induction of cell cycle arrest, and apoptosis, but was also able to increase the reactive oxygen species (ROS) production and regulate several signaling pathways in NPC cells. KEY POINTS: • Strain 4503 T was classified as a novel species of Streptomyces. • Niphimycin C correlates with the cytotoxic effect of strain 4503 T against NPC cells. • Niphimycin C induces apoptosis, autophagic flux disruption and cell cycle arrest.
Collapse
Affiliation(s)
- Yiying Huang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Nanning, China
| | - Wenjin Hu
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, China
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Shushi Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, China
| | - Jiemei Chu
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Yushan Liang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhanhua Tao
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, China
| | - Guiwen Wang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, China
| | - Junlian Zhuang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, China
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China.
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Nanning, China.
| | - Xiaoying Zhou
- Life Science Institute, Guangxi Medical University, Nanning, China.
- Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China.
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High-Frequency Tumor, Nanning, China.
| | - Xinli Pan
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, China.
| |
Collapse
|
19
|
Hu L, Guo C, Chen J, Jia R, Sun Y, Cao S, Xiang P, Wang Y. Venturicidin A Is a Potential Fungicide for Controlling Fusarium Head Blight by Affecting Deoxynivalenol Biosynthesis, Toxisome Formation, and Mitochondrial Structure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12440-12451. [PMID: 37566096 DOI: 10.1021/acs.jafc.3c02683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Fusarium graminearum, which causes Fusarium head blight (FHB) in cereals, is one of the most devastating fungal diseases by causing great yield losses and mycotoxin contamination. A major bioactive ingredient, venturicidin A (VentA), was isolated from Streptomyces pratensis S10 mycelial extract with an activity-guided approach. No report is available on antifungal activity of VentA against F. graminearum and effects on deoxynivalenol (DON) biosynthesis. Here, VentA showed a high antagonistic activity toward F. graminearum with an EC50 value of 3.69 μg/mL. As observed by scanning electron microscopy, after exposure to VentA, F. graminearum conidia and mycelia appeared abnormal. Different dyes staining revealed that VentA increased cell membrane permeability. In growth chamber and field trials, VentA effectively reduced disease severity of FHB. Moreover, VentA inhibited DON biosynthesis by reducing pyruvic acid, acetyl-CoA production, and accumulation of reactive oxygen species (ROS) and then inhibiting trichothecene (TRI) genes expression and toxisome formation. These results suggest that VentA is a potential fungicide for controlling FHB.
Collapse
Affiliation(s)
- Lifang Hu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Cong Guo
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jing Chen
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Ruimin Jia
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yan Sun
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shang Cao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Ping Xiang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, NWAFU Purdue Joint Research Center, Yangling, Shaanxi 712100, People's Republic of China
| | - Yang Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
20
|
Yun T, Jing T, Zang X, Zhou D, Li K, Zhao Y, Wang W, Xie J. Antimicrobial mechanisms and secondary metabolite profiles of Streptomyces hygroscopicus subsp. hygroscopicus 5-4 against banana fusarium wilt disease using metabolomics. Front Microbiol 2023; 14:1159534. [PMID: 37362932 PMCID: PMC10289025 DOI: 10.3389/fmicb.2023.1159534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/08/2023] [Indexed: 06/28/2023] Open
Abstract
Fusarium wilt of bananas (FWB) is seriously affecting the sustainable development of the banana industry and is caused by the devastating soil-borne fungus Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4). Biological control is a promising strategy for controlling Fusarium wilt in bananas. We previously identified Streptomyces hygroscopicus subsp. hygroscopicus 5-4 with strong antifungal activity against the FWB. The most possible antimicrobial mechanism of strain 5-4 was explored using the metabolomics approach, light microscopy imaging, and transmission electron microscopy (TEM). The membrane integrity and ultrastructure of Foc TR4 was damaged after extract treatment, which was supported by the degradation of mycelium, soluble protein content, extracellular reducing sugar content, NADH oxidase activity, malondialdehyde content, mitochondrial membrane potential, and mitochondrial respiratory chain complex enzyme activity. The extracts of strain 5-4 cultivated at different times were characterized by a liquid chromatography-mass spectrometer (LC-MS). 647 known metabolites were detected in the extracts of strains 5-4. Hygromycin B, gluten exorphin B4, torvoside G, (z)-8-tetradecenal, piperitoside, sarmentosin, pubescenol, and other compounds were the main differential metabolites on fermentation culture for 7 days. Compared with strain 5-4 extracts, hygromycin B inhibited the mycelial growth of Foc TR4, and the EC50 concentration was 7.4 μg/mL. These results showed that strain 5-4 could destroy the cell membrane of Foc TR4 to inhibit the mycelial growth, and hygromycin B may be the key antimicrobial active metabolite. Streptomyces hygroscopicus subsp. hygroscopicus 5-4 might be a promising candidate strain to control the FWB and provide a scientific basis for the practical application of hygromycin B as a biological control agent.
Collapse
Affiliation(s)
- Tianyan Yun
- National Key Laboratory for Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Tao Jing
- National Key Laboratory for Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Xiaoping Zang
- National Key Laboratory for Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Dengbo Zhou
- National Key Laboratory for Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Kai Li
- National Key Laboratory for Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Yankun Zhao
- National Key Laboratory for Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Wei Wang
- National Key Laboratory for Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Jianghui Xie
- National Key Laboratory for Tropical Crop Breeding, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| |
Collapse
|