1
|
Yang H, Yang Y, Cui G, Xu Y, Zhao R, Le G, Xie Y, Li P. Dietary methionine restriction ameliorates atherosclerosis by remodeling the gut microbiota in apolipoprotein E-knockout mice. Food Funct 2025. [PMID: 40421996 DOI: 10.1039/d5fo00841g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Dietary methionine restriction (MR) has been shown to reduce the risk of atherosclerosis, but the specific regulatory effects and mechanisms remain unclear. This research intends to investigate the effects of MR on atherosclerosis in apolipoprotein E-knockout (ApoE-/-) mice fed a high-fat, high-cholesterol, high-choline diet and their mechanisms. ApoE-/- mice were fed a normal diet (0.86% methionine + 4.5% fat + 0% cholesterol + 0.2% choline), a high-fat, high-cholesterol, high-choline diet (0.86% methionine + 20% fat + 1% cholesterol + 1% choline), or a high-fat, high-cholesterol, high-choline + MR diet (0.17% methionine + 20% fat + 1% cholesterol + 1% choline) for 8 consecutive weeks. The results show that MR reduced body weight, fat mass, fat deposition in the liver and adipocytes, and plasma lipid levels; improved the morphological structure of the aorta; and reduced the aortic lesion area and lipid levels. In addition, MR downregulated aortic pro-inflammatory cytokine levels, upregulated aortic anti-inflammatory cytokine levels, and improved aortic oxidative stress. Moreover, metagenomic sequencing results suggested that MR improved the gut microbiota composition, particularly through increased relative abundance of short-chain fatty acid (SCFA)-producing bacteria, and changed the relative abundance of inflammation-, lipid metabolism-, and bile acid metabolism-related bacteria at the species level. Furthermore, MR promoted SCFA production and bile acid metabolism, and reduced cell adhesion molecules and foam cell formation in the aorta. Thus, our findings indicated that MR improved the gut microbiota composition, especially increased SCFA production, and ameliorated oxidative stress and inflammation in the aorta, thereby preventing atherosclerosis.
Collapse
Affiliation(s)
- Hao Yang
- Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China.
| | - Yuhui Yang
- Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China.
- Institute for Complexity Science, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Guifang Cui
- Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China.
| | - Yuncong Xu
- Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Renyong Zhao
- Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China.
| | - Guowei Le
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yanli Xie
- Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China.
| | - Peng Li
- Institute for Complexity Science, Henan University of Technology, Zhengzhou 450001, Henan, China
| |
Collapse
|
2
|
Lan Y, Song Y, Zhang W, Zhao S, Wang X, Wang L, Wang Y, Yang X, Wu H, Liu X. Quinoa Ethanol Extract Ameliorates Cognitive Impairments Induced by Hypoxia in Mice: Insights into Antioxidant Defense and Gut Microbiome Modulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3427-3443. [PMID: 39873455 DOI: 10.1021/acs.jafc.4c07530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Quinoa, rich in pharmacologically active ingredients, possesses the potential benefit in preventing cognitive impairments induced by hypoxia. In this study, the efficacy of quinoa ethanol extracts (QEE) consumption (200 and 500 mg/kg/d, respectively) against hypobaric hypoxia (HH)-induced cognitive deficits in mice was investigated. QEE significantly ameliorated hypoxic stress induced by HH, as evidenced by improvements in baseline indices and reductions in hypoxia-inducible factor 1α levels. Furthermore, QEE enhanced antioxidant defense mechanisms, alleviated neuroinflammation in brain regions associated with memory, and improved HH-induced cognitive impairments by modulating the cyclic adenosine monophosphate response element-binding protein/brain-derived neurotrophic factor signaling pathway. Higher doses generally yielded more effective outcomes than lower doses. QEE also significantly reshaped the gut microbiome structure of HH mice, inhibited gut barrier damage, and reduced lipopolysaccharide migration, thereby increasing short-chain fatty acids (SCFAs) levels. Our findings suggest that QEE may be a promising strategy for preventing hypoxia-induced cognitive impairments by maintaining gut microbiome stability and increasing SCFAs levels.
Collapse
Affiliation(s)
- Yongli Lan
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yujie Song
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Wengang Zhang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
| | - Shiyang Zhao
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xinze Wang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Lei Wang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xijuan Yang
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China
| | - Hao Wu
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
- Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Yu R, Zhang H, Chen R, Lin Y, Xu J, Fang Z, Ru Y, Fan C, Wu G. Fecal Microbiota Transplantation from Methionine-Restricted Diet Mouse Donors Improves Alzheimer's Learning and Memory Abilities Through Short-Chain Fatty Acids. Foods 2025; 14:101. [PMID: 39796390 PMCID: PMC11720665 DOI: 10.3390/foods14010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Alzheimer's disease (AD) is marked by impaired cognitive functions, particularly in learning and memory, owing to complex and diverse mechanisms. Methionine restriction (MR) has been found to exert a mitigating effect on brain oxidative stress to improve AD. However, the bidirectional crosstalk between the gut and brain through which MR enhances learning and memory in AD, as well as the effects of fecal microbiota transplantation (FMT) from MR mice on AD mice, remains underexplored. In this study, APP/PS1 double transgenic AD mice were used and an FMT experiment was conducted. 16S rRNA gene sequencing, targeted metabolomics, and microbial metabolite short-chain fatty acids (SCFAs) of feces samples were analyzed. The results showed that MR reversed the reduction in SCFAs induced by AD, and further activated the free fatty acid receptors, FFAR2 and FFAR3, as well as the transport protein MCT1, thereby signaling to the brain to mitigate inflammation and enhance the learning and memory capabilities. Furthermore, the FMT experiment from methionine-restricted diet mouse donors showed that mice receiving FMT ameliorated Alzheimer's learning and memory ability through SCFAs. This study offers novel non-pharmaceutical intervention strategies for AD prevention.
Collapse
Affiliation(s)
- Run Yu
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Haimeng Zhang
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Rui Chen
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yangzhuo Lin
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Jingxuan Xu
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Ziyang Fang
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yuehang Ru
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Chenhan Fan
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Guoqing Wu
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
4
|
Ge X, Liu T, Wang Y, Wen H, Huang Z, Chen L, Xu J, Zhou H, Wu Q, Zhao C, Shao R, Xu W. Porous starch microspheres loaded with luteolin exhibit hypoglycemic activities and alter gut microbial communities in type 2 diabetes mellitus mice. Food Funct 2025; 16:54-70. [PMID: 39377562 DOI: 10.1039/d4fo02907k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Luteolin (LUT), a natural flavonoid known for its hypoglycemic properties, is primarily sourced from vegetables such as celery and broccoli. However, its poor stability and low bioavailability in the upper digestive tract hinder its application in the functional food industry. To address these challenges, this study employed porous starch (PS) as a carrier to develop PS microspheres loaded with luteolin (PSLUT), simulating its release in vitro. The research assessed the hypoglycemic effects of LUT in type 2 diabetes mellitus (T2DM) mice both before and after PS treatment. In vitro findings demonstrated that PS improved LUT's stability in simulated gastric fluids and enhanced its in vivo bioavailability, aligning with experimental outcomes. PSLUT administration significantly improved body weight, fasting blood glucose (FBG), oral glucose tolerance test (OGTT), pancreatic islet function, and other relevant indicators in T2DM mice. Moreover, PSLUT alleviated abnormal liver biochemical indicators and liver tissue injury caused by T2DM. The underlying hypoglycemic mechanism of PSLUT is thought to involve the regulation of protein kinase B (AKT-1) and glucose transporter 2 (GLUT-2). After four weeks of intervention, various PSLUT doses significantly reduced the Firmicutes to Bacteroidetes ratio at the phylum level and decreased the relative abundance of harmful bacteria at the genus level, including Acetatifactor, Candidatus-Arthromitus, and Turicibacter. This microbial shift was associated with improvements in hyperglycemia-related indicators such as FBG, the area under the curve (AUC) of OGTT, and homeostasis model assessment of insulin resistance (HOMA-IR), which are closely linked to these bacterial genera. Additionally, Lachnoclostridium, Parasutterella, Turicibacter, and Papillibacter were identified as key intestinal marker genera involved in T2DM progression through Spearman correlation analysis. In conclusion, PS enhanced LUT's hypoglycemic efficacy by modulating the transcription and protein expression levels of AKT-1 and GLUT-2, as well as the relative abundance of potential gut pathogens in T2DM mice. These results provide a theoretical foundation for advancing luteolin's application in the functional food industry and further investigating its hypoglycemic potential.
Collapse
Affiliation(s)
- Xiaodong Ge
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Tingting Liu
- Clinical Pharmacy Department, Yancheng Second People's Hospital, Yancheng, 224051, China
| | - Yaolin Wang
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Huanhuan Wen
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Zirui Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ligen Chen
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Jianda Xu
- Department of Orthopaedics, Changzhou hospital affiliated to Nanjing University of Chinese Medicine, Changzhou, 213003, China
| | - Hongcheng Zhou
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, 224051, China
| | - Qin Wu
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, 224051, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rong Shao
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| | - Wei Xu
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
5
|
Tyagi SC. Lactobacillus Eats Amyloid Plaque and Post-Biotically Attenuates Senescence Due to Repeat Expansion Disorder and Alzheimer's Disease. Antioxidants (Basel) 2024; 13:1225. [PMID: 39456478 PMCID: PMC11506100 DOI: 10.3390/antiox13101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Patients with Alzheimer's disease and related dementia (ADRD) are faced with a formidable challenge of focal amyloid deposits and cerebral amyloid angiopathy (CAA). The treatment of amyloid deposits in ADRD by targeting only oxidative stress, inflammation and hyperlipidemia has not yielded significant positive clinical outcomes. The chronic high-fat diet (HFD), or gut dysbiosis, is one of the major contributors of ADRD in part by disrupted transport, epigenetic DNMT1 and the folate 1-carbon metabolism (FOCM) cycle, i.e., rhythmic methylation/de-methylation on DNA, an active part of epigenetic memory during genes turning off and on by the gene writer (DNMT1) and eraser (TET2/FTO) and the transsulfuration pathway by mitochondrial 3-mercaptopyruvate sulfur transferase (3MST)-producing H2S. The repeat CAG expansion and m6A disorder causes senescence and AD. We aim to target the paradigm-shift pathway of the gut-brain microbiome axis that selectively inhibits amyloid deposits and increases mitochondrial transsulfuration and H2S. We have observed an increase in DNMT1 and decreased FTO levels in the cortex of the brain of AD mice. Interestingly, we also observed that probiotic lactobacillus-producing post-biotic folate and lactone/ketone effectively prevented FOCM-associated gut dysbiosis and amyloid deposits. The s-adenosine-methionine (SAM) transporter (SLC25A) was increased by hyperhomocysteinemia (HHcy). Thus, we hypothesize that chronic gut dysbiosis induces SLC25A, the gene writer, and HHcy, and decreases the gene eraser, leading to a decrease in SLC7A and mitochondrial transsulfuration H2S production and bioenergetics. Lactobacillus engulfs lipids/cholesterol and a tri-directional post-biotic, folic acid (an antioxidant and inhibitor of beta amyloid deposits; reduces Hcy levels), and the lactate ketone body (fuel for mitochondria) producer increases SLC7A and H2S (an antioxidant, potent vasodilator and neurotransmitter gas) production and inhibits amyloid deposits. Therefore, it is important to discuss whether lactobacillus downregulates SLC25A and DNMT1 and upregulates TET2/FTO, inhibiting β-amyloid deposits by lowering homocysteine. It is also important to discuss whether lactobacillus upregulates SLC7A and inhibits β-amyloid deposits by increasing the mitochondrial transsulfuration of H2S production.
Collapse
Affiliation(s)
- Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
6
|
Liu Y, Zhao P, Cai Z, He P, Wang J, He H, Zhu Z, Guo X, Ma K, Peng K, Zhao J. Buqi-Huoxue-Tongnao decoction drives gut microbiota-derived indole lactic acid to attenuate ischemic stroke via the gut-brain axis. Chin Med 2024; 19:126. [PMID: 39278929 PMCID: PMC11403783 DOI: 10.1186/s13020-024-00991-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/28/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Ischemic stroke belongs to "apoplexy" and its pathogenesis is characterized by qi deficiency and blood stasis combining with phlegm-damp clouding orifices. Buqi-Huoxue-Tongnao decoction (BHTD) is a traditional Chinese medicine formula for qi deficiency, blood stasis and phlegm obstruction syndrome. However, its efficacy and potential mechanism on ischemic stroke are still unclear. This study aims to investigate the protective effect and potential mechanism of BHTD against ischemic stroke. MATERIALS AND METHODS Middle cerebral artery occlusion (MCAO) surgery was carried out to establish an ischemic stroke model in rats. Subsequently, the rats were gavaged with different doses of BHTD (2.59, 5.175, 10.35 g/kg) for 14 days. The protective effects of BHTD on the brain and gut were evaluated by neurological function scores, cerebral infarction area, levels of brain injury markers (S-100B, NGB), indicators of gut permeability (FD-4) and bacterial translocation (DAO, LPS, D-lactate), and tight junction proteins (Occludin, Claudin-1, ZO-1) in brain and colon. 16S rRNA gene sequencing and metabolomic analysis were utilized to analyze the effects on gut microecology and screen for marker metabolites to explore potential mechanisms of BHTD protection against ischemic stroke. RESULTS BHTD could effectively mitigate brain impairment, including reducing neurological damage, decreasing cerebral infarction and repairing the blood-brain barrier, and BHTD showed the best effect at the dose of 10.35 g/kg. Moreover, BHTD reversed gut injury induced by ischemic stroke, as evidenced by decreased intestinal permeability, reduced intestinal bacterial translocation, and enhanced intestinal barrier integrity. In addition, BHTD rescued gut microbiota dysbiosis by increasing the abundance of beneficial bacteria, including Turicibacter and Faecalibaculum. Transplantation of the gut microbiota remodeled by BHTD into ischemic stroke rats recapitulated the protective effects of BHTD. Especially, BHTD upregulated tryptophan metabolism, which promoted gut microbiota to produce more indole lactic acid (ILA). Notably, supplementation with ILA by gavage could alleviate stroke injury, which suggested that driving the production of ILA in the gut might be a novel treatment for ischemic stroke. CONCLUSION BHTD could increase gut microbiota-derived indole lactic acid to attenuate ischemic stroke via the gut-brain axis. Our current finding provides evidence that traditional Chinese medicine can ameliorate central diseases through regulating the gut microbiology.
Collapse
Affiliation(s)
- Yarui Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Peng Zhao
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China
| | - Zheng Cai
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China
| | - Peishi He
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jiahan Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Haoqing He
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhibo Zhu
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China
| | - Xiaowen Guo
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China
| | - Ke Ma
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China
| | - Kang Peng
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China.
| | - Jie Zhao
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Peng Kang National Famous Traditional Chinese Medicine Expert Inheritance Studio, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China.
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, China.
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
7
|
Zhao X, Guo J, Wang Y, Yi X. High-tannin food enhances spatial memory and scatter-hoarding in rodents via the microbiota-gut-brain axis. MICROBIOME 2024; 12:140. [PMID: 39075602 DOI: 10.1186/s40168-024-01849-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 05/29/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND The mutually beneficial coevolutionary relationships between rodents and plant seeds have been a theme of research in plant-animal relationships. Seed tannins are important secondary metabolites of plants that regulate the food-hoarding behavior of rodents; however, the underlying molecular mechanisms are not yet clear. In this study, we investigated whether and how seed tannins improve spatial memory and regulate the hoarding behavior of Tamias sibiricus by altering their gut microbiota. RESULTS We showed that acorn tannins not only improved spatial memory but also enhanced scatter-hoarding in T. sibiricus. Changes in the composition and function of the gut microbiota in response to tannins from acorns are closely related to these improvements. Metabonomic analyses revealed the role of gut isovaleric acid and isobutyric acid as well as serum L-tryptophan in mediating the spatial memory of T. sibiricus via the gut microbiota. The hippocampal proteome provides further evidence that the microbiota-gut-brain axis regulates spatial memory and scatter-hoarding in animals. Our study is likely the first to report that plant secondary metabolites improve hippocampal function and spatial memory and ultimately modulate food-hoarding behavior via the microbiota-gut-brain axis. CONCLUSION Our findings may have resolved the long-standing puzzle about the hidden role of plant secondary metabolites in manipulating food-hoarding behavior in rodents via the microbiota-gut-brain axis. Our study is important for better understanding the mutualistic coevolution between plants and animals. Video Abstract.
Collapse
Affiliation(s)
- Xiangyu Zhao
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Jiawei Guo
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
- Present address: Huxi Middle School, Dongchangfu District, Liaocheng, 252000, China
| | - Yiming Wang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Xianfeng Yi
- School of Life Sciences, Qufu Normal University, Qufu, 273165, China.
| |
Collapse
|
8
|
Zhou H, Chen Z, Li J, Wang R, Bu H, Ruan C. Dietary Supplementation with Nervonic Acid Ameliorates Cerebral Ischemia-Reperfusion Injury by Modulating of Gut Microbiota Composition-Fecal Metabolites Interaction. Mol Nutr Food Res 2024:e2300671. [PMID: 38566522 DOI: 10.1002/mnfr.202300671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/24/2024] [Indexed: 04/04/2024]
Abstract
SCOPE Cerebral ischemia-reperfusion (IR) injury stands as a prominent global contributor to disability and mortality. Nervonic acid (NA), a bioactive elongated monounsaturated fatty acid, holds pivotal significance in human physiological well-being. This research aims to explore the prophylactic effects and fundamental mechanisms of NA in a rat model of cerebral IR injury. METHODS AND RESULTS Through the induction of middle cerebral artery occlusion, this study establishes a rat model of cerebral IR injury and comprehensively assesses the pharmacodynamic impacts of NA pretreatment. This evaluation involves behavioral analyses, histopathological examinations, and quantification of serum markers. Detailed mechanisms of nervonic acid's prophylactic effects are revealed through fecal metabolomics and 16S rRNA sequencing analyses. Our findings robustly support nervonic acid's capacity to ameliorate neurological impairments in rats afflicted with cerebral IR injury. Beyond its neurological benefits, NA demonstrates its potential by rectifying metabolic perturbations across diverse pathways, particularly those pertinent to unsaturated fatty acid metabolism. Additionally, NA emerges as a modulator of gut microbiota composition, notably by selectively enhancing vital genera like Lactobacillus. CONCLUSION These comprehensive findings highlight the potential of incorporating NA as a functional component in dietary interventions aimed at targeting cerebral IR injury.
Collapse
Affiliation(s)
- Hui Zhou
- Key Laboratory of Biotechnology and Resource Utilization of Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, 116600, China
| | - Ziyi Chen
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Jingbin Li
- Key Laboratory of Biotechnology and Resource Utilization of Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, 116600, China
| | - Rongjin Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Hongshi Bu
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Chengjiang Ruan
- Key Laboratory of Biotechnology and Resource Utilization of Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, 116600, China
| |
Collapse
|
9
|
Lail H, Mabb AM, Parent MB, Pinheiro F, Wanders D. Effects of Dietary Methionine Restriction on Cognition in Mice. Nutrients 2023; 15:4950. [PMID: 38068808 PMCID: PMC10707861 DOI: 10.3390/nu15234950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Dietary restriction of the essential amino acid, methionine, has been shown to induce unique metabolic protection. The peripheral benefits of methionine restriction (MR) are well established and include improvements in metabolic, energy, inflammatory, and lifespan parameters in preclinical models. These benefits all occur despite MR increasing energy intake, making MR an attractive dietary intervention for the prevention or reversal of many metabolic and chronic conditions. New and emerging evidence suggests that MR also benefits the brain and promotes cognitive health. Despite widespread interest in MR over the past few decades, many findings are limited in scope, and gaps remain in our understanding of its comprehensive effects on the brain and cognition. This review details the current literature investigating the impact of MR on cognition in various mouse models, highlights some of the key mechanisms responsible for its cognitive benefits, and identifies gaps that should be addressed in MR research moving forward. Overall findings indicate that in animal models, MR is associated with protection against obesity-, age-, and Alzheimer's disease-induced impairments in learning and memory that depend on different brain regions, including the prefrontal cortex, amygdala, and hippocampus. These benefits are likely mediated by increases in fibroblast growth factor 21, alterations in methionine metabolism pathways, reductions in neuroinflammation and central oxidative stress, and potentially alterations in the gut microbiome, mitochondrial function, and synaptic plasticity.
Collapse
Affiliation(s)
- Hannah Lail
- Department of Nutrition, Georgia State University, 140 Decatur St SE, Atlanta, GA 30303, USA; (H.L.); (F.P.)
- Department of Chemistry, Georgia State University, 100 Piedmont Ave., Atlanta, GA 30303, USA
| | - Angela M. Mabb
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA 30302, USA; (A.M.M.); (M.B.P.)
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302, USA
| | - Marise B. Parent
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave., Atlanta, GA 30302, USA; (A.M.M.); (M.B.P.)
- Department of Psychology, Georgia State University, 140 Decatur St SE, Atlanta, GA 30303, USA
| | - Filipe Pinheiro
- Department of Nutrition, Georgia State University, 140 Decatur St SE, Atlanta, GA 30303, USA; (H.L.); (F.P.)
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Desiree Wanders
- Department of Nutrition, Georgia State University, 140 Decatur St SE, Atlanta, GA 30303, USA; (H.L.); (F.P.)
| |
Collapse
|
10
|
Yang D, Ye Y, Huang Y, Huang H, Sun J, Wang JS, Tang L, Gao Y, Sun X. Effects of FB1 and HFB1 on Autonomous Exploratory and Spatial Memory and Learning Abilities in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16752-16762. [PMID: 37822021 DOI: 10.1021/acs.jafc.3c05501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Fumonisin B1 (FB1) is a representative form of fumonisin and is widely present in food and feed. Hydrolyzed fumonisin B1 (HFB1) emerges as a breakdown product of FB1, which is accompanied by FB1 alterations. While previous studies have primarily focused on the liver or kidney toxicity of FB1, with limited studies existing on its neurotoxicity and even fewer on the toxicity of HFB1, this study focuses on the neurotoxicity of FB1 and HFB1 exposure in mice investigated by the open field test, Morris water maze test, histopathological analysis, and nontargeted metabolomics. Further, the levels of oxidative stress-related indices, neurotransmitters, and sphingolipids in the brain were measured to analyze their correlation with behavioral outcomes. The results showed that both FB1 (5 mg/kg) and HFB1 (2.8 mg/kg) reduced autonomous exploratory behavior in mice, impaired spatial learning and memory, and caused mild abnormalities in the brain structure. Quantitative analysis further indicated that exposure to FB1 and HFB1 disrupted neurotransmitter homeostasis, exacerbated oxidative stress, and significantly increased the sphinganine/sphingosine (Sa/So) ratio. Moreover, HFB1 exhibited neurotoxic effects similar to those of FB1, emphasizing the need to pay attention to the neurotoxicity effect of HFB1. These findings underscore the importance of understanding the risks and potential neurological damage associated with FB1 and HFB1 exposure, highlighting the necessity for further research in this crucial field.
Collapse
Affiliation(s)
- Diaodiao Yang
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Yongli Ye
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Yaoguang Huang
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Heyang Huang
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Jiadi Sun
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602, United States
| | - Lili Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602, United States
| | - Yahui Gao
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiulan Sun
- School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing 214200, China
| |
Collapse
|
11
|
Dietary Methionine Restriction Alleviates Choline-Induced Tri-Methylamine-N-Oxide (TMAO) Elevation by Manipulating Gut Microbiota in Mice. Nutrients 2023; 15:nu15010206. [PMID: 36615863 PMCID: PMC9823801 DOI: 10.3390/nu15010206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/14/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Dietary methionine restriction (MR) has been shown to decrease plasma trimethylamine-N-oxide (TMAO) levels in high-fat diet mice; however, the specific mechanism used is unknown. We speculated that the underlying mechanism is related with the gut microbiota, and this study aimed to confirm the hypothesis. In this study, we initially carried out an in vitro fermentation experiment and found that MR could reduce the ability of gut microbiota found in the contents of healthy mice and the feces of healthy humans to produce trimethylamine (TMA). Subsequently, mice were fed a normal diet (CON, 0.20% choline + 0.86% methionine), high-choline diet (H-CHO, 1.20% choline + 0.86% methionine), or high-choline + methionine-restricted diet (H-CHO+MR, 1.20% choline + 0.17% methionine) for 3 months. Our results revealed that MR decreased plasma TMA and TMAO levels in H-CHO-diet-fed mice without changing hepatic FMO3 gene expression and enzyme activity, significantly decreased TMA levels and expression of choline TMA-lyase (CutC) and its activator CutD, and decreased CutC activity in the intestine. Moreover, MR significantly decreased the abundance of TMA-producing bacteria, including Escherichia-Shigella (Proteobacteria phylum) and Anaerococcus (Firmicutes phylum), and significantly increased the abundance of short-chain fatty acid (SCFA)-producing bacteria and SCFA levels. Furthermore, both MR and sodium butyrate supplementation significantly inhibited bacterial growth, down-regulated CutC gene expression levels in TMA-producing bacteria, including Escherichia fergusonii ATCC 35469 and Anaerococcus hydrogenalis DSM 7454 and decreased TMA production from bacterial growth under in vitro anaerobic fermentation conditions. In conclusion, dietary MR alleviates choline-induced TMAO elevation by manipulating gut microbiota in mice and may be a promising approach to reducing circulating TMAO levels and TMAO-induced atherosclerosis.
Collapse
|