1
|
Martínez‐Augustin O, Tena‐Garitaonaindia M, Ceacero‐Heras D, Jiménez‐Ortas Á, Enguix‐Huete JJ, Álvarez‐Mercado AI, Ruiz‐Henares G, Aranda CJ, Gámez‐Belmonte R, Sánchez de Medina F. Macronutrients as Regulators of Intestinal Epithelial Permeability: Where Do We Stand? Compr Rev Food Sci Food Saf 2025; 24:e70178. [PMID: 40421830 PMCID: PMC12108046 DOI: 10.1111/1541-4337.70178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/23/2025] [Accepted: 04/04/2025] [Indexed: 05/28/2025]
Abstract
The intestinal barrier function (IBF) is essential for intestinal homeostasis. Its alterations have been linked to intestinal and systemic disease. Regulation of intestinal permeability is key in the maintenance of the IBF, in which the intestinal epithelium and tight junctions, the mucus layer, sIgA, and antimicrobial peptides are important factors. This review addresses the concept of IBF, focusing on permeability, and summarizes state-of-the-art information on how starvation and macronutrients regulate it. Novel mechanisms regulate intestinal permeability, like its induction by the normal process of nutrient absorption, the contribution of starvation-induced autophagy, or the stimulation of sIgA production by high-protein diets in a T-cell-independent fashion. In addition, observations evidence that starvation and protein restriction increase intestinal permeability, compromising mucin, antimicrobial peptides, and/or intestinal sIgA production. Regarding specific macronutrients, substantial evidence indicates that casein (compared to other protein sources), specific protein-derived peptides and glutamine reinforce IBF. Dietary carbohydrates regulate intestinal permeability in a structure- and composition-dependent fashion; fructose, glucose, and sucrose increase it, while nondigestible oligosaccharides (NDOs) decrease it. Among NDOs, human milk oligosaccharides (HMOs) stand as a promising tool. NODs effects are mediated by intestinal microbiota modulation, production of short-chain fatty acids, and direct interactions with intestinal cells. Finally, evidence supports avoiding high-fat diets for their detrimental effects on IBF. Most studies have been carried out in vitro or in animal models. More information is needed from clinical studies to substantiate beneficial effects and the use of macronutrients in the treatment and prevention of IBF-related diseases.
Collapse
Affiliation(s)
- Olga Martínez‐Augustin
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Insituto de Nutrición y Tecnología de los alimentos José Mataix and Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Mireia Tena‐Garitaonaindia
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Insituto de Nutrición y Tecnología de los alimentos José Mataix and Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Diego Ceacero‐Heras
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Insituto de Nutrición y Tecnología de los alimentos José Mataix and Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Ángela Jiménez‐Ortas
- Department of Biochemistry and Molecular Biology II, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Insituto de Nutrición y Tecnología de los alimentos José Mataix and Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Juan J. Enguix‐Huete
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Ana I. Álvarez‐Mercado
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Guillermo Ruiz‐Henares
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| | - Carlos J. Aranda
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina‐ IBIMA Plataforma BIONANDRICORS “Enfermedades inflamatorias”MálagaSpain
| | - Reyes Gámez‐Belmonte
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
- Department of Medicine 1University of Erlangen‐NurembergErlangenGermany
| | - Fermín Sánchez de Medina
- Department of Pharmacology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADAUniversity of GranadaGranadaSpain
| |
Collapse
|
2
|
Wen F, Chen R, Wang M, Zhang Y, Dong W, Zhang Y, Yang R. Ovotransferrin, an alternative and potential protein for diverse food and nutritional applications. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 39023034 DOI: 10.1080/10408398.2024.2381094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Ovotransferrin(OVT)is a protein found in many types of egg white and has a wide range of functional properties. It has 50% homology with human/bovine lactoferrin, and is expected to be one of the most important alternative proteins for use in food and nutritional applications. This paper mainly reviews the structural characteristics and chemical properties of OVT, as well as its extraction and purification methods. It also systematically describes the various biological activities of OVT and its applications in food and medical industries. The challenges and limitations in the research of OVT were suggested. This review recommends some possible methods such as nanoparticle carriers and microencapsulation to improve the bioavailability and stability of OVT. In addition, this review highlights several strategies to overcome the limitations of OVT in terms of preparation and purification. This review systematically summarizes the recent advances in OVT and will provide guidance for the its development for food and nutritional applications.
Collapse
Affiliation(s)
- Fengge Wen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Runxuan Chen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Mengxue Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yihua Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Wenjing Dong
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
3
|
Xie WY, Ji ZH, Ren WZ, Zhao PS, Wei FH, Hu J, Yuan B, Gao W. Wheat peptide alleviates DSS-induced colitis by activating the Keap1-Nrf2 signaling pathway and maintaining the integrity of the gut barrier. Food Funct 2024; 15:5466-5484. [PMID: 38690672 DOI: 10.1039/d3fo04413k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Inflammatory bowel disease (IBD) is difficult to cure, and formulating a dietary plan is an effective means to prevent and treat this disease. Wheat peptide contains a variety of bioactive peptides with anti-inflammatory and antioxidant functions. The results of this study showed that preventive supplementation with wheat peptide (WP) can significantly alleviate the symptoms of dextran sulfate sodium (DSS)-induced colitis in mice. WP can increase body weight, alleviate colon shortening, and reduce disease activity index (DAI) scores. In addition, WP improved intestinal microbial disorders in mice with colitis. Based on LC-MS, a total of 313 peptides were identified in WP, 4 of which were predicted to be bioactive peptides. The regulatory effects of WP and four bioactive peptides on the Keap1-Nrf2 signaling pathway were verified in Caco-2 cells. In conclusion, this study demonstrated that WP alleviates DSS-induced colitis by helping maintain gut barrier integrity and targeting the Keap1-Nrf2 axis; these results provided a rationale for adding WP to dietary strategies to prevent IBD.
Collapse
Affiliation(s)
- Wen-Yin Xie
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China.
| | - Zhong-Hao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China.
- Department of Basic Medicine, Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Wen-Zhi Ren
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China.
| | - Pei-Sen Zhao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China.
| | - Fan-Hao Wei
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China.
| | - JinPing Hu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China.
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China.
| | - Wei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, Jilin, China.
| |
Collapse
|
4
|
Zhang F, Yue Y, Chen J, Xiao P, Ma H, Feng J, Yang M, Min Y. Albumen exosomes alleviate LPS-induced inflammation of intestinal epithelial cells via miR-22/ATM/p53/NF-κB axis. Int J Biol Macromol 2024; 267:131241. [PMID: 38574929 DOI: 10.1016/j.ijbiomac.2024.131241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Biological macromolecules identified in albumen were found benefit to intestinal health, whether albumen contains exosomes and function of their cargos in intestinal inflammation remain unknown. This study aimed to investigate characteristics and cargos of albumen exosomes, as well as their potential roles in alleviating inflammation in intestinal epithelial cells. Our results demonstrated that albumen contains exosomes that are cup-shaped morphology vesicles with diameter ranging from 50 to 200 nm. There were 278 miRNAs and 45 proteins with higher expression levels in albumen exosomes, and they were mainly involved in immune responses and programmed cell death pathways, including apoptosis and p53 signaling pathway. LPS induced overexpression of pro-inflammatory cytokines IL-1β and TNF-α and excessive apoptosis, which could be reversed by albumen exosomes. The beneficial effects of exosomes could be mainly attributed to miRNA cargos and their inhibition on inflammatory response signaling pathways (p53 and NF-κB pathways). Mechanically, exosome miR-22 targeted ATM and inhibited p53/NF-κB pathway, alleviating LPS-induced overexpression of Caspase-3 and Bax, and inflammatory response. Collectively, albumen exosomes alleviate inflammation of intestinal epithelial cells via miR-22/ATM/p53/NF-κB axis and these findings may provide theoretical basis to the potential application of albumen exosomes for intestinal inflammation.
Collapse
Affiliation(s)
- Fengdong Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yanrui Yue
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jian Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Pan Xiao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hui Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jia Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Mingming Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yuna Min
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
5
|
Han SH, Lee HD, Lee S, Lee AY. Taraxacum coreanum Nakai extract attenuates lipopolysaccharide-induced inflammatory responses and intestinal barrier dysfunction in Caco-2 cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117105. [PMID: 37660957 DOI: 10.1016/j.jep.2023.117105] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Taraxacum coreanum Nakai (TC) is a dandelion native to Korea that has long been used as a medicinal herb with antioxidant and anti-inflammatory properties. Intestinal inflammation is closely associated with intestinal epithelial barrier disruption, which leads to the progression of various intestinal diseases. AIM OF THE STUDY The aim of this study was to investigate the protective effects of TC extract on inflammatory responses and intestinal barrier dysfunction in lipopolysaccharide (LPS)-stimulated Caco-2 cells. MATERIALS AND METHODS The inhibitory effect of TC on nitric oxide (NO) and pro-inflammatory cytokines production were determined by Griess reagent and enzyme-linked immunosorbent assay, respectively. The epithelial permeability was evaluated by transepithelial electrical resistance (TEER) assay, and inflammation- and tight junction (TJ)-related protein expression were analyzed by Western blotting. In addition, the presence of ten active compounds was identified and quantified using UHPLC-ESI-MS and HPLC-DAD analyses. RESULTS Treatment with TC significantly reduced NO production and pro-inflammatory cytokines production [interleukin (IL)-6 and tumor necrosis factor (TNF)-α] compared to the group treated with LPS only, particularly at 100 μg/mL. TC significantly decreased monolayer permeability as detected by TEER. In addition, the transmission of fluorescein isothiocyanate-dextran 4 across the barrier was decreased after treatment with TC. Inflammation-related proteins (inducible NO synthase, cyclooxygenase-2, TNF-α, IL-6, and IL-1β) were down-regulated after treatment with TC. In contrast, TC significantly increased the protein levels of the TJ-related protein, claudin-5. Ten phytochemicals (protocatechuic acid, chlorogenic acid, caffeic acid, scopoletin, chicoric acid, hyperoside, nicotiflorin, luteoloside, sophoricoside, and luteolin) were identified by UHPLC-ESI-MS and HPLC-DAD analysis. CONCLUSION Our findings suggest that ethanolic extract of TC could attenuate the LPS-induced intestinal barrier dysfunction by increasing the TJ protein and suppressing inflammatory responses.
Collapse
Affiliation(s)
- Seok Hee Han
- Department of Food Science, Gyeongsang National University, Jinju, 52725, Republic of Korea.
| | - Hak-Dong Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea; Natural Product Institute of Science and Technology, Anseong, 17546, Republic of Korea.
| | - Ah Young Lee
- Department of Food Science, Gyeongsang National University, Jinju, 52725, Republic of Korea.
| |
Collapse
|
6
|
Blachman A, Birocco AM, Curcio S, Camperi SA, Gianvincenzo PD, Rodriguez JA, Barredo-Vacchelli GR, Cenci G, Sosnik A, Moya S, Calabrese GC. Dermatan Sulfate/Chitosan Nanoparticles Loaded with an Anti-Inflammatory Peptide Increase the Response of Human Colorectal Cancer Cells to 5-Fluorouracil. Macromol Biosci 2023; 23:e2300193. [PMID: 37469233 DOI: 10.1002/mabi.202300193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/24/2023] [Accepted: 07/18/2023] [Indexed: 07/21/2023]
Abstract
The gold standard drug for colorectal cancer (CRC) treatment, 5-Fluorouracil (5-FU), induces pharmacological tolerance in long-term management. The transcriptional factor nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) plays a key role in 5-FU resistance. The aim of this work is to study the capability of polyelectrolytes complex nanoparticles of dermatan sulfate (DS) and chitosan (CS), loaded with the anti-inflammatory tripeptide IRW, to sensitize colorectal cancer cells to 5-FU. Fluorescence and flow cytometry studies confirmed the recognition by the nanoformulation, of the cluster of differentiation 44 (CD44) receptor, involved in the initiation and progression of colorectal tumors. Dynamic light scattering (DLS) and flow cytometry reinforced the importance of DS and CD44 receptor in the interaction, as the addition of DS or anti-CD44 antibody blocked the binding. Moreover, the nanoformulation also interacts with 3D colon cancer cultures, namely colonospheres, enriched in cancer stem cells (CSC), subpopulation responsible for drug resistance and metastasis. To evaluate the consequences of this interaction, the subcellular distribution of the transcriptional factor NFκB, is determined by immunofluorescence analysis. Internalization and the intracellular release of IRW inhibited nuclear translocation of NFκB and increased cellular sensitivity to 5-FU. Altogether, the nanoformulation could provide a selective delivery platform for IRW distribution to colorectal tumors, being an innovative strategy toward overcoming 5-FU resistance in CRC therapy.
Collapse
Affiliation(s)
- Agustín Blachman
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), UBA- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, C1113AAD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Ariadna María Birocco
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), UBA- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, C1113AAD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Sofía Curcio
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), UBA- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, C1113AAD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Junín 956, C1113AAD, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Silvia Andrea Camperi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Junín 956, C1113AAD, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Paolo Di Gianvincenzo
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, Donostia, San Sebastián, 20014, Spain
| | - Jésica Ayelén Rodriguez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Junín 956, C1113AAD, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Gabriela Romina Barredo-Vacchelli
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Nanobiotecnología (NANOBIOTEC), Junín 956, C1113AAD, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Gloria Cenci
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, Donostia, San Sebastián, 20014, Spain
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering Technion-Israel Institute of Technology, Technion City, Haifa, 3200003, Israel
| | - Sergio Moya
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 182 C, Donostia, San Sebastián, 20014, Spain
| | - Graciela Cristina Calabrese
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), UBA- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, C1113AAD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
7
|
Shu X, Wang J, Zhao L, Wang J, Wang P, Zhang F, Wang R. Bifidobacterium lactis TY-S01 protects against alcoholic liver injury in mice by regulating intestinal barrier function and gut microbiota. Heliyon 2023; 9:e17878. [PMID: 37539263 PMCID: PMC10395298 DOI: 10.1016/j.heliyon.2023.e17878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 08/05/2023] Open
Abstract
Alcohol-induced liver injury poses a significant threat to human health. Probiotics have been proven to prevent and treat alcohol-induced liver injury. In this study, the preventive effect of Bifidobacterium lactis TY-S01 on alcohol-induced liver injury in mice was investigated. TY-S01 pretreatment effectively protected mice against alcohol-induced liver injury by preserving the levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, triglyceride and high-density lipoprotein-cholesterol in serum and maintaining the levels of the inflammatory cytokines tumor necrosis factor-α, interleukin-6 and interleukin-1β in liver tissue. Additionally, TY-S01 could maintain the endotoxin levels in serum, maintain the mRNA expression levels of zonula occluden-1, occludin, claudin-1 and claudin-3 in the gut, and prevent gut microbiota dysbiosis in mice with alcoholic liver injury. Spearman's correlation analysis revealed that there was a clear correlation among serum indicators, inflammatory cytokines and gut microbiota. In conclusion, TY-S01 attenuates alcohol-induced liver injury by protecting the integrity of the intestinal barrier and maintaining the balance of the gut microbiota.
Collapse
Affiliation(s)
- Xi Shu
- Chongqing Key Laboratory for Industry and Informatization of Probiotic Fermentation Technology in Dairy Products, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Jing Wang
- Chongqing Key Laboratory for Industry and Informatization of Probiotic Fermentation Technology in Dairy Products, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Liang Zhao
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| | - Jian Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| | - Pengjie Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| | - Feng Zhang
- Chongqing Key Laboratory for Industry and Informatization of Probiotic Fermentation Technology in Dairy Products, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Ran Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| |
Collapse
|
8
|
Shu X, Wang J, Zhao L, Wang J, Wang P, Zhang F, Wang R. Bifidobacterium lactis TY-S01 protects against alcoholic liver injury in mice by regulating intestinal barrier function and gut microbiota. Heliyon 2023; 9:e17878. [PMID: 37539263 DOI: 10.1016/j.heliyon.2023.e17878if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2024] Open
Abstract
Alcohol-induced liver injury poses a significant threat to human health. Probiotics have been proven to prevent and treat alcohol-induced liver injury. In this study, the preventive effect of Bifidobacterium lactis TY-S01 on alcohol-induced liver injury in mice was investigated. TY-S01 pretreatment effectively protected mice against alcohol-induced liver injury by preserving the levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, triglyceride and high-density lipoprotein-cholesterol in serum and maintaining the levels of the inflammatory cytokines tumor necrosis factor-α, interleukin-6 and interleukin-1β in liver tissue. Additionally, TY-S01 could maintain the endotoxin levels in serum, maintain the mRNA expression levels of zonula occluden-1, occludin, claudin-1 and claudin-3 in the gut, and prevent gut microbiota dysbiosis in mice with alcoholic liver injury. Spearman's correlation analysis revealed that there was a clear correlation among serum indicators, inflammatory cytokines and gut microbiota. In conclusion, TY-S01 attenuates alcohol-induced liver injury by protecting the integrity of the intestinal barrier and maintaining the balance of the gut microbiota.
Collapse
Affiliation(s)
- Xi Shu
- Chongqing Key Laboratory for Industry and Informatization of Probiotic Fermentation Technology in Dairy Products, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Jing Wang
- Chongqing Key Laboratory for Industry and Informatization of Probiotic Fermentation Technology in Dairy Products, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Liang Zhao
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| | - Jian Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| | - Pengjie Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| | - Feng Zhang
- Chongqing Key Laboratory for Industry and Informatization of Probiotic Fermentation Technology in Dairy Products, Chongqing Tianyou Dairy Co., Ltd., Chongqing, 401120, China
| | - Ran Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, 100190, China
| |
Collapse
|