1
|
Lv P, Lv J, Zhan Y, Wang N, Zhao X, Sha Q, Zhou W, Gong Y, Yang J, Zhou H, Chu P, Sun Y. Genome-wide analysis of the KCS gene family in Medicago truncatula and their expression profile under various abiotic stress. Sci Rep 2025; 15:15938. [PMID: 40335581 PMCID: PMC12059053 DOI: 10.1038/s41598-025-00809-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025] Open
Abstract
Very long-chain fatty acids (VLCFAs) are indispensable constituents of cuticular wax and exert pivotal functions in regulating plant growth, development and response to stress. β-Ketoacyl-CoA synthase (KCS) represents the rate-limiting enzyme for the biosynthesis of VLCFAs. In this study, 25 KCS genes were identified in the M. truncatula genome and were unevenly distributed across seven of the eight chromosomes. The 25 MtKCS genes were clustered into seven groups, each exhibiting conserved gene structure and motif distribution. MtKCS gene promoters contained multiple hormone signaling and stress-responsive elements, indicating that the expression of these genes may be modulated by a range of developmental and environmental stimuli. The expression profiles revealed that the MtKCS genes exhibit diverse expression patterns across various organs/tissues and are differentially expressed under abiotic stress. It is noteworthy that several genes, such as MtKCS2, 10, and 13, exhibited significantly increased expression in leaves under cold, heat, salt, and drought stress. This suggests that MtKCS genes may play an integral role in the abiotic stress resistance of M. truncatula. These findings establish a foundation for understanding the evolution of KCS genes in higher plants and facilitated further functional exploration of MtKCS genes.
Collapse
Affiliation(s)
- Peng Lv
- College of Agriculture and Biology, Liaocheng University, Liaocheng, 252000, China
| | - Jiaqi Lv
- College of Agriculture and Biology, Liaocheng University, Liaocheng, 252000, China
| | - Yawen Zhan
- College of Agriculture and Biology, Liaocheng University, Liaocheng, 252000, China
| | - Ning Wang
- Rural Economic Development Center of Dong'e County, Liaocheng, 252000, China
| | - Xinyan Zhao
- College of Agriculture and Biology, Liaocheng University, Liaocheng, 252000, China
| | - Qi Sha
- College of Agriculture and Biology, Liaocheng University, Liaocheng, 252000, China
| | - Wen Zhou
- College of Agriculture and Biology, Liaocheng University, Liaocheng, 252000, China
| | - Yujie Gong
- College of Agriculture and Biology, Liaocheng University, Liaocheng, 252000, China
| | - Jing Yang
- College of Agriculture and Biology, Liaocheng University, Liaocheng, 252000, China
| | - Hang Zhou
- Shennong Zhiyi Intelligent Technology Co., Ltd, Liaocheng, 252000, China
| | - Pengfei Chu
- College of Agriculture and Biology, Liaocheng University, Liaocheng, 252000, China.
| | - Yongwang Sun
- College of Agriculture and Biology, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
2
|
Zeng ZX, Shi JH, Qiu CL, Fan T, Lu J, Abdelnabby H, Wang MQ. Nitrogen input reduces the physical defense of rice plant against planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:2440-2449. [PMID: 39436764 DOI: 10.1093/jee/toae240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/19/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024]
Abstract
Nitrogen has important effects on plant growth and defense. Although studies on the alternation in plant chemical defense by nitrogen fertilization have been extensively reported, how it affects physical defense is poorly understood. Two rice (Oryza sativa L.) (Poales: Poaceae) varieties (LDQ7 and YLY1) were applied with varying nitrogen regimes (0.90 and 180 kg ha-1) to study their physical defense against the brown planthopper (BPH) Nilaparvata lugens (Hemiptera: Delphacidae) in this study. Results of the electrical penetration graph showed that BPH searching and penetrating duration time was shortened with increasing nitrogen application. Also, the tubercle papicle of rice leaves decreased with increasing nitrogen application, while rice leaves' surface structure and waxy composition changed with increasing nitrogen application. In field experiments, BPH populations increased with the application of nitrogen fertilizer. These findings suggest that nitrogen input can affect plant-insect interactions by reducing the physical defense of plants, which provides new ideas for the organic combinations of yield increase and pest control in rice fields.
Collapse
Affiliation(s)
- Zi-Xuan Zeng
- Department of Plant Protection, Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jin-Hua Shi
- Department of Plant Protection, Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chang-Lai Qiu
- Department of Plant Protection, Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tao Fan
- Department of Plant Protection, Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Lu
- Department of Plant Protection, State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hazem Abdelnabby
- Department of Plant Protection, Faculty of Agriculture, Benha University, Banha, Qalyubia, Egypt
| | - Man-Qun Wang
- Department of Plant Protection, Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Wu X, Lei Z, Yuan Y, Shi X, Chen Y, Qi K, Xie Z, Bai M, Yin H, Zhang S. Integrated metabolomic and transcriptomic analysis revealed the role of PbrCYP94B in wax accumulation in pear fruit after bagging treatment. Int J Biol Macromol 2024; 282:136107. [PMID: 39343281 DOI: 10.1016/j.ijbiomac.2024.136107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Preharvest fruit bagging is a safe and environmentally friendly production measure. Cuticular wax, as the first protective layer on the fruit surface, has important functions. However, the effects of preharvest bagging on cuticular wax synthesis in pears and the related molecular mechanisms are still unclear. Here, the impact of fruit bagging with different materials on cuticular wax synthesis in pear fruit, and the underlying molecular mechanism, were revealed from metabolomic, transcriptomic, morphological, and molecular biological perspectives. Our results revealed that, compared with that in the not bagged (NB) treatment group (0.59 mg/cm2), the total wax concentration was 1.32- and 1.37-fold greater in the single-layered white paper bag (WPB, 1.37 mg/cm2) and double-layered yellow-white paper bag, (YWPB, 1.40 mg/cm2) treatment groups, while it was slightly lower in the double-layered yellow-black paper bag (YBPB, 0.45 mg/cm2) group, which was consistent with the scanning electron microscopy (SEM) results. Integrated metabolomic and transcriptomic analysis revealed 29 genes associated with cuticular wax synthesis. Overexpression of PbrCYP94B, which is a key gene in the wax synthesis pathway in pear fruit, increased the total wax and alkane contents. This study provides valuable insights for the creation of new pear germplasms with high wax contents.
Collapse
Affiliation(s)
- Xiao Wu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhijie Lei
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yubo Yuan
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinjie Shi
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangyang Chen
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaijie Qi
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihua Xie
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Mudan Bai
- Pomology Institute, Shanxi Agricultural University, China
| | - Hao Yin
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shaoling Zhang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Xue C, Huang X, Zhao Y. CsWRKY29, a key transcription factor in tea plant for freezing tolerance, ABA sensitivity, and sugar metabolism. Sci Rep 2024; 14:28620. [PMID: 39562785 PMCID: PMC11576853 DOI: 10.1038/s41598-024-80143-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
Tea plants (Camellia sinensis L.) are prone to spring frosts, leading to substantial economic damage. WRKY transcription factors are key in plant abiotic stress responses, yet the role of CsWRKY29 in freezing tolerance is unclear. In this study, quantitative real-time PCR (qRT-PCR) and transient green fluorescent protein assay revealed that CsWRKY29 localizes to the nucleus and its expression is induced by cold and abscisic acid (ABA). CsWRKY29 overexpression in Arabidopsis enhanced freezing tolerance, reduced electrolyte leakage, increased soluble sugars, and boosted superoxide dismutase activity, with upregulated COR genes. These lines also showed heightened ABA and glucose sensitivity. Cold treatment of CsWRKY29-overexpressing lines upregulated AtABI5, AtHXK1, and AtSUS4 compared to wild type, and yeast one-hybrid assays confirmed CsWRKY29 binding to the W-box in the CsABI5 promoter. Furthermore, the application of virus-induced gene silencing (VIGS) technology to reduce CsWRKY29 expression in tea plants revealed a significant decrease in the transcript levels of CsCBFs, CsABI5, CsHXK1, and CsSUS4 in the silenced plants. In summary, our findings indicate that CsWRKY29 may serve as a critical transcription factor that contributes to freezing tolerance, ABA responsiveness, and sugar metabolism within tea plants.
Collapse
Affiliation(s)
- Chengjin Xue
- College of Tea Sciences, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China
| | - Xiaozhen Huang
- College of Tea Sciences, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China.
| | - Yichen Zhao
- College of Tea Sciences, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
5
|
Qiao D, Yang C, Mi X, Tang M, Liang S, Chen Z. Genome-wide identification of tea plant (Camellia sinensis) BAHD acyltransferases reveals their role in response to herbivorous pests. BMC PLANT BIOLOGY 2024; 24:229. [PMID: 38561653 PMCID: PMC10985903 DOI: 10.1186/s12870-024-04867-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND BAHD acyltransferases are among the largest metabolic protein domain families in the genomes of terrestrial plants and play important roles in plant growth and development, aroma formation, and biotic and abiotic stress responses. Little is known about the BAHDs in the tea plant, a cash crop rich in secondary metabolites. RESULTS In this study, 112 BAHD genes (CsBAHD01-CsBAHD112) were identified from the tea plant genome, with 85% (98/112) unevenly distributed across the 15 chromosomes. The number of BAHD gene family members has significantly expanded from wild tea plants to the assamica type to the sinensis type. Phylogenetic analysis showed that they could be classified into seven subgroups. Promoter cis-acting element analysis revealed that they contain a large number of light, phytohormones, and stress-responsive elements. Many members displayed tissue-specific expression patterns. CsBAHD05 was expressed at more than 500-fold higher levels in purple tea leaves than in green tea leaves. The genes exhibiting the most significant response to MeJA treatment and feeding by herbivorous pests were primarily concentrated in subgroups 5 and 6. The expression of 23 members of these two subgroups at different time points after feeding by tea green leafhoppers and tea geometrids was examined via qPCR, and the results revealed that the expression of CsBAHD93, CsBAHD94 and CsBAHD95 was significantly induced after the tea plants were subjected to feeding by both pricking and chewing pests. Moreover, based on the transcriptome data for tea plants being fed on by these two pests, a transcriptional regulatory network of different transcription factor genes coexpressed with these 23 members was constructed. CONCLUSIONS Our study provides new insights into the role of BAHDs in the defense response of tea plants, and will facilitate in-depth studies of the molecular function of BAHDs in resistance to herbivorous pests.
Collapse
Affiliation(s)
- Dahe Qiao
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China.
- Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Ministry of Agriculture and Rural Affairs, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China.
| | - Chun Yang
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Xiaozeng Mi
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Mengsha Tang
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Sihui Liang
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China
| | - Zhengwu Chen
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, China.
| |
Collapse
|
6
|
Sumbur B, Zhou M, Dorjee T, Bing J, Ha S, Xu X, Zhou Y, Gao F. Chemical and Transcriptomic Analyses of Leaf Cuticular Wax Metabolism in Ammopiptanthus mongolicus under Osmotic Stress. Biomolecules 2024; 14:227. [PMID: 38397464 PMCID: PMC10886927 DOI: 10.3390/biom14020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Plant cuticular wax forms a hydrophobic structure in the cuticle layer covering epidermis as the first barrier between plants and environments. Ammopiptanthus mongolicus, a leguminous desert shrub, exhibits high tolerances to multiple abiotic stress. The physiological, chemical, and transcriptomic analyses of epidermal permeability, cuticular wax metabolism and related gene expression profiles under osmotic stress in A. mongolicus leaves were performed. Physiological analyses revealed decreased leaf epidermal permeability under osmotic stress. Chemical analyses revealed saturated straight-chain alkanes as major components of leaf cuticular wax, and under osmotic stress, the contents of total wax and multiple alkane components significantly increased. Transcriptome analyses revealed the up-regulation of genes involved in biosynthesis of very-long-chain fatty acids and alkanes and wax transportation under osmotic stress. Weighted gene co-expression network analysis identified 17 modules and 6 hub genes related to wax accumulation, including 5 enzyme genes coding KCS, KCR, WAX2, FAR, and LACS, and an ABCG transporter gene. Our findings indicated that the leaf epidermal permeability of A. mongolicus decreased under osmotic stress to inhibit water loss via regulating the expression of wax-related enzyme and transporter genes, further promoting cuticular wax accumulation. This study provided new evidence for understanding the roles of cuticle lipids in abiotic stress tolerance of desert plants.
Collapse
Affiliation(s)
- Batu Sumbur
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Minqi Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Tashi Dorjee
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jie Bing
- College of Life Sciences, Beijing Normal University, Beijing 100080, China;
| | - Sijia Ha
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xiaojing Xu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yijun Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Fei Gao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
7
|
Perea-Brenes A, Garcia JL, Cantos M, Cotrino J, Gonzalez-Elipe AR, Gomez-Ramirez A, Lopez-Santos C. Germination and First Stages of Growth in Drought, Salinity, and Cold Stress Conditions of Plasma-Treated Barley Seeds. ACS AGRICULTURAL SCIENCE & TECHNOLOGY 2023; 3:760-770. [PMID: 37766795 PMCID: PMC10520973 DOI: 10.1021/acsagscitech.3c00121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Numerous works have demonstrated that cold plasma treatments constitute an effective procedure to accelerate seed germination under nonstress conditions. Evidence also exists about a positive effect of plasmas for germination under environmental stress conditions. For barley seeds, this work studies the influence of cold plasma treatments on the germination rate and initial stages of plant growth in common stress environments, such as drought, salinity, and low-temperature conditions. As a general result, it has been found that the germination rate was higher for plasma-treated than for untreated seeds. Plasma also induced favorable changes in plant and radicle dimensions, which depended on the environment. The obtained results demonstrate that plasma affects the biochemical metabolic chains of seeds and plants, resulting in changes in the concentration of biochemical growing factors, a faster germination, and an initially more robust plant growth, even under stress conditions. These changes in phenotype are accompanied by differences in the concentration of biomarkers such as photosynthetic pigments (chlorophylls a and b and carotenoids), reactive oxygen species, and, particularly, the amino acid proline in the leaves of young plants, with changes that depend on environmental conditions and the application of a plasma treatment. This supports the idea that, rather than an increase in seed water imbibition capacity, there are clear beneficial effects on seedling of plasma treatments.
Collapse
Affiliation(s)
- Alvaro Perea-Brenes
- Nanotechnology
on Surfaces and Plasma Laboratory, Institute of Materials Science
of Seville, Consejo Superior de Investigaciones
Científicas-Universidad de Sevilla, Seville 41092, Spain
- Department
of Plant Biotechnology, Institute of Natural Resources and Agrobiology
of Seville, Consejo Superior de Investigaciones
Científicas, Seville 41012, Spain
| | - Jose Luis Garcia
- Department
of Plant Biotechnology, Institute of Natural Resources and Agrobiology
of Seville, Consejo Superior de Investigaciones
Científicas, Seville 41012, Spain
| | - Manuel Cantos
- Department
of Plant Biotechnology, Institute of Natural Resources and Agrobiology
of Seville, Consejo Superior de Investigaciones
Científicas, Seville 41012, Spain
| | - Jose Cotrino
- Nanotechnology
on Surfaces and Plasma Laboratory, Institute of Materials Science
of Seville, Consejo Superior de Investigaciones
Científicas-Universidad de Sevilla, Seville 41092, Spain
- Departamento
de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, Seville 41012, Spain
| | - Agustín R. Gonzalez-Elipe
- Nanotechnology
on Surfaces and Plasma Laboratory, Institute of Materials Science
of Seville, Consejo Superior de Investigaciones
Científicas-Universidad de Sevilla, Seville 41092, Spain
| | - Ana Gomez-Ramirez
- Nanotechnology
on Surfaces and Plasma Laboratory, Institute of Materials Science
of Seville, Consejo Superior de Investigaciones
Científicas-Universidad de Sevilla, Seville 41092, Spain
- Departamento
de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, Seville 41012, Spain
| | - Carmen Lopez-Santos
- Nanotechnology
on Surfaces and Plasma Laboratory, Institute of Materials Science
of Seville, Consejo Superior de Investigaciones
Científicas-Universidad de Sevilla, Seville 41092, Spain
- Departamento
de Física Aplicada I, Escuela Politécnica Superior, Universidad de Sevilla, Seville 41011, Spain
| |
Collapse
|
8
|
Zhang X, Liu K, Tang Q, Zeng L, Wu Z. Light Intensity Regulates Low-Temperature Adaptability of Tea Plant through ROS Stress and Developmental Programs. Int J Mol Sci 2023; 24:9852. [PMID: 37373002 DOI: 10.3390/ijms24129852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Low-temperature stress limits global tea planting areas and production efficiency. Light is another essential ecological factor that acts in conjunction with temperature in the plant life cycle. However, it is unclear whether the differential light environment affects the low temperature adaptability of tea plant (Camellia sect. Thea). In this study, tea plant materials in three groups of light intensity treatments showed differentiated characteristics for low-temperature adaptability. Strong light (ST, 240 μmol·m-2·s-1) caused the degradation of chlorophyll and a decrease in peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and polyphenol oxidase (PPO) activities, as well as an increase in soluble sugar, soluble protein, malondialdehyde (MDA), and relative conductivity in tea leaves. In contrast, antioxidant enzyme activities, chlorophyll content, and relative conductivity were highest in weak light (WT, 15 μmol·m-2·s-1). Damage was observed in both ST and WT materials relative to moderate light intensity (MT, 160 μmol·m-2·s-1) in a frost resistance test. Chlorophyll degradation in strong light was a behavior that prevented photodamage, and the maximum photosynthetic quantum yield of PS II (Fv/Fm) decreased with increasing light intensity. This suggests that the browning that occurs on the leaf surface of ST materials through frost may have been stressed by the previous increase in reactive oxygen species (ROS). Frost intolerance of WT materials is mainly related to delayed tissue development and tenderness holding. Interestingly, transcriptome sequencing revealed that stronger light favors starch biosynthesis, while cellulose biosynthesis is enhanced in weaker light. It showed that light intensity mediated the form of carbon fixation in tea plant, and this was associated with low-temperature adaptability.
Collapse
Affiliation(s)
- Xin Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
- Integrative Science Center of Germplasm Creation, Southwest University, Chongqing 401329, China
- Tea Research Institute, Southwest University, Chongqing 400715, China
| | - Keyi Liu
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
- Integrative Science Center of Germplasm Creation, Southwest University, Chongqing 401329, China
- Tea Research Institute, Southwest University, Chongqing 400715, China
| | - Qianhui Tang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
- Integrative Science Center of Germplasm Creation, Southwest University, Chongqing 401329, China
- Tea Research Institute, Southwest University, Chongqing 400715, China
| | - Liang Zeng
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
- Integrative Science Center of Germplasm Creation, Southwest University, Chongqing 401329, China
- Tea Research Institute, Southwest University, Chongqing 400715, China
| | - Zhijun Wu
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715, China
- Integrative Science Center of Germplasm Creation, Southwest University, Chongqing 401329, China
- Tea Research Institute, Southwest University, Chongqing 400715, China
| |
Collapse
|
9
|
Mo L, Yao X, Tang H, Li Y, Jiao Y, He Y, Jiang Y, Tian S, Lu L. Genome-Wide Investigation and Functional Analysis Reveal That CsKCS3 and CsKCS18 Are Required for Tea Cuticle Wax Formation. Foods 2023; 12:2011. [PMID: 37238828 PMCID: PMC10217411 DOI: 10.3390/foods12102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/20/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Cuticular wax is a complex mixture of very long-chain fatty acids (VLCFAs) and their derivatives that constitute a natural barrier against biotic and abiotic stresses on the aerial surface of terrestrial plants. In tea plants, leaf cuticular wax also contributes to the unique flavor and quality of tea products. However, the mechanism of wax formation in tea cuticles is still unclear. The cuticular wax content of 108 germplasms (Niaowang species) was investigated in this study. The transcriptome analysis of germplasms with high, medium, and low cuticular wax content revealed that the expression levels of CsKCS3 and CsKCS18 were strongly associated with the high content of cuticular wax in leaves. Hence, silencing CsKCS3 and CsKCS18 using virus-induced gene silencing (VIGS) inhibited the synthesis of cuticular wax and caffeine in tea leaves, indicating that expression of these genes is necessary for the synthesis of cuticular wax in tea leaves. The findings contribute to a better understanding of the molecular mechanism of cuticular wax formation in tea leaves. The study also revealed new candidate target genes for further improving tea quality and flavor and cultivating high-stress-resistant tea germplasms.
Collapse
Affiliation(s)
- Lilai Mo
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Xinzhuan Yao
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Hu Tang
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Yan Li
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
- Department of Agricultural Engineering, Guizhou Vocational College of Agriculture, Qingzhen 551400, China
| | - Yujie Jiao
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Yumei He
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Yihe Jiang
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| | - Shiyu Tian
- Department of Agricultural Engineering, Guizhou Vocational College of Agriculture, Qingzhen 551400, China
| | - Litang Lu
- College of Tea Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
| |
Collapse
|