1
|
Zhang Y, Bai R, Du T, Wang Y, Zhou B, Zhou C, Zhou L. Design, synthesis, bioactivity and action mechanism of N-substituted N'-phenylpicolinohydrazides against phytopathogenic fungi. Mol Divers 2025; 29:2209-2226. [PMID: 39285119 DOI: 10.1007/s11030-024-10984-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/27/2024] [Indexed: 05/16/2025]
Abstract
N'-phenylpicolinohydrazide has been proven to be a promising lead compound for research and development of novel fungicides for agriculture in our previous study. As our continuing research, in this study, a series of N-substituted derivatives of N'-phenylpicolinohydrazide were synthesized and explored for the inhibition activity on nine phytopathogenic fungi and action mechanism. The results found that eleven of the compounds had excellent antifungal activity with more than 80% inhibition rates at 50 µg/mL on part or most of the fungi, especially A. solani and P. piricola. Compounds 5i, 5j and 5k showed EC50 values of < 8.0 µg/mL against A. solani superior to positive control carbendazim (EC50 = 36.0 µg/mL) while 5p and 5q exhibited the highest activity with EC50 values of 2.72 and 2.80 µg/mL against P. piricola superior to positive control boscalid (EC50 > 50.0 µg/mL). Furthermore, 5k also showed significant protective effect against A. solani infection on tomatoes in a concentration-dependent manner. Action mechanism research showed that 5k was able to increase the intracellular ROS level, change both MMP and permeability of cell membrane and damage mycelial morphology. Molecular docking studies showed that 5k could bind into ubiquinone-binding region of succinate dehydrogenase by hydrogen bonds, π-cation, π-π stacked, π-alkyl, and alkyl interactions. Additionally, the antibacterial activity was also investigated. Thus, N-substituted derivatives of N'-phenylpicolinohydrazide were emerged as novel and highly promising antifungal molecular skeletons to develop new fungicides for crop protection.
Collapse
Affiliation(s)
- Yuhao Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- College of Environment and Life Sciences, Weinan Normal University, Weinan, 714000, Shaanxi, People's Republic of China
| | - Ruofei Bai
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Tengyi Du
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yiwei Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Bohang Zhou
- Bio-Agriculture Institute of Shaanxi, Xi'an, 710043, Shaanxi, People's Republic of China
| | - Congwei Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Le Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
2
|
Kunadu APH, Arcot Y, Cisneros-Zevallos L, Barouei J, Akbulut MES, Matthew Taylor T. Nanoencapsulation of Curcumin and Quercetin in Zein-chitosan Shells for Enhanced Broad-spectrum Antimicrobial Efficacy and Shelf-life Extension of Strawberries. J Food Prot 2025; 88:100517. [PMID: 40287141 DOI: 10.1016/j.jfp.2025.100517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/10/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Strawberries face significant postharvest microbial spoilage risks due to high water and sugar content as well as low organic acid contents in their flesh. The study aimed to develop and characterize a novel strategy to delay microbiological spoilage in strawberries using single and coencapsulation of curcumin (Cm) and quercetin (Q), creating stable nanoencapsulates specifically designed to target mold spores, vegetative fungi, and bacteria, with potential applications for both foodservice and consumer use. Using a layer-by-layer antisolvent method, nanoencapsulates of Cm and Q were synthesized, characterized, and assayed against both human and plant pathogenic bacteria and fungi in vitro and in situ. The nanoencapsulates formed stable, spherical emulsion droplets with monodisperse size distribution, high specific surface area, and moderately electro-positive ζ-potentials. Encapsulation efficiencies were 56% (Cm), 65% (Q), and 46.05 ± 4.78% (Cm) and 53.68 ± 4.83% (Q) for CmQ. The nanoencapsulated compounds exhibited strong antimicrobial activity against Pseudomonas aeruginosa, Listeria monocytogenes, Salmonella Montevideo, Saccharomyces cerevisiae, as well as Botrytis cinerea and Aspergillus niger spores in vitro. In strawberries, Cm and Q nanoencapsulates reduced decay incidence by 60% and 80% at 25 °C and 4 °C, respectively, significantly lowering aerobic bacteria by 3.55 ± 0.20 log CFU/g for Cm and 1.97 ± 0.35 log CFU/g for Q, respectively. Yeast and mold counts were likewise reduced by 2.46 ± 0.02 log CFU/g for Cm and 1.43 ± 0.16 log CFU/g for Q. Strawberry quality parameters (firmness, pH, and color) remained stable (P ≥ 0.05) after five days at 25 °C and 15 days at 4 °C. This study highlights a sustainable and effective nanoencapsulation approach for extending the microbiological shelf life of strawberries offering a promising opportunity in food preservation to mitigate spoilage and reduce postharvest losses on perishable fruits and vegetables.
Collapse
Affiliation(s)
- Angela Parry-Hanson Kunadu
- Institute for Advancing Health Through Agriculture, Texas A&M University, College Station, TX 77840, USA; Department of Animal Science, Texas A&M University, College Station, TX 77840, USA
| | - Yashwanth Arcot
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Javad Barouei
- College of Agriculture, Food and Natural Resources, Prairie View A&M University, Prairie View, TX 77446, USA
| | - M E S Akbulut
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - T Matthew Taylor
- Department of Animal Science, Texas A&M University, College Station, TX 77840, USA.
| |
Collapse
|
3
|
Cheng Y, Chen Y, Liu J, Li D, Zhang J, Li C, Yang W, Lei Z. Decanal: A Direct Defense Volatile Induced by Colletotrichum fructicola in the Tea Cultivar "Qiancha No. 1". JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10881-10895. [PMID: 40272259 PMCID: PMC12063612 DOI: 10.1021/acs.jafc.5c01834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
Plants release a variety of defensive volatiles in response to biotic stress. The present study examined interactions between Colletotrichum fructicola and the defense volatiles induced by this fungal species in the tea cultivar "Qiancha No. 1". Analysis of the volatiles emitted from C. fructicola-infected leaves of "Qiancha No. 1" revealed that four volatiles showed a relative content increase of more than 2%. Fungicidal activity assays demonstrated that decanal exhibited the strongest antifungal activity among the four volatiles. Further physiological experiments demonstrated that the antifungal mechanism of decanal was associated with disruption of the cell wall and the membrane. Transcriptome analysis revealed that the genes encoding Chitinase 1, chitin synthase 1, and endochitinase42 were identified as potential targets that may be involved in cell wall degradation by decanal. Additionally, genes encoding cytochrome P450-DIT2 and multidrug resistance protein fer6 were identified as potential targets that may be associated with membrane damage. This study is the first to demonstrate that decanal acts as a direct defense volatile in the interaction between C. fructicola and "Qiancha No. 1," highlighting its potential as an effective antifungal agent.
Collapse
Affiliation(s)
- Yongjia Cheng
- College
of Tea Science, Guizhou University, Guiyang 550025, China
| | - Yao Chen
- Guizhou
Tea Research Institute, Guizhou Academy
of Agricultural Sciences, Guiyang 550006, China
| | - Jianjun Liu
- College
of Tea Science, Guizhou University, Guiyang 550025, China
| | - Dongyang Li
- School
of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Juan Zhang
- College
of Tea Science, Guizhou University, Guiyang 550025, China
| | - Chaojie Li
- College
of Tea Science, Guizhou University, Guiyang 550025, China
| | - Wen Yang
- Guizhou
Tea Research Institute, Guizhou Academy
of Agricultural Sciences, Guiyang 550006, China
| | - Zhiwei Lei
- Guizhou
Tea Research Institute, Guizhou Academy
of Agricultural Sciences, Guiyang 550006, China
| |
Collapse
|
4
|
Guo S, Godana EA, Wang K, Zyton MAE, Chen J, Liang L, Zhang H. Effect of volatile compounds produced by Wickerhamomyces anomalus induced with chitosan against blue mold disease in table grapes. Int J Biol Macromol 2025; 307:142334. [PMID: 40118422 DOI: 10.1016/j.ijbiomac.2025.142334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Antagonistic yeasts, such as Wickerhamomyces anomalus, produce volatile organic compounds (VOCs) that serve as antifungals or biostimulants. Previous studies have demonstrated the efficacy of W. anomalus VOCs in inhibiting fruit decay caused by pathogenic microorganisms. Our research indicates that culturing W. anomalus with 1 % chitosan enhances its ability to combat blue mold on fresh table grapes. Given that VOC production is a primary disease control mechanism for this yeast, we investigated whether 1 % chitosan could increase W. anomalus's VOC production. We examined the effects of culturing W. anomalus with 1 % chitosan on VOC production and its efficacy in managing blue mold in table grapes. Additionally, we assessed the impact of these VOCs on postharvest storage quality and grape enzyme activities, focusing on the regulation of reactive oxygen species (ROS) through enzyme activities and related substances. Our results showed that 1 % chitosan incubation promoted VOC production in W. anomalus, enhanced biocontrol efficacy against P. expansum, and reduced natural rot rates without compromising fruit quality. Moreover, disease resistance enzyme activity and ROS scavenging capacity in table grapes were improved. In conclusion, 1 % chitosan enhances the VOC production of W. anomalus, thereby increasing its antimicrobial efficiency.
Collapse
Affiliation(s)
- Shuaiying Guo
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Esa Abiso Godana
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Kaili Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | | | - Jingwei Chen
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Lisha Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
5
|
Tang J, Liang Q, Zhang R, Huang X. Transcriptomic analysis of inhibitory effects of isothiazolone antimicrobial agents on Aspergillus amstelodami ZR. J Appl Genet 2025:10.1007/s13353-025-00969-1. [PMID: 40304973 DOI: 10.1007/s13353-025-00969-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 03/27/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025]
Abstract
The preservation of marine specimens requires effective methods to ensure research accuracy and ecological sustainability. However, conventional preservatives (e.g., formaldehyde) pose environmental and health risks due to their toxicity. In this study, we isolated Aspergillus amstelodami from the surface of Oreochromis mossambicus specimens and evaluated the antifungal potential of 1,2-benzoisothiazolin-3-one and Kathon. Both agents exhibited strong inhibitory effects on fungal growth, as evidenced by clear inhibition zones. Transcriptomic analysis revealed: (1) upregulation of detoxification-related genes, including cytochrome P450-mediated xenobiotic/drug metabolism, ABC transporters, and two-component systems, and (2) downregulation of ribosome biogenesis genes, impairing protein synthesis in Aspergillus amstelodami. In conclusion, this study provides novel insights into the molecular antifungal mechanisms of isothiazolone antimicrobial agents in combating contamination of marine biological specimens caused by Aspergillus amstelodami.
Collapse
Affiliation(s)
- Junyu Tang
- College of Food Science, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China
| | - Qizhao Liang
- College of Food Science, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China
| | - Rui Zhang
- College of Food Science, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China.
| | - Xiaoping Huang
- School of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
| |
Collapse
|
6
|
Iorizzo M, Coppola F, Pannella G, Ganassi S, Matarazzo C, Albanese G, Tedino C, Di Donato LM, Iacovino VP, Cozzolino R, De Cristofaro A. First Report on Antifungal Activity of Metschnikowia pulcherrima Against Ascosphaera apis, the Causative Agent of Chalkbrood Disease in Honeybee ( Apis mellifera L.) Colonies. J Fungi (Basel) 2025; 11:336. [PMID: 40422670 DOI: 10.3390/jof11050336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/28/2025] Open
Abstract
Chalkbrood is the manifestation of the fungal disease caused by Ascosphaera apis, which affects broods of developing honeybees, particularly in Apis mellifera colonies. Recently, Metschnikowia pulcherrima has been proposed as a biocontrol agent in winemaking and for the management of major postharvest and soil-borne plant pathogenic fungi. In this study, the antagonistic activity of three M. pulcherrima strains against fifteen A. apis strains, isolated from contaminated hives of A. mellifera, was evaluated, with a specific focus on the potential antifungal activity of volatile organic compounds (VOCs). The study revealed that M. pulcherrima was effective against A. apis and that the antifungal activity was related to various mechanisms including competition for nutrients, secretion of pulcherriminic acid, and biosynthesis of specific antifungal VOCs. We also found that each M. pulcherrima strain produced a unique combination of VOCs, and the antifungal activity was strain-dependent and varied depending on the specific yeast-mold combination. In addition, preliminary analyses showed that a temperature of 30 °C and a higher amount of glucose (40 g/L) in the growing medium promote the growth of A. apis. These results could be useful for designing new strategies for the biocontrol of chalkbrood disease in honeybee colonies.
Collapse
Affiliation(s)
- Massimo Iorizzo
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Francesca Coppola
- Department of Agricultural Sciences, University of Naples "Federico II", 80055 Portici, Italy
| | - Gianfranco Pannella
- Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Sonia Ganassi
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Cristina Matarazzo
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Gianluca Albanese
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Cosimo Tedino
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Licia Maria Di Donato
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Vincenzo Pio Iacovino
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Rosaria Cozzolino
- Institute of Food Science, National Council of Research (ISA-CNR), 83100 Avellino, Italy
| | - Antonio De Cristofaro
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| |
Collapse
|
7
|
Roy F, Baumann P, Ullrich R, Moll J, Bässler C, Hofrichter M, Kellner H. Illuminating ecology and distribution of the rare fungus Phellinidium pouzarii in the Bavarian Forest National Park. Sci Rep 2025; 15:8604. [PMID: 40074832 PMCID: PMC11904187 DOI: 10.1038/s41598-025-91672-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Due to their cryptic lifestyle, hidden diversity and a lack of ecological knowledge, conservation of wood-inhabiting fungi continues to be a niche interest. Molecular methods are able to provide deeper insights into the ecology of rare fungal species. We investigated the occurrence of the rare wood-inhabiting fungus Phellinidium pouzarii across the Bavarian Forest National Park in Germany using a fruit body survey, amplicon sequencing and qPCR. Additionally, we sequenced the genome of P. pouzarii and characterized the chemical substances responsible for its distinctive scent. Our approach gave matching results between amplicon sequencing and qPCRs, however, we found no evidence that P. pouzarii is more abundant in the National Park than we can assume based on fruit body inventories, underlining the species' critically endangered status. Genomics revealed P. pouzarii's repertoire of ligninolytic enzymes, pointing towards a white rot lifestyle. Two main components of P. pouzarii's distinct odour we identified (2-phenylethanol, methyl p-anisate) are known to act as insect attractants and/or to possess antimicrobial properties.
Collapse
Affiliation(s)
- Friederike Roy
- Department of Bio- and Environmental Sciences, International Institute Zittau, TU Dresden, Markt 23, 02763, Zittau, Germany
| | - Philipp Baumann
- Department of Bio- and Environmental Sciences, International Institute Zittau, TU Dresden, Markt 23, 02763, Zittau, Germany
| | - René Ullrich
- Department of Bio- and Environmental Sciences, International Institute Zittau, TU Dresden, Markt 23, 02763, Zittau, Germany
| | - Julia Moll
- Department of Soil Ecology, Helmholtz Centre for Environmental Research, Theodor-Lieser- Straße 4, 06120, Halle (Saale), Germany
| | - Claus Bässler
- Department for Biology, Chemistry and Geo Sciences, Institute for Ecology of Fungi, University Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
- National Park Bavarian Forest, Freyunger Str. 2, 94481, Grafenau, Germany
| | - Martin Hofrichter
- Department of Bio- and Environmental Sciences, International Institute Zittau, TU Dresden, Markt 23, 02763, Zittau, Germany
| | - Harald Kellner
- Department of Bio- and Environmental Sciences, International Institute Zittau, TU Dresden, Markt 23, 02763, Zittau, Germany.
| |
Collapse
|
8
|
Tao N, Liu Y, Zhang B, Guo Y, Wang Q, Li Q. SlABCG9 Functioning as a Jasmonic Acid Transporter Influences Tomato Resistance to Botrytis cinerea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3897-3907. [PMID: 39882881 DOI: 10.1021/acs.jafc.4c09064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Jasmonic acid (JA) is crucial for plant stress responses, which rely on intercellular jasmonate transport. However, JA transporters have not been fully identified, especially in tomato (Solanum lycopersicum L.). This study reveals that plasma-membrane-localized protein SlABCG9 in tomato regulates fruit resistance to Botrytis cinerea. Transcriptomic analysis indicated that the SlABCG9 expression was significantly upregulated after B. cinerea infection. Assays using Xenopus oocytes, yeast cell sensitivity, and JA-inhibited primary root growth confirmed that SlABCG9 functions as a JA influx transporter. The knockout mutant lines of SlABCG9 showed decreased JA contents, suppressed defense gene PDF1.2's expression, reduced antioxidant enzyme activity, and severe disease symptoms compared to wild-type controls. Our findings provide new knowledge for understanding how the JA transporter and signaling pathway are involved in the biotic stress responses and improve the resistant ability against pathogen infections.
Collapse
Affiliation(s)
- Ning Tao
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018 Shandong, China
| | - Yuhan Liu
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018 Shandong, China
| | - Ben Zhang
- School of Life Science, Shanxi University, Taiyuan 030006 Shanxi, China
| | - Yue Guo
- School of Life Science, Shanxi University, Taiyuan 030006 Shanxi, China
| | - Qingguo Wang
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018 Shandong, China
| | - Qingqing Li
- College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018 Shandong, China
| |
Collapse
|
9
|
Qin X, Wang Z, Lai J, Liang Y, Qian K. The Synthesis of Selenium Nanoparticles and Their Applications in Enhancing Plant Stress Resistance: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:301. [PMID: 39997864 PMCID: PMC11858168 DOI: 10.3390/nano15040301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
Nanoparticle-based strategies have emerged as transformative tools for addressing critical challenges in sustainable agriculture, offering precise modulation of plant-environment interactions through enhanced biocompatibility and stimuli-responsive delivery mechanisms. Among these innovations, selenium nanoparticles (SeNPs) present unique advantages due to their dual functionality as both essential micronutrient carriers and redox homeostasis modulators. Compared to conventional selenium treatments, SeNPs offer a more efficient and environmentally friendly solution for improving plant resilience while minimizing toxicity, even at low doses. This review provides a comprehensive analysis of methods for synthesizing SeNPs, including chemical reduction, green synthesis using plant extracts, and biological techniques with microbial agents. Additionally, the review discusses the effects of SeNPs on biotic and abiotic stress responses in plants, focusing on how these nanoparticles activate stress-response pathways and enhance plant immune function. The primary objective of this study is to offer theoretical insights into the application of SeNPs for addressing critical challenges in modern agriculture, such as improving crop yield and quality under stress conditions. Moreover, the research highlights the role of SeNPs in advancing sustainable agricultural practices by reducing reliance on chemical fertilizers and pesticides. The findings underscore the transformative potential of SeNPs in crop management, contributing to a more sustainable and eco-friendly agricultural future.
Collapse
Affiliation(s)
- Xin Qin
- College of Plant Protection, Southwest University, Chongqing 400715, China; (X.Q.); (J.L.)
| | - Zijun Wang
- Co-Innovation Center for Modern Production Technology of Grain Crop, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225012, China; (Z.W.); (Y.L.)
| | - Jie Lai
- College of Plant Protection, Southwest University, Chongqing 400715, China; (X.Q.); (J.L.)
| | - You Liang
- Co-Innovation Center for Modern Production Technology of Grain Crop, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225012, China; (Z.W.); (Y.L.)
| | - Kun Qian
- College of Plant Protection, Southwest University, Chongqing 400715, China; (X.Q.); (J.L.)
| |
Collapse
|
10
|
Liu Z, Shangguan L, Xu L, Zhang H, Wang W, Yang Q, Zhang X, Yao L, Yang S, Chen X, Dai J. Enhanced multistress tolerance of Saccharomyces cerevisiae with the sugar transporter-like protein Stl1 F427L mutation in the presence of glycerol. Microbiol Spectr 2025; 13:e0008924. [PMID: 39679667 PMCID: PMC11792538 DOI: 10.1128/spectrum.00089-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 10/05/2024] [Indexed: 12/17/2024] Open
Abstract
During microbial industrial production, microorganisms often face diverse stressors, including organic solvents, high salinity, and high sugar levels. Enhancing microorganism tolerance to such stresses is crucial for producing high-value-added products. Previous studies on the mechanisms of 2-phenylethanol (2-PE) tolerance in Saccharomyces cerevisiae revealed a potential connection between the sugar transporter-like protein (Stl1) mutation (F427L) and increased tolerance to high sugar and salt stress, suggesting a broader role in multistress tolerance. Herein, we showed that the Stl1F427L mutant strain (STL) exhibits significantly improved multistress tolerance in the presence of glycerol. Molecular dynamics simulations indicated that Stl1F427L may enhance glycerol molecular binding, resulting in a significant increase in the intracellular glycerol content of the mutant strain STL. Additionally, under multistress conditions, pyruvate and ergosterol levels and catalase (CAT) and superoxide dismutase (SOD) activities were significantly increased in the mutant strain STL compared with the control strain 5D. This resulted in a notable increase in cell membrane toughness and a decrease in intracellular reactive oxygen species levels. These findings highlight the mechanism by which Stl1F427L enhances S. cerevisiae tolerance to multistress. Importantly, they provide novel insights into and methodologies for improving the resilience of industrial microorganisms. IMPORTANCE Stl1F427L exhibits improved strain tolerance to multistress when adding glycerol, may enhance glycerol molecular binding, and can make a significant increase in intracellular glycerol content. It can reduce reactive oxygen species levels and increase ergosterol content. This paper provides novel insights and methods to get robust industrial microorganisms.
Collapse
Affiliation(s)
- Zixiong Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, Hubei, China
| | - Lingling Shangguan
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, Hubei, China
| | - Linglong Xu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, Hubei, China
| | - Huiyan Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, Hubei, China
| | - Wenxin Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, Hubei, China
| | - Qiao Yang
- ABI Group, Donghai Laboratory, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Xiaoling Zhang
- ABI Group, Donghai Laboratory, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Lan Yao
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, Hubei, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Xiong Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, Hubei, China
| | - Jun Dai
- Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, Hubei, China
- ABI Group, Donghai Laboratory, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| |
Collapse
|
11
|
Long H, Pu L, Li Y, Xu Y, Xu W, Xue H, Bi Y. Effective inactivation of Trichothecium roseum spores in apple juice using contact glow discharge electrolysis: Applications and mechanisms. Food Res Int 2025; 202:115756. [PMID: 39967072 DOI: 10.1016/j.foodres.2025.115756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/04/2025] [Accepted: 01/14/2025] [Indexed: 02/20/2025]
Abstract
Trichothecium roseum is an important postharvest pathogen that causes core rot in apples and contaminates apple juice with spores. Contact glow discharge electrolysis (CGDE) is an innovative non-thermal technique for microbial control in fresh produce, but its efficiency against T. roseum spores in apple juice and the underlying mechanism remain unclear. This study evaluated the inactivation efficiency of T. roseum spores in apple juice under different CGDE treatments and investigated the underlying mechanisms. The results showed that spore inactivation efficiency increased with the prolongation of the treatment time, reaching a reduction of 3.97 log units after 30 min. Spore inactivation followed a log-linear model. Mechanistic analysis revealed that CGDE treatment reduced the activity of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX), leading to the accumulation of reactive oxygen species (ROS). This oxidative stress caused lipid peroxidation, reducing the unsaturated fatty acid and ergosterol content of cell membranes and producing malondialdehyde. Damage to spore cell membranes resulted in leakage of cellular contents, structural changes and damage to surface morphology. In conclusion, CGDE effectively inactivated T. roseum spores in apple juice by disrupting cell membrane integrity through ROS generation, highlighting its potential as a non-thermal microbial control method for postharvest applications.
Collapse
Affiliation(s)
- Haitao Long
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Lumei Pu
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuhong Xu
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Weibing Xu
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Huali Xue
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
12
|
Tan X, Jiang X, Reymick OO, Zhu C, Tao N. (E)-2-Octenal inhibits Neofusicoccum parvum growth by disrupting mitochondrial energy metabolism and is a potential preservative for postharvest mango. Food Res Int 2025; 201:115639. [PMID: 39849732 DOI: 10.1016/j.foodres.2024.115639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/23/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Stem-end rot caused by Neofusicoccum parvum is among the most detrimental diseases affecting postharvest mangoes. The present investigation utilized (E)-2-octenal to manage N. parvum infections, elucidating its mechanism of action. The findings revealed that (E)-2-octenal exhibited outstanding antimicrobial potency against N. parvum in vitro within the concentration range of 0.4-1.6 µL/mL. Additionally, (E)-2-octenal significantly compromised the cell membrane integrity and mitochondrial energy metabolism of N. parvum, evidenced by dramatically increased intracellular material leakage and ROS levels, along with reduced mitochondrial membrane potential, ATP, and energy charge. Further experiments showed noteworthy effects on the tricarboxylic acid cycle (TCA) cycle and the key enzyme activities of succinate dehydrogenase (SDH) and malate dehydrogenase (MDH). Molecular docking revealed hydrogen bonding between (E)-2-octenal's aldehyde group and SDH (Trp-307) and MDH (Gly-101), indicating direct targeting of these enzymes for inhibition. To enhance the practical application of (E)-2-octenal, we developed an aerogel-loaded (E)-2-octenal material (ALO) that exhibited superior antimicrobial efficacy in vitro. In vivo, ALO effectively controlled mango stem-end rot, with optimal efficacy at 20 µL/L. This concentration also delayed the natural disease of mango without degrading fruit quality. According to these findings, (E)-2-octenal is a promising preservative against postharvest mango infections, potentially by impeding cellular energy metabolism through direct interaction with SDH and MDH within the TCA pathway, culminating in mitochondrial dysfunction and cell membrane damage.
Collapse
Affiliation(s)
- Xiaoli Tan
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Xiaobing Jiang
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Okwong Oketch Reymick
- Department of Science, Technical & Vocational Education, College of Education & External Studies, Makerere University, Kampala, Uganda
| | - Chen Zhu
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Nengguo Tao
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
13
|
Tan X, Jiang X, Chen X, Reymick OO, Zhu C, Tao N. Trans-2-hexenal reduces postharvest mango stem-end rot by oxidative damage to Neofusicoccum parvum cell membranes. World J Microbiol Biotechnol 2024; 41:17. [PMID: 39724443 DOI: 10.1007/s11274-024-04235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Neofusicoccum parvum is one of the most hazardous pathogens causing mango fruit decay. The present study utilized trans-2-hexenal (TH), a typical antifungal component of plant essential oils (EOs), to control N. parvum both in vivo and in vitro, and attempted to explore the mechanisms involved. The findings showed that at concentrations greater than 0.4 µL/mL, TH exhibited exceptional antifungal activity against N. parvum in vitro. TH application led to the disruption of the structural integrity of both cell walls and cell membranes, with a particular impact on the latter, as evidenced by the dramatically increased propidium iodide level, as well as reduced total lipids and ergosterol content. Further DCFH-DA staining experiments showed that TH induced mycelial reactive oxygen species (ROS) accumulation, which exacerbated cell membrane lipid peroxidation. For easier application of TH, we fabricated aerogel-loaded TH (ALTH) materials, which demonstrated excellent antifungal activity in vitro. Infestation studies on fruits demonstrated that ALTH mitigated mango stem-end rot in a dose-dependent fashion, with a concentration of 40 µL/L showing efficacy comparable to the conventional fungicide prochloraz, while maintaining fruit quality. In light of these results, TH works by inducing ROS buildup and oxidative damage to the cell membrane of N. parvum, and is a particularly promising preservative for preventing postharvest infections in mangoes.
Collapse
Affiliation(s)
- Xiaoli Tan
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Xiaobing Jiang
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Xiumei Chen
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Okwong Oketch Reymick
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
- Department of Science, Technical & Vocational Education, College of Education & External Studies, Makerere University, Kampala, Uganda
| | - Chen Zhu
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China
| | - Nengguo Tao
- School of Chemical Engineering, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
14
|
Bernardino ARS, Torres CAV, Crespo JG, Reis MAM. Biotechnological 2-Phenylethanol Production: Recent Developments. Molecules 2024; 29:5761. [PMID: 39683919 DOI: 10.3390/molecules29235761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/16/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
2-Phenylethanol (2-PE) is a key flavor compound with a rose-like scent, used in the cosmetics, perfume, home care and food industries. This aroma compound can be obtained naturally from various flowers, however chemical synthesis is the most used route to meet market demand. The increasing interest in natural products has led to the development of more environmentally friendly alternatives for 2-PE production through biotechnological approaches. The most efficient approach involves the biotransformation of L-phenylalanine into 2-PE via the Ehrlich pathway, a process observed in different microorganisms such as yeasts and bacteria. 2-PE produced by this way can be considered as natural. However, due to the toxicity of the aroma to the producing microorganism, low production yields are typically obtained, motivating efforts to develop production processes that can overcome this bottleneck, enhance 2-PE yields and reduce the production costs. This review presents and discusses the latest advances in the bioproduction of 2-PE through microbial fermentation, in terms of producing strains, the optimization of cultivation processes, strategies to mitigate product toxicity, and the use of low value feedstocks. Novel applications for 2-PE are also highlighted.
Collapse
Affiliation(s)
- Ana R S Bernardino
- Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- LAQVREQUIMTE, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Cristiana A V Torres
- Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - João G Crespo
- LAQVREQUIMTE, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- ITQB, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Maria A M Reis
- Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
15
|
Vit P, Araque M, Chuttong B, Moreno E, Contreras RR, Wang Q, Wang Z, Betta E, Bankova V. Pot-Pollen Volatiles, Bioactivity, Synergism with Antibiotics, and Bibliometrics Overview, Including Direct Injection in Food Flavor. Foods 2024; 13:3879. [PMID: 39682953 DOI: 10.3390/foods13233879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Stingless bees (Hymenoptera; Apidae; Meliponini), with a biodiversity of 605 species, harvest and transport corbicula pollen to the nest, like Apis mellifera, but process and store the pollen in cerumen pots instead of beeswax combs. Therefore, the meliponine pollen processed in the nest was named pot-pollen instead of bee bread. Pot-pollen has nutraceutical properties for bees and humans; it is a natural medicinal food supplement with applications in health, food science, and technology, and pharmaceutical developments are promising. Demonstrated synergism between Tetragonisca angustula pot-pollen ethanolic extracts, and antibiotics against extensively drug-resistant (XDR) bacteria revealed potential to combat antimicrobial resistance (AMR). Reviewed pot-pollen VOC richness was compared between Australian Austroplebeia australis (27), Tetragonula carbonaria (31), and Tetragonula hogkingsi (28), as well as the Venezuelan Tetragonisca angustula (95). Bioactivity and olfactory attributes of the most abundant VOCs were revisited. Bibliometric analyses with the Scopus database were planned for two unrelated topics in the literature for potential scientific advances. The top ten most prolific authors, institutions, countries, funding sponsors, and sources engaged to disseminate original research and reviews on pot-pollen (2014-2023) and direct injection food flavor (1976-2023) were ranked. Selected metrics and plots were visualized using the Bibliometrix-R package. A scholarly approach gained scientific insight into the interaction between an ancient fermented medicinal pot-pollen and a powerful bioanalytical technique for fermented products, which should attract interest from research teams for joint projects on direct injection in pot-pollen flavor, and proposals on stingless bee nest materials. Novel anti-antimicrobial-resistant agents and synergism with conventional antibiotics can fill the gap in the emerging potential to overcome antimicrobial resistance.
Collapse
Affiliation(s)
- Patricia Vit
- Apitherapy and Bioactivity, Food Science Department, Faculty of Pharmacy and Bioanalysis, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Maria Araque
- Laboratory of Molecular Microbiology, Department of Microbiology and Parasitology, Faculty of Pharmacy and Bioanalysis, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Bajaree Chuttong
- Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Enrique Moreno
- Smithsonian Tropical Research Institute, Calle Portobelo, Balboa, Ancon 0843-03092, Panama
| | - Ricardo R Contreras
- Department of Chemistry, Faculty of Science, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Qibi Wang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, Yunnan University, Kunming 650500, China
| | - Zhengwei Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650033, China
| | - Emanuela Betta
- Ricerca e Innovazione, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all'Adige, TN, Italy
| | - Vassya Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
16
|
Li W, Wang X, Jiang Y, Cui S, Hu J, Wei Y, Li J, Wu Y. Volatile Organic Compounds Produced by Co-Culture of Burkholderia vietnamiensis B418 with Trichoderma harzianum T11-W Exhibits Improved Antagonistic Activities against Fungal Phytopathogens. Int J Mol Sci 2024; 25:11097. [PMID: 39456879 PMCID: PMC11507488 DOI: 10.3390/ijms252011097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Recently, there has been a growing interest in the biocontrol activity of volatile organic compounds (VOCs) produced by microorganisms. This study specifically focuses on the effects of VOCs produced by the co-culture of Burkholderia vietnamiensis B418 and Trichoderma harzianum T11-W for the control of two phytopathogenic fungi, Botrytis cinerea and Fusarium oxysporum f. sp. cucumerium Owen. The antagonistic activity of VOCs released in mono- and co-culture modes was evaluated by inhibition assays on a Petri dish and in detached fruit experiments, with the co-culture demonstrating significantly higher inhibitory effects on the phytopathogens on both the plates and fruits compared with the mono-cultures. Metabolomic profiles of VOCs were conducted using the solid-liquid microextraction technique, revealing 341 compounds with significant changes in their production during the co-culture. Among these compounds, linalool, dimethyl trisulfide, dimethyl disulfide, geranylacetone, 2-phenylethanol, and acetophenone were identified as having strong antagonistic activity through a standard inhibition assay. These key compounds were found to be related to the improved inhibitory effect of the B418 and T11-W co-culture. Overall, the results suggest that VOCs produced by the co-culture of B. vietnamiensis B418 and T. harzianum T11-W possess great potential in biological control.
Collapse
Affiliation(s)
- Wenzhe Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (W.L.); (X.W.); (Y.J.); (S.C.); (J.H.); (Y.W.); (J.L.)
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xinyue Wang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (W.L.); (X.W.); (Y.J.); (S.C.); (J.H.); (Y.W.); (J.L.)
| | - Yanqing Jiang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (W.L.); (X.W.); (Y.J.); (S.C.); (J.H.); (Y.W.); (J.L.)
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shuning Cui
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (W.L.); (X.W.); (Y.J.); (S.C.); (J.H.); (Y.W.); (J.L.)
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jindong Hu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (W.L.); (X.W.); (Y.J.); (S.C.); (J.H.); (Y.W.); (J.L.)
| | - Yanli Wei
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (W.L.); (X.W.); (Y.J.); (S.C.); (J.H.); (Y.W.); (J.L.)
| | - Jishun Li
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (W.L.); (X.W.); (Y.J.); (S.C.); (J.H.); (Y.W.); (J.L.)
| | - Yuanzheng Wu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (W.L.); (X.W.); (Y.J.); (S.C.); (J.H.); (Y.W.); (J.L.)
| |
Collapse
|
17
|
Ain QU, Rasheed U, Chen Z, Tong Z. Novel Schiff's base-assisted synthesis of metal-ligand nanostructures for multi-functional applications: Detection of catecholamines/antibiotics, removal of tetracycline, and antifungal treatment against plant pathogens. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135009. [PMID: 38964037 DOI: 10.1016/j.jhazmat.2024.135009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024]
Abstract
The development of nanozymes (NZ) for the simultaneous detection of multiple target chemicals is gaining paramount attention in the field of food and health sciences, and waste management industries. Nanozymes (NZ) effectively compensate for the environmental vulnerability of natural enzymes. Considering the development gap of NZ with diverse applications, we synthesized versatile Schiff's base ligands following a facile route and readily available starting reagents (glutaraldehyde, aminopyridines). DPDI, one of the synthesized ligands, readily reacted with transition metal ions (Cu+2, Ag+1, Zn+2 in specific) under ambient conditions, yielding the corresponding nanoparticles/MOF. The structures of ligands and their products were confirmed using various analytical techniques. The enzymatic efficacy of DPDI-Cu (km 0.25 mM=, Vmax = 10.75 µM/sec) surpassed Tremetese versicolor laccase efficacy (km 0. 5 mM=, Vmax = 2.15 µM/sec). Additionally, DPDI-Cu proved resilient to changing pH, temperature, ionic strength, organic solvent, and storage time compared to laccase and provided reusability. DPDI-Cu proved promising for colorimetric detection of dopamine, epinephrine, catechol, tetracycline, and quercetin. The mechanism of oxidative detection of TC was studied through LC/MS analysis. DPDI-Cu-bentonite composite efficiently adsorbed tetracycline with maximum Langmuir adsorption of 208 mg/g. Moreover, DPDI/Cu and DPDI-Ag nanoparticles possessed antifungal activity exhibiting a minimum inhibitory concentration of 400 µg/mL and 3.12 µg/mL against Aspergillus flavus. Florescent dye tracking and SEM/TEM analysis confirmed that DPDI-Ag caused disruption of the plasma membrane and triggered ROS generation and apoptosis-like death in fungal cells. The DPDI-Ag coating treatment of wheat seeds confirmed the non-phytotoxicity of Ag-NPs.
Collapse
Affiliation(s)
- Qurat Ul Ain
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, School of Civil Engineering and Architecture, Guangxi University, China; Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Usman Rasheed
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Zheng Chen
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, School of Civil Engineering and Architecture, Guangxi University, China
| | - Zhangfa Tong
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China.
| |
Collapse
|
18
|
Zhang L, Huang Y, Shi Y, Si H, Luo H, Chen S, Wang Z, He H, Liao S. Synthesis, antifungal activity and action mechanism of novel citral amide derivatives against Rhizoctonia solani. PEST MANAGEMENT SCIENCE 2024; 80:4482-4494. [PMID: 38676622 DOI: 10.1002/ps.8153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/11/2024] [Accepted: 04/27/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Rice sheath blight caused by Rhizoctonia solani is a severe threat to the yield and quality of rice. Due to the unscientific abuse of common fungicides causing resistance and environmental issues, the development of new fungicides is necessary. In this study, we used citral as the lead compound, designed and synthesized a series of novel citral amide derivatives, and evaluated their antifungal activity and mode of action against R. solani. RESULT Bioassay results indicated that the antifungal activities of most citral amide derivatives against R. solani were significantly improved compared to citral, with EC50 values ranging from 9.50-27.12 mg L-1. Among them, compound d21 containing the N-(pyridin-4-yl)carboxamide group exhibited in vitro and in vivo fungicidal activities, with curative effects at 500 mg L-1 as effectively as the commercial fungicide validamycin·bacillus. Furthermore, d21 prolonged the lag phase of the growth curve of R. solani, reduced the amount of growth, and inhibited sclerotium germination and formation. Mechanistically, d21 deformed the mycelia, increased cell membrane permeability, and inhibited the activities of antioxidant and tricarboxylic acid cycle (TCA)-related enzymes. Metabolome analysis showed the abundance of some energy-related metabolites within R. solani increased, and simultaneously the antifungal substances secreted by itself reduced. Transcriptome analysis showed that most genes encoding ATP-binding cassette (ABC) transporters and peroxisomes upregulated after the treatment of d21 and cell membrane destruction. CONCLUSION This study indicates that novel citral amide derivatives possess antifungal activity against R. solani and are expected to develop an alternative option for chemical control of rice sheath blight. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Zhang
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang, China
- College of Agronomy, Jiangxi Agricultural University, Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Super Rice Engineering Technology Research Center, Nanchang, China
| | - Yizhong Huang
- College of Life Sciences, Nanchang Normal University, Nanchang, China
| | - Yunfei Shi
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang, China
| | - Hongyan Si
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang, China
| | - Hai Luo
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang, China
| | - Shangxing Chen
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang, China
| | - Zongde Wang
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang, China
| | - Haohua He
- College of Agronomy, Jiangxi Agricultural University, Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Super Rice Engineering Technology Research Center, Nanchang, China
| | - Shengliang Liao
- College of Forestry, Jiangxi Agricultural University, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration, Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Nanchang, China
| |
Collapse
|
19
|
Ma W, Ji J, Zhang B, Sun W, Zhao J, Zhang J, Zhang G. Antifungal Activity of Sesamol on Pestalotiopsis neglecta: Interfering with Cell Membrane and Energy Metabolism. J Fungi (Basel) 2024; 10:488. [PMID: 39057373 PMCID: PMC11278199 DOI: 10.3390/jof10070488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
This paper investigated the inhibitory effect of Sesamol (Ses) on Pestalotiopsis neglecta. The potential inhibitory mechanisms were explored by observing changes in cell morphology, measuring alterations in cell membrane-related indices, as well as energy metabolism-related indices and changes in enzyme activities related to virulence. The results show that Ses completely inhibited the growth of P. neglecta at 600 μg/mL (minimum inhibitory concentration and minimum fungicidal concentration), with an EC50 of 142 ± 13.22 μg/mL. As observed with scanning electron microscopy (SEM) and transmission electron microscopy (TEM), Ses treatment resulted in the breakage and crumpling of P. neglecta cell membrane and organelle lysis. Ergosterol content and the total lipid in P. neglecta treated with 300 μg/mL Ses was 91.52% and 54% of that in the control groups, respectively. In addition, spores were stained, increased leakage of intracellular constituents at 260 nm, and decreased extracellular pH. This suggests damage to the cell membrane integrity and permeability. Furthermore, Ses decreased the ATP levels and key enzymes in the tricarboxylic acid (TCA) cycle, indicating interference with the fungal energy metabolism. Moreover, the activities of polygalacturonase (PG) and endoglucanase (EG) of P. neglecta treated with 300 μg/mL of Ses were only 28.20% and 29.13% of that in the control groups, respectively, indicating that Ses can reduce the virulence of P. neglecta. In conclusion, our results show that Ses should be considered as a potential plant-derived fungicide due to its ability to disrupt the morphology of P. neglecta, damage cell membrane integrity and permeability in P. neglecta, interfere with energy metabolism, and reduce its virulence, ultimately affecting the fungal growth.
Collapse
Affiliation(s)
- Weihu Ma
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Harbin 150040, China; (W.M.); (J.J.); (W.S.); (J.Z.)
| | - Jingyu Ji
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Harbin 150040, China; (W.M.); (J.J.); (W.S.); (J.Z.)
| | - Bowen Zhang
- School of Information and Computer Engineering, Northeast Forestry University, Harbin 150040, China;
| | - Wenzhuo Sun
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Harbin 150040, China; (W.M.); (J.J.); (W.S.); (J.Z.)
| | - Jinyan Zhao
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Harbin 150040, China; (W.M.); (J.J.); (W.S.); (J.Z.)
| | - Jie Zhang
- School of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Guocai Zhang
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Harbin 150040, China; (W.M.); (J.J.); (W.S.); (J.Z.)
| |
Collapse
|
20
|
Ammar A, Nouira A, El Mouridi Z, Boughribil S. Recent trends in the phytoremediation of radionuclide contamination of soil by cesium and strontium: Sources, mechanisms and methods: A comprehensive review. CHEMOSPHERE 2024; 359:142273. [PMID: 38750727 DOI: 10.1016/j.chemosphere.2024.142273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
This comprehensive review examines recent trends in phytoremediation strategies to address soil radionuclide contamination by cesium (Cs) and strontium (Sr). Radionuclide contamination, resulting from natural processes and nuclear-related activities such as accidents and the operation of nuclear facilities, poses significant risks to the environment and human health. Cs and Sr, prominent radionuclides involved in nuclear accidents, exhibit chemical properties that contribute to their toxicity, including easy uptake, high solubility, and long half-lives. Phytoremediation is emerging as a promising and environmentally friendly approach to mitigate radionuclide contamination by exploiting the ability of plants to extract toxic elements from soil and water. This review focuses specifically on the removal of 90Sr and 137Cs, addressing their health risks and environmental implications. Understanding the mechanisms governing plant uptake of radionuclides is critical and is influenced by factors such as plant species, soil texture, and physicochemical properties. Phytoremediation not only addresses immediate contamination challenges but also provides long-term benefits for ecosystem restoration and sustainable development. By improving soil health, biodiversity, and ecosystem resilience, phytoremediation is in line with global sustainability goals and environmental protection initiatives. This review aims to provide insights into effective strategies for mitigating environmental hazards associated with radionuclide contamination and to highlight the importance of phytoremediation in environmental remediation efforts.
Collapse
Affiliation(s)
- Ayyoub Ammar
- Laboratory of Virology, Microbiology, Quality and Biotechnology /Eco-toxicology and Biodiversity (LVMQB/EB), Faculty of Sciences and Techniques Mohammedia, University Hassan II, Casablanca, Morocco; National Center for Energy, Sciences, and Nuclear Techniques (CNESTEN), Rabat, Morocco; Laboratory of Environment and Conservation of Natural Resources, National Institute of Agronomique Research (INRA), Rabat, Morocco.
| | - Asmae Nouira
- National Center for Energy, Sciences, and Nuclear Techniques (CNESTEN), Rabat, Morocco
| | - Zineb El Mouridi
- Laboratory of Environment and Conservation of Natural Resources, National Institute of Agronomique Research (INRA), Rabat, Morocco
| | - Said Boughribil
- Laboratory of Virology, Microbiology, Quality and Biotechnology /Eco-toxicology and Biodiversity (LVMQB/EB), Faculty of Sciences and Techniques Mohammedia, University Hassan II, Casablanca, Morocco
| |
Collapse
|
21
|
Zhang W, Cao Y, Li H, Rasmey AHM, Zhang K, Shi L, Ge B. Membrane protein Bcsdr2 mediates biofilm integrity, hyphal growth and virulence of Botrytis cinerea. Appl Microbiol Biotechnol 2024; 108:398. [PMID: 38940906 PMCID: PMC11213811 DOI: 10.1007/s00253-024-13238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/29/2024]
Abstract
Grey mould caused by Botrytis cinerea is a devastating disease responsible for large losses to agricultural production, and B. cinerea is a necrotrophic model fungal plant pathogen. Membrane proteins are important targets of fungicides and hotspots in the research and development of fungicide products. Wuyiencin affects the permeability and pathogenicity of B. cinerea, parallel reaction monitoring revealed the association of membrane protein Bcsdr2, and the bacteriostatic mechanism of wuyiencin was elucidated. In the present work, we generated and characterised ΔBcsdr2 deletion and complemented mutant B. cinerea strains. The ΔBcsdr2 deletion mutants exhibited biofilm loss and dissolution, and their functional activity was illustrated by reduced necrotic colonisation on strawberry and grape fruits. Targeted deletion of Bcsdr2 also blocked several phenotypic defects in aspects of mycelial growth, conidiation and virulence. All phenotypic defects were restored by targeted gene complementation. The roles of Bcsdr2 in biofilms and pathogenicity were also supported by quantitative real-time RT-PCR results showing that phosphatidylserine decarboxylase synthesis gene Bcpsd and chitin synthase gene BcCHSV II were downregulated in the early stages of infection for the ΔBcsdr2 strain. The results suggest that Bcsdr2 plays important roles in regulating various cellular processes in B. cinerea. KEY POINTS: • The mechanism of wuyiencin inhibits B. cinerea is closely associated with membrane proteins. • Wuyiencin can downregulate the expression of the membrane protein Bcsdr2 in B. cinerea. • Bcsdr2 is involved in regulating B. cinerea virulence, growth and development.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Beijing, 100193, China
- Qian Xinan Branch of Guizhou Provincial Tobacco Company, 60 Ruijin Southern Road, Xingyi, 562499, China
| | - Yi Cao
- Guizhou Academy of Tobacco Science, 29 Longtanba Road, Guiyang, 550081, China
| | - Hua Li
- School of Light Industry Science and Engineering, Beijing Technology and Business University, 11 & 33 Fucheng Road, Beijing, 100048, China
| | - Abdel-Hamied M Rasmey
- Botany and Microbiology Department, Faculty of Science, Suez University, Elsalam 1, Cairo-Suez Road, Suez, 43221, Egypt
| | - Kecheng Zhang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Liming Shi
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Beijing, 100193, China.
| | - Beibei Ge
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
22
|
Ou D, Zou Y, Zhang X, Jiao R, Zhang D, Ling N, Ye Y. The potential of antifungal peptides derived from Lactiplantibacillus plantarum WYH for biocontrol of Aspergillus flavus contamination. Int J Food Microbiol 2024; 418:110727. [PMID: 38759292 DOI: 10.1016/j.ijfoodmicro.2024.110727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Accepted: 04/28/2024] [Indexed: 05/19/2024]
Abstract
Aspergillus flavus is a notorious fungus that contaminates food crops with toxic aflatoxins, posing a serious threat to human health and the agricultural economy. To overcome the inadequacy of traditional control methods and meet consumer preferences for natural-sources additives, there is an urgent demand for novel biocontrol agents that are safe and efficient. This study aims to investigate the antifungal properties of a novel antifungal agent derived from the biologically safe Lactiplantibacillus plantarum WYH. Firstly, antifungal peptides (AFPs) with a molecular weight of less than 3kD, exhibiting remarkable temperature stability and effectively retarding fungal growth in a dose-dependent manner specifically against A. flavus, were concentrated from the fermentation supernatant of L. plantarum WYH and were named as AFPs-WYH. Further analysis demonstrated that AFPs-WYH might exert antifungal effects through the induction of oxidative stress, disruption of mitochondrial function, alteration of membrane permeability, and cell apoptosis in A. flavus. To further validate our findings, a transcriptomics analysis was conducted on A. flavus treated with 2 and 5 mg/mL of AFPs-WYH, which elucidated the potential effect of AFPs-WYH administration on the regulation of genes involved in impairing fungal development and preventing aflatoxin biosynthesis pathways. Overall, AFPs-WYH reduced the A. flavus proliferation and affected the AFB1 biosynthesis, exhibiting a promising potential for food industry applications as a biopreservative and biocontrol agent.
Collapse
Affiliation(s)
- Dexin Ou
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yanyan Zou
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiyan Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Rui Jiao
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Danfeng Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Na Ling
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Yingwang Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
23
|
Wu F, Wang H, Lin Y, Qu Z, Zheng B, Feng S, Li X. 2-Heptanol inhibits Botrytis cinerea by accelerating amino acid metabolism and retarding membrane transport. FRONTIERS IN PLANT SCIENCE 2024; 15:1400164. [PMID: 38887459 PMCID: PMC11180792 DOI: 10.3389/fpls.2024.1400164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024]
Abstract
During the postharvest storage of tomatoes, they are susceptible to infection by Botrytis cinerea, leading to significant economic losses. This study evaluated the antifungal potential of 2-heptanol (2-HE), a volatile biogenic compound, against B. cinerea and explored the underlying antifungal mechanism. The results indicated that 2-HE effectively suppressed the growth of B. cinerea mycelia both in vivo and in vitro and stimulated the activities of antioxidative enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in tomatoes. Furthermore, 2-HE reduced spore viability, compromised membrane integrity, and resulted in increased levels of extracellular nucleic acids, protein content, and membrane lipid peroxidation. Transcriptomic analysis revealed that 2-HE disrupted the membrane transport system and enhanced amino acid metabolism, which led to intracellular nutrient depletion and subsequent B. cinerea cell death. Additionally, the 2-HE treatment did not negatively impact the appearance or quality of the tomatoes. In conclusion, the findings of this study offer insights into the use of 2-HE as a biocontrol agent in food and agricultural applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Shun Feng
- School of Tropical Agriculture and Forest, National Key Laboratory of Tropcial Crop Breeding, Hainan University, Haikou, China
| | - Xinguo Li
- School of Tropical Agriculture and Forest, National Key Laboratory of Tropcial Crop Breeding, Hainan University, Haikou, China
| |
Collapse
|
24
|
Fan L, Wei Y, Chen Y, Ouaziz M, Jiang S, Xu F, Wang H, Shao X. Transcriptome analysis reveals the mechanism of antifungal peptide epinecidin-1 against Botrytis cinerea by mitochondrial dysfunction and oxidative stress. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 202:105932. [PMID: 38879298 DOI: 10.1016/j.pestbp.2024.105932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 06/19/2024]
Abstract
The marine antifungal peptide epinecidin-1 (EPI) have been shown to inhibit Botrytis cinerea growth, while the molecular mechanism have not been explored based on omics technology. This study aimed to investigate the molecular mechanism of EPI against B. cinerea by transcriptome technology. Our findings indicated that a total of 1671 differentially expressed genes (DEGs) were detected in the mycelium of B. cinerea treated with 12.5 μmol/L EPI for 3 h, including 773 up-regulated genes and 898 down-regulated genes. Cluster analysis showed that DEGs (including steroid biosynthesis, (unsaturated) fatty acid biosynthesis) related to cell membrane metabolism were significantly down-regulated, and almost all DEGs involved in DNA replication were significantly inhibited. In addition, it also induced the activation of stress-related pathways, such as the antioxidant system, ATP-binding cassette transporter (ABC) and MAPK signaling pathways, and interfered with the tricarboxylic acid (TCA) cycle and oxidative phosphorylation pathways related to mitochondrial function. The decrease of mitochondrial related enzyme activities (succinate dehydrogenase, malate dehydrogenase and adenosine triphosphatase), the decrease of mitochondrial membrane potential and the increase content of hydrogen peroxide further confirmed that EPI treatment may lead to mitochondrial dysfunction and oxidative stress. Based on this, we speculated that EPI may impede the growth of B. cinerea through its influence on gene expression, and may lead to mitochondrial dysfunction and oxidative stress.
Collapse
Affiliation(s)
- Li Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; College of Biological Environment, JiYang College of Zhejiang A&F University, Zhuji 311800, China
| | - Yingying Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Meriem Ouaziz
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Shu Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Feng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Hongfei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Xingfeng Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China.
| |
Collapse
|
25
|
Wang L, Song X, Cheng YN, Cheng S, Chen T, Li H, Yan J, Wang X, Zhou H. 1,2,4-Triazole benzamide derivative TPB against Gaeumannomyces graminis var. tritici as a novel dual-target fungicide inhibiting ergosterol synthesis and adenine nucleotide transferase function. PEST MANAGEMENT SCIENCE 2024; 80:1717-1727. [PMID: 38010196 DOI: 10.1002/ps.7900] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Isopropyl 4-(2-chloro-6-(1H-1,2,4-triazol-1-yl)benzamido)benzoate (TPB) was a 1,2,4-triazole benzoyl arylamine derivative with excellent antifungal activity, especially against Gaeumannomyces graminis var. tritici (Ggt). Its mechanism of action was investigated by transmission electron microscopy (TEM) observation, assays of sterol composition, cell membrane permeability, intracellular ATP and mitochondrial membrane potential, and mPTP permeability, ROS measurement, RNA sequencing (RNA-seq) analysis. RESULTS TPB interfered with ergosterol synthesis, reducing ergosterol content, increasing toxic intermediates, and finally causing biomembrane disruption such as increasing cell membrane permeability and content leakage, and destruction of organelle membranes such as coarse endoplasmic reticulum and vacuole. Moreover, TPB destroyed the function of adenine nucleotide transferase (ANT), leading to ATP transport obstruction in mitochondria, inhibiting mPTP opening, inducing intracellular ROS accumulation and mitochondrial membrane potential loss, finally resulting in mitochondrial damage including mitochondria swelled, mitochondrial membrane dissolved, and cristae destroyed and reduced. RNA-seq analyses showed that TPB increased the expression of ERG11, ERG24, ERG6, ERG5, ERG3 and ERG2 genes in ergosterol synthesis pathway, interfered with the expression of genes (NDUFS5, ATPeV0E, NCA2 and Pam17) related to mitochondrial structure, and inhibited the expression of genes (WrbA and GST) related to anti-oxidative stress. CONCLUSIONS TPB exhibited excellent antifungal activity against Ggt by inhibiting ergosterol synthesis and destroying ANT function. So, TPB was a novel compound with dual-target mechanism of action and can be considered a promising novel fungicide for the control of wheat Take-all. The results provided new guides for the structural design of active compounds and powerful tools for pathogen resistance management. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Limin Wang
- High & New Technology Research Center of Henan Academy of Sciences, Zhengzhou, People's Republic of China
| | - Xiaoyu Song
- High & New Technology Research Center of Henan Academy of Sciences, Zhengzhou, People's Republic of China
| | - Yi-Nan Cheng
- Plant Protection College of Henan Agricultural University, Zhengzhou, People's Republic of China
- Engineering Research Center for Plant Health Protection Technology in Henan Province, Zhengzhou, People's Republic of China
| | - Senxiang Cheng
- High & New Technology Research Center of Henan Academy of Sciences, Zhengzhou, People's Republic of China
| | - Tong Chen
- High & New Technology Research Center of Henan Academy of Sciences, Zhengzhou, People's Republic of China
| | - Honglian Li
- Plant Protection College of Henan Agricultural University, Zhengzhou, People's Republic of China
- Engineering Research Center for Plant Health Protection Technology in Henan Province, Zhengzhou, People's Republic of China
| | - Jingming Yan
- Plant Protection College of Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Xiafei Wang
- Plant Protection College of Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Haifeng Zhou
- Plant Protection College of Henan Agricultural University, Zhengzhou, People's Republic of China
| |
Collapse
|
26
|
Sun S, Tang N, Han K, You J, Liu A, Wang Q, Xu Q. Antifungal Activity and Mechanism of 4-Propylphenol Against Fusarium graminearum, Agent of Wheat Scab, and Its Potential Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5258-5268. [PMID: 38430124 DOI: 10.1021/acs.jafc.3c09646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Fusarium head blight (FHB), caused by Fusarium graminearum, is a predominant disease of wheat. Due to the lack of disease-resistant germplasm, chemical control is an important means to control wheat scab. Volatile substances produced in near-isogenic wheat lines were detected after inoculation with F. graminearum, and 4-propylphenol, which appears in FHB-resistant lines, was identified. In vitro and in vivo antifungal activity tests demonstrate that 4-propylphenol effectively inhibits the mycelial growth of F. graminearum. Metabolomics analysis showed changes in glutathione metabolism, indicating that 4-propylphenol triggered reactive oxygen species (ROS) stress. This was consistent with the increasing ROS levels in Fusarium cells treated with 4-propylphenol. Further results demonstrated that excessive accumulation of ROS induced DNA and cell membrane damage in the mycelium. Moreover, 4-propylphenol showed different degrees of inhibition against other soil-borne pathogens (fungi and oomycetes). These findings illustrated that 4-propylphenol has broad spectrum and high antifungal activity and should be considered for use as an ecological fungicide.
Collapse
Affiliation(s)
- Shufang Sun
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Nawen Tang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Kun Han
- National Key Laboratory of Wheat Improvement, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Jiahui You
- Shandong Guocangjian Biotechnology Co., Ltd, Taian 271018, China
| | - Anru Liu
- National Key Laboratory of Wheat Improvement, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Qunqing Wang
- National Key Laboratory of Wheat Improvement, College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Qian Xu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
27
|
Duan WY, Zhu XM, Zhang SB, Lv YY, Zhai HC, Wei S, Ma PA, Hu YS. Antifungal effects of carvacrol, the main volatile compound in Origanum vulgare L. essential oil, against Aspergillus flavus in postharvest wheat. Int J Food Microbiol 2024; 410:110514. [PMID: 38070224 DOI: 10.1016/j.ijfoodmicro.2023.110514] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 12/29/2023]
Abstract
Plant volatile organic compounds (VOCs) with antimicrobial activity could potentially be extremely useful fumigants to prevent and control the fungal decay of agricultural products postharvest. In this study, antifungal effects of volatile compounds in essential oils extracted from Origanum vulgare L. against Aspergillus flavus growth were investigated using transcriptomic and biochemical analyses. Carvacrol was identified as the major volatile constituent of the Origanum vulgare L. essential oil, accounting for 66.01 % of the total content. The minimum inhibitory concentrations of carvacrol were 0.071 and 0.18 μL/mL in gas-phase fumigation and liquid contact, respectively. Fumigation with 0.60 μL/mL of carvacrol could completely inhibit A. flavus proliferation in wheat grains with 20 % moisture, showing its potential as a biofumigant. Scanning electron microscopy revealed that carvacrol treatment caused morphological deformation of A. flavus mycelia, and the resulting increased electrolyte leakage indicates damage to the plasma membrane. Confocal laser scanning microscopy confirmed that the carvacrol treatment caused a decrease in mitochondrial membrane potential, reactive oxygen species accumulation, and DNA damage. Transcriptome analysis revealed that differentially expressed genes were mainly associated with fatty acid degradation, autophagy, peroxisomes, the tricarboxylic acid cycle, oxidative phosphorylation, and DNA replication in A. flavus mycelia exposed to carvacrol. Biochemical analyses of hydrogen peroxide and superoxide anion content, and catalase, superoxide dismutase, and glutathione S-transferase activities showed that carvacrol induced oxidative stress in A. flavus, which agreed with the transcriptome results. In summary, this study provides an experimental basis for the use of carvacrol as a promising biofumigant for the prevention of A. flavus contamination during postharvest grain storage.
Collapse
Affiliation(s)
- Wen-Yan Duan
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Xi-Man Zhu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Shuai-Bing Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China.
| | - Yang-Yong Lv
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Huan-Chen Zhai
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Shan Wei
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Ping-An Ma
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Yuan-Sen Hu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
28
|
Sun S, Tang N, Han K, Wang Q, Xu Q. Effects of 2-Phenylethanol on Controlling the Development of Fusarium graminearum in Wheat. Microorganisms 2023; 11:2954. [PMID: 38138097 PMCID: PMC10745961 DOI: 10.3390/microorganisms11122954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Applying plant-derived fungicides is a safe and sustainable way to control wheat scab. In this study, volatile organic compounds (VOCs) of wheat cultivars with and without the resistance gene Fhb1 were analyzed by GC-MS, and 2-phenylethanol was screened out. The biocontrol function of 2-phenylethanol on Fusarium graminearum was evaluated in vitro and in vivo. Metabolomics analysis indicated that 2-phenylethanol altered the amino acid pathways of F. graminearum, affecting its normal life activities. Under SEM and TEM observation, the mycelial morphology changed, and the integrity of the cell membrane was destroyed. Furthermore, 2-phenylethanol could inhibit the production of mycotoxins (DON, 3-ADON, 15-ADON) by F. graminearum and reduce grain contamination. This research provides new ideas for green prevention and control of wheat FHB in the field.
Collapse
Affiliation(s)
- Shufang Sun
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China; (S.S.); (N.T.)
| | - Nawen Tang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China; (S.S.); (N.T.)
| | - Kun Han
- Departmen of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Qunqing Wang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China; (S.S.); (N.T.)
- Departmen of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Qian Xu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China; (S.S.); (N.T.)
| |
Collapse
|
29
|
Lei JD, Li Q, Zhang SB, Lv YY, Zhai HC, Wei S, Ma PA, Hu YS. Transcriptomic and biochemical analyses revealed antifungal mechanism of trans-anethole on Aspergillus flavus growth. Appl Microbiol Biotechnol 2023; 107:7213-7230. [PMID: 37733053 DOI: 10.1007/s00253-023-12791-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
Plant volatile compounds have great potential for preventing and controlling fungal spoilage in post-harvest grains. Recently, we have reported the antifungal effects of trans-anethole, the main volatile constituent of the Illicium verum fruit, on Aspergillus flavus. In this study, the inhibitory mechanisms of trans-anethole against the growth of A. flavus mycelia were investigated using transcriptomic and biochemical analyses. Biochemical and transcriptomic changes in A. flavus mycelia were evaluated after exposure to 0.2 μL/mL trans-anethole. Scanning electron microscopy showed that trans-anethole treatment resulted in the surface wrinkling of A. flavus mycelia, and calcofluor white staining confirmed that trans-anethole treatment disrupted the mycelial cell wall structure. Annexin V-fluorescein isothiocyanate/propidium iodide double staining suggested that trans-anethole induced apoptosis in A. flavus mycelia. Reduced mitochondrial membrane potential and DNA damage were observed in trans-anethole-treated A. flavus mycelia using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanine and 4',6-diamidino-2-phenylindole staining, respectively. 2',7'- Dichloro-dihydro-fluorescein diacetate staining and biochemical assays demonstrated that trans-anethole treatment cause the accumulation of reactive oxygen species in the A. flavus mycelia. Transcriptome results showed that 1673 genes were differentially expressed in A. flavus mycelia exposed to trans-anethole, which were mainly associated with multidrug transport, oxidative phosphorylation, citric acid cycle, ribosomes, and cyclic adenosine monophosphate signaling. We propose that trans-anethole can inhibit the growth of A. flavus mycelia by disrupting the cell wall structure, blocking the multidrug transport process, disturbing the citric acid cycle, and inducing apoptosis. This study provides new insights into the inhibitory mechanism of trans-anethole on A. flavus mycelia and will be helpful for the development of natural fungicides. KEY POINTS: • Biochemical analyses of A. flavus mycelia exposed to trans-anethole were performed • Transcriptomic changes in trans-anethole-treated A. flavus mycelia were analyzed • An inhibitory mechanism of trans-anethole on the growth of A. flavus mycelia was proposed.
Collapse
Affiliation(s)
- Jun-Dong Lei
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, People's Republic of China
| | - Qiong Li
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, People's Republic of China
| | - Shuai-Bing Zhang
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, People's Republic of China.
| | - Yang-Yong Lv
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, People's Republic of China
| | - Huan-Chen Zhai
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, People's Republic of China
| | - Shan Wei
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, People's Republic of China
| | - Ping-An Ma
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, People's Republic of China
| | - Yuan-Sen Hu
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, People's Republic of China
| |
Collapse
|
30
|
Fan K, Yu Y, Hu Z, Qian S, Zhao Z, Meng J, Zheng S, Huang Q, Zhang Z, Nie D, Han Z. Antifungal Activity and Action Mechanisms of 2,4-Di- tert-butylphenol against Ustilaginoidea virens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17723-17732. [PMID: 37938806 DOI: 10.1021/acs.jafc.3c05157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Ustilaginoidea virens is a destructive phytopathogenic fungus that causes false smut disease in rice. In this study, the natural product 2,4-di-tert-butylphenol (2,4-DTBP) was found to be an environmentally friendly and effective agent for the first time, which exhibited strong antifungal activity against U. virens, with an EC50 value of 0.087 mmol/L. The scanning electron microscopy, fluorescence staining, and biochemical assays indicated that 2,4-DTBP could destroy the cell wall, cell membrane, and cellular redox homeostasis of U. virens, ultimately resulting in fungal cell death. Through the transcriptomic analysis, a total of 353 genes were significantly upregulated and 367 genes were significantly downregulated, focusing on the spindle microtubule assembly, cell wall and membrane, redox homeostasis, mycotoxin biosynthesis, and intracellular metabolism. These results enhanced the understanding of the antifungal activity and action mechanisms of 2,4-DTBP against U. virens, supporting it to be a potential antifungal agent for the control of false smut disease.
Collapse
Affiliation(s)
- Kai Fan
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, People's Republic of China
| | - Yinan Yu
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, People's Republic of China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Zheng Hu
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, People's Republic of China
| | - Shen'an Qian
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, People's Republic of China
| | - Zhihui Zhao
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, People's Republic of China
| | - Jiajia Meng
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, People's Republic of China
| | - Simin Zheng
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, People's Republic of China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Qingwen Huang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, People's Republic of China
| | - Zhiqi Zhang
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, People's Republic of China
| | - Dongxia Nie
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, People's Republic of China
| | - Zheng Han
- Institute for Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, People's Republic of China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| |
Collapse
|
31
|
Nguyen TP, Meng DR, Chang CH, Su PY, Ou CA, Hou PF, Sung HM, Chou CH, Ohme-Takagi M, Huang HJ. Antifungal mechanism of volatile compounds emitted by Actinomycetota Paenarthrobacter ureafaciens from a disease-suppressive soil on Saccharomyces cerevisiae. mSphere 2023; 8:e0032423. [PMID: 37750721 PMCID: PMC10597458 DOI: 10.1128/msphere.00324-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/07/2023] [Indexed: 09/27/2023] Open
Abstract
Increasing evidence suggests that in disease-suppressive soils, microbial volatile compounds (mVCs) released from bacteria may inhibit the growth of plant-pathogenic fungi. However, the antifungal activities and molecular responses of fungi to different mVCs remain largely undescribed. In this study, we first evaluated the responses of pathogenic fungi to treatment with mVCs from Paenarthrobacter ureafaciens. Then, we utilized the well-characterized fungal model organism Saccharomyces cerevisiae to study the potential mechanistic effects of the mVCs. Our data showed that exposure to P. ureafaciens mVCs leads to reduced growth of several pathogenic fungi, and in yeast cells, mVC exposure prompts the accumulation of reactive oxygen species. Further experiments with S. cerevisiae deletion mutants indicated that Slt2/Mpk1 and Hog1 MAPKs play major roles in the yeast response to P. ureafaciens mVCs. Transcriptomic analysis revealed that exposure to mVCs was associated with 1,030 differentially expressed genes (DEGs) in yeast. According to gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses, many of these DEGs are involved in mitochondrial dysfunction, cell integrity, mitophagy, cellular metabolism, and iron uptake. Genes encoding antimicrobial proteins were also significantly altered in the yeast after exposure to mVCs. These findings suggest that oxidative damage and mitochondrial dysfunction are major contributors to the fungal toxicity of mVCs. Furthermore, our data showed that cell wall, antioxidant, and antimicrobial defenses are induced in yeast exposed to mVCs. Thus, our findings expand upon previous research by delineating the transcriptional responses of the fungal model. IMPORTANCE Since the use of bacteria-emitted volatile compounds in phytopathogen control is of considerable interest, it is important to understand the molecular mechanisms by which fungi may adapt to microbial volatile compounds (mVCs). Paenarthrobacter ureafaciens is an isolated bacterium from disease-suppressive soil that belongs to the Actinomycetota phylum. P. ureafaciens mVCs showed a potent antifungal effect on phytopathogens, which may contribute to disease suppression in soil. However, our knowledge about the antifungal mechanism of mVCs is limited. This study has proven that mVCs are toxic to fungi due to oxidative stress and mitochondrial dysfunction. To deal with mVC toxicity, antioxidants and physical defenses are required. Furthermore, iron uptake and CAP proteins are required for antimicrobial defense, which is necessary for fungi to deal with the thread from mVCs. This study provides essential foundational knowledge regarding the molecular responses of fungi to inhibitory mVCs.
Collapse
Affiliation(s)
- Tri-Phuong Nguyen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - De-Rui Meng
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Han Chang
- Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, Tainan, Taiwan
| | - Pei-Yu Su
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chieh-An Ou
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Ping-Fu Hou
- Kaohsiung District Agricultural Research and Extension Station, Pingtung, Taiwan
| | - Huang-Mo Sung
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chang-Hung Chou
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Masaru Ohme-Takagi
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Jen Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
- Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, Tainan, Taiwan
| |
Collapse
|
32
|
Zou X, Wei Y, Zhu J, Sun J, Shao X. Volatile Organic Compounds of Scheffersomyces spartinae W9 Have Antifungal Effect against Botrytis cinerea on Strawberry Fruit. Foods 2023; 12:3619. [PMID: 37835272 PMCID: PMC10573041 DOI: 10.3390/foods12193619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
This study aims to evaluate the antifungal effects of volatile organic compounds (VOCs) produced by a marine biocontrol yeast, Scheffersomyces spartinae W9. The results showed that the VOCs from the yeast inhibited the growth of Botrytis cinerea mycelium and spore germination by 77.8% and 58.3%, respectively. Additionally, it reduced the disease incidence and lesion diameter of gray mold on the strawberry fruit surface by 20.7% and 67.4%, respectively. Electronic micrographs showed that VOCs caused damage to the morphology and ultrastructure of the hyphae. Based on headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME/GC-MS), S. spartinae W9 emitted 18 main VOCs, and the pure substance of VOCs, such as 3-methyl-1-butanol, 2-methyl-1-butanol, 2-phenylethanol, and isoamyl acetate, showed antifungal effects against B. cinerea mycelium growth. Among them, 2-phenylethanol exhibited the strongest antifungal activity. It has been concluded that VOCs are the key antifungal mechanism of S. spartinae W9, and a promising strategy for controlling gray mold on strawberry fruit.
Collapse
Affiliation(s)
- Xiurong Zou
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Yingying Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Jianhua Zhu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Jincai Sun
- Faculty of Food Science, Zhejiang Pharmaceutical University, Ningbo 315500, China
| | - Xingfeng Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| |
Collapse
|
33
|
Escobar-Niño A, Harzen A, Stolze SC, Nakagami H, Fernández-Acero FJ. The Adaptation of Botrytis cinerea Extracellular Vesicles Proteome to Surrounding Conditions: Revealing New Tools for Its Infection Process. J Fungi (Basel) 2023; 9:872. [PMID: 37754980 PMCID: PMC10532283 DOI: 10.3390/jof9090872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Extracellular vesicles (EVs) are membranous particles released by different organisms. EVs carry several sets of macromolecules implicated in cell communication. EVs have become a relevant topic in the study of pathogenic fungi due to their relationship with fungal-host interactions. One of the essential research areas in this field is the characterization protein profile of EVs since plant fungal pathogens rely heavily on secreted proteins to invade their hosts. However, EVs of Botrytis cinerea are little known, which is one of the most devastating phytopathogenic fungi. The present study has two main objectives: the characterization of B. cinerea EVs proteome changes under two pathogenic conditions and the description of their potential role during the infective process. All the experimental procedure was conducted in B. cinerea growing in a minimal salt medium supplemented with glucose as a constitutive stage and deproteinized tomato cell walls (TCW) as a virulence inductor. The isolation of EVs was performed by differential centrifugation, filtration, ultrafiltration, and sucrose cushion ultracentrifugation. EVs fractions were visualised by TEM using negative staining. Proteomic analysis of EVs cargo was addressed by LC-MS/MS. The methodology used allowed the correct isolation of B. cinerea EVs and the identification of a high number of EV proteins, including potential EV markers. The isolated EVs displayed differences in morphology under both assayed conditions. GO analysis of EV proteins showed enrichment in cell wall metabolism and proteolysis under TCW. KEGG analysis also showed the difference in EVs function under both conditions, highlighting the presence of potential virulence/pathogenic factors implicated in cell wall metabolism, among others. This work describes the first evidence of EVs protein cargo adaptation in B. cinerea, which seems to play an essential role in its infection process, sharing crucial functions with the conventional secretion pathways.
Collapse
Affiliation(s)
- Almudena Escobar-Niño
- Microbiology Laboratory, Institute for Viticulture and Agri-Food Research (IVAGRO), Faculty of Environmental and Marine Sciences, Department of Biomedicine, Biotechnology and Public Health, University of Cádiz, 11510 Puerto Real, Spain;
| | - Anne Harzen
- Protein Mass Spectrometry, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany; (A.H.); (S.C.S.); (H.N.)
| | - Sara C. Stolze
- Protein Mass Spectrometry, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany; (A.H.); (S.C.S.); (H.N.)
| | - Hirofumi Nakagami
- Protein Mass Spectrometry, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany; (A.H.); (S.C.S.); (H.N.)
- Basic Immune System of Plants, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Francisco J. Fernández-Acero
- Microbiology Laboratory, Institute for Viticulture and Agri-Food Research (IVAGRO), Faculty of Environmental and Marine Sciences, Department of Biomedicine, Biotechnology and Public Health, University of Cádiz, 11510 Puerto Real, Spain;
| |
Collapse
|
34
|
Neves-da-Rocha J, Santos-Saboya MJ, Lopes MER, Rossi A, Martinez-Rossi NM. Insights and Perspectives on the Role of Proteostasis and Heat Shock Proteins in Fungal Infections. Microorganisms 2023; 11:1878. [PMID: 37630438 PMCID: PMC10456932 DOI: 10.3390/microorganisms11081878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 08/27/2023] Open
Abstract
Fungi are a diverse group of eukaryotic organisms that infect humans, animals, and plants. To successfully colonize their hosts, pathogenic fungi must continuously adapt to the host's unique environment, e.g., changes in temperature, pH, and nutrient availability. Appropriate protein folding, assembly, and degradation are essential for maintaining cellular homeostasis and survival under stressful conditions. Therefore, the regulation of proteostasis is crucial for fungal pathogenesis. The heat shock response (HSR) is one of the most important cellular mechanisms for maintaining proteostasis. It is activated by various stresses and regulates the activity of heat shock proteins (HSPs). As molecular chaperones, HSPs participate in the proteostatic network to control cellular protein levels by affecting their conformation, location, and degradation. In recent years, a growing body of evidence has highlighted the crucial yet understudied role of stress response circuits in fungal infections. This review explores the role of protein homeostasis and HSPs in fungal pathogenicity, including their contributions to virulence and host-pathogen interactions, as well as the concerted effects between HSPs and the main proteostasis circuits in the cell. Furthermore, we discuss perspectives in the field and the potential for targeting the components of these circuits to develop novel antifungal therapies.
Collapse
Affiliation(s)
- João Neves-da-Rocha
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (M.J.S.-S.); (M.E.R.L.); (A.R.)
| | | | | | | | - Nilce M. Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (M.J.S.-S.); (M.E.R.L.); (A.R.)
| |
Collapse
|
35
|
Lei JD, Zhang SB, Ding WZ, Lv YY, Zhai HC, Wei S, Ma PA, Hu YS. Antifungal effects of trans-anethole, the main constituent of Illicium verum fruit volatiles, on Aspergillus flavus in stored wheat. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
36
|
Zhang W, Ge BB, Lv ZY, Park KS, Shi LM, Zhang KC. Membrane Protein Bcest Is Involved in Hyphal Growth, Virulence and Stress Tolerance of Botrytis cinerea. Microorganisms 2023; 11:1225. [PMID: 37317199 DOI: 10.3390/microorganisms11051225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023] Open
Abstract
Botrytis cinerea is a necrotrophic model fungal plant pathogen that causes grey mould, a devastating disease responsible for large losses in the agriculture sector. As important targets of fungicides, membrane proteins are hot spots in the research and development of fungicide products. We previously found that membrane protein Bcest may be closely related to the pathogenicity of Botrytis cinerea. Herein, we further explored its function. We generated and characterised ΔBcest deletion mutants of B. cinerea and constructed complemented strains. The ΔBcest deletion mutants exhibited reduced conidia germination and germ tube elongation. The functional activity of ΔBcest deletion mutants was investigated by reduced necrotic colonisation of B. cinerea on grapevine fruits and leaves. Targeted deletion of Bcest also blocked several phenotypic defects in aspects of mycelial growth, conidiation and virulence. All phenotypic defects were restored by targeted-gene complementation. The role of Bcest in pathogenicity was also supported by reverse-transcriptase real-time quantitative PCR results indicating that melanin synthesis gene Bcpks13 and virulence factor Bccdc14 were significantly downregulated in the early infection stage of the ΔBcest strain. Taken together, these results suggest that Bcest plays important roles in the regulation of various cellular processes in B. cinerea.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Bei-Bei Ge
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Zhao-Yang Lv
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Kyung Seok Park
- International Agricultural Technology Information Institute, Hankyong National University, 327 Jungang Road, Anseong 17579, Republic of Korea
| | - Li-Ming Shi
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Ke-Cheng Zhang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Beijing 100193, China
| |
Collapse
|
37
|
Le DD, Min KH, Lee M. Antioxidant and Anti-Inflammatory Capacities of Fractions and Constituents from Vicia tetrasperma. Antioxidants (Basel) 2023; 12:antiox12051044. [PMID: 37237910 DOI: 10.3390/antiox12051044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The young leaves and shoots of V. tetrasperma are consumed daily as cooked vegetables and can provide various health benefits. The antioxidant and anti-inflammatory capacities of its total extract and fractions were accessed for the first time in this study. The bioactivities guided the separation of the active fraction (EtOAc), leading to the identification of nine flavonoid glycoside compositions from this plant for the first time. In addition, the fractions and all isolates were evaluated for their inhibition against NO and IL-8 production in LPS-stimulated RAW264.7 and HT-29 cell lines, respectively. The most active ingredient was further assayed for its inhibitory abilities to iNOS and COX-2 proteins. Indeed, its mechanisms of action modes were confirmed by Western blotting assays through the reduction in their expression levels. An in silico approach revealed the substantial binding energies of docked compounds into established complexes to verify their anti-inflammatory properties. In addition, the presence of active components in the plant was validated by an established method on the UPLC-DAD system. Our research has boosted the value of this vegetable's daily use and provided a therapeutic approach for the development of functional food products for health improvement regarding the treatment of oxidation and inflammation.
Collapse
Affiliation(s)
- Duc Dat Le
- College of Pharmacy, Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Republic of Korea
| | - Kyung Hyun Min
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Mina Lee
- College of Pharmacy, Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Republic of Korea
| |
Collapse
|
38
|
Ling L, Wang Y, Cheng W, Jiang K, Luo H, Pang M, Yue R. Research progress of volatile organic compounds produced by plant endophytic bacteria in control of postharvest diseases of fruits and vegetables. World J Microbiol Biotechnol 2023; 39:149. [PMID: 37022503 DOI: 10.1007/s11274-023-03598-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023]
Abstract
Pathogen infestation results in significant losses of fruits and vegetables during handling, transportation, and storage. The use of synthetic fungicides has been a common measure for controlling plant pathogens. However, their excessive use of chemicals has led to increased environmental pollution, leaving large amounts of chemicals in agricultural products, posing a threat to human and animal health. There is now an increasing amount of research activities to explore safer and more innovative ways to control plant pathogens. In this regard, endophytic bacteria contribute significantly. Endophytic bacteria are ubiquitous in the internal tissues of plants without causing damage or disease to the host. Due to their high volatility and difficulties in residue in fruits and vegetables, volatile organic chemicals (VOCs) produced by endophytic bacteria have received a lot of attention in recent years. VOCs are a potential biofumigant for the effective control of postharvest fruits and vegetables diseases. This review focuses mainly on the recent progress in using endophytic bacteria VOCs to control post-harvest fruits and vegetables disease. This review provides a brief overview of the concept, characteristics, and summarises the types, application effect, and control mechanisms of endophytic bacterial VOCs. The research area that is being developed has great application value in agriculture and living practice.
Collapse
Affiliation(s)
- Lijun Ling
- College of Life Science, Northwest Normal University, 967 Anning East Road, Anning District, Lanzhou, 730070, People's Republic of China.
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou, 730070, People's Republic of China.
| | - Yuanyuan Wang
- College of Life Science, Northwest Normal University, 967 Anning East Road, Anning District, Lanzhou, 730070, People's Republic of China
| | - Wenting Cheng
- College of Life Science, Northwest Normal University, 967 Anning East Road, Anning District, Lanzhou, 730070, People's Republic of China
| | - Kunling Jiang
- College of Life Science, Northwest Normal University, 967 Anning East Road, Anning District, Lanzhou, 730070, People's Republic of China
| | - Hong Luo
- College of Life Science, Northwest Normal University, 967 Anning East Road, Anning District, Lanzhou, 730070, People's Republic of China
| | - Mingmei Pang
- College of Life Science, Northwest Normal University, 967 Anning East Road, Anning District, Lanzhou, 730070, People's Republic of China
| | - Rui Yue
- College of Life Science, Northwest Normal University, 967 Anning East Road, Anning District, Lanzhou, 730070, People's Republic of China
| |
Collapse
|
39
|
Xie L, Yang Q, Wu Y, Xiao J, Qu H, Jiang Y, Li T. Fumonisin B1 Biosynthesis Is Associated with Oxidative Stress and Plays an Important Role in Fusarium proliferatum Infection on Banana Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5372-5381. [PMID: 36947157 DOI: 10.1021/acs.jafc.3c00179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fungal response to oxidative stress during infection on postharvest fruit is largely unknown. Here, we found that hydrogen peroxide (H2O2) treatment inhibited the growth of Fusarium proliferatum causing crown rot of banana fruit, confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observation. H2O2 exposure increased endogenous reactive oxygen species (ROS) and fumonisin B1 (FB1) production in F. proliferatum, possibly by modulating FUM or ROS-related gene expression. Importantly, H2O2 treatment inhibited F. proliferatum growth in vivo but induced FB1 accumulation in banana peel. Finally, we constructed the FpFUM21 deletion mutant (ΔFpfum21) of F. proliferatum that was attenuated in FB1 biosynthesis and less tolerant to oxidative stress. Moreover, the ΔFpfum21 strain was less virulent compared to the wild type (WT) due to the inability to induce FB1 production in the banana host. These results suggested that FB1 biosynthesis is associated with oxidative stress in F. proliferatum and contributes to fungal infection on banana fruit.
Collapse
Affiliation(s)
- Lihong Xie
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qiuxiao Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yanfei Wu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Ourense 32004, Spain
| | - Hongxia Qu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| | - Taotao Li
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| |
Collapse
|
40
|
Zhang D, Yang Y, Yao B, Hu T, Ma Z, Shi W, Ye Y. Curcumin inhibits Aspergillus flavus infection and aflatoxin production possibly by inducing ROS burst. Food Res Int 2023; 167:112646. [PMID: 37087237 DOI: 10.1016/j.foodres.2023.112646] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/13/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Aspergillus flavus contamination is common in various food and feed ingredients, and it poses to serious threats to human and animal health. Curcumin is a plant-derived polyphenol that exhibits antifungal activity. In this study, the antifungal effect of curcumin on A. flavus was evaluated, and the underlying mechanism was investigated. Curcumin effectively decreased aflatoxin B1 synthesis and suppressed A. flavus infection in peanut. Curcumin inhibited the mycelial growth and sporulation of A. flavus. Ergosterol biosynthesis in A. flavus was suppressed, and cell membrane permeability was enhanced. The pathogenicity of A. flavus was also reduced by curcumin treatment. Curcumin induced ROS burst in the hyphae of A. flavus, and those damages could be reversed by exogenous superoxide dismutase, suggesting that curcumin inhibited A. flavus possibly via inducing oxidative stress. These results indicate that curcumin has the potential to be used as a preservative to control A. flavus contamination in food and feedstuff.
Collapse
|
41
|
Duan WY, Zhang SB, Lv YY, Zhai HC, Wei S, Ma PA, Cai JP, Hu YS. Inhibitory effect of (E)-2-heptenal on Aspergillus flavus growth revealed by metabolomics and biochemical analyses. Appl Microbiol Biotechnol 2023. [PMID: 36477927 DOI: 10.1016/10.1007/s00253-022-12320-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The prevention of fungal proliferation in postharvest grains is critical for maintaining grain quality and reducing mycotoxin contamination. Fumigation with natural gaseous fungicides is a promising and sustainable approach to protect grains from fungal spoilage. In this study, the antifungal activities of (E)-2-alkenals (C5-C10) on Aspergillus flavus were tested in the vapor phase, and (E)-2-heptenal showed the highest antifungal activity against A. flavus. (E)-2-Heptenal completely inhibited A. flavus growth at 0.0125 µL/mL and 0.2 µL/mL in the vapor phase and liquid contact, respectively. (E)-2-Heptenal can disrupt the plasma membrane integrity of A. flavus via leakage of intracellular electrolytes. Scanning electron microscopy indicated that the mycelial morphology of A. flavus was remarkably affected by (E)-2-heptenal. Metabolomic analyses indicated that 49 metabolites were significantly differentially expressed in A. flavus mycelia exposed to 0.2 µL/mL (E)-2-heptenal; these metabolites were mainly involved in galactose metabolism, starch and sucrose metabolism, the phosphotransferase system, and ATP-binding cassette transporters. ATP production was reduced in (E)-2-heptenal-treated A. flavus, and Janus Green B staining showed reduced cytochrome c oxidase activity. (E)-2-Heptenal treatment induced oxidative stress in A. flavus mycelia with an accumulation of superoxide anions and hydrogen peroxide and increased activities of superoxide dismutase and catalase. Simulated storage experiments showed that fumigation with 400 µL/L of (E)-2-heptenal vapor could completely inhibit A. flavus growth in wheat grains with 20% moisture; this demonstrates its potential use in preventing grain spoilage. This study provides valuable insights into understanding the antifungal effects of (E)-2-heptenal on A. flavus. KEY POINTS : • (E)-2-Heptenal vapor showed the highest antifungal activity against A. flavus among (C5-C10) (E)-2-alkenals. • The antifungal effects of (E)-2-heptenal against A. flavus were determined. • The antifungal actions of (E)-2-heptenal on A. flavus were revealed by metabolomics and biochemical analyses.
Collapse
Affiliation(s)
- Wen-Yan Duan
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Shuai-Bing Zhang
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China.
| | - Yang-Yong Lv
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Huan-Chen Zhai
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Shan Wei
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Ping-An Ma
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Jing-Ping Cai
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yuan-Sen Hu
- School of Biological Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, Henan, 450001, People's Republic of China
| |
Collapse
|
42
|
Inhibitory effect of (E)-2-heptenal on Aspergillus flavus growth revealed by metabolomics and biochemical analyses. Appl Microbiol Biotechnol 2022; 107:341-354. [DOI: 10.1007/s00253-022-12320-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
|