1
|
Lee E, Yang D, Hong JH. Prominent Naturally Derived Oxidative-Stress-Targeting Drugs and Their Applications in Cancer Treatment. Antioxidants (Basel) 2025; 14:49. [PMID: 39857383 PMCID: PMC11760868 DOI: 10.3390/antiox14010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
The relationship between oxidative stress and cancer has been extensively studied and highlighted, along with its role in various aspects of angiogenesis. The modulation of oxidative levels and the adaptive mechanisms of oxidative stress in cancer systems are attractive research themes for developing anti-cancer strategies. Reactive oxygen species (ROS) are involved in various pathophysiological processes and play crucial roles in DNA damage and angiogenesis. Although cancer cells have developed various adaptive defense mechanisms against oxidative stress, excessive ROS production has been proposed as an anti-cancer strategy to induce cellular apoptosis. In particular, natural-source-based antioxidants have been identified as effective against cancers, and various delivery platforms have been developed to enhance their efficacy. In this review, we highlighted the anti-cancer components (plumbagin, quercetin, resveratrol, curcumin, xanthatin, carvacrol, telmisartan, and sulforaphane) that modulate ROS levels and the recent targeting platforms used to increase the application of anti-cancer drugs and the developed delivery platforms with diverse mechanisms of action. Further, we summarized the actual doses used and the effects of these drug candidates in various cancer systems. Overall, this review provides beneficial research themes for expanding cancer-targeting fields and addressing limited applications in diverse cancer types.
Collapse
Affiliation(s)
| | - Dongki Yang
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| | - Jeong Hee Hong
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
2
|
Wang Y, Hu J, Fleishman JS, Li Y, Ren Z, Wang J, Feng Y, Chen J, Wang H. Inducing ferroptosis by traditional medicines: a novel approach to reverse chemoresistance in lung cancer. Front Pharmacol 2024; 15:1290183. [PMID: 38855750 PMCID: PMC11158628 DOI: 10.3389/fphar.2024.1290183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/22/2024] [Indexed: 06/11/2024] Open
Abstract
Lung cancer is the leading cause of global cancer-related deaths. Platinum-based chemotherapy is the first-line treatment for the most common type of lung cancer, i.e., non-small-cell lung cancer (NSCLC), but its therapeutic efficiency is limited by chemotherapeutic resistance. Therefore, it is vital to develop effective therapeutic modalities that bypass the common molecular mechanisms associated with chemotherapeutic resistance. Ferroptosis is a form of non-apoptotic regulated cell death characterized by iron-dependent lipid peroxidation (LPO). Ferroptosis is crucial for the proper therapeutic efficacy of lung cancer-associated chemotherapies. If targeted as a novel therapeutic mechanism, ferroptosis modulators present new opportunities for increasing the therapeutic efficacy of lung cancer chemotherapy. Emerging studies have revealed that the pharmacological induction of ferroptosis using natural compounds boosts the efficacy of chemotherapy in lung cancer or drug-resistant cancer. In this review, we first discuss chemotherapeutic resistance (or chemoresistance) in lung cancer and introduce the core mechanisms behind ferroptosis. Then, we comprehensively summarize the small-molecule compounds sourced from traditional medicines that may boost the anti-tumor activity of current chemotherapeutic agents and overcome chemotherapeutic resistance in NSCLC. Cumulatively, we suggest that traditional medicines with ferroptosis-related anticancer activity could serve as a starting point to overcome chemotherapeutic resistance in NSCLC by inducing ferroptosis, highlighting new potential therapeutic regimens used to overcome chemoresistance in NSCLC.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Jing Hu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Joshua S. Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Yulin Li
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Zhao Ren
- Department of Pharmacy, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yukuan Feng
- National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Hongquan Wang
- National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
3
|
Zhou Z, Wang S, Fan P, Meng X, Cai X, Wang W, Ma L, Ma H, Su J. Borneol serves as an adjuvant agent to promote the cellular uptake of curcumin for enhancing its photodynamic fungicidal efficacy against Candida albicans. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 253:112875. [PMID: 38430681 DOI: 10.1016/j.jphotobiol.2024.112875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/05/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Candida albicans (C. albicans), a major opportunistic pathogenic fungus, is known to cause superficial skin infections. Unfortunately, the misuse of antibiotics has led to the emergence of drug resistance in fungi. Antimicrobial photodynamic therapy (aPDT), a non-antibiotic alternative, has shown potential in treating drug-resistant fungal infections. Curcumin is a photodynamically active phytochemical whose photodynamic fungicidal efficacy is largely dependent on its intracellular accumulation. However, curcumin faces challenges in penetrating the cytoplasm due to its poor water solubility and the fungal cell wall. Borneol, another monoterpenoid phytochemical, is known for its ability to enhance drug absorption. In this study, we showed that borneol improved the cellular uptake of curcumin, thereby enhancing its photodynamic fungicidal efficacy against C. albicans. This effect was attributed to borneol's ability to increase cell permeability. Transcriptomic analysis further confirmed that borneol disrupted the normal structure and function of the C. albicans cell wall and membrane, resulting in dysregulated mRNA expression of related genes and ultimately increased cell permeability. As a result, the excessive accumulation of curcumin in C. albicans triggered the overproduction of intracellular ROS upon exposure to blue light. These excessive intracellular ROS disrupted various cellular structures, interfered with essential cellular processes, inhibited biofilm formation and reduced virulence. Remarkably, borneol was also found to enhance curcumin uptake by C. albicans within biofilms, further enhancing the anti-biofilm efficacy of curcumin-mediated aPDT (Cur-aPDT). In conclusion, the results of this study strongly support the potential of borneol as an adjuvant agent to Cur-aPDT in treating superficial cutaneous fungal infections.
Collapse
Affiliation(s)
- Zhenlong Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou, China
| | - Shengli Wang
- Institute of Biomedical Transformation, School of Basic Medicine and Public Health, Jinan University, Guangzhou 510632, People's Republic of China
| | - Penghui Fan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou, China
| | - Xiaofeng Meng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou, China
| | - Xinyu Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wen Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lin Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou, China
| | - Hang Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Jianyu Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| |
Collapse
|
4
|
Lin L, Luo J, Wang Z, Cai X. Borneol promotes autophagic degradation of HIF-1α and enhances chemotherapy sensitivity in malignant glioma. PeerJ 2024; 12:e16691. [PMID: 38188151 PMCID: PMC10771087 DOI: 10.7717/peerj.16691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Background Gliomas are characterized by high mortality rates and resistance. Even with conventional chemotherapy the prognosis of glioblastoma remains poor. Many medications are not optimally effective due to limited bioavailability. The bioavailability of medicine can be enhanced by borneol, a monoterpenoid substance. In this study, we investigated the effect of borneol, a commonly used Chinese medicine, on chemosensitivity in C6 glioma and U251 human glioma cell lines and elucidated its therapeutic molecular targets. Methods The chemosensitivity-inducing effects of borneol in C6 and U251 cells were examined using CCK8 and clonal formation assays. The mechanism underlying the effect of borneol was evaluated through immunohistochemistry and western blotting assays. Further, the number of autophagosomes was determined via transmission electron microscopy. Finally, the chemical sensitization effect of borneol was evaluated in SD rats after C6 orthotopic tumor transplantation. Results Borneol increased cytotoxicity in C6 and U251 cells in response to temozolomide (TMZ). In addition, through transmission electron microscopy, western blotting, and immunohistochemical tests, we found that borneol combined with TMZ significantly increased the level of autophagy and that hypoxia inducible factor-1(HIF-1α) is a candidate target through which borneol enhances the cytotoxic effect of TMZ. Borneol's ability to enhance HIF-1α degradation was counteracted following the administration of autophagy inhibitors. In vivo, borneol treatment was found to enhance the anticancer effect of TMZ and delay tumor progression, and this effect was closely related to its ability to promote the autophagic degradation of HIF-1α. Conclusions HIF-1α might be a valid therapeutic target of borneol, which can be potentially applied as a chemosensitizing drug used for glioma treatment.
Collapse
Affiliation(s)
- Luting Lin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingming Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zeng Wang
- Zhejiang Cancer Hospital, Hangzhou, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine on Cancer, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
| | - Xinjun Cai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Hangzhou Red Cross Hospital, Hangzhou, China
| |
Collapse
|
5
|
Smiljanić K, Prodić I, Trifunovic S, Krstić Ristivojević M, Aćimović M, Stanković Jeremić J, Lončar B, Tešević V. Multistep Approach Points to Compounds Responsible for the Biological Activity and Safety of Hydrolates from Nine Lamiaceae Medicinal Plants on Human Skin Fibroblasts. Antioxidants (Basel) 2023; 12:1988. [PMID: 38001841 PMCID: PMC10669667 DOI: 10.3390/antiox12111988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
As byproducts of essential oil distillation, hydrolates are used in natural cosmetics/biomedicine due to their beneficial skin effects. However, data on their safety with relevant biological targets, such as human skin cells, are scarce. Therefore, we have tested nine hydrolates from the Lamiaceae family with skin fibroblasts that are responsible for extracellular collagenous matrix builds. Thyme, oregano, and winter savoury hydrolates showed several times higher total phenolics, which correlated strongly with their radical scavenging and antioxidative capacity; there was no correlation between their viability profiles and the reducing sugar levels. No proteins/peptides were detected. All hydrolates appeared safe for prolonged skin exposure except for 10-fold diluted lavender, which showed cytotoxicity (~20%), as well as rosemary and lavandin (~10%) using viability, DNA synthesis, and cell count testing. Clary sage, oregano, lemon balm, and thyme hydrolates (10-fold diluted) increased fibroblast viability and/or proliferation by 10-30% compared with the control, while their viability remained unaffected by Mentha and winter savoury. In line with the STITCH database, increased viability could be attributed to thymol presence in oregano and thyme hydrolates in lemon balm, which is most likely attributable to neral and geranial. The proliferative effect of clary sage could be supported by alpha-terpineol, not linalool. The major volatile organic compounds (VOCs) associated with cytotoxic effects on fibroblasts were borneol, 1,8-cineole, and terpinene-4-ol. Further research with pure compounds is warranted to confirm the roles of VOCs in the observed effects that are relevant to cosmetic and wound healing aspects.
Collapse
Affiliation(s)
- Katarina Smiljanić
- University of Belgrade—Faculty of Chemistry (UBFC), Studentski Trg 12–16, 11158 Belgrade, Serbia; (M.K.R.); (V.T.)
| | - Ivana Prodić
- Institute of Virology, Vaccines and Sera “Torlak”—National Institute of the Republic of Serbia, Vojvode Stepe 458, 11152 Belgrade, Serbia;
| | - Sara Trifunovic
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia;
- Mediterranean Institute for Life Sciences, 21000 Split, Croatia
| | - Maja Krstić Ristivojević
- University of Belgrade—Faculty of Chemistry (UBFC), Studentski Trg 12–16, 11158 Belgrade, Serbia; (M.K.R.); (V.T.)
| | - Milica Aćimović
- Institute of Field and Vegetable Crops—National Institute of the Republic of Serbia, 21101 Novi Sad, Serbia;
| | - Jovana Stanković Jeremić
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Biljana Lončar
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Vele Tešević
- University of Belgrade—Faculty of Chemistry (UBFC), Studentski Trg 12–16, 11158 Belgrade, Serbia; (M.K.R.); (V.T.)
| |
Collapse
|
6
|
Khan FB, Singh P, Jamous YF, Ali SA, Abdullah, Uddin S, Zia Q, Jena MK, Khan M, Owais M, Huang CY, Chanukuppa V, Ardianto C, Ming LC, Alam W, Khan H, Ayoub MA. Multifaceted Pharmacological Potentials of Curcumin, Genistein, and Tanshinone IIA through Proteomic Approaches: An In-Depth Review. Cancers (Basel) 2022; 15:249. [PMID: 36612248 PMCID: PMC9818426 DOI: 10.3390/cancers15010249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 01/03/2023] Open
Abstract
Phytochemicals possess various intriguing pharmacological properties against diverse pathological conditions. Extensive studies are on-going to understand the structural/functional properties of phytochemicals as well as the molecular mechanisms of their therapeutic function against various disease conditions. Phytochemicals such as curcumin (Cur), genistein (Gen), and tanshinone-IIA (Tan IIA) have multifaceted therapeutic potentials and various efforts are in progress to understand the molecular dynamics of their function with different tools and technologies. Cur is an active lipophilic polyphenol with pleiotropic function, and it has been shown to possess various intriguing properties including antioxidant, anti-inflammatory, anti-microbial, anticancer, and anti-genotoxic properties besides others beneficial properties. Similarly, Gen (an isoflavone) exhibits a wide range of vital functions including antioxidant, anti-inflammatory, pro-apoptotic, anti-proliferative, anti-angiogenic activities etc. In addition, Tan IIA, a lipophilic compound, possesses antioxidant, anti-angiogenic, anti-inflammatory, anticancer activities, and so on. Over the last few decades, the field of proteomics has garnered great momentum mainly attributed to the recent advancement in mass spectrometry (MS) techniques. It is envisaged that the proteomics technology has considerably contributed to the biomedical research endeavors lately. Interestingly, they have also been explored as a reliable approach to understand the molecular intricacies related to phytochemical-based therapeutic interventions. The present review provides an overview of the proteomics studies performed to unravel the underlying molecular intricacies of various phytochemicals such as Cur, Gen, and Tan IIA. This in-depth study will help the researchers in better understanding of the pharmacological potential of the phytochemicals at the proteomics level. Certainly, this review will be highly instrumental in catalyzing the translational shift from phytochemical-based biomedical research to clinical practice in the near future.
Collapse
Affiliation(s)
- Farheen Badrealam Khan
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Parul Singh
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, Karnal 132001, India
| | - Yahya F. Jamous
- King AbdulAziz City of Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Syed Azmal Ali
- Cell Biology and Proteomics Lab, Animal Biotechnology Center, ICAR-NDRI, Karnal 132001, India
| | - Abdullah
- Department of Pharmacy, University of Malakand, Chakdara 18800, Pakistan
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Laboratory of Animal Center, Qatar University, Doha 2731, Qatar
| | - Qamar Zia
- Health and Basic Science Research Centre, Majmaah University, Majmaah 11952, Saudi Arabia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Mohsina Khan
- Department of Psychiatry, Icahn School of Medicine, Mount Sinai, NY 10029, USA
| | - Mohammad Owais
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Chih Yang Huang
- Department of Biotechnology, Asia University, Taichung 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Centre of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Venkatesh Chanukuppa
- Proteomics Lab, National Centre for Cell Science, Pune 411007, India
- Thermo Fischer Scientific India Pvt Ltd, Whitefield, Bangalore 560066, India
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Haroon Khan
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Mohammad Akli Ayoub
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
- Department of Biology, College of Arts and Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
7
|
Calvo-Martín G, Plano D, Martínez-Sáez N, Aydillo C, Moreno E, Espuelas S, Sanmartín C. Norbornene and Related Structures as Scaffolds in the Search for New Cancer Treatments. Pharmaceuticals (Basel) 2022; 15:ph15121465. [PMID: 36558915 PMCID: PMC9780886 DOI: 10.3390/ph15121465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The norbornene scaffold has arisen as a promising structure in medicinal chemistry due to its possible therapeutic application in cancer treatment. The development of norbornene-based derivatives as potential chemotherapeutic agents is attracting significant attention. Here, we report an unprecedented review on the recent advances of investigations into the antitumoral efficacy of different compounds, including the abovementioned bicyclic scaffold in their structure, in combination with chemotherapeutic agents or forming metal complexes. The impact that structural modifications to these bicyclic compounds have on the antitumoral properties and the mechanisms by which these norbornene derivatives act are discussed in this review. In addition, the use of norbornene, and its related compounds, encapsulation in nanosystems for its use in cancer therapies is here detailed.
Collapse
Affiliation(s)
- Gorka Calvo-Martín
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain
| | - Daniel Plano
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain
- Instituto de Salud Tropical, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Correspondence: (D.P.); (C.A.); Tel.: +34-948425600 (ext. 806358) (D.P.); +34-948425600 (ext. 803183) (C.A.)
| | - Nuria Martínez-Sáez
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain
| | - Carlos Aydillo
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain
- Instituto de Salud Tropical, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Correspondence: (D.P.); (C.A.); Tel.: +34-948425600 (ext. 806358) (D.P.); +34-948425600 (ext. 803183) (C.A.)
| | - Esther Moreno
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain
- Instituto de Salud Tropical, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Socorro Espuelas
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain
- Instituto de Salud Tropical, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Departamento de Tecnología y Química Farmacéuticas, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, E-31008 Pamplona, Spain
- Instituto de Salud Tropical, Universidad de Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| |
Collapse
|
8
|
Chen H, Xu X, Tang Q, Ni L, Cao S, Hao Y, Wang L, Hu X. (+)-Borneol inhibits the generation of reactive oxygen species and neutrophil extracellular traps induced by phorbol-12-myristate-13-acetate. Front Pharmacol 2022; 13:1023450. [PMID: 36419617 PMCID: PMC9676272 DOI: 10.3389/fphar.2022.1023450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Background and purpose: Neutrophil extracellular traps (NETs) are special web-like structures that can be generated in both infectious and noninfectious diseases. Previous studies showed that reactive oxygen species (ROS) were crucial in the formation of NETs (NETosis). The purpose of this study is to evaluate the effect of (+)-borneol, an antioxidant, on NETosis. Methods: Human neutrophils were stimulated with phorbol-12-myristate-13-acetate (PMA) to induce NETosis in vitro. Neutrophils treated with (+)-borneol at three different time points (−30 min, 0, and 30 min) associated with PMA stimulation were used to examine the effect of (+)-borneol on the formation of NETs. The ROS generation of neutrophils was also measured to explore the potential mechanism of the inhibitory effect of (+)-borneol on NETosis. Results: (+)-Borneol pretreatment inhibited NETosis induced by PMA. Immunofluorescence staining visualized and confirmed the inhibitory effect. (+)-Borneol inhibited the burst of ROS in neutrophils caused by PMA. Suppressing NADPH oxidase or protein kinase C (PKC) eliminated the effect of (+)-borneol on NETosis. Moreover, inhibiting Toll-like receptor 2 (TLR2) led to increased NETosis which can be inhibited by (+)-borneol. Conclusion: (+)-Borneol decreases the ROS level in activated neutrophils and inhibits NETosis triggered by PMA stimulation in vitro. (+)-Borneol therapy may be effective in some NET-dependent conditions.
Collapse
Affiliation(s)
- Hanze Chen
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinxin Xu
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiwen Tang
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Linhui Ni
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuxia Cao
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yonggang Hao
- Department of Neurology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Li Wang
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Li Wang, ; Xingyue Hu,
| | - Xingyue Hu
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Li Wang, ; Xingyue Hu,
| |
Collapse
|
9
|
Li J, Yuan J, Li Y, Wang J, Xie Q, Ma R, Wang J, Ren M, Lu D, Xu Z. d-Borneol enhances cisplatin sensitivity via autophagy dependent EMT signaling and NCOA4-mediated ferritinophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154411. [PMID: 36030746 DOI: 10.1016/j.phymed.2022.154411] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND d-Borneol has been widely used as a drug absorption enhancer, but there are few studies on the anti-resistance ability of d-borneol combined with cisplatin in cisplatin-resistant non-small cell lung cancer cells. Ferroptosis, autophagy and epithelial-mesenchymal transition (EMT) have been reported to be associated with drug resistance. PURPOSE To investigate the molecular mechanisms and sensitizing effects of d-borneol combined with cisplatin to against drug cisplatin resistance from the perspective of ferroptosis, autophagy and EMT resistance. METHODS H460/CDDP xenograft tumor model was established to verify the antitumor activity and safety in vivo. RNA sequencing was used to predict target molecules and signaling pathways. Reactive oxygen species (ROS) were used as marker of ferroptosis, and its level was determined by a dichlorodihydrofluorescein diacetate fluorescent probe and flow cytometry. Levels of glutathione (GSH), malondialdehyde (MDA), and antioxidants such as superoxide dismutase (SOD) and thioredoxin (Trx) involved in the balance of oxidative stress were measured by an assay kit or enzyme-linked immunosorbent assay. Western blotting and real-time polymerase chain reaction were used to assess the regulatory mechanism of EMT markers, autophagy, and ferroptosis signaling pathways. RESULTS d-Borneol in combination with cisplatin reduced tumor volume and weight, enhanced tumor-inhibiting effects, and alleviated cisplatin-induced damage to the liver and kidney in vivo. RNA-sequencing showed that differentially expressed genes were enriched in ferroptosis. d-Borneol in combination with cisplatin promoted ROS accumulation, increased the content of MDA levels, and decreased GSH, SOD, Trx, and heme oxygenase-1 expression to induce oxidative damage. d-Borneol combination with cisplatin induced ferroptosis by promoting nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy and regulating intracellular iron ion transport via upregulating PRNP and downregulating PCBP2. In addition, d-borneol combined with cisplatin promoted autophagy by upregulating expression of LC3II/ATG5/Beclin-1 and inhibited the EMT by increasing the expression of epithelial marker E-cadherin and decreasing mesenchymal markers (N-cadherin and vimentin) and transcription factors (Snail and ZEB1). CONCLUSION For the first time, our study implies that d-borneol enhanced cisplatin sensitivity by inducing ferroptosis, promoting autophagy and inhibiting EMT progression, thereby enhancing antitumor activity. It suggests that d-borneol could be developed as a novel chemosensitizers.
Collapse
Affiliation(s)
- Jinxiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianmei Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Qian Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiajun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mihong Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Danni Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhuo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Curcumin-loaded zein/pectin nanoparticles: Caco-2 cellular uptake and the effects on cell cycle arrest and apoptosis of human hepatoma cells (HepG2). J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
11
|
Li J, Yuan J, Li Y, Wang J, Gong D, Xie Q, Ma R, Wang J, Ren M, Lu D, Xu Z. d-Borneol enhances cisplatin sensitivity via p21/p27-mediated S-phase arrest and cell apoptosis in non-small cell lung cancer cells and a murine xenograft model. Cell Mol Biol Lett 2022; 27:61. [PMID: 35883026 PMCID: PMC9327246 DOI: 10.1186/s11658-022-00362-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/06/2022] [Indexed: 12/28/2022] Open
Abstract
Background Cisplatin (CDDP) is commonly used to treat non-small cell lung cancer (NSCLC), but the appearance of drug resistance greatly hinders its efficacy. Borneol may promote drug absorption; however, synergism between borneol and CDDP in suppressing NSCLC is not clearly understood. Hence, we investigated borneol as a novel chemosensitizer to support chemotherapeutic efficacy and reduce side effects. Methods We compared viability after exposure to d-borneol, l-borneol, and synthetic borneol in two NSCLC cell lines, A549 and H460, and selected the most sensitive cells. We then assessed synergy between borneol forms and CDDP in cisplatin-resistant NSCLC cells, H460/CDDP. Next, we identified effective concentrations and exposure times. Subsequently, we evaluated cell migration via wound healing and cell proliferation via clone formation assay. Then, we focused on P-glycoprotein (P-gp) function, cell cycle, apoptosis, and RNA sequencing to elucidate underlying molecular mechanisms for synergy. Finally, we used an H460/CDDP xenograft tumor model to verify antitumor activity and safety in vivo. Data were examined using one-way analysis of variance (ANOVA) for multiple datasets or t-test for comparisons between two variables. Results d-Borneol was more effective in H460 than A549 cells. d-Borneol combined with CDDP showed greater inhibition of cell proliferation, migration, and clone formation in H460/CDDP cells than CDDP alone. RNA sequencing (RNA-seq) analysis identified differentially expressed genes enriched in cell cycle pathways. The impact of d-borneol on CDDP chemosensitivity involved arrest of the cell cycle at S phase via p27/p21-mediated cyclinA2/D3-CDK2/6 signaling and activation of intrinsic apoptosis via p21-mediated Bax/Bcl-2/caspase3 signaling. Further, d-borneol ameliorated drug resistance by suppressing levels and activity of P-gp. Cotreatment with d-borneol and CDDP inhibited tumor growth in vivo and reduced CDDP-caused liver and kidney toxicity. Conclusions d-Borneol increased the efficacy of cisplatin and reduced its toxicity. This compound has the potential to become a useful chemosensitizer for drug-resistance NSCLC. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00362-4.
Collapse
Affiliation(s)
- Jinxiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianmei Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Daoyin Gong
- Department of Pathology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Qian Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiajun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mihong Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Danni Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhuo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Li J, Xie Q, Ma R, Li Y, Yuan J, Ren M, Li H, Wang J, Lu D, Xu Z, Wang J. Recent Progress on the Synergistic Antitumor Effect of a Borneol-Modified Nanocarrier Drug Delivery System. Front Med (Lausanne) 2021; 8:750170. [PMID: 34901063 PMCID: PMC8655685 DOI: 10.3389/fmed.2021.750170] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/11/2021] [Indexed: 01/02/2023] Open
Abstract
Borneol, a traditional Chinese medicine, can enhance therapeutic efficacy by guiding the active ingredients to the target site. Reportedly, borneol improves the penetration capacity of the nasal, cornea, transdermal, intestinal, and blood-brain barriers. Although nanotechnology dramatically changed the face of oncology by targeting tumor sites, the efficiency of nanoparticles delivered to tumor sites is very low, with only 0.7% of the total particles delivered. Thus, based on the penetration ability and the inhibition drug efflux of borneol, it was expected to increase the targeting and detention efficacy of drugs into tumor sites in nanocarriers with borneol modification. Borneol modified nanocarriers used to improve drug-targeting has become a research focus in recent years, but few studies in this area, especially in the antitumor application. Hence, this review summarizes the recent development of nanocarriers with borneol modification. We focus on the updated works of improving therapeutic efficacy, reducing toxicity, inhibiting tumor metastasis, reversing multidrug resistance, and enhancing brain targeting to expand their application and provide a reference for further exploration of targeting drug delivery systems for solid tumor treatment.
Collapse
Affiliation(s)
- Jinxiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianmei Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mihong Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiajun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Danni Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhuo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Substituent-regulated highly X-ray sensitive Os(VI) nitrido complex for low-toxicity radiotherapy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Cao WQ, Zhai XQ, Ma JW, Fu XQ, Zhao BS, Zhang P, Fu XY. Natural borneol sensitizes human glioma cells to cisplatin-induced apoptosis by triggering ROS-mediated oxidative damage and regulation of MAPKs and PI3K/AKT pathway. PHARMACEUTICAL BIOLOGY 2020; 58:72-79. [PMID: 31875760 PMCID: PMC6970185 DOI: 10.1080/13880209.2019.1703756] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Context: Cisplatin-based chemotherapy was widely used in treating human malignancies. However, side effects and chemoresistance remains the major obstacle.Objective: To verify whether natural borneol (NB) can enhance cisplatin-induced glioma cell apoptosis and explore the mechanism.Materials and methods: Cytotoxicity of cisplatin and/or NB towards U251 and U87 cells were determined with the MTT assay. Cells were treated with 0.25-80 μg/mL cisplatin and/or 5-80 μM NB for 48 h. The effects of NB and/or cisplatin on apoptosis and cell cycle distribution were quantified by flow cytometric analysis. Protein expression was detected by western blotting. ROS generation was conducted by measuring and visualising an oxidation-sensitive fluorescein DCFH-DA.Results: NB synergistically enhanced the anticancer efficacy of cisplatin in human glioma cells. Co-treatment of 40 μg/mL NB and 40 μg/mL cisplatin significantly inhibited U251 cell viability from 100% to 28.2% and increased the sub-G1 population from 1.4% to 59.3%. Further detection revealed that NB enhanced cisplatin-induced apoptosis by activating caspases and triggering reactive oxygen species (ROS) overproduction as evidenced by the enhancement of green fluorescence intensity from 265% to 645%. ROS-mediated DNA damage was observed as reflected by the activation of ATM/ATR, p53 and histone. Moreover, MAPKs and PI3K/AKT pathways also contributed to co-treatment-induced U251 cell growth inhibition. ROS inhibition by antioxidants effectively improved MAPKs and PI3K/AKT functions and cell viability, indicating that NB enhanced cisplatin-induced cell growth in a ROS-dependent manner.Discussion and conclusions: Natural borneol had the potential to sensitise human glioma cells to cisplatin-induced apoptosis with potential application in the clinic.
Collapse
Affiliation(s)
- Wen-qiang Cao
- School of Life Sciences, Jilin University, Changchun, China
- Department of Biotechnology, Zhuhai Hopegenes Medical & Phamaceutical Institute, Zhuhai, China
| | - Xiao-qian Zhai
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Ji-wei Ma
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xue-qi Fu
- School of Life Sciences, Jilin University, Changchun, China
| | - Bai-song Zhao
- Department of Biotechnology, Zhuhai Hopegenes Medical & Phamaceutical Institute, Zhuhai, China
| | - Pu Zhang
- Department of Cardiology, The Central Hospital of Taian, Taian, China
- Pu Zhang Department of Cardiology, The Central Hospital of Taian, Taian, Shandong, 271000, China
| | - Xiao-yan Fu
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
- CONTACT Xiao-yan Fu Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, Shandong, 271000, China
| |
Collapse
|
15
|
Li G, Wu X, Sun P, Zhang Z, Shao E, Mao J, Cao H, Huang H. Dithiolation indolizine exerts viability suppression effects on A549 cells via triggering intrinsic apoptotic pathways and inducing G2/M phase arrest. Biomed Pharmacother 2020; 133:110961. [PMID: 33190035 DOI: 10.1016/j.biopha.2020.110961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 01/14/2023] Open
Abstract
Indolizine derivatives have been reported for the treatment of numerous diseases. However, few studies were carried out for non-small cell lung cancer (NSCLC). We synthesized series of indolizine compounds. The results of MTT assay showed compound 8 (C8) markedly inhibited the proliferation of A549 cells, however, C8 (15, 30 μg/mL) had little cytotoxicity in other cell lines (SH-SY5Y, HepG2, and BEAS-2B cells), Hoechst staining and JC-1 staining showed that C8 induced changes in the nucleus morphology, increased the loss in mitochondrial membrane potential in A549 cells. The results of flow cytometry manifested that cell cycle of the cells was arrested in the G2 / M phase by C8, ROS levels and the proportion of apoptosis of cells increased. We performed western blotting analysis to detect the expression levels of apoptosis and cycle-related proteins. These results validated that the apoptosis of cells was triggered by endoplasmic reticulum stress (ERS) and the PI3K/Akt-mediated mitochondrial pathway collaboratively. Besides, the utilization of PI3K/Akt inhibitors and p53 inhibitors further proves the above argument and C8-induced cycle arrest of A549 cells is majorly regulated by p53. C8 induced the accumulation of ROS contents involved in mitochondrial damage. The proliferation of A549 cells was inhibited after treatment with the compound, which induced apoptosis and cycle arrest of cells. It is suggested that C8(dithiolation indolizine) is a potential candidate compound against non-small cell lung cancer.
Collapse
Affiliation(s)
- Guanting Li
- School of Biosciences & Biopharmaceutics and Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xianwei Wu
- School of Biosciences & Biopharmaceutics and Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Peng Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, Guangdong Province, 510060, China
| | - Zhiyang Zhang
- School of Biosciences & Biopharmaceutics and Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Enxian Shao
- School of Biosciences & Biopharmaceutics and Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jianping Mao
- School of Biosciences & Biopharmaceutics and Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China.
| | - Hongliang Huang
- School of Biosciences & Biopharmaceutics and Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of New Drug Discovery and Evaluation, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
16
|
Yuan R, Huang Y, Chan L, He D, Chen T. Engineering EHD1-Targeted Natural Borneol Nanoemulsion Potentiates Therapeutic Efficacy of Gefitinib against Nonsmall Lung Cancer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45714-45727. [PMID: 32927941 DOI: 10.1021/acsami.0c08069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite the effective targeting of the epidermal growth factor receptor (EGFR), the use of gefitinib (GFT) for nonsmall cell lung cancer (NSCLC) treatment meets a failure because of the insufficient drug accumulation in the tumor region. Therefore, developing chemosensitizers of GFT with synergistic therapeutic effects is urgently needed for advanced cancer therapy. Herein, a natural chemosensitizer, natural borneol (NB), is reformulated as an oil-in-water nanoemulsion to enhance its solubility, distribution, and to ultimately increase the therapeutic index with GFT. The nanolization of NB (NBNPs) displays stronger targeted delivery and cytotoxicity than NB by selectively identifying eight specific protein targets in A549 NSCLC cells as revealed by the proteomic studies. Consistently, NBNPs realize stronger chemosensitization effects than NB with GFT by effectively regulating EGFR/EHD1-mediated apoptosis in A549 NSCLC cells. Owing to the satisfying synergistic effect between NBNPs and GFT, the combined therapy not only enhances the anticancer ability of GFT against NSCLC proliferation but also avoids heavy double toxicity in vivo. This finding demonstrates the effective synergism between NBNPs and GFT with clear mechanistic investigation and is expected to extend the application of NBNPs as a novel chemosensitizer for advanced cancer chemotherapy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Camphanes/chemistry
- Camphanes/pharmacology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Proliferation/drug effects
- Cells, Cultured
- Drug Screening Assays, Antitumor
- Emulsions/chemistry
- Female
- Gefitinib/chemistry
- Gefitinib/pharmacology
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Structure
- Nanoparticles/chemistry
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Particle Size
- Surface Properties
- Vesicular Transport Proteins/antagonists & inhibitors
- Vesicular Transport Proteins/metabolism
Collapse
Affiliation(s)
- Riming Yuan
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Yanyu Huang
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Leung Chan
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Dihao He
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- The First Affiliated Hospital, and Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
17
|
Lai H, Liu C, Hou L, Lin W, Chen T, Hong A. TRPM8-regulated calcium mobilization plays a critical role in synergistic chemosensitization of Borneol on Doxorubicin. Theranostics 2020; 10:10154-10170. [PMID: 32929340 PMCID: PMC7481425 DOI: 10.7150/thno.45861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Lung cancer has a high mortality rate and is resistant to multiple chemotherapeutics. Natural Borneol (NB) is a monoterpenoid compound that facilitates the bioavailability of drugs. In this study, we investigated the effects of NB on chemosensitivity in the A549 human lung adenocarcinoma cell line and to elucidate therapeutic molecular target of NB. Methods: The chemosensitivity effects of NB in A549 cells were examined by MTT assay. The mechanism of NB action was evaluated using flow cytometry and Western blotting assays. Surface plasmon resonance (SPR) and LC-MS combined analysis (MS-SPRi) was performed to elucidate the candidate molecular target of NB. The chemosensitizing capacity of NB in vivo was assessed in nude mice bearing A549 tumors. Results: NB pretreatment sensitized A549 cells to low doxorubicin (DOX) dosage, leading to a 15.7% to 41.5% increase in apoptosis. This increase was correlated with ERK and AKT inactivation and activation of phospho-p38 MAPK, phospho-JNK, and phosphor-p53. Furthermore, this synergism depends on reactive oxygen species (ROS) generation. MS-SPRi analysis revealed that transient receptor potential melastatin-8 (TRPM8) is the candidate target of NB in potentiating DOX killing potency. Genetically, TRPM8 knock-down significantly suppresses the chemosensitizing effects of NB and inhibits ROS generation through restraining calcium mobilization. Moreover, pretreatment with NB synergistically enhances the anticancer effects of DOX to delay tumor progression in vivo. Conclusions: These results suggest that TRPM8 may be a valid therapeutic target in the potential application of NB, and show that NB is a chemosensitizer for lung cancer treatment.
Collapse
Affiliation(s)
- Haoqiang Lai
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Chang Liu
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Liyuan Hou
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Wenwei Lin
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - An Hong
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
18
|
Hydrogen Sulfide Impairs Meiosis Resumption in Xenopus laevis Oocytes. Cells 2020; 9:cells9010237. [PMID: 31963573 PMCID: PMC7017156 DOI: 10.3390/cells9010237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 01/19/2023] Open
Abstract
The role of hydrogen sulfide (H2S) is addressed in Xenopus laevis oocytes. Three enzymes involved in H2S metabolism, cystathionine β-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase, were detected in prophase I and metaphase II-arrested oocytes and drove an acceleration of oocyte meiosis resumption when inhibited. Moreover, meiosis resumption is associated with a significant decrease in endogenous H2S. On another hand, a dose-dependent inhibition was obtained using the H2S donor, NaHS (1 and 5 mM). NaHS impaired translation. NaHS did not induce the dissociation of the components of the M-phase promoting factor (MPF), cyclin B and Cdk1, nor directly impacted the MPF activity. However, the M-phase entry induced by microinjection of metaphase II MPF-containing cytoplasm was diminished, suggesting upstream components of the MPF auto-amplification loop were sensitive to H2S. Superoxide dismutase and catalase hindered the effects of NaHS, and this sensitivity was partially dependent on the production of reactive oxygen species (ROS). In contrast to other species, no apoptosis was promoted. These results suggest a contribution of H2S signaling in the timing of amphibian oocytes meiosis resumption.
Collapse
|
19
|
Chen J, Cao X, Qin X, Liu H, Chen S, Zhong S, Li Y. Proteomic analysis of the molecular mechanism of curcumin/β-cyclodextrin polymer inclusion complex inhibiting HepG2 cells growth. J Food Biochem 2019; 44:e13119. [PMID: 31868930 DOI: 10.1111/jfbc.13119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 12/26/2022]
Abstract
This research aimed to explore whether curcumin/β-cyclodextrin polymer (CUR/CDP) inclusion complex caused inhibitory effect on HepG2 cells proliferation and its possible molecular mechanisms. We found that CUR/CDP inclusion complex exhibited inhibitory effects on HepG2 cells growth. To understand the underlying mechanism of how CUR/CDP inclusion complex inhibited HepG2 cells growth, we examined the proteome of HepG2 cells treated at 640 μg/ml CUR/CDP inclusion complex using proteomic approach. We found that 15 protein spots identified by MALDI-TOF/TOF MS were changed. Biological progress analysis demonstrated that protein related to cell cycle and apoptosis accounted for 33% of the detected proteins. Among these proteins, nucleophosmin (NPM1) and peroxiredoxin-6 (PRDX6) were involved in the ROS-P53 pathway. PRDX6 and NPM1 were down-regulated, thereby improving the expression level of phosphorylated p53 and ROS content, which regulated cell apoptosis. This findings provide a better understanding of CUR/CDP regulatory anti-tumor mechanisms. PRACTICAL APPLICATIONS: Cyclodextrins polymer was used to prepare the curcumin/cyclodextrins polymer inclusion complex to improve curcumin solubility and stability in our group. And we found that it showed novel anticancer activity. However, the molecular mechanisms is unclear. This research elucidates the underlying molecular mechanisms of the curcumin/cyclodextrins polymer inclusion complex-inhibited HepG2 cells growth. The inclusion complex has the potential to be a novel complex of curcumin to treat human cancers.
Collapse
Affiliation(s)
- Jianping Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| | - Xiaohuang Cao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| | - Xiaoming Qin
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| | - Hai Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| | - Suhua Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Modern Agricultural Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang, China
| | - Yinghua Li
- Center Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Enhanced anticancer efficiency of doxorubicin against human glioma by natural borneol through triggering ROS-mediated signal. Biomed Pharmacother 2019; 118:109261. [DOI: 10.1016/j.biopha.2019.109261] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/11/2019] [Accepted: 07/24/2019] [Indexed: 01/01/2023] Open
|
21
|
Polyphenols: Major regulators of key components of DNA damage response in cancer. DNA Repair (Amst) 2019; 82:102679. [PMID: 31450085 DOI: 10.1016/j.dnarep.2019.102679] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/27/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023]
|
22
|
Wu P, Meng X, Zheng H, Zeng Q, Chen T, Wang W, Zhang X, Su J. Kaempferol Attenuates ROS-Induced Hemolysis and the Molecular Mechanism of Its Induction of Apoptosis on Bladder Cancer. Molecules 2018; 23:molecules23102592. [PMID: 30309003 PMCID: PMC6222750 DOI: 10.3390/molecules23102592] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022] Open
Abstract
Bladder cancer has become the most common malignant urinary carcinoma. Studies have shown that significant antioxidant and bladder cancer-fighting properties of several plant-based diets like Psidium guajava, ginger and amomum, are associated with their high kaempferol content. In this paper, we evaluated the antioxidant and anticancer activities of kaempferol and its mechanism of induction to apoptosis on bladder cancer cells. Our findings demonstrated that kaempferol showed an obvious radical scavenging activity in erythrocytes damaged by oxygen. Kaempferol promoted antioxidant enzymes, inhibited ROS generation and lipid peroxidation and finally prevented the occurrence of hemolysis. Additionally, kaempferol exhibited a strong inhibitory effect on bladder cancer cells and high safety on normal bladder cells. At the molecular level, kaempferol suppressed EJ bladder cancer cell proliferation by inhibiting the function of phosphorylated AKT (p-AKT), CyclinD1, CDK4, Bid, Mcl-1 and Bcl-xL, and promoting p-BRCA1, p-ATM, p53, p21, p38, Bax and Bid expression, and finally triggering apoptosis and S phase arrest. We found that Kaempferol exhibited strong anti-oxidant activity on erythrocyte and inhibitory effects on the growth of cancerous bladder cells through inducing apoptosis and S phase arrest. These findings suggested that kaempferol might be regarded as a bioactive food ingredient to prevent oxidative damage and treat bladder cancer.
Collapse
Affiliation(s)
- Ping Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China.
| | - Xiaofeng Meng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China.
| | - Huade Zheng
- Department of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Qin Zeng
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Wen Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China.
| | - Xia Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jianyu Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China.
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
23
|
Nuutinen T. Medicinal properties of terpenes found in Cannabis sativa and Humulus lupulus. Eur J Med Chem 2018; 157:198-228. [PMID: 30096653 DOI: 10.1016/j.ejmech.2018.07.076] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022]
Abstract
Cannabaceae plants Cannabis sativa L. and Humulus lupulus L. are rich in terpenes - both are typically comprised of terpenes as up to 3-5% of the dry-mass of the female inflorescence. Terpenes of cannabis and hops are typically simple mono- and sesquiterpenes derived from two and three isoprene units, respectively. Some terpenes are relatively well known for their potential in biomedicine and have been used in traditional medicine for centuries, while others are yet to be studied in detail. The current, comprehensive review presents terpenes found in cannabis and hops. Terpenes' medicinal properties are supported by numerous in vitro, animal and clinical trials and show anti-inflammatory, antioxidant, analgesic, anticonvulsive, antidepressant, anxiolytic, anticancer, antitumor, neuroprotective, anti-mutagenic, anti-allergic, antibiotic and anti-diabetic attributes, among others. Because of the very low toxicity, these terpenes are already widely used as food additives and in cosmetic products. Thus, they have been proven safe and well-tolerated.
Collapse
Affiliation(s)
- Tarmo Nuutinen
- Department of Environmental and Biological Sciences, Univerisity of Eastern Finland (UEF), Finland; Department of Physics and Mathematics, UEF, Finland.
| |
Collapse
|
24
|
Li X, Zhang H, Chan L, Liu C, Chen T. Nutritionally Available Selenocysteine Derivative Antagonizes Cisplatin-Induced Toxicity in Renal Epithelial Cells through Inhibition of Reactive Oxygen Species-Mediated Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5860-5870. [PMID: 29779385 DOI: 10.1021/acs.jafc.8b01876] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Discovery of nutritionally available agents that could antagonize cisplatin-induced nephrotoxicity is of great significance and clinical application potential. 3,3'-Diselenodipropionic acid (DSePA) is a seleno-amino acid derivative that exhibits strong antioxidant activity. Therefore, this study aimed to examine the protective effects of DSePA on cisplatin-induced renal epithelial cells damage as well as the molecular mechanisms. The results revealed that DSePA effectively inhibited cell apoptosis induced by cisplatin through suppressing the caspase activation and poly(ADP-ribose) polymerase cleavage. In addition, DSePA blocked the cisplatin-induced mitochondrial dysfunction, as evidenced by the loss of mitochondrial membrane potential and reduction of mitochondrial mass. The results of western blot analysis showed that DSePA reversed the expression level of Bcl-2 family proteins altered by cisplatin. The cisplatin-activated AKT pathway was also modulated by DSePA. Moreover, these results indicate that DSePA could protect HK-2 cells from cisplatin-induced toxicity in renal epithelial cells by inhibiting intracellular reactive oxygen species-mediated apoptosis while showing an unobvious effect on its anticancer efficacy. Taken together, this study demonstrates that selenocysteine could be further developed as novel nutritionally available agents to antagonize cisplatin-induced nephrotoxicity during cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | - Tianfeng Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , Zhejiang 325027 , People's Republic of China
| |
Collapse
|
25
|
Meng X, Dong X, Wang W, Yang L, Zhang X, Li Y, Chen T, Ma H, Qi D, Su J. Natural Borneol Enhances Paclitaxel-Induced Apoptosis of ESCC Cells by Inactivation of the PI3K/AKT. J Food Sci 2018; 83:1436-1443. [PMID: 29660811 DOI: 10.1111/1750-3841.14143] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/26/2018] [Accepted: 03/04/2018] [Indexed: 11/29/2022]
Abstract
Paclitaxel (PTX) has been used in a variety of malignancies for inhibiting tumor development and improving survival. However, its clinical application is limited due to poor solubility, drug resistance, and gastrointestinal reactions. Natural borneol (NB), as a promoter, could help to improve drug absorption. Therefore, the aims of the present study were to investigate the ability of NB to synergize with PTX to induce human esophageal squamous cell carcinoma (ESCC) cells apoptosis and the underlying mechanism of synergistic effects. In this study, our findings showed that NB could effectively synergize with PTX to inhibit the survival of ESCC cells by inducing apoptosis. The molecular mechanism by western blotting elucidated that combination treatment with PTX and NB significantly activated apoptotic pathway by triggering upregulation of cleaved caspase-3 expression and downregulation of survivin and P-AKT expression. These results demonstrated that NB could strongly potentiate PTX-induced apoptosis in ESCC cells through suppressing PI3K/AKT pathway. Thus, the combination therapy with NB and PTX might be a promising treatment strategy for human esophageal cancer. PRACTICAL APPLICATION Esophageal cancer is one of the most common cancers in the world. It has brought about a major public health problem. Many natural agents have been employed in the synergized treatments of esophageal cancer. This study provides a comprehensive way to investigate the ability of borneol to synergize with paclitaxel to induce human esophageal squamous cell carcinoma cells apoptosis and the underlying mechanism of synergistic effects. The research showed that the combination treatment with some natural agents might be a promising treatment strategy for human esophageal cancer.
Collapse
Affiliation(s)
- Xiaofeng Meng
- School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510640, China.,Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China Univ. of Technology, Guangzhou, 510640, China
| | - Xiaomei Dong
- School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510640, China
| | - Wen Wang
- School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510640, China.,Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China Univ. of Technology, Guangzhou, 510640, China
| | - Liu Yang
- School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510640, China.,Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China Univ. of Technology, Guangzhou, 510640, China
| | - Xia Zhang
- School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510640, China.,Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China Univ. of Technology, Guangzhou, 510640, China
| | - Yanfang Li
- Dept. of Nutrition and Food Science, Univ. of Maryland, College Park, MD, 20742, USA
| | - Tianfeng Chen
- Dept. of Chemistry, Jinan Univ., Guangzhou, 510632, China
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Dept. of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Univ. of Rhode Island, Kingston, RI, 02881, USA
| | - Da Qi
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jianyu Su
- School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 510640, China.,Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China Univ. of Technology, Guangzhou, 510640, China.,Dept. of Nutrition and Food Science, Univ. of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
26
|
|
27
|
Levine CB, Bayle J, Biourge V, Wakshlag JJ. Cellular effects of a turmeric root and rosemary leaf extract on canine neoplastic cell lines. BMC Vet Res 2017; 13:388. [PMID: 29237458 PMCID: PMC5729263 DOI: 10.1186/s12917-017-1302-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/27/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The use of nutraceuticals is gaining in popularity in human and canine oncology with a relatively limited understanding of the effects in the vastly different tumor types seen in canine oncology. We have previously shown that turmeric root (TE) and rosemary leaf (RE) extracts can work synergistically to reduce neoplastic cell growth, but the mechanisms are poorly understood and require further elucidation. RESULTS Three different canine cell lines (C2 mastocytoma, and CMT-12 mammary carcinoma, D17 osteosarcoma) were treated with 6.3 μg mL-1 extract individually, or 3.1 μg mL-1 of each extract in combination based on studies showing synergy of these two extracts. Apoptosis, antioxidant effects, cellular accumulation of curcumin, and perturbation of signaling pathways were assessed. The TE + RE combination treatment resulted in Caspase 3/7 activation and apoptosis in all cell lines, beyond the effects of TE alone with the CMT-12 cell line being most susceptible. Both extracts had antioxidant effects with RE reducing reactive oxygen species (ROS) by 40-50% and TE reducing ROS by 80-90%. In addition RE treatment enhanced the c-jun N-terminal kinase (JNK) activity in the C2 cell line and TE + RE exposure increased activated JNK by 4-5 times in the CMT-12 cell line. Upon further examination, it was found that RE treatment caused a significant increase in the cellular accumulation of curcumin by approximately 30% in the C2 and D17 cell lines, and by 4.8-fold in the CMT-12 cell line. This increase in intracellular curcumin levels may play a role in the synergy exhibited when using TE and RE in combination. CONCLUSIONS The use of RE in combination with TE induces a synergistic response to induce apoptosis which is better than either extract alone. This appears to be related to a variable increased TE uptake in cells and activation of pathways involved in the apoptotic response.
Collapse
Affiliation(s)
- Corri B Levine
- Department of Clinical Sciences,Veterinary Medical Center C2-009, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Julie Bayle
- Royal Canin Research Center, Airmargues, France
| | | | - Joseph J Wakshlag
- Department of Clinical Sciences,Veterinary Medical Center C2-009, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA.
| |
Collapse
|
28
|
Curcumin affects gene expression and reactive oxygen species via a PKA dependent mechanism in Dictyostelium discoideum. PLoS One 2017; 12:e0187562. [PMID: 29135990 PMCID: PMC5685611 DOI: 10.1371/journal.pone.0187562] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/04/2017] [Indexed: 01/05/2023] Open
Abstract
Botanicals are widely used as dietary supplements and for the prevention and treatment of disease. Despite a long history of use, there is generally little evidence supporting the efficacy and safety of these preparations. Curcumin has been used to treat a myriad of human diseases and is widely advertised and marketed for its ability to improve health, but there is no clear understanding how curcumin interacts with cells and affects cell physiology. D. discoideum is a simple eukaryotic lead system that allows both tractable genetic and biochemical studies. The studies reported here show novel effects of curcumin on cell proliferation and physiology, and a pleiotropic effect on gene transcription. Transcriptome analysis showed that the effect is two-phased with an early transient effect on the transcription of approximately 5% of the genome, and demonstrates that cells respond to curcumin through a variety of previously unknown molecular pathways. This is followed by later unique transcriptional changes and a protein kinase A dependent decrease in catalase A and three superoxide dismutase enzymes. Although this results in an increase in reactive oxygen species (ROS; superoxide and H2O2), the effects of curcumin on transcription do not appear to be the direct result of oxidation. This study opens the door to future explorations of the effect of curcumin on cell physiology.
Collapse
|
29
|
Wang L, Chen X, Du Z, Li G, Chen M, Chen X, Liang G, Chen T. Curcumin suppresses gastric tumor cell growth via ROS-mediated DNA polymerase γ depletion disrupting cellular bioenergetics. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:47. [PMID: 28359291 PMCID: PMC5374654 DOI: 10.1186/s13046-017-0513-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 03/10/2017] [Indexed: 02/08/2023]
Abstract
Background Curcumin, as a pro-apoptotic agent, is extensively studied to inhibit tumor cell growth of various tumor types. Previous work has demonstrated that curcumin inhibits cancer cell growth by targeting multiple signaling transduction and cellular processes. However, the role of curcumin in regulating cellular bioenergetic processes remains largely unknown. Methods Western blotting and qRT-PCR were performed to analyze the protein and mRNA level of indicated molecules, respectively. RTCA, CCK-8 assay, nude mice xenograft assay, and in vivo bioluminescence imaging were used to visualize the effects of curcmin on gastric cancer cell growth in vitro and in vivo. Seahorse bioenergetics analyzer was used to investigate the alteration of oxygen consumption and aerobic glycolysis rate. Results Curcumin significantly inhibited gastric tumor cell growth, proliferation and colony formation. We further investigated the role of curcumin in regulating cellular redox homeostasis and demonstrated that curcumin initiated severe cellular apoptosis via disrupting mitochondrial homeostasis, thereby enhancing cellular oxidative stress in gastric cancer cells. Furthermore, curcumin dramatically decreased mtDNA content and DNA polymerase γ (POLG) which contributed to reduced mitochondrial oxygen consumption and aerobic glycolysis. We found that curcumin induced POLG depletion via ROS generation, and POLG knockdown also reduced oxidative phosphorylation (OXPHOS) activity and cellular glycolytic rate which was partially rescued by ROS scavenger NAC, indiating POLG plays an important role in the treatment of gastric cancer. Data in the nude mice model verified that curcumin treatment significantly attenuated tumor growth in vivo. Finally, POLG was up-regulated in human gastric cancer tissues and primary gastric cancer cell growth was notably suppressed due to POLG deficiency. Conclusions Together, our data suggest a novel mechanism by which curcumin inhibited gastric tumor growth through excessive ROS generation, resulting in depletion of POLG and mtDNA, and the subsequent disruption of cellular bioenergetics.
Collapse
Affiliation(s)
- Lihua Wang
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health of the People's Republic of China, Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China.,School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiwen Chen
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhuanyun Du
- School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gefei Li
- School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mayun Chen
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, China
| | - Xi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China. .,Wenzhou Medical University, University-Town, Wenzhou, Zhejiang, 325035, China.
| | - Tongke Chen
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, Zhejiang, China. .,Wenzhou Medical University, University-Town, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
30
|
Bendif H, Boudjeniba M, Miara MD, Biqiku L, Bramucci M, Lupidi G, Quassinti L, Vitali LA, Maggi F. Essential Oil of Thymus munbyanus subsp. coloratus from Algeria: Chemotypification and in vitro Biological Activities. Chem Biodivers 2017; 14. [PMID: 27685426 DOI: 10.1002/cbdv.201600299] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/26/2016] [Indexed: 12/14/2022]
Abstract
Thymus munbyanus subsp. coloratus (Lamiaceae) is a small shrub endemic to Algeria and Morocco where is found in lawns, rockeries and mountainous regions. From a phytochemical point of view this taxon has never been characterized. In this work we have analysed the chemical compositions of the essential oils obtained from inflorescences and vegetative parts by GC/MS. A new chemotype, i.e. borneol-chemotype, was characterized for the first time in the species. Furthermore, we assessed the biological activities of essential oils, namely the antioxidant, antimicrobial and cytotoxicity on tumor cells that were evaluated by the DPPH, ABTS, and FRAP, disc diffusion, and MTT methods, respectively. Biological assays highlighted a moderate inhibitory effect on Staphylococcus aureus, Escherichia coli and Candida albicans (inhibition zone diameter in the range 9 - 10 mm), and noteworthy cytotoxicity on A375 human melanoma cells (IC50 of 46.95 μg/ml).
Collapse
Affiliation(s)
- Hamdi Bendif
- Laboratory of Ethnobotany and Natural Substances, Department of Natural Sciences, Ecole Normale Supérieure (ENS), Kouba, B.P N°92 Kouba 16308, Algiers, Algeria.,Natural and Life Sciences Department, Faculty of Sciences, Mohamed Boudiaf University, BP 166 M'sila 28000, M'sila, Algeria
| | - Messaoud Boudjeniba
- Laboratory of Ethnobotany and Natural Substances, Department of Natural Sciences, Ecole Normale Supérieure (ENS), Kouba, B.P N°92 Kouba 16308, Algiers, Algeria
| | - Mohamed Djamel Miara
- Natural and Life Sciences Department, Faculty of Sciences, Mohamed Boudiaf University, BP 166 M'sila 28000, M'sila, Algeria
| | - Loreta Biqiku
- School of Pharmacy, University of Camerino, via S. Agostino 1, IT-62032, Camerino, Italy
| | - Massimo Bramucci
- School of Pharmacy, University of Camerino, via S. Agostino 1, IT-62032, Camerino, Italy
| | - Giulio Lupidi
- School of Pharmacy, University of Camerino, via S. Agostino 1, IT-62032, Camerino, Italy
| | - Luana Quassinti
- School of Pharmacy, University of Camerino, via S. Agostino 1, IT-62032, Camerino, Italy
| | - Luca A Vitali
- School of Pharmacy, University of Camerino, via S. Agostino 1, IT-62032, Camerino, Italy
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, via S. Agostino 1, IT-62032, Camerino, Italy
| |
Collapse
|
31
|
Liu X, Song M, Gao Z, Cai X, Dixon W, Chen X, Cao Y, Xiao H. Stereoisomers of Astaxanthin Inhibit Human Colon Cancer Cell Growth by Inducing G2/M Cell Cycle Arrest and Apoptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7750-7759. [PMID: 27726394 DOI: 10.1021/acs.jafc.6b03636] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Astaxanthin (AST) is a xanthophyll carotenoid with potential protective effects against carcinogenesis. Different stereoisomers of AST (ASTs) exist in a variety of food sources. Due to limited information on the bioactivities of ASTs, the present study investigated the inhibitory effects of ASTs on HCT116 and HT29 human colon cancer cells. ASTs investigated herein included 3S,3'S (S) from Haematococcus pluvialis, 3R,3'R (R) from Phaffia rhodozyma, and a statistical mixture (S: meso: R = 1:2:1) (M) from synthetic AST. Cell viability assay showed that ASTs all inhibited colon cancer cell growth in a time-dependent (24-72 h) and dose-dependent (4-16 μM) manner, and there was no significant difference among the IC50 values of ASTs (p > 0.05). Flow cytometry analysis indicated that ASTs induced G2/M cell cycle arrest and cellular apoptosis in cancer cells. The cell cycle arrest caused by ASTs was associated with increases in the expression levels of p21Cip1/Waf1, p27, and p53, as well as decreases in the levels of CDK4 and CDK6. Meanwhile, the apoptosis induced by ASTs was confirmed by activation of caspase-3 and PARP in the cancer cells. The results indicated that hydroxyl (OH) at C3 and C3' of terminal ring structure might not be the major factor that affects the anticancer activity of AST. This study revealed important information on the inhibitory effects of ASTs on human colon cancer cells, which provided a basis for using ASTs as chemopreventive agents for colon cancer.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Department of Food Science, College of Food Science, South China Agricultural University , Guangzhou 510642, China
- Department of Food Science, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Mingyue Song
- Department of Food Science, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Zili Gao
- Department of Food Science, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Xiaokun Cai
- Department of Food Science, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - William Dixon
- Department of Food Science, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Xiaofeng Chen
- Department of Food Science, College of Food Science, South China Agricultural University , Guangzhou 510642, China
| | - Yong Cao
- Department of Food Science, College of Food Science, South China Agricultural University , Guangzhou 510642, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| |
Collapse
|
32
|
Wang X, Martínez MA, Wu Q, Ares I, Martínez-Larrañaga MR, Anadón A, Yuan Z. Fipronil insecticide toxicology: oxidative stress and metabolism. Crit Rev Toxicol 2016; 46:876-899. [DOI: 10.1080/10408444.2016.1223014] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Tsai CF, Hsieh TH, Lee JN, Hsu CY, Wang YC, Kuo KK, Wu HL, Chiu CC, Tsai EM, Kuo PL. Curcumin Suppresses Phthalate-Induced Metastasis and the Proportion of Cancer Stem Cell (CSC)-like Cells via the Inhibition of AhR/ERK/SK1 Signaling in Hepatocellular Carcinoma. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10388-10398. [PMID: 26585812 DOI: 10.1021/acs.jafc.5b04415] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recent evidence indicating that phthalates promote cancer development, including cell proliferation, migration, and invasion, has raised public health concerns. Here, we show that bis(2-ethylhexyl) phthalate promotes the migration, invasion, and epithelial-mesenchymal transition of hepatocellular carcinoma cells. In addition, bis(2-ethylhexyl) phthalate increased the proportion of cancer stem cell (CSC)-like cells and stemness maintenance in vitro as well as tumor growth and metastasis in vivo. The various activities of curcumin, including anticancer, anti-inflammation, antioxidation, and immunomodulation, have been investigated extensively. Curcumin suppressed phthalate-induced cell migration, invasion, and epithelial-mesenchymal transition, decreased the proportion of CSC-like cells in hepatocellular carcinoma cell lines in vitro, and inhibited tumor growth and metastasis in vivo. We also reveal that curcumin suppressed phthalate-induced migration, invasion, and CSC-like cell maintenance through inhibition of the aryl hydrocarbon receptor/ERK/SK1/S1P3 signaling pathway. Our results suggest that curcumin may be a potential antidote for phthalate-induced cancer progression.
Collapse
Affiliation(s)
- Cheng-Fang Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung City 807, Taiwan
| | - Tsung-Hua Hsieh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung City 807, Taiwan
| | - Jau-Nan Lee
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital , Kaohsiung City 807, Taiwan
| | - Chia-Yi Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung City 807, Taiwan
| | - Yu-Chih Wang
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital , Kaohsiung City 807, Taiwan
| | - Kung-Kai Kuo
- Division of Hepatobiliary Pancreatic Surgery, Department of Surgery, Kaohsiung Medical University Hospital , Kaohsiung 807, Taiwan
| | - Hua-Lin Wu
- Department of Biochemistry and Molecular Biology, National Cheng Kung University , Tainan 701, Taiwan
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| | - Eing-Mei Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung City 807, Taiwan
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital , Kaohsiung City 807, Taiwan
| | - Po-Lin Kuo
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| |
Collapse
|
34
|
Kumari P, Swami MO, Nadipalli SK, Myneni S, Ghosh B, Biswas S. Curcumin Delivery by Poly(Lactide)-Based Co-Polymeric Micelles: An In Vitro Anticancer Study. Pharm Res 2015; 33:826-41. [DOI: 10.1007/s11095-015-1830-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022]
|
35
|
Casasampere M, Ordoñez YF, Pou A, Casas J. Inhibitors of dihydroceramide desaturase 1: Therapeutic agents and pharmacological tools to decipher the role of dihydroceramides in cell biology. Chem Phys Lipids 2015; 197:33-44. [PMID: 26248324 DOI: 10.1016/j.chemphyslip.2015.07.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 02/07/2023]
Abstract
Dihydroceramide desaturase (Des1) is the last enzyme in the de novo synthesis of ceramides (Cer). It catalyzes the insertion of a double bond into dihydroceramides (dhCer) to convert them to Cer, both of which are further metabolized to more complex (dihydro) sphingolipids. For many years dhCer have received poor attention, mainly due to their supposed lack of biological activity. It was not until about ten years ago that the concept that dhCer might have regulatory roles in biology emerged for the first time. Since then, multiple publications have established that dhCer are implicated in a wide spectrum of biological processes. Physiological and pathophysiological functions of dhCer have been recently reviewed. In this review we will focus on the biochemical features of Des1 and on its inhibition by different compounds with presumably different modes of action.
Collapse
Affiliation(s)
- Mireia Casasampere
- Research Unit on BioActive Molecules, Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Yadira F Ordoñez
- Research Unit on BioActive Molecules, Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Ana Pou
- Research Unit on BioActive Molecules, Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules, Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| |
Collapse
|