1
|
Gaspar EB, Orts DJB, Costa HHM, Souza PEA, Honório NTBS, Prudêncio CR, Silva LP, Bonatto CC, Bastos APA, Adriani PP, de Oliveira GS, Domingues R, De Gaspari E, Portilho AI, Martins MF, Machado MA, Brandão HM, Diavão J, Campos MM, Carvalho WA. Adjuvant-driven antibody response to use cows as biofactories of anti-SARS-CoV-2 neutralizing antibodies in colostrum. J Dairy Sci 2025; 108:4079-4088. [PMID: 39892600 DOI: 10.3168/jds.2024-25930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/27/2024] [Indexed: 02/04/2025]
Abstract
Cows produce a substantial amount of immunoglobulin in the colostrum, and nutraceutical products derived from these antibodies are gaining attention for their potential role in human viral disease prevention. The objective of our study was to develop an immunization schedule for pregnant cows to produce hyperimmune colostrum with antibodies presenting high avidity and neutralizing activity against SARS-CoV-2. The recombinant spike receptor-binding domain (RBD) from SARS-CoV-2, expressed using the Expi293F system and purified via Ni-affinity chromatography, was solubilized in (1) saponin (QuilA) or (2) a suspension of potassium and aluminum hydroxide (Alum). Vaccination of pregnant cows and serum sample collection were performed 45, 30, and 15 d before the expected calving date. Serum and colostrum were also collected on the day of parturition. Anti-RBD IgG, IgG1, and IgG2 production, viral neutralization, and antibody avidity were evaluated by ELISA. Cows immunized with recombinant RBD with the QuilA adjuvant produced higher amounts of all antibody subclasses than cows in the Alum group. The viral neutralization index from serum samples was also higher in the QuilA group. Significant differences were not observed in the avidity of antibodies, except for that of IgG2, which was higher in the serum of cows receiving the Alum formulation. As the IgG1 antibody subclass and its avidity are crucial for SARS-CoV-2 neutralization, QuilA might be the optimal adjuvant for producing hyperimmune colostrum in cows. These findings support the use of cows as biofactories of neutralizing antibodies against SARS-CoV-2 or any future emerging and re-emerging viral diseases, with the possibility of simply substituting the subunit antigen in the vaccine formulation. Further tests must be done to evaluate the efficacy of using hyperimmune colostrum as a nutraceutical or purified bovine antibodies as a pharmacological approach for COVID-19 prevention.
Collapse
Affiliation(s)
- E B Gaspar
- Embrapa Dairy Cattle, Brazilian Agricultural Research Corporation, Juiz de Fora, Minas Gerais, Brazil 36038-330
| | - D J B Orts
- Laboratory of CardioBiology, Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil 04023-062; Center of Immunology, Instituto Adolfo Lutz, São Paulo, São Paulo, Brazil 01246-000
| | - H H M Costa
- Center of Immunology, Instituto Adolfo Lutz, São Paulo, São Paulo, Brazil 01246-000
| | - P E A Souza
- Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil 36036-900
| | - N T B S Honório
- Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil 36036-900
| | - C R Prudêncio
- Center of Immunology, Instituto Adolfo Lutz, São Paulo, São Paulo, Brazil 01246-000
| | - L P Silva
- Embrapa Genetic Resources and Biotechnology, Brazilian Agricultural Research Corporation, Brasília, Distrito Federal, Brazil 70770-917
| | - C C Bonatto
- Embrapa Genetic Resources and Biotechnology, Brazilian Agricultural Research Corporation, Brasília, Distrito Federal, Brazil 70770-917
| | - A P A Bastos
- Embrapa Swine and Poultry, Brazilian Agricultural Research Corporation, Concórdia, Santa Catarina, Brazil 89715-899
| | - P P Adriani
- Laboratory of Nanopharmaceuticals and Delivery Systems, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil 05508-000
| | - G S de Oliveira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil 05508-000
| | - R Domingues
- Embrapa Dairy Cattle, Brazilian Agricultural Research Corporation, Juiz de Fora, Minas Gerais, Brazil 36038-330
| | - E De Gaspari
- Center of Immunology, Instituto Adolfo Lutz, São Paulo, São Paulo, Brazil 01246-000
| | - A I Portilho
- Center of Immunology, Instituto Adolfo Lutz, São Paulo, São Paulo, Brazil 01246-000
| | - M F Martins
- Embrapa Dairy Cattle, Brazilian Agricultural Research Corporation, Juiz de Fora, Minas Gerais, Brazil 36038-330
| | - M A Machado
- Embrapa Dairy Cattle, Brazilian Agricultural Research Corporation, Juiz de Fora, Minas Gerais, Brazil 36038-330
| | - H M Brandão
- Embrapa Dairy Cattle, Brazilian Agricultural Research Corporation, Juiz de Fora, Minas Gerais, Brazil 36038-330
| | - J Diavão
- Embrapa Dairy Cattle, Brazilian Agricultural Research Corporation, Juiz de Fora, Minas Gerais, Brazil 36038-330
| | - M M Campos
- Embrapa Dairy Cattle, Brazilian Agricultural Research Corporation, Juiz de Fora, Minas Gerais, Brazil 36038-330
| | - W A Carvalho
- Embrapa Dairy Cattle, Brazilian Agricultural Research Corporation, Juiz de Fora, Minas Gerais, Brazil 36038-330.
| |
Collapse
|
2
|
Zhang L, Ma Y, Hettinga K, Zhou P. Suckling Rat Pup Model: Do Caprine Milk Lactoferrin and Immunoglobulins Have Different Digestion and Absorption Properties from That of Human and Bovine Species? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3069-3079. [PMID: 39873219 DOI: 10.1021/acs.jafc.4c10539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
This study aimed to investigate the digestion and absorption properties of caprine milk serum proteins in comparison to human and bovine species by using rat pups to mimic preterm infants. The results indicate that caprine lactoferrin (LTF) had a shorter retention time in the intestine and released a greater number of fragments, resembling human milk LTF more closely. In contrast, caprine immunoglobulins (Igs) were similar to bovine Igs and both exhibited a longer retention time in the intestine. For absorption, caprine Igs could be absorbed intact, which was similar to human and bovine Igs, whereas caprine LTF fragments were found in jejunum but not in plasma of rat pups. This is similar to bovine LTF but differed from human LTF as human LTF could be absorbed intact in plasma of rat pups at 20 min. In addition, the absorption rate of peptides and amino acids from caprine milk serum was similar to that of human milk serum, which was higher than that from bovine milk serum. This study aimed to enhance our understanding of the differences in bioavailability of LTF and Igs derived from caprine, human milk, and bovine milk, thereby offering guidance for selecting protein sources for premature infants.
Collapse
Affiliation(s)
- Lina Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Dairy Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ying Ma
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Kasper Hettinga
- International Joint Research Laboratory for Dairy Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Food Quality & Design Group, Wageningen University, Wageningen 6708WG, The Netherlands
| | - Peng Zhou
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Dairy Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Eker F, Akdaşçi E, Duman H, Yalçıntaş YM, Canbolat AA, Kalkan AE, Karav S, Šamec D. Antimicrobial Properties of Colostrum and Milk. Antibiotics (Basel) 2024; 13:251. [PMID: 38534686 DOI: 10.3390/antibiotics13030251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
The growing number of antibiotic resistance genes is putting a strain on the ecosystem and harming human health. In addition, consumers have developed a cautious attitude towards chemical preservatives. Colostrum and milk are excellent sources of antibacterial components that help to strengthen the immunity of the offspring and accelerate the maturation of the immune system. It is possible to study these important defenses of milk and colostrum, such as lactoferrin, lysozyme, immunoglobulins, oligosaccharides, etc., as biotherapeutic agents for the prevention and treatment of numerous infections caused by microbes. Each of these components has different mechanisms and interactions in various places. The compound's mechanisms of action determine where the antibacterial activity appears. The activation of the antibacterial activity of milk and colostrum compounds can start in the infant's mouth during lactation and continue in the gastrointestinal regions. These antibacterial properties possess potential for therapeutic uses. In order to discover new perspectives and methods for the treatment of bacterial infections, additional investigations of the mechanisms of action and potential complexes are required.
Collapse
Affiliation(s)
- Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey
| | - Yalçın Mert Yalçıntaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey
| | - Ahmet Alperen Canbolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey
| | - Arda Erkan Kalkan
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey
| | - Dunja Šamec
- Department of Food Technology, University North, Trg Dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia
| |
Collapse
|
4
|
Suzuki N, Harada R, Tsugami Y, Nii T, Isobe N. Concentrations of antimicrobial components in milk at dry off and postpartum and their relationships to new high somatic cell counts at quarter level in dairy cows. J DAIRY RES 2024; 91:70-72. [PMID: 38361416 DOI: 10.1017/s0022029924000050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
We investigated the antimicrobial components in cow milk at dry off and postpartum and their contribution in preventing new high SCC at quarter level. Milk samples from 72 quarters of 19 lactating cows were collected at last milking before dry off and at 7 d after parturition. Milk yield of each cow was recorded and SCC, IgG, IgA, lactoferrin, lingual antimicrobial peptide (LAP), and S100A7 concentrations in each quarter milk sample were measured. The postpartum milk yield was significantly higher than that at dry off. The IgG, IgA and lactoferrin concentrations in milk at dry off were significantly higher than those at postpartum, whereas the LAP concentration was lower. Quarters with SCC < 300 000 cells/ml at both dry off and postpartum were classified as persistent low SCC (PL) whereas those that rose above that same threshold postpartum were classified as new high SCC (NH). At dry off, IgG and LAP concentrations in milk were significantly higher in PL than in NH. These results suggest that high LAP concentrations during the dry period may contribute toward the prevention of new high SCC.
Collapse
Affiliation(s)
- Naoki Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 7369-8528, Japan
| | - Rika Harada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 7369-8528, Japan
| | - Yusaku Tsugami
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 7369-8528, Japan
| | - Takahiro Nii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 7369-8528, Japan
| | - Naoki Isobe
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 7369-8528, Japan
| |
Collapse
|
5
|
Avalos-Gómez C, Ramírez-Rico G, Ruiz-Mazón L, Sicairos NL, Serrano-Luna J, de la Garza M. Lactoferrin: An Effective Weapon in the Battle Against Bacterial Infections. Curr Pharm Des 2022; 28:3243-3260. [PMID: 36284379 DOI: 10.2174/1381612829666221025153216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/27/2022] [Indexed: 01/28/2023]
Abstract
The emergence of multidrug-resistant bacterial strains with respect to commercially available antimicrobial drugs has marked a watershed in treatment therapies to fight pathogens and has stimulated research on alternative remedies. Proteins of the innate immune system of mammals have been highlighted as potentially yielding possible treatment options for infections. Lactoferrin (Lf) is one of these proteins; interestingly, no resistance to it has been found. Lf is a conserved cationic nonheme glycoprotein that is abundant in milk and is also present in low quantities in mucosal secretions. Moreover, Lf is produced and secreted by the secondary granules of neutrophils at infection sites. Lf is a molecule of approximately 80 kDa that displays multiple functions, such as antimicrobial, anti-viral, anti-inflammatory, and anticancer actions. Lf can synergize with antibiotics, increasing its potency against bacteria. Lactoferricins (Lfcins) are peptides resulting from the N-terminal end of Lf by proteolytic cleavage with pepsin. They exhibit several anti-bacterial effects similar to those of the parental glycoprotein. Synthetic analog peptides exhibiting potent antimicrobial properties have been designed. The aim of this review is to update understanding of the structure and effects of Lf and Lfcins as anti-bacterial compounds, focusing on the mechanisms of action in bacteria and the use of Lf in treatment of infections in patients, including those studies where no significant differences were found. Lf could be an excellent option for prevention and treatment of bacterial diseases, mainly in combined therapies with antibiotics or other antimicrobials.
Collapse
Affiliation(s)
- Christian Avalos-Gómez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico
| | - Gerardo Ramírez-Rico
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico.,Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Km 2.5 Carretera Cuautitlán- Teoloyucan, Cuautitlán Izcalli, 54714, Mexico
| | - Lucero Ruiz-Mazón
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico
| | - Nidia León Sicairos
- Departamento de Investigación, Hospital Pediátrico de Sinaloa, Unidad de Investigación, Facultad de Medicina, Universidad Autónoma de Sinaloa, Mexico
| | - Jesús Serrano-Luna
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico, Mexico
| |
Collapse
|
6
|
Bielecka M, Cichosz G, Czeczot H. Antioxidant, antimicrobial and anticarcinogenic activities of bovine milk proteins and their hydrolysates - A review. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105208] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Suzuki N, Purba FY, Nii T, Isobe N. Effect of 6‐n‐propyl‐2‐thiouracil or dexamethasone administration on the responses of antimicrobial components in goat milk to intramammary lipopolysaccharide infusion. Anim Sci J 2022; 93:e13773. [PMID: 36274645 DOI: 10.1111/asj.13773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/16/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022]
Abstract
Heat stress impacts the immune system of dairy animals by altering the hypothalamic-pituitary-adrenal axis and thyroid function, leading to conditions such as hypothyroidism and hypercortisolism. This study aimed to elucidate the effect of hypothyroidism and hypercortisolism on the response of mammary innate immune function to inflammation caused by Escherichia coli in dairy goats. To induce hypothyroidism and hypercortisolism, we administered 6-n-propyl-2-thiouracil (PTU; for 21 days) and dexamethasone (DEX; for 5 days), respectively, to six goats each; six goats without treatment were used as the control group. After treatment, lipopolysaccharide (LPS) from E. coli O111 was infused into the mammary gland. Somatic cell counts (SCC) and levels of lactoferrin (LF), S100A7, immunoglobulin A (IgA), and interleukin-8 (IL-8) in milk until 7 days after LPS infusion were measured. An increase in SCC after LPS infusion was inhibited in both PTU and DEX groups, and an increase in LF after LPS infusion was inhibited in PTU group, compared with that in the control group. The results of the present study suggest that the recruitment of neutrophils and LF production decreased under hypothyroidism or hypercortisolism, which may be one of the causes underlying increased incidence of mastitis in dairy animals under heat stress conditions.
Collapse
Affiliation(s)
- Naoki Suzuki
- Graduate school of Integrated Sciences for Life Hiroshima University, Higashi‐Hiroshima Hiroshima Japan
| | - Fika Yuliza Purba
- Veterinary Medicine Study Program, Faculty of Medicine Hasanuddin University Makassar Indonesia
| | - Takahiro Nii
- Graduate school of Integrated Sciences for Life Hiroshima University, Higashi‐Hiroshima Hiroshima Japan
| | - Naoki Isobe
- Graduate school of Integrated Sciences for Life Hiroshima University, Higashi‐Hiroshima Hiroshima Japan
| |
Collapse
|
8
|
Sangild PT, Vonderohe C, Melendez Hebib V, Burrin DG. Potential Benefits of Bovine Colostrum in Pediatric Nutrition and Health. Nutrients 2021; 13:nu13082551. [PMID: 34444709 PMCID: PMC8402036 DOI: 10.3390/nu13082551] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/02/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Bovine colostrum (BC), the first milk produced from cows after parturition, is increasingly used as a nutritional supplement to promote gut function and health in other species, including humans. The high levels of whey and casein proteins, immunoglobulins (Igs), and other milk bioactives in BC are adapted to meet the needs of newborn calves. However, BC supplementation may improve health outcomes across other species, especially when immune and gut functions are immature in early life. We provide a review of BC composition and its effects in infants and children in health and selected diseases (diarrhea, infection, growth-failure, preterm birth, necrotizing enterocolitis (NEC), short-bowel syndrome, and mucositis). Human trials and animal studies (mainly in piglets) are reviewed to assess the scientific evidence of whether BC is a safe and effective antimicrobial and immunomodulatory nutritional supplement that reduces clinical complications related to preterm birth, infections, and gut disorders. Studies in infants and animals suggest that BC should be supplemented at an optimal age, time, and level to be both safe and effective. Exclusive BC feeding is not recommended for infants because of nutritional imbalances relative to human milk. On the other hand, adverse effects, including allergies and intolerance, appear unlikely when BC is provided as a supplement within normal nutrition guidelines for infants and children. Larger clinical trials in infant populations are needed to provide more evidence of health benefits when patients are supplemented with BC in addition to human milk or formula. Igs and other bioactive factors in BC may work in synergy, making it critical to preserve bioactivity with gentle processing and pasteurization methods. BC has the potential to become a safe and effective nutritional supplement for several pediatric subpopulations.
Collapse
Affiliation(s)
- Per Torp Sangild
- Comparative Pediatrics & Nutrition, University of Copenhagen, DK-1870 Copenhagen, Denmark;
- Department of Neonatology, Rigshospitalet, DK-1870 Copenhagen, Denmark
- Department of Pediatrics, Odense University Hospital, DK-5000 Odense, Denmark
| | - Caitlin Vonderohe
- USDA-ARS Children’s Nutrition Research Center, Pediatrics, Gastroenterology & Nutrition, Baylor College of Medicine, Houston, TX 77030, USA; (C.V.); (V.M.H.)
| | - Valeria Melendez Hebib
- USDA-ARS Children’s Nutrition Research Center, Pediatrics, Gastroenterology & Nutrition, Baylor College of Medicine, Houston, TX 77030, USA; (C.V.); (V.M.H.)
| | - Douglas G. Burrin
- USDA-ARS Children’s Nutrition Research Center, Pediatrics, Gastroenterology & Nutrition, Baylor College of Medicine, Houston, TX 77030, USA; (C.V.); (V.M.H.)
- Correspondence: ; Tel.: +1-713-798-7049
| |
Collapse
|
9
|
Meng F, Uniacke-Lowe T, Ryan AC, Kelly AL. The composition and physico-chemical properties of human milk: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Sienkiewicz M, Szymańska P, Fichna J. Supplementation of Bovine Colostrum in Inflammatory Bowel Disease: Benefits and Contraindications. Adv Nutr 2021; 12:533-545. [PMID: 33070186 PMCID: PMC8009748 DOI: 10.1093/advances/nmaa120] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a group of chronic relapsing disorders whose etiology has not been fully explained. Therefore, available therapeutic approaches for IBD patients are still insufficient. Current treatment strategies are targeted to immune system dysfunctions, often associated with alternations in the microbiota, which contribute to the development of chronic intestinal inflammation. Therapeutics include anti-inflammatory drugs such as aminosalicylates and corticosteroids, immunosuppressive agents, antibiotics, and biological agents such as infliximab and vedolizumab. Auxiliary therapies involve a balanced and personalized diet, healthy lifestyle, avoiding stress, as well as dietary supplements. In this review, we discuss the use of bovine colostrum (BC) as a therapeutic agent, including its advantages and contraindications. We summarize our knowledge on well-researched BC constituents and their effects on the gastrointestinal tract as evidenced in in vitro and in vivo studies.
Collapse
Affiliation(s)
- Michał Sienkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Patrycja Szymańska
- Department of Hemostasis and Hemostatic Disorders, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
11
|
Suzuki N, Yuliza Purba F, Hayashi Y, Nii T, Yoshimura Y, Isobe N. Seasonal variations in the concentration of antimicrobial components in milk of dairy cows. Anim Sci J 2020; 91:e13427. [PMID: 32696553 DOI: 10.1111/asj.13427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/07/2020] [Accepted: 06/25/2020] [Indexed: 11/26/2022]
Abstract
The incidence of bovine mastitis and the bulk milk somatic cell count (BMSCC) are influenced by season, which may be associated with innate immune functions, including antimicrobial components in mammary glands. Therefore, the present study was conducted to examine the effect of season on antimicrobial components in milk. Rectal temperature and plasma cortisol, thyroxine, and derivatives of reactive oxygen metabolites (d-ROMs) were measured as stress parameters. Concentrations of lactoferrin (LF), lingual antimicrobial peptide (LAP), psoriasin (S100A7), and Immunoglobulin A (IgA) in milk were measured as indicators of innate immune function. LF and LAP concentrations were significantly lower in summer than in winter and spring, respectively, whereas the concentration of S100A7 was significantly lower in winter than in spring and autumn. The rectal temperature was significantly higher in summer than in other seasons, whereas plasma cortisol, thyroxine, and d-ROMs did not exhibit any seasonal variation. In conclusion, even though stress parameters were not changed, the concentration of antimicrobial components, such as LF and LAP, decreased in summer, which may explain the frequent occurrence of mastitis during this season.
Collapse
Affiliation(s)
- Naoki Suzuki
- Hiroshima Agricultural Mutual Aid Association, Higashi-Hiroshima, Japan.,Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Fika Yuliza Purba
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan.,Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | | | - Takahiro Nii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yukinori Yoshimura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Naoki Isobe
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
12
|
Cao X, Zheng Y, Wu S, Yang N, Wu J, Liu B, Ye W, Yang M, Yue X. Characterization and comparison of milk fat globule membrane N-glycoproteomes from human and bovine colostrum and mature milk. Food Funct 2019; 10:5046-5058. [PMID: 31359016 DOI: 10.1039/c9fo00686a] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human and bovine milk fat globule membrane (MFGM) proteins have been identified and characterized; however, their glycosylation during lactation remains unclear. We adopted a glycoproteomics approach to profile and compare MFGM N-glycoproteomes in human and bovine milk during lactation. A total of 843, 718, 614, and 273 N-glycosite peptides corresponding to 465, 423, 334, and 176 glycoproteins were identified in human colostrum, human mature milk, bovine colostrum, and bovine mature milk, respectively. The biological functions of these MFGM N-glycoproteins were revealed through bioinformatics. Substantial differences were observed between human and bovine milk, and immune-related MFGM N-glycoproteins varied between colostrum and mature milk from both species. Our results expand current knowledge of MFGM N-glycoproteomes, and further demonstrate the complexity and biological functions of MFGM N-glycosylation. These data can provide references for the application of bovine MFGM N-glycoproteins in infant formula to resemble human milk and in functional foods.
Collapse
Affiliation(s)
- Xueyan Cao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Shigeno Y, Zhang H, Banno T, Usuda K, Nochi T, Inoue R, Watanabe G, Jin W, Benno Y, Nagaoka K. Gut microbiota development in mice is affected by hydrogen peroxide produced from amino acid metabolism during lactation. FASEB J 2018; 33:3343-3352. [PMID: 30433825 DOI: 10.1096/fj.201801462r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of gut microbiota during infancy is an important event that affects the health status of the host; however, the mechanism governing it is not fully understood. l-Amino acid oxidase 1 (LAO1) is a flavoprotein that catalyzes the oxidative deamination of particular l-amino acids and converts them into keto acids, ammonia, and H2O2. Our previous study showed that LAO1 is present in mouse milk and exerts protection against bacteria by its production of H2O2. The data led us to consider whether LAO1, H2O2, or both could impact infant gut microbiota development via mother's milk consumption in mice. Different gut microbiota profiles were observed in the wild-type (WT) and LAO1-knockout mouse pups. The WT pups' microbiota was relatively simple and composed of only a few dominant bacteria, such as Lactobacillus, whereas the lactating knockout pups had high microbiota diversity. Cross-fostering experiments indicated that WT milk (containing LAO1) has the ability to suppress the diversity of microbiota in pups. We observed that the stomach content of pups fed WT milk had LAO1 proteins and the ability to produce H2O2. Moreover, culture experiments showed that Lactobacillus was abundant in the feces of pups fed WT milk and that Lactobacillus was more resistant to H2O2 than Bifidobacterium and Escherichia. Human breast milk produces very little H2O2, which could be the reason for Lactobacillus not being dominant in the feces of breast-fed human infants. In mouse mother's milk, H2O2 is generated from the process of free amino acid metabolism, and H2O2 may be a key player in regulating the initial acquisition and development of gut microbiota, especially growth of Lactobacillus, during infancy.-Shigeno, Y., Zhang, H., Banno, T., Usuda, K., Nochi, T., Inoue, R., Watanabe, G., Jin, W., Benno, Y., Nagaoka, K. Gut microbiota development in mice is affected by hydrogen peroxide produced from amino acid metabolism during lactation.
Collapse
Affiliation(s)
- Yuko Shigeno
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Benno Laboratory, RIKEN Innovation Center, Wako, Japan
| | - Haolin Zhang
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Taihei Banno
- Benno Laboratory, RIKEN Innovation Center, Wako, Japan
| | - Kento Usuda
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tomonori Nochi
- Laboratory of Mucosal Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Agricultural and Life Sciences, Kyoto Prefectural University, Kyoto, Japan; and
| | - Gen Watanabe
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Wanzhu Jin
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yoshimi Benno
- Benno Laboratory, RIKEN Innovation Center, Wako, Japan
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
14
|
Cakebread J, Hodgkinson A, Wallace O, Callaghan M, Hurford D, Wieliczko R, Harris P, Haigh B. Bovine milk derived skimmed milk powder and whey protein concentrate modulates Citrobacter rodentium shedding in the mouse intestinal tract. PeerJ 2018; 6:e5359. [PMID: 30065896 PMCID: PMC6065463 DOI: 10.7717/peerj.5359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/12/2018] [Indexed: 11/20/2022] Open
Abstract
Skimmed milk powder (SMP) and whey protein concentrate (WPC) were manufactured from fresh milk collected from cows producing high or low Immunoglobulin (Ig) A levels in their milk. In addition commercial products were purchased for use as diluent or control treatments. A murine enteric disease model (Citrobacter rodentium) was used to assess whether delivery of selected bioactive molecules (IgA, IgG, Lactoferrin (Lf)) or formulation delivery matrix (SMP, WPC) affected faecal shedding of bacteria in C. rodentium infected mice. In trial one, faecal pellets collected from mice fed SMP containing IgA (0.007-0.35 mg/mL), IgG (0.28-0.58 mg/mL) and Lf (0.03-0.1 mg/mL) contained fewer C. rodentium (cfu) compared to control mice fed water (day 8, p < 0.04, analysis of variance (ANOVA) followed by Fisher's unprotected least significant difference (ULSD)). In trial two, WPC containing IgA (0.35-1.66 mg/mL), IgG (0.58-2.36 mg/mL) and Lf (0.02-0.45 mg/mL) did not affect C. rodentium shedding, but SMP again reduced faecal C. rodentium levels (day 12, p < 0.04, ANOVA followed by Fisher's ULSD). No C. rodentium was detected in sham phosphate-buffered saline inoculated mice. Mice fed a commercial WPC shed significantly greater numbers of C. rodentium over 4 consecutive days (Fishers ULSD test), compared to control mice fed water. These data indicate that SMP, but not WPC, modulates faecal shedding in C. rodentium-infected mice and may impact progression of C. rodentium infection independently of selected bioactive concentration. This suggests that food matrix can impact biological effects of foods.
Collapse
Affiliation(s)
- Julie Cakebread
- Dairy Foods Team, Food & Bio-based Products, AgResearch, Hamilton, New Zealand
| | - Alison Hodgkinson
- Dairy Foods Team, Food & Bio-based Products, AgResearch, Hamilton, New Zealand
| | - Olivia Wallace
- Dairy Foods Team, Food & Bio-based Products, AgResearch, Hamilton, New Zealand
| | - Megan Callaghan
- Dairy Foods Team, Food & Bio-based Products, AgResearch, Hamilton, New Zealand
| | - Daralyn Hurford
- Dairy Foods Team, Food & Bio-based Products, AgResearch, Hamilton, New Zealand
| | - Robert Wieliczko
- Dairy Foods Team, Food & Bio-based Products, AgResearch, Hamilton, New Zealand
| | - Paul Harris
- Dairy Foods Team, Food & Bio-based Products, AgResearch, Hamilton, New Zealand
| | - Brendan Haigh
- Dairy Foods Team, Food & Bio-based Products, AgResearch, Hamilton, New Zealand.,Miraka Limited, Taupo, New Zealand
| |
Collapse
|
15
|
Chen Y, Lan P. Total Syntheses and Biological Evaluation of the Ganoderma lucidum Alkaloids Lucidimines B and C. ACS OMEGA 2018; 3:3471-3481. [PMID: 30023870 PMCID: PMC6045472 DOI: 10.1021/acsomega.8b00295] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
Although a range of pharmacologically active compounds has been obtained from the mycelium and fruiting bodies of Ganoderma lucidum, the biological properties of the alkaloids present in this functional food remain unknown. Herein, we report total syntheses of lucidimines B and C, key members of the first family of alkaloids isolated from G. lucidum, and the evaluation of these synthetically derived materials as antioxidants and antiproliferative agents. Lucidimine B proved to be a better antioxidant than congener C. Similarly, lucidimine B exhibited antiproliferative properties toward MCF-7 cells (an EC50 value of 0.27 ± 0.02 μmol/mL), whereas lucidimine C was inactive. The former alkaloid arrested the MCF-7 cell cycle in the S phase by inducing DNA fragmentation, hence reducing the mitochondrial membrane potential. This work thus demonstrates, for the first time, that the alkaloidal constituents derived from G. lucidum are biologically active and may, therefore, contribute to the beneficial health claims made for this nutraceutical.
Collapse
Affiliation(s)
- Yongsheng Chen
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Ping Lan
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
16
|
Hodgkinson AJ, Cakebread J, Callaghan M, Harris P, Brunt R, Anderson RC, Armstrong KM, Haigh B. Comparative innate immune interactions of human and bovine secretory IgA with pathogenic and non-pathogenic bacteria. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 68:21-25. [PMID: 27845173 DOI: 10.1016/j.dci.2016.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/10/2016] [Accepted: 11/10/2016] [Indexed: 06/06/2023]
Abstract
Secretory IgA (SIgA) from milk contributes to early colonization and maintenance of commensal/symbiotic bacteria in the gut, as well as providing defence against pathogens. SIgA binds bacteria using specific antigenic sites or non-specifically via its glycans attached to α-heavy-chain and secretory component. In our study, we tested the hypothesis that human and bovine SIgA have similar innate-binding activity for bacteria. SIgAs, isolated from human and bovine milk, were incubated with a selection of commensal, pathogenic and probiotic bacteria. Using flow cytometry, we measured numbers of bacteria binding SIgA and their level of SIgA binding. The percentage of bacteria bound by human and bovine SIgA varied from 30 to 90% depending on bacterial species and strains, but was remarkably consistent between human and bovine SIgA. The level of SIgA binding per bacterial cell was lower for those bacteria that had a higher percentage of SIgA-bound bacteria, and higher for those bacteria that had lower percentage of SIgA-bound bacteria. Overall, human and bovine SIgA interacted with bacteria in a comparable way. This contributes to longer term research about the potential benefits of bovine SIgA for human consumers.
Collapse
Affiliation(s)
- Alison J Hodgkinson
- Dairy Foods Team, Food & Bio-Based Products Group, AgResearch Ruakura, Hamilton, New Zealand.
| | - Julie Cakebread
- Dairy Foods Team, Food & Bio-Based Products Group, AgResearch Ruakura, Hamilton, New Zealand
| | - Megan Callaghan
- Dairy Foods Team, Food & Bio-Based Products Group, AgResearch Ruakura, Hamilton, New Zealand
| | - Paul Harris
- Dairy Foods Team, Food & Bio-Based Products Group, AgResearch Ruakura, Hamilton, New Zealand
| | - Rachel Brunt
- Dairy Foods Team, Food & Bio-Based Products Group, AgResearch Ruakura, Hamilton, New Zealand
| | - Rachel C Anderson
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch Grasslands, Palmerston North, New Zealand; Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| | - Kelly M Armstrong
- Food Nutrition & Health Team, Food & Bio-Based Products Group, AgResearch Grasslands, Palmerston North, New Zealand
| | - Brendan Haigh
- Dairy Foods Team, Food & Bio-Based Products Group, AgResearch Ruakura, Hamilton, New Zealand
| |
Collapse
|
17
|
Hodgkinson AJ, Young W, Cakebread JA, Haigh BJ. Feeding bovine milks with low or high IgA levels is associated with altered re-establishment of murine intestinal microbiota after antibiotic treatment. PeerJ 2016; 4:e2518. [PMID: 27703861 PMCID: PMC5047218 DOI: 10.7717/peerj.2518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/02/2016] [Indexed: 11/30/2022] Open
Abstract
Antibiotics are a vital and commonly used therapeutic tool, but their use also results in profound changes in the intestinal microbiota that can, in turn, have significant health consequences. Understanding how the microbiota recovers after antibiotic treatment will help to devise strategies for mitigating the adverse effects of antibiotics. Using a mouse model, we have characterized the changes occurring in the intestinal microbiota immediately after five days exposure to ampicillin, and then at three and fourteen days thereafter. During the fourteen day period of antibiotic recovery, groups of mice were fed either water, cows’ milk containing high levels of IgA, or cows’ milk containing low levels of IgA as their sole source of liquid. Effects on microbiota of feeding milks for 14 days were also assessed in groups of mice that had no ampicillin exposure. Changes in microbiota were measured by high throughput sequencing of the V4 to V6 variable regions of the 16S ribosomal RNA gene. As expected, exposure to ampicillin led to profound changes to the types and abundance of bacteria present, along with a loss of diversity. At 14 days following antibiotic exposure, mice fed water had recovered microbiota compositions similar to that prior to antibiotics. However, feeding High-IgA milk to mice that has been exposed to antibiotics was associated with altered microbiota compositions, including increased relative abundance of Lactobacillus and Barnesiella compared to the start of the study. Mice exposed to antibiotics then fed Low-IgA milk also showed increased Barnesiella at day 14. Mice without antibiotic perturbation, showed no change in their microbiota after 14 days of milk feeding. Overall, these findings add to a knowledge platform for optimizing intestinal function after treatment with antibiotics in the human population.
Collapse
Affiliation(s)
| | - Wayne Young
- Food & Bio-based Products, AgResearch , Palmerston North , New Zealand
| | | | - Brendan J Haigh
- Food & Bio-based Products, AgResearch , Hamilton , New Zealand
| |
Collapse
|