1
|
Suryaningtyas IT, Je JY. Therapeutic effects of blue mussel-derived peptides (PIISVYWK and FSVVPSPK) on non-alcoholic fatty liver disease by modulating lipid metabolism and inflammation in high-fat diet-induced mice. Tissue Cell 2024; 91:102630. [PMID: 39579737 DOI: 10.1016/j.tice.2024.102630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a progressive condition, advancing from simple hepatic lipid accumulation to inflammation, fibrosis, and increased risk of mortality. This study explores the therapeutic efficacy of bioactive peptides PIISVYWK (P1) and FSVVPSPK (P2) in ameliorating NAFLD in both oleic acid-treated HepG2 cells and high-fat diet (HFD)-induced mice. Our findings demonstrated that P1 and P2 significantly reduced hepatic fat deposition, enhanced lipolysis by promoting the release of free glycerol and free fatty acids, and suppressed key de novo lipogenesis-related proteins, including peroxisome proliferator-activated receptor γ (PPARγ), CCAAT-enhancer-binding protein α (C/EBPα), sterol regulatory element-binding protein 1 (SREBP-1), and fatty acid synthase (FAS). Furthermore, both peptides stimulated fatty acid oxidation via phosphorylation of AMP-activated protein kinase (AMPK) and hormone-sensitive lipase (HSL). Notably, reductions in body and liver weight, along with improved cholesterol profiles and liver function markers (alanine transaminase and aspartate aminotransferase), were observed in HFD mice. Additionally, P1 and P2 significantly attenuated the production of pro-inflammatory cytokines, such as tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in both in vitro and in vivo models. Collectively, these results highlight the potent therapeutic potential of P1 and P2 in mitigating NAFLD progression, offering a promising intervention for this increasingly prevalent metabolic disorder.
Collapse
Affiliation(s)
- Indyaswan Tegar Suryaningtyas
- Department of Nutrition, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Food Technology and Processing, National Research and Innovation Agency, Yogyakarta 55861, Indonesia
| | - Jae-Young Je
- Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
2
|
Fang B, Luo J, Cui Z, Liu R, Wang P, Zhang J. Pea Albumin Alleviates Oleic Acid-Induced Lipid Accumulation in LO2 Cells Through Modulating Lipid Metabolism and Fatty Acid Oxidation Pathways. Foods 2024; 13:3482. [PMID: 39517266 PMCID: PMC11545291 DOI: 10.3390/foods13213482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/11/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Excessive lipid accumulation in the liver can cause NAFLD, leading to chronic liver injury. To relieve liver lipid accumulation by dietary proteins, this study used oleic acid (OA) induction to establish a stable in vitro LO2 cell lipid accumulation model. This model was used to explore the mechanism by which pea albumin (PA) regulates lipid levels in LO2 cells. PA has been shown to ameliorate OA-induced lipid accumulation in LO2 cells by reducing the aggregation of intracellular lipid droplets and lowering cell TG and TC levels. In addition, it can alleviate OA-induced LO2 cell damage and oxidative stress, reduce cellular ALT and AST secretion, lower cellular MDA levels, and increase GSH-Px viability. Regulation of lipid metabolism in LO2 cells involves inhibiting the cellular lipid synthesis pathway and activating the expression of proteins related to the triglyceride catabolic and fatty acid oxidation pathways. PA contributes to regulating lipid accumulation in LO2 cells. This study provides new insights into alleviating liver fat accumulation and a theoretical basis for exploring the mechanism of protein regulation of liver cell lipid metabolism.
Collapse
Affiliation(s)
- Bing Fang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (B.F.); (Z.C.); (R.L.); (P.W.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Jie Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410114, China;
| | - Zhengwu Cui
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (B.F.); (Z.C.); (R.L.); (P.W.)
| | - Rong Liu
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (B.F.); (Z.C.); (R.L.); (P.W.)
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (B.F.); (Z.C.); (R.L.); (P.W.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Jian Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; (B.F.); (Z.C.); (R.L.); (P.W.)
| |
Collapse
|
3
|
Su F, Koeberle A. Regulation and targeting of SREBP-1 in hepatocellular carcinoma. Cancer Metastasis Rev 2024; 43:673-708. [PMID: 38036934 PMCID: PMC11156753 DOI: 10.1007/s10555-023-10156-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is an increasing burden on global public health and is associated with enhanced lipogenesis, fatty acid uptake, and lipid metabolic reprogramming. De novo lipogenesis is under the control of the transcription factor sterol regulatory element-binding protein 1 (SREBP-1) and essentially contributes to HCC progression. Here, we summarize the current knowledge on the regulation of SREBP-1 isoforms in HCC based on cellular, animal, and clinical data. Specifically, we (i) address the overarching mechanisms for regulating SREBP-1 transcription, proteolytic processing, nuclear stability, and transactivation and (ii) critically discuss their impact on HCC, taking into account (iii) insights from pharmacological approaches. Emphasis is placed on cross-talk with the phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt)-mechanistic target of rapamycin (mTOR) axis, AMP-activated protein kinase (AMPK), protein kinase A (PKA), and other kinases that directly phosphorylate SREBP-1; transcription factors, such as liver X receptor (LXR), peroxisome proliferator-activated receptors (PPARs), proliferator-activated receptor γ co-activator 1 (PGC-1), signal transducers and activators of transcription (STATs), and Myc; epigenetic mechanisms; post-translational modifications of SREBP-1; and SREBP-1-regulatory metabolites such as oxysterols and polyunsaturated fatty acids. By carefully scrutinizing the role of SREBP-1 in HCC development, progression, metastasis, and therapy resistance, we shed light on the potential of SREBP-1-targeting strategies in HCC prevention and treatment.
Collapse
Affiliation(s)
- Fengting Su
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
4
|
Hu X, Wang M, Cai F, Liu L, Cheng Z, Zhao J, Zhang Q, Long C. A comprehensive review of medicinal Toxicodendron (Anacardiaceae): Botany, traditional uses, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116829. [PMID: 37429501 DOI: 10.1016/j.jep.2023.116829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/03/2023] [Accepted: 06/20/2023] [Indexed: 07/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Comprising of about 30 species, the genus Toxicodendron (Anacardiaceae) are mainly distributed in East Asia and North America. Among them, 13 species have been traditionally used as folk medicines in Asia and other parts of the world to treat blood diseases, abnormal bleeding, skin diseases, gastrointestinal diseases, liver diseases, bone injury, lung diseases, neurological diseases, cardiovascular diseases, tonic, cancer, eye diseases, menstrual irregularities, inflammation, rheumatism, diabetes mellitus, rattlesnake bite, internal parasites, contraceptive, vomiting and diarrhea. AIM OF THE STUDY To date, no comprehensive review on Toxicodendron has been published and the scientific basis of the traditional medicinal benefits of Toxicodendron have been less reported. Therefore, this review aims to provide a reference for further research and development on medicinal purpose of Toxicodendron by summarizing the works (from 1980 to 2023), and focusing on its botany, traditional uses, phytochemistry and pharmacology. MATERIALS AND METHODS The names of the species were from The Plant List Database (http://www.theplantlist.org), World Flora Online (http://www.worldfloraonline.org), Catalogue of Life Database (https://www.catalogueoflife.org/) and Plants for A Future Database (https://pfaf.org/user/Default.aspx). And the search terms "Toxicodendron" and "the names of 31 species and their synonyms" were used to search for information from electronic databases such as Web of Science, Scopus, Google Scholar, Science Direct, PubMed, Baidu Scholar, Springer, and Wiley Online Library. Moreover, PhD and MSc dissertations were also used to support this work. RESULTS These species on Toxicodendron are widely used in folkloric medicine and modern pharmacological activities. So far, approximately 238 compounds, mainly phenolic acids and their derivatives, urushiols, flavonoids and terpenoids, are extracted and isolated from Toxicodendron plants, commonly, T. trichocarpum, T. vernicifluum, T. succedaneum, and T. radicans. Among them, phenolic acids and flavonoids are the main compound classes that show pharmacological activities in Toxicodendron plants both in vitro and in vivo. Furthermore, the extracts and single compounds of these species show a wide range of activities, such as antioxidant, antibacterial, anti-inflammatory, anti-tumor, liver protection, fat reduction, nerve protection, and treatment of blood diseases. CONCLUSIONS Selected species of Toxicodendron have been used as herbal medicines in the Southeast Asian for a long time. Furthermore, some bioactive constituents have been identified from them, so plants in this genus may be potential new drugs. The existing research on Toxicodendron has been reviewed, and the phytochemistry and pharmacology provide theoretical basis for some of the traditional medicinal uses. Therefore, in this review, the traditional medicinal, phytochemical and modern pharmacology of Toxicodendron plants are summarized to help future researchers to find new drug leads or to get a better understanding of structure-activity relationships.
Collapse
Affiliation(s)
- Xian Hu
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Ethnology and Sociology, Minzu University of China, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Miaomiao Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Fei Cai
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Liya Liu
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Zhuo Cheng
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Jiaqi Zhao
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Ethnology and Sociology, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Qing Zhang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Chunlin Long
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China; Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Institute of National Security Studies, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
5
|
Kim JE, Han H, Xu Y, Lee MH, Lee HJ. Efficacy of FRO on Acne Vulgaris Pathogenesis. Pharmaceutics 2023; 15:1885. [PMID: 37514071 PMCID: PMC10384752 DOI: 10.3390/pharmaceutics15071885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/14/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Acne vulgaris is a common skin disease characterized by increased sebum production, inflammation, and Cutibacterium acnes (CA: formerly Propionibacterium acnes) hyperproliferation in pilosebaceous follicles. This study evaluated the efficacy of FRO, a formula composed of fermented Rhus verniciflua Stokes and Orostachys japonicus, against acne pathogenesis via antimicrobial assessment and an in vitro analysis. Stimulated model cells treated with hormones, CA, or lipopolysaccharide (LPS) were designed based on the characteristics of acne pathogenesis, including inflammation and sebum hypersecretion. High-performance liquid chromatography, disc diffusion, MTS, and western blotting assays were used to examine potential anti-acne effects. FRO was determined to contain phenolics such as gallic acid, fisetin, quercetin, and kaempferol. FRO exerted antimicrobial activity against CA and inhibited reactive oxygen species production that was otherwise increased by LPS or CA in HaCaT cells. Additionally, FRO exerted anti-inflammatory effects by inhibiting iNOS, TNF-α, IL-6, p-STAT-3, and p-NF-κB, which were previously upregulated by LPS or CA in THP-1 and HaCaT cells. FRO inhibited lipogenesis induced by steroid hormones and CA by decreasing FAS and SREBP-1 levels in sebocytes. Additionally, FRO down-regulated the androgen receptor, 5α-reductase, SREBP-1, and FAS levels, which were upregulated by steroid hormone in LNCaP cells. Taken together, our findings suggest that FRO alleviates acne by inhibiting the growth of CA, inflammation, and excess sebum and could be used for functional cosmetics or acne treatments.
Collapse
Affiliation(s)
- Jung-Eun Kim
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hengmin Han
- Department of Cancer Preventive Material Development, College of Korean Medicine, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdamun-gu, Seoul 02447, Republic of Korea
| | - Yinzhu Xu
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Min-Ho Lee
- Department of Food Science & Services, Eulji University, Seongnam 13135, Republic of Korea
| | - Hyo-Jeong Lee
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Cancer Preventive Material Development, College of Korean Medicine, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdamun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
6
|
Zong J, Shen J, Liu X, Liu J, Zhang J, Zhou C, Fan Y, Jin Y. Lithium Chloride Promotes Milk Protein and Fat Synthesis in Bovine Mammary Epithelial Cells via HIF-1α and β-Catenin Signaling Pathways. Biol Trace Elem Res 2023; 201:180-195. [PMID: 35080710 DOI: 10.1007/s12011-022-03131-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/21/2022] [Indexed: 01/11/2023]
Abstract
Lithium is one of the trace elements with many physiological properties, such as being anti-cancer, anti-viral, and anti-inflammatory. However, little is known about its effect on milk synthesis during lactation. Therefore, we selected different concentrations (5 mM, 10 mM, and 20 mM) of lithium chloride (LiCl) and assessed the effect of LiCl on bovine mammary epithelial (MAC-T) cells that underwent 4 days of differentiation induction. Moreover, we analyzed the effect of LiCl on the expression of genes related to milk fat and milk protein synthesis. Herein, LiCl (5-20 mM) significantly increased the expression of β-casein, promoted mRNA expression and phosphorylated protein expression of the signal transduction molecule and activator of transcription 5β (STAT5-β), and inhibited mRNA and protein expression of suppressor of cytokine signaling 2 (SOCS2). In contrast, 5 and 10 mM LiCl significantly inhibited expression of SOCS3. LiCl at concentration of 5-20 mM enhanced phosphorylation level of mTOR protein; at 10 mM and 20 mM, LiCl significantly promoted expression and phosphorylation of downstream ribosomal protein S6 kinase beta-1 (S6K1) protein. Considering milk fat synthesis, mRNA expression of acetyl CoA carboxylase (ACC) and lipoprotein lipase (LPL) genes was considerably increased in the presence of LiCl (5-20 mM). Additionally, increased protein expression levels of stearoyl-CoA desaturase (SCD), peroxisome proliferator-activated receptor-γ (PPARγ), and sterol regulatory element-binding protein 1 (SREBP1) were observed at all LiCl concentrations tested. Subsequently, LiCl (5-20 mM) significantly promoted protein expression and phosphorylation of β-catenin, while 10 mM and 20 mM of LiCl significantly promoted protein expression of hypoxia-inducible factor-1α (HIF-1α). Collectively, it has been shown that 10 mM LiCl can effectively activate HIF-1α, β-catenin, and β-catenin downstream signaling pathways. Conversely, at 10 mM, LiCl inhibited SOCS2 and SOCS3 protein expression through JAK2/STAT5, mTOR, and SREBP1 signaling pathways, improving synthesis of milk protein and fat. Therefore, LiCl can be used as a potential nutrient to regulate milk synthesis in dairy cows.
Collapse
Affiliation(s)
- Jinxin Zong
- Department of Animal Science, College of Animal Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Jinglin Shen
- Department of Animal Science, College of Animal Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Xinlu Liu
- Department of Animal Science, College of Animal Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Jiayi Liu
- Department of Animal Science, College of Animal Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Jing Zhang
- Department of Animal Science, College of Animal Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Changhai Zhou
- Department of Animal Science, College of Animal Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Yating Fan
- Department of Animal Science, College of Animal Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Yongcheng Jin
- Department of Animal Science, College of Animal Science, Jilin University, Changchun, 130062, People's Republic of China.
| |
Collapse
|
7
|
Ethanol Extract of Pinus koraiensis Leaves Mitigates High Fructose-Induced Hepatic Triglyceride Accumulation and Hypertriglyceridemia. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Pinus koraiensis is a valuable plant source of functional health foods and medicinal materials. Hypertriglyceridemia affects about 15–20% of adults and is related to stroke, metabolic syndromes, cardiovascular diseases, and diabetes mellitus. Dietary fructose, a risk factor for developing hypertriglyceridemia, significantly increases postprandial triglyceride (TG) levels and aggravates non-alcoholic fatty liver disease. In this study, we aimed to analyze the effect of ethanol extract from P. koraiensis needles (EPK) on fructose (Fr)-induced cell culture and animal models, respectively. Our team determined the bioactivity, such as anti-cancer, anti-obesity, anti-diabetic, and anti-hyperlipidemic functions, of P. koraiensis needle extract. The EPK markedly reduced TG levels in the liver and serum and enhanced TG excretion through feces in high-fructose-fed rats. Furthermore, the EPK inhibited de novo lipogenesis and its markers—carbohydrate response element-binding protein (ChREBP), sterol regulatory element-binding protein 1 (SREBP-1), fatty acid synthase (FAS), 3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGCR), and tumor necrosis factor-alpha (TNF-α), a pro-inflammatory marker. Consistent with the results of the in vivo experiment, the EPK decreased SREBP-1, ChREBP, HMGCR, FAS, TNF-α, and iNOS expression levels, resulting in slower lipid accumulation and lower TG levels in Fr-induced HepG2 cells. These findings suggest that EPK mitigates hypertriglyceridemia and hepatic TG accumulation by inhibiting de novo lipogenic and pro-inflammatory factors.
Collapse
|
8
|
Wu L, Zhang S, Zhang Q, Wei S, Wang G, Luo P. The Molecular Mechanism of Hepatic Lipid Metabolism Disorder Caused by NaAsO 2 through Regulating the ERK/PPAR Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6405911. [PMID: 35320977 PMCID: PMC8938049 DOI: 10.1155/2022/6405911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 11/18/2022]
Abstract
Chronic arsenic exposure is a risk factor for human fatty liver disease, and the ERK signaling pathway plays an important role in the regulation of liver lipid metabolism. However, whether ERK plays a role in the progression of arsenic-induced liver lipid metabolism disorder and the specific mechanism remain unclear. Here, by constructing a rat model of liver lipid metabolism disorder induced by chronic arsenic exposure, we demonstrated that ERK might regulate arsenic-induced liver lipid metabolism disorders through the PPAR signaling pathway. Arsenic could upregulate the expression of PPARγ and CD36 in the rat liver, decrease the expression of PPARα and CPT-1 in the rat liver, increase the organ coefficient of the rat liver, decrease the content of TG in rat serum, and promote fat deposition in the rat liver. In the arsenic-induced rat model of hepatic lipid metabolism disorder, we found that the expression of p-ERK was increased. In order to further explore whether the ERK signaling pathway was involved in arsenic-induced liver lipid metabolism disorder, we exposed L-02 cells to different arsenic concentrations, and the results showed that arsenic significantly increased the expression of P-ERK in L-02 cells in a dose-dependent manner. We further treated L-02 cells with ERK inhibitors and found that the expression of TG, PPARα, and CPT-1 in L-02 cells increased, while the expression of P-ERK, PPARγ, and CD36 decreased. In conclusion, ERK may be involved in arsenic-induced liver lipid metabolism disorder by regulating the PPAR signaling pathway. These findings are expected to provide a new targeting strategy for arsenic-induced liver lipid metabolism disorder.
Collapse
Affiliation(s)
- Liping Wu
- The Affiliated Hospital of Guizhou Medical University & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guizhou Medical University, Guiyang 550025, China
| | - Shuling Zhang
- The Affiliated Hospital of Guizhou Medical University & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guizhou Medical University, Guiyang 550025, China
| | - Qi Zhang
- The Affiliated Hospital of Guizhou Medical University & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guizhou Medical University, Guiyang 550025, China
| | - Shaofeng Wei
- The Affiliated Hospital of Guizhou Medical University & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guizhou Medical University, Guiyang 550025, China
| | - Guoze Wang
- The Affiliated Hospital of Guizhou Medical University & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guizhou Medical University, Guiyang 550025, China
| | - Peng Luo
- The Affiliated Hospital of Guizhou Medical University & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
9
|
Effects of sumac (Rhus coriaria) on lipid profile, leptin and steatosis in patients with non-alcoholic fatty liver disease: A randomized double-blind placebo-controlled trial. J Herb Med 2022. [DOI: 10.1016/j.hermed.2021.100525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Lee HY, Lee GH, Yoon Y, Hoang TH, Chae HJ. IBF-R Regulates IRE1α Post-Translational Modifications and ER Stress in High-Fat Diet-Induced Obese Mice. Nutrients 2022; 14:nu14010217. [PMID: 35011092 PMCID: PMC8746979 DOI: 10.3390/nu14010217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
Obesity is a global health issue linked to the heightened risk of several chronic diseases. Rhus verniciflua (RV) is a traditional food supplement used for a range of pharmacological effects such as antitumor, antioxidant, α-glucosidase inhibitory effects, hepatitis, and arthritis. Despite the traditional medicinal values, scientific evidence for its application in obesity is inadequate and unclear. Thus, this investigation was designed to evaluate the anti-obesity effects of IBF-R, an RV extract, using a high-fat diet (HFD) model. The study has six groups: chow diet group; chow diet with 80 mg/kg IBF-R; HFD group; IBF-R group with 20, 40, and 80 mg/kg. IBF-R supplementation significantly regulated the weight gain than the HFD fed mice. Further, IBF-R supplementation lowered the expressions of adipogenic transcription factors such as SREBP-1c, C/EBPα, FAS, and PPAR-γ in white adipose tissue (WAT) of diet-induced obese mice. In addition, IBF-R supplementation reduced the lipogenic gene expression while enhancing genes was related to fatty acid oxidation. Obesity is linked to redox-based post-translational modifications (PTMs) of IRE1α such as S-nitrosylation, endoplasmic reticulum (ER) stress, and chronic metabolic inflammation. The administration of IBF-R inhibits these PTMs. Notably, IBF-R administration significantly enhanced the expression of AMPK and sirtuin 1 in WAT of HFD-fed mice. Together, these findings reveal the IRE1α S-nitrosylation-inflammation axis as a novel mechanism behind the positive implications of IBF-R on obesity. In addition, it lays a firm foundation for the development of Rhus verniciflua extract as a functional ingredient in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Hwa-Young Lee
- Department of Pharmacology, Institute of New Drug Development, Medical School, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Korea;
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Jeollabuk-do, Korea; (G.-H.L.); (T.-H.H.)
| | - Geum-Hwa Lee
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Jeollabuk-do, Korea; (G.-H.L.); (T.-H.H.)
| | - Young Yoon
- Imsil Cheese & Food Research Institute, Doin 2-gil, Seongsu-myeon, Imsil-gun 55918, Jeollabuk-do, Korea;
| | - The-Hiep Hoang
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Jeollabuk-do, Korea; (G.-H.L.); (T.-H.H.)
- Research Institute of Clinical Medicine, Jeonbuk National University-Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Jeollabuk-do, Korea
| | - Han-Jung Chae
- Non-Clinical Evaluation Center, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Jeollabuk-do, Korea; (G.-H.L.); (T.-H.H.)
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Jeollabuk-do, Korea
- Correspondence: ; Tel.: +82-63-270-3092
| |
Collapse
|
11
|
Kwak JH, Lee HJ, Jeong ST, Lee JY, Lee M, Paik JK. Effect of fermented Rhus verniciflua stokes extract on liver function parameters in healthy Korean adults: a double-blind randomized controlled trial. Trials 2021; 22:830. [PMID: 34809689 PMCID: PMC8607399 DOI: 10.1186/s13063-021-05656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fermented Rhus verniciflua Stokes extract (FRVE) reported an anti-hepatic lipidemic property mediated by the upregulation of AMP-activated protein kinase (AMPK) in cell and animal models. However, it remains unclear whether there is an effect of FRVE on liver disease-related parameters and serum lipid levels in humans. We investigated the effects of FRVE intake for 12 weeks on liver disease-related parameters and serum lipid profiles in Korean adults. METHODS A randomized, double-blind, placebo-controlled study was conducted among 79 subjects. An aqueous extract of fermented Rhus verniciflua Stokes that was filtered and fermented was prepared. For 12 weeks, the test group (n = 39) consumed two capsules of FRVE (main components: fustin 129 mg and fisetin 59 mg) once daily. The control group (n = 40) consumed two placebo pills (main component: lactose 627.0 mg) once daily. A 1:1 randomization of control and test was performed using computer-generated randomization. Both before and after FRVE intake, anthropometric parameters, liver function-related parameters, and clinical laboratory parameters were measured. The effects between the test and control groups were compared using the Mann-Whitney U test and independent t-test, and the difference between baseline and follow-up values was compared using Wilcoxon rank-sum test and paired t-test. RESULTS There was no significant difference when comparing the change values of liver disease-related parameters and serum lipid profiles in between groups. CONCLUSIONS In our study, we did not confirm the significance in liver function parameters and serum lipid profiles. TRIAL REGISTRATION The study protocol was registered in the Clinical Research Information Service (CRIS: https://cris.nih.go.kr/cris/index.jsp ) under number KCT0005687. Registered on 2 December 2020.
Collapse
Affiliation(s)
- Jung Hyun Kwak
- Department of Food and Nutrition, Eulji University, Seongnam, 13135, Gyeonggi-do, Republic of Korea
| | - Hyo-Jeong Lee
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Hoegi-dong, Dongdaemun-gu, Seoul, 02435, Republic of Korea
| | - Seok-Tae Jeong
- Fermented Food Science Division, National Institute of Agricultural Sciences, 166, Nongsaengmyeongro, Iseo-myeon, WanjuGun, Jeollabuk-do, 55365, Republic of Korea
| | - Ju Yeon Lee
- Department of Food and Nutrition, Eulji University, Seongnam, 13135, Gyeonggi-do, Republic of Korea
| | - Minho Lee
- Department of Food Technology and Services, Eulji University, Seongnam, 13135, Gyeonggi-do, Republic of Korea
| | - Jean Kyung Paik
- Department of Food and Nutrition, Eulji University, Seongnam, 13135, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
12
|
Li MC, Zhang YQ, Meng CW, Gao JG, Xie CJ, Liu JY, Xu YN. Traditional uses, phytochemistry, and pharmacology of Toxicodendron vernicifluum (Stokes) F.A. Barkley - A review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113476. [PMID: 33075438 DOI: 10.1016/j.jep.2020.113476] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/29/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Toxicodendron vernicifluum (Stokes) F.A. Barkley (syn. Rhus verniciflua or vernicifera Stokes, Anacardiaceae) (RVS), the lacquer tree, also known as sumac, has been used in China, Japan and South Korea for thousands of years as a highly durable coating material and a traditional herbal medicine, which contains medicinal ingredients with anti-tumor, anti-inflammatory, antiviral, and anti-rheumatic activities. AIM OF THIS REVIEW This review intends to provide a comprehensive and critical appraisal of RVS, including its phytochemical data, botanical and pharmacological literature that support its therapeutic potential in treatment on human diseases, with emphasis on the isolation of natural occurring compounds and detailed pharmacological investigations. MATERIALS AND METHODS Specific information of RVS was collected by using the key words "Toxicodendron vernicifluum", "Rhus verniciflua Stokes", "Rhus vernicifera Stokes" and "Lacquer tree" through published scientific materials (including PubMed, ScienceDirect, Wiley, ACS, CNKI, Scifinder, Springer, Web of Science, Google Scholar, and Baidu Scholar) and other literature sources. RESULTS The major phytoconstituents, 175 of which are presented in this review, including flavonoids, urushiols, terpenes, phenolic acids and other types of compounds, of which flavonoids and urushiols are main components. The extracts and isolates purified from RVS showed a wide range of in vitro and in vivo pharmacological effects, such as anti-cancer, anti-oxidation, anti-inflammatory, antimicrobial, tyrosinase inhibition and so on. CONCLUSION The modern pharmacological research of RVS mainly focus on the pharmacological effects of crude extract or active constituents, of which the flavonoids are widely studied. However, there are few reports on the relationship between pharmacological effects and their structures. And at present, there is still a lack of researches that are of both effective and in-depth. Meanwhile, there is little research on quality control. Apart from the wood and lacquer, other botanical parts also need to be explored further. In addition to phenolic compounds, the study on other types of components in T. vernicifluum would start more sparks for the discovery of new bioactive principles.
Collapse
Affiliation(s)
- Mei-Chen Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yun-Qiang Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Cai-Wen Meng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jin-Gou Gao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chao-Jie Xie
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jian-Yu Liu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Yong Nan Xu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
13
|
Kim S, Shin SP, Kim SK, Ham YL, Choi HS, Kim MJ, Han SH, Suk KT. Fermented- Rhus verniciflua extract ameliorate Helicobacter pylori eradication rate and gastritis. Food Sci Nutr 2021; 9:900-908. [PMID: 33598173 PMCID: PMC7866570 DOI: 10.1002/fsn3.2055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 11/07/2022] Open
Abstract
An antibacterial effect of fermented-Rhus verniciflua extract (FRVE), an urushiol-free extract fermented by Fomitella fraxinea, on Helicobacter pylori was evaluated in mice. Minimal inhibitory concentration of FRVE against H. pylori eradication was checked with serial dilution method in vitro. H. pylori infection-induced mice were utilized to determine the effect of oral administration of FRVE with/without standard triple therapy (STT: metronidazole, omeprazole, and clarithromycin) on H. pylori colonization and gastric inflammation. H. pylori was clearly eradicated by FRVE at a concentration of ≥2 mg/ml in vitro. In animal study, FRVE at a concentration of ≥6 mg/ml significantly reduced colonized H. pylori grading (0.2 vs. 2.2, p < .01) and improved gastric inflammation (0.4 vs. 1.6, p < .01) compared to control. STT with FRVE (3 mg/ml) exerted synergistic effect on both H. pylori colonization grade (STT, 0.6 ± 0.9; FRVE, 1.4 ± 0.5; STT + FRVE, 0.8 ± 0.4) and gastric inflammation (STT, 0.4 ± 0.5; FRVE, 1.4 ± 0.5; STT + FRVE,1.0 ± 0.1) compared with single therapy (p < .01). H. pylori eradication rate of FRVE (6 mg/ml) was higher than that of STT (60% vs. 20%). FRVE has potential antibacterial activity against H. pylori infection and can be used as an additional therapy on STT.
Collapse
Affiliation(s)
- Seungwoo Kim
- Institute for Liver and Digestive DiseasesHallym University College of MedicineChuncheonSouth Korea
| | - Suk Pyo Shin
- Institute for Liver and Digestive DiseasesHallym University College of MedicineChuncheonSouth Korea
| | - Seul Ki Kim
- Institute for Liver and Digestive DiseasesHallym University College of MedicineChuncheonSouth Korea
| | - Young Lim Ham
- Department of NursingDaewon University CollegeJecheonSouth Korea
| | - Han Seok Choi
- Department of Agricultural and Fisheries PrecessingKorea National College of Agriculture and FisheriesJeonjuSouth Korea
| | - Myong Jo Kim
- Division of Bioresource SciencesCollege of Agriculture and Life SciencesKangwon National UniversityChuncheonSouth Korea
| | - Sang Hak Han
- Department of PathologyHallym University College of MedicineChuncheonSouth Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive DiseasesHallym University College of MedicineChuncheonSouth Korea
| |
Collapse
|
14
|
Diospyros kaki and Citrus unshiu Mixture Improves Disorders of Lipid Metabolism in Nonalcoholic Fatty Liver Disease. Can J Gastroenterol Hepatol 2020; 2020:8812634. [PMID: 33425805 PMCID: PMC7775147 DOI: 10.1155/2020/8812634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/02/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has been a major cause of a chronic liver disease over recent decades and increasing worldwide in parallel with the remarkable growth of obesity. In the present study, we investigate the ameliorative effects of PCM, a combination of Diospyros kaki fruit and Citrus unshiu peel mixture, on high-fat diet- (HFD-) induced NAFLD and clarify the potential mechanisms. PCM in HFD-fed mice was orally administered at a dose of 50 or 100 mg/kg subsequently for 2 months. Thereafter, lipid metabolism parameters and fat synthesis-related genes in the mouse liver were evaluated. Subsequently, body weight changes, liver weight, serum liver function and lipid profiles, and liver pathology were examined, and the relative levels of fatty acid synthesis and β-oxidation gene expression were evaluated by western blot. Serum AST, ALT, and TG levels in the HFD control mice were significantly higher than those of normal mice. Compared with HFD control mice, PCM supplementation increased phosphorylation of AMP-activated protein kinase (AMPK). Peroxisome proliferator-activated receptor (PPAR) α was significantly increased by PCM administration. Continuously, the activation of PPARα significantly elevated carnitine palmitoyltransferase 1 (CPT-1), a key enzyme in fatty acid β-oxidation, and mitochondrial uncoupling protein 2 (UCP-2), thermogenic regulatory genes, in PCM-treated mice compared with those of HFD control mice. Moreover, PCM inhibits lipogenesis and cholesterol synthesis via suppression of sterol regulatory element binding protein-1 (SREBP-1) and SREBP-2 and its target genes such as acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase-1 (SCD-1), and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR). Taken together, these effects were mediated through activation of AMPK. In the conclusion, PCM improved liver damage in HFD-fed mice and attenuated NAFLD by the activation of PPARα and the inhibition of SREBPs expression via AMPK-dependent pathways.
Collapse
|
15
|
Chen H, Zhou H, Tao R, Li W, Wang CZ. Simultaneous quantification of six flavonoids of Rhus verniciflua Stokes using matrix solid-phase dispersion via high-performance liquid chromatography coupled with photodiode array detector. J Sep Sci 2020; 43:4281-4288. [PMID: 32991034 DOI: 10.1002/jssc.202000749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
A simple and efficient matrix solid-phase dispersion via high-performance liquid chromatography coupled with a photodiode array detector was developed to analyze the following flavonoids of Rhus verniciflua Stokes: fisetin, fustin, butein, sulfuretin, garbanzol, and quercetin. The optimum conditions for the procedure was the use of Zeolite Socony Mobil-twenty-two molecular sieves as the adsorbent, sample:adsorbent ratio of 2:5, grinding for 3 min, and use of 8 mL of 70% methanol:water as the elution solvent. The method was validated for linearity, precision, reproducibility, limit of detection, and limit of quantification. The method exhibited excellent linearity for all six flavonoids. The intra- and interday precisions over a range of concentrations were below 3.0% and limits of quantification for the six flavonoids were 0.16 and 0.50 μg/mL. Compared with other published methods, the proposed method was more effective, rapid, and required less reagents. Therefore, the combination of matrix solid-phase dispersion and high-performance liquid chromatography coupled with photodiode array detector showed excellent reproducibility and simplicity and could be suitable for the extraction and quantification of multiple flavonoids in R. verniciflua Stokes samples.
Collapse
Affiliation(s)
- HongXia Chen
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, P.R. China.,National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, SFA, Nanjing, P.R. China.,Jiangsu Key Laboratory for Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, P. R. China.,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, P.R. China
| | - Hao Zhou
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, P.R. China.,National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, SFA, Nanjing, P.R. China.,Jiangsu Key Laboratory for Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, P. R. China.,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, P.R. China.,Research Institute of Forestry New Technology, CAF, Beijing, P.R. China
| | - Ran Tao
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, P.R. China.,National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, SFA, Nanjing, P.R. China.,Jiangsu Key Laboratory for Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, P. R. China.,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, P.R. China
| | - WenJun Li
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, P.R. China.,National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, SFA, Nanjing, P.R. China.,Jiangsu Key Laboratory for Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, P. R. China.,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, P.R. China
| | - Cheng Zhang Wang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, P.R. China.,National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, SFA, Nanjing, P.R. China.,Jiangsu Key Laboratory for Biomass Energy and Material, Jiangsu Province, Nanjing, 210042, P. R. China.,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, P.R. China.,Research Institute of Forestry New Technology, CAF, Beijing, P.R. China
| |
Collapse
|
16
|
Fermented Rhus Verniciflua Stokes Extract Alleviates Nonalcoholic Fatty Liver through the AMPK/SREBP1/PCSK9 Pathway in HFD-Induced Nonalcoholic Fatty Liver Animal Model. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background: We have previously reported the anti-hepatic lipogenic effect of fermented Rhus verniciflua stokes extract (FRVE) in an oleic-acid-treated HepG2 cell model. Methods: Herein, we advanced our understanding and evaluated the impact of FRVE in HFD-fed C57BL/6 mice using an animal model of nonalcoholic fatty liver disease (NAFLD). Milk thistle extract was used as a positive control to compare the effects of FRVE. Results: FRVE decreased body weight, intra-abdominal fat weight, and liver weight. Furthermore, FRVE decreased HFD-induced elevated serum levels of ALT, AST, TC, and TG, and downregulated the increase in hepatic lipid accumulation and TG levels. FRVE reduced hepatic SREBP-1, PCSK-9, SREBP-2, and ApoB mRNA levels. IHC data showed that FRVE reduced the levels of nucleic SREBP-1, increased the levels of LDLR, and upregulated the expression of p-AMPK. Conclusion: Overall, these results demonstrate the anti-hepatic lipidemic effect of FRVE in an animal model. These findings are consistent with our previous study and strongly suggest that FRVE exerts anti-hepatic lipogenic effects by activating AMPK.
Collapse
|
17
|
An R, Wen S, Li DL, Li QH, Lai XF, Zhang WJ, Chen RH, Cao JX, Li ZG, Huang QS, Sun LL, Sun SL. Mixtures of Tea and Citrus maxima (pomelo) Alleviate Lipid Deposition in HepG2 Cells Through the AMPK/ACC Signaling Pathway. J Med Food 2020; 23:943-951. [PMID: 32721265 DOI: 10.1089/jmf.2020.4706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tea and citrus maxima are natural, medicinal homologous plants, typically used for making beverages, which have anticancer, antiobesity, and antioxidation properties. Green tea, yellow tea, and black tea were combined with citrus maxima to obtain green tea and Citrus maxima (GTCM), yellow tea and Citrus maxima (YTCM), and black tea and Citrus maxima (BTCM). The biochemical components of these mixtures were analyzed, and their possible effects and mechanisms on relieving liver lipid deposition were explored. The tea polyphenols, free amino acids, phenolamine ratio, and caffeine were comparable in YTCM and GTCM, being significantly higher than those in BTCM. In addition, the content of esterified catechins, nonesterified catechins, and total catechins in YTCM was significantly higher than those in GTCM and BTCM. All three mixtures of Citrus maxima tea significantly reduced lipid deposition in HepG2 cells, with GTCM and YTCM being slightly more effective than BTCM. Regarding the possible mechanism, Western blot analysis revealed that the three Citrus maxima tea mixtures could activate the AMPK/ACC signaling pathway, upregulate the expression of p-AMPK, p-ACC, and CPT-1 proteins, and downregulate the expression of SREBP1c and fatty acid synthase proteins to inhibit fat synthesis, thereby relieving lipid deposition in liver cells. In conclusion, as a novel and healthy beverage, Citrus maxima tea has the potential to alleviate liver lipid deposition, and further could be responsible for obesity treatment.
Collapse
Affiliation(s)
- Ran An
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Shuai Wen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Dong-Li Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Qiu-Hua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| | - Xing-Fei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| | - Wen-Ji Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| | - Ruo-Hong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| | - Jun-Xi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| | - Zhi-Gang Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| | - Qiu-Sheng Huang
- Guangdong Kaili Biochemical Science & Technology Co., Ltd., Guangzhou, China
| | - Ling-Li Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| | - Shi-Li Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou, China
| |
Collapse
|
18
|
Lee HY, Lee GH, Yoon Y, Chae HJ. Rhus verniciflua and Eucommia ulmoides Protects Against High-Fat Diet-Induced Hepatic Steatosis by Enhancing Anti-Oxidation and AMPK Activation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1253-1270. [PMID: 31488034 DOI: 10.1142/s0192415x19500642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disorder associated with features of metabolic syndrome and oxidative stress. We examined the mechanism by which the combined extracts of Rhus verniciflua and Eucommia ulmoides extracts (ILF-RE) regulate hepatic dyslipidemia in an established NAFLD model, high-fat diet (HFD)-induced lipid dysmetabolism in rats. ILF-RE attenuated alanine aminotransferase (ALT) by 1.5% (p<0.05), aspartate aminotransferase (AST) by 1.5% (p<0.05), triglycerides by 1.5% (p<0.05), cholesterol by 2.0% (p<0.05), and lipid peroxidation by 1.5% (p<0.05) in the NAFLD model. ILF-RE, recently shown to have anti-oxidant properties, also inhibited hepatic ROS accumulation by 1.68% (p<0.05) and regulated ER-redox imbalance, a key phenomenon of ER stress. Due to nutrient overload stress-associated protein folding, ER stress and downstream SREBP-lipogenic transcription signaling were highly activated, and the mTORC1-AMPK axis was also disturbed, leading to hepatic steatosis. ILF-RE results in recovery from hepatic conditions induced by nutrient-based protein folding stress signaling and the ER stress-SREBP and AMPK-mTORC1-SREBP1 axes. Based on these results, ILF-RE is suggested to be a potential therapeutic strategy for hepatic steatosis and may represent a promising novel agent for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Hwa-Young Lee
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Hospital, Jeonju, Chonbuk 561-180, Republic of Korea
| | - Geum-Hwa Lee
- Non-Clinical Evaluation Center, Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Chonbuk 561-180, Republic of Korea
| | - Young Yoon
- Imsil Cheese & Food Research Institute, Doin 2-gil, Seongsu-myeon, Imsil-gun, Chonbuk 55918, Republic of Korea
| | - Han-Jung Chae
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Hospital, Jeonju, Chonbuk 561-180, Republic of Korea.,Non-Clinical Evaluation Center, Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Chonbuk 561-180, Republic of Korea
| |
Collapse
|
19
|
Lee HY, Lee GH, Yoon Y, Chae HJ. R. verniciflua and E. ulmoides Extract (ILF-RE) Protects against Chronic CCl₄-Induced Liver Damage by Enhancing Antioxidation. Nutrients 2019; 11:nu11020382. [PMID: 30759889 PMCID: PMC6412399 DOI: 10.3390/nu11020382] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/28/2019] [Accepted: 02/06/2019] [Indexed: 11/16/2022] Open
Abstract
This study aimed to characterize the protective effects of R. verniciflua extract (ILF-R) and E. ulmoides extract (ILF-E), the combination called ILF-RE, against chronic CCl4-induced liver oxidative injury in rats, as well as to investigate the mechanism underlying hepatoprotection by ILF-RE against CCl4-induced hepatic dysfunction. Chronic hepatic stress was induced via intraperitoneal (IP) administration of a mixture of CCl4 (0.2 mL/100 g body weight) and olive oil [1:1(v/v)] twice a week for 4 weeks to rats. ILF-RE was administered orally at 40, 80, and 120 mg/kg to rats for 4 weeks. Alanine transaminase (ALT), aspartate transaminase (AST), gamma-glutamyl transpeptidase (GGT), and lipid peroxidation assays were performed, and total triglyceride, cholesterol, and LDL-cholesterol levels were quantified. Furthermore, ER stress and lipogenesis-related gene expression including sterol regulatory element-binding transcription factor 1 (SREBP-1), fatty acid synthase (FAS), and P-AMPK were assessed. ILF-RE markedly protected against liver damage by inhibiting oxidative stress and increasing antioxidant enzyme activity including glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase. Furthermore, hepatic dyslipidemia was regulated after ILF-RE administration. Moreover, hepatic lipid accumulation and its associated lipogenic genes, including those encoding SREBP-1 and FAS, were regulated after ILF-RE administration. This was accompanied by regulation of ER stress response signaling, suggesting a mechanism underlying ILF-RE-mediated hepatoprotection against lipid accumulation. The present results indicate that ILF-RE exerts hepatoprotective effects against chronic CCl4-induced dysfunction by suppressing hepatic oxidative stress and lipogenesis, suggesting that ILF-RE is a potential preventive/therapeutic natural product in treating hepatoxicity and associated dysfunction.
Collapse
Affiliation(s)
- Hwa-Young Lee
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk 561-180, Korea.
| | - Geum-Hwa Lee
- Non-Clinical Evaluation Center, Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Chonbuk 561-180, Korea.
| | - Young Yoon
- Imsil Cheese & Food Research Institute, Doin 2-gil, Seongsu-myeon, Imsil-gun, Chonbuk 55918, Korea.
| | - Han-Jung Chae
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk 561-180, Korea.
- Non-Clinical Evaluation Center, Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Chonbuk 561-180, Korea.
| |
Collapse
|
20
|
Lee SO, Kim SJ, Kim JS, Ji H, Lee EO, Lee HJ. Comparison of the main components and bioactivity of Rhus verniciflua Stokes extracts by different detoxification processing methods. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:242. [PMID: 30165848 PMCID: PMC6118002 DOI: 10.1186/s12906-018-2310-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/22/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Rhus verniciflua Stokes is an Asian tree species that is used as a food supplement and traditional medicine in Korea. However, its use is restricted by its potential to cause allergy. Thus, allergen-free R. verniciflua extracts are currently being marketed as a functional health food in Korea. In the present study, three different allergen-free R. verniciflua extracts (DRVE, FRVE, and FFRVE) were produced by detoxification of R. verniciflua, and their properties and constituents were compared. METHODS The main components and properties (antibacterial, antioxidant, anticancer, and hepatic lipogenesis inhibitory effects) of the three allergen-free extracts were compared. Moreover, the major phenolic constituents of R. verniciflua, including gallic acid, fustin, fisetin, and quercetin, were analyzed in the three extracts. RESULTS DRVE was superior to the two other extracts with regard to antioxidant activity, while FRVE was superior with regard to antimicrobial activity and suppression of hepatic lipogenesis. FRVE exhibited lipid-lowering effects by lowering sterol regulatory element-binding protein 1 and triglyceride levels, and promoting the activation of peroxisome proliferator-activated receptor and AMP-activated protein kinase in an in vitro model of non-alcoholic fatty liver. CONCLUSIONS Overall, our findings demonstrate various differences among the three extracts. This suggests that functional and bioactive compounds present in R. verniciflua could be altered by the detoxification process, and this property could be considered in the development of functional health foods in the future.
Collapse
|
21
|
Kim JH, Lee JM, Kim JH, Kim KR. Fluvastatin activates sirtuin 6 to regulate sterol regulatory element-binding proteins and AMP-activated protein kinase in HepG2 cells. Biochem Biophys Res Commun 2018; 503:1415-1421. [PMID: 30078674 DOI: 10.1016/j.bbrc.2018.07.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 01/06/2023]
Abstract
Sirtuins, a family of NAD+-dependent deacetylase enzymes, have been identified as mammalian homologs of yeast silent information regulator 2 (SIR2). Sirtuin 6 (SIRT6) plays important roles in cell homeostasis, DNA damage repair, cancer suppression, and aging. SIRT6 overexpression improves metabolic diseases, such as hypercholesterolemia, cholesterol-related disease, and type 2 diabetes via AMP-activated protein kinase (AMPK) activation. SIRT6 is abundant in the liver and is a crucial target for patients with liver steatosis. Compounds for drug repositioning were screened to identify potential SIRT6 activators, and fluvastatin, a synthetic inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase that reduces cholesterol synthesis, was identified to activate SIRT6. When HepG2 cells were treated with fluvastatin, the expression of SIRT6 and phosphorylation of sterol regulatory element-binding protein (SREBP)-1 and AMPKα, which is regulated by SIRT6, increased. In this study, we examined the mechanism underlying cholesterol regulation by fluvastatin via SREBP-1 and AMPKα pathway and suggested that fluvastatin is an SIRT6 activator that regulates cholesterol homeostasis and fatty liver disease.
Collapse
Affiliation(s)
- Ji-Hye Kim
- Division of Innovative Target Research Center, Korea Research Institute of Chemical Technology, Daejeon, 305-343, South Korea; Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, South Korea
| | - Jun Mi Lee
- Division of Innovative Target Research Center, Korea Research Institute of Chemical Technology, Daejeon, 305-343, South Korea
| | - Jong-Hoon Kim
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, South Korea
| | - Kwang Rok Kim
- Division of Innovative Target Research Center, Korea Research Institute of Chemical Technology, Daejeon, 305-343, South Korea.
| |
Collapse
|
22
|
Chitobiose alleviates oleic acid-induced lipid accumulation by decreasing fatty acid uptake and triglyceride synthesis in HepG2 cells. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
23
|
Zanthoxylum ailanthoides Suppresses Oleic Acid-Induced Lipid Accumulation through an Activation of LKB1/AMPK Pathway in HepG2 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3140267. [PMID: 29507591 PMCID: PMC5817260 DOI: 10.1155/2018/3140267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/01/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022]
Abstract
Zanthoxylum ailanthoides (ZA) has been used as folk medicines in East Asian and recently reported to have several bioactivity; however, the studies of ZA on the regulation of triacylglycerol (TG) biosynthesis have not been elucidated yet. In this study, we examined whether the methanol extract of ZA (ZA-M) could reduce oleic acid- (OA-) induced intracellular lipid accumulation and confirmed its mode of action in HepG2 cells. ZA-M was shown to promote the phosphorylation of AMPK and its upstream LKB1, followed by reduction of lipogenic gene expressions. As a result, treatment of ZA-M blocked de novo TG biosynthesis and subsequently mitigated intracellular neutral lipid accumulation in HepG2 cells. ZA-M also inhibited OA-induced production of reactive oxygen species (ROS) and TNF-α, suggesting that ZA-M possess the anti-inflammatory feature in fatty acid over accumulated condition. Taken together, these results suggest that ZA-M attenuates OA-induced lipid accumulation and inflammation through the activation of LKB1/AMPK signaling pathway in HepG2 cells.
Collapse
|
24
|
Padmavathi G, Rathnakaram SR, Monisha J, Bordoloi D, Roy NK, Kunnumakkara AB. Potential of butein, a tetrahydroxychalcone to obliterate cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:1163-1171. [PMID: 26598915 DOI: 10.1016/j.phymed.2015.08.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 08/15/2015] [Accepted: 08/23/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Despite the major advances made in the field of cancer biology, it still remains one of the most fatal diseases in the world. It is now well established that natural products are safe and efficacious and have high potential in the prevention and treatment of different diseases including cancer. Butein is one such compound which is now found to have anti-cancer properties against various malignancies. PURPOSE To thoroughly review the literature available on the anti-cancer properties of butein against different cancers and its molecular targets. METHODS A thorough literature search has been done in PubMed for butein, its biological activities especially cancer and its molecular targets. RESULTS Our search retrieved several reports on the various biological activities of butein in which around 43 articles reported that butein shows potential anti-proliferative effect against a wide range of neoplasms and the molecular target varies with cancer types. Most often it targets NF-κB and its downstream pathways. In addition, butein induces the expression of genes which mediate the cell death and apoptosis in cancer cells. It also inhibits tumor angiogenesis, invasion and metastasis in prostate, liver and bladder cancers through the inhibition of MMPs, VEGF etc. Moreover, it inhibits the overexpression of several proteins and enzymes such as STAT3, ERK, CXCR4, COX-2, Akt, EGFR, Ras etc. involved in tumorigenesis. CONCLUSION Collectively, all these findings suggest the enormous potential and efficacy of butein as a multitargeted chemotherapeutic, chemopreventive and chemosensitizing agent against a wide range of cancers with minimal or no adverse side effects.
Collapse
Affiliation(s)
- Ganesan Padmavathi
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Sivakumar Raju Rathnakaram
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Javadi Monisha
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Nand Kishor Roy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India .
| |
Collapse
|