1
|
Yakıncı Ö, Emerce E, Gürbüz P, Demi̇rel M, Çeri̇başı S, Süntar İ. Cytotoxic Effects of Citrus Peels on Breast Tumor: Opportunities for Waste to Raw Material Conversion. ACS OMEGA 2025; 10:16900-16908. [PMID: 40321571 PMCID: PMC12044562 DOI: 10.1021/acsomega.5c01170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/27/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025]
Abstract
Citrus species have long been known for their rich nutritional value. Recent research has shed light on their therapeutic potential, particularly in cancer treatment. Citrus peels, on the other hand, often discarded as waste, contain a wealth of bioactive compounds, such as flavonoids, coumarins, and essential oil components, which have proven medicinal properties. Converting Citrus peels from waste products to medicinal raw materials is a crucial approach in both healthcare and sustainability. Therefore, the present study aims to investigate the cytotoxic potential of the peels of Citrus aurantium L., Citrus maxima (Burm.) Merr. (syn. Citrus grandis), Citrus medica L. and Citrus paradisi Macfad. cultivated in Türkiye, and to find out the compounds responsible for the cytotoxic activity. The cytotoxic effects of the peel extracts were evaluated on MCF-7 cell lines according to bioactivity-guided fractionation and isolation assay procedures. The compounds CAS-5 (isomeranzin), CAS-10 (3-methoxy nobiletin), CAS-11 (nobiletin), and CAS-12 (tangeretin) were isolated. In silico analyses conducted on the isolated compounds provided supporting information for the results obtained from in vitro experiments regarding their anticancer activity. Indeed, one of the key components of Citrus fruits is polymethoxy flavonoids (PMFs), a group of bioactive constituents recognized for their anti-inflammatory, antioxidant, and anticancer activities. As a valuable byproduct of Citrus waste, PMFs offer a dual benefit by reducing waste while providing a natural source of bioactive compounds and making them an exciting research area in cancer management. The therapeutic promise of PMFs lies not only in their ability to combat cancer but also in their potential to contribute to sustainable practices.
Collapse
Affiliation(s)
- Ömer
Faruk Yakıncı
- National
Poisons Information Service, Republic of
Türkiye Ministry of Health, Ankara 06680, Türkiye
- Institute
of Health Sciences, Gazi University, Ankara 06560, Türkiye
| | - Esra Emerce
- Department
of Pharmaceutical Toxicology, Faculty of Pharmacy, Gazi University, Ankara 06630, Türkiye
| | - Perihan Gürbüz
- Department
of Pharmacognosy, Faculty of Pharmacy, Erciyes
University, Kayseri 38280, Turkey
| | - Mürşide
Ayşe Demi̇rel
- Department
of Pharmaceutical Basic Sciences, Faculty of Pharmacy, Gazi University, Ankara 06630, Türkiye
| | - Songül Çeri̇başı
- Department
of Pathology, Faculty of Veterinary Medicine, Fırat University, Elazığ 23119, Türkiye
| | - İpek Süntar
- Department
of Pharmacognosy, Faculty of Pharmacy, Gazi
University, Ankara 06630,Türkiye
| |
Collapse
|
2
|
Yaosanit W, Prachya S, Pailee P, Thananthaisong T, Mahidol C, Ploypradith P, Reuk-Ngam N, Khlaychan P, Techasakul S, Ruchirawat S, Prachyawarakorn V. Cytotoxic, antibacterial, and aromatase inhibitory activities of cycloartane triterpenes and flavones from Gardenia obtusifolia. PHYTOCHEMISTRY 2025; 237:114531. [PMID: 40311890 DOI: 10.1016/j.phytochem.2025.114531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Ten previously undescribed cycloartane-type triterpenes (1-10) and nineteen known compounds (11-29), including flavones, were isolated from Gardenia obtusifolia, a plant belonging to the family Rubiaceae. Their structures were elucidated using a combination of spectroscopic techniques, including 1D and 2D NMR and HRESIMS, while their absolute configurations were determined through single-crystal X-ray diffraction analysis and ECD calculations. Among the isolates, compound 2 featured a δ-lactone moiety as the D-ring, representing the first report of such a structural novelty in cycloartane triterpenoids. Biological evaluations revealed that most isolated cycloartane triterpenoids exhibited moderate to weak cytotoxicity, while the flavones showed stronger cytotoxic effects. Notably, flavone 27 exhibited potent cytotoxicity against the A549, MOLT-3, and HepG2 cell lines (IC50: 0.4-1.0 μM), and flavone 25 was selectively efficacious against the A549 cell line (IC50: 0.5 μM). Antibacterial assays indicated that cycloartane triterpenoids 4, 13, 16, and 18 exhibited activity against Staphylococcus aureus and Bacillus cereus, with compound 18 showing the strongest inhibition. In addition, the seco-cycloartane derivatives 13 and 16 were identified as effective inhibitors of aromatase activity.
Collapse
Affiliation(s)
- Wiriya Yaosanit
- Laboratories of Natural Products, Medicinal Chemistry, and Organic Synthesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Surasak Prachya
- Laboratories of Natural Products, Medicinal Chemistry, and Organic Synthesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Phanruethai Pailee
- Laboratories of Natural Products, Medicinal Chemistry, and Organic Synthesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Theerawat Thananthaisong
- Forest Herbarium, Department of National Parks, Wildlife and Plant Conservation, Bangkok, 10900, Thailand
| | - Chulabhorn Mahidol
- Laboratories of Natural Products, Medicinal Chemistry, and Organic Synthesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Poonsakdi Ploypradith
- Laboratories of Natural Products, Medicinal Chemistry, and Organic Synthesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Program in Chemical Sciences, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, 10400, Thailand
| | - Nanthawan Reuk-Ngam
- Laboratories of Natural Products, Medicinal Chemistry, and Organic Synthesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Panita Khlaychan
- Laboratories of Natural Products, Medicinal Chemistry, and Organic Synthesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Supanna Techasakul
- Laboratories of Natural Products, Medicinal Chemistry, and Organic Synthesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Somsak Ruchirawat
- Laboratories of Natural Products, Medicinal Chemistry, and Organic Synthesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Program in Chemical Sciences, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, 10400, Thailand
| | - Vilailak Prachyawarakorn
- Laboratories of Natural Products, Medicinal Chemistry, and Organic Synthesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand.
| |
Collapse
|
3
|
Wu R, Li P, Hao B, Fredimoses M, Ge Y, Zhou Y, Tang L, Li Y, Liu H, Janson V, Hu Y, Liu H. Design, synthesis, and biological evaluation of novel 5,7,4'-trimethoxyflavone sulfonamide-based derivatives as highly potent inhibitors of LRPPRC/STAT3/CDK1. Bioorg Chem 2024; 153:107878. [PMID: 39395319 DOI: 10.1016/j.bioorg.2024.107878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
Leucine-rich pentatricopeptide repeat-containing protein (LRPPRC), signal transducer and activator of transcription 3 (STAT3), and cyclin-dependent kinase 1 (CDK1) are promising therapeutic targets for cancer treatment. However, there is a lack of effective inhibitors of LRPPRC, STAT3, and CDK1 in clinic. Our previous study has proved that 5,7,4'-Trimethoxyflavone (TMF) is a novel inhibitor of LRPPRC/STAT3/CDK1. However, the extraction rate of TMF from Tangerine Peel is quite low, and the doses of TMF in cells and mice are rather high. Herein, structural modifications of TMF have led to two series of TMF derivatives including sulfonamide substituted at 3'-position (7a-m) and 3',8-position (11a-m). Among all compounds, 7e, 7k, 11e, and 11g exhibited as effective, broad-spectrum, and potent anticancer agents in vitro. Moreover, 7e, 7k, 11e, and 11g showed better antitumor effects than TMF and clinical used chemotherapy drug capecitabine in vivo with no obvious toxicity. Mechanism studies showed that 11g could bind to LRPPRC, STAT3, and CDK1 to disassociate the LRPPRC-JAK2-STAT3 and JAK2-STAT3-CDK1 complexes, resulting in suppression of JAK2/STAT3 signaling pathway. These findings suggest that 11g may serve as a leading compound for cancer therapy as a triple-target (LRPPRC, STAT3, and CDK1) inhibitor.
Collapse
Affiliation(s)
- Rui Wu
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Pan Li
- China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China.
| | - Bingbing Hao
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Mangaladoss Fredimoses
- China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China
| | - Yunxiao Ge
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yubing Zhou
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Lin Tang
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yuanying Li
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Hangrui Liu
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Victor Janson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Yamei Hu
- China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China; Department of Clinical Research and Translational Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Hui Liu
- Department of Pathophysiology, School of Basic Medicine Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Almubarak A, Lee S, Yu IJ, Jeon Y. Effects of Nobiletin supplementation on the freezing diluent on porcine sperm cryo-survival and subsequent in vitro embryo development. Theriogenology 2024; 214:314-322. [PMID: 37956580 DOI: 10.1016/j.theriogenology.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/29/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
Nobiletin (NOB) is a bioflavonoid compound isolated from citrus fruit peels. The present study aimed to elucidate whether NOB facilitates the porcine sperm cryosurvival and embryo development after in vitro fertilization (IVF). To this end, spermatozoa were diluted and cryopreserved in a freezing extender supplemented with 0 (control), 50, 100, 150, and 200 μM Nobiletin. The kinematic patterns of frozen-thawed (FT) sperm were assessed after 30 and 90 min incubation using a Sperm Class Analyzer (SCA). Viability, acrosome integrity, and mitochondrial membrane potential (MMP) were measured by fluorescence microscopy 30 min after thawing using SYBR-14/PI, PSA/FITC, and R123/PI, respectively. Lipid peroxidation was determined using MDA assay after incubation for 90 min. The addition of 100 μM and 150 μM NOB to the extender significantly improved sperm progressive motility, and acrosome integrity compared to the control group (P < 0.05). The proportion of viable spermatozoa was significantly higher in the 150 μM NOB group. MDA levels were less in 50 μM and 150 μM NOB treated groups compared to the control. In addition, IVF with FT sperm was used to assess the embryo developmental competence. Treatment with 150 μM NOB before cryopreservation increased the cleavage and blastocyst formation rates compared to the control group. Furthermore, the relative expression of POU5F1 and AMPK, genes related to pluripotency and cell differentiation were significantly upregulated in embryos resulting from NOB-treated sperm compared to the control group. These results suggest that Nobiletin is a functionally novel phytochemical to mitigate oxidative stress during the freezing-thawing of porcine spermatozoa as reflected by improved FT sperm quality and IVF outcome.
Collapse
Affiliation(s)
- Areeg Almubarak
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea; Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, Sudan University of Science and Technology, P.O. Box 204, Hilat Kuku, Khartoum North, 11111, Sudan
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, 9 34134, South Korea
| | - Il-Jeoung Yu
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea
| | - Yubyeol Jeon
- Department of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea.
| |
Collapse
|
5
|
Zhu C, Chen J, Zhao C, Liu X, Chen Y, Liang J, Cao J, Wang Y, Sun C. Advances in extraction and purification of citrus flavonoids. FOOD FRONTIERS 2023; 4:750-781. [DOI: 10.1002/fft2.236] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
AbstractFlavonoids are the representative active substances of citrus with various biological activities and high nutritional value. In order to evaluate and utilize citrus flavonoids, isolation and purification are necessary steps. This manuscript reviewed the research advances in the extraction and purification of citrus flavonoids. The structure classification, the plant and nutritional functions, and the biosynthesis of citrus flavonoids were summarized. The characteristics of citrus flavonoids and the selection of separation strategies were explained. The technical system of extraction and purification of citrus flavonoids was systematically described. Finally, outlook and research directions were proposed.
Collapse
Affiliation(s)
- Chang‐Qing Zhu
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Jie‐Biao Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Chen‐Ning Zhao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Xiao‐Juan Liu
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Yun‐Yi Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Jiao‐Jiao Liang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Jin‐Ping Cao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Chong‐De Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| |
Collapse
|
6
|
Kim HS, Ham SY, Ryoo HS, Kim DH, Yun ET, Park HD, Park JH. Inhibiting bacterial biofilm formation by stimulating c-di-GMP regulation using citrus peel extract from Jeju Island. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162180. [PMID: 36775169 DOI: 10.1016/j.scitotenv.2023.162180] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Biofilms consist of single or multiple species of bacteria embedded in extracellular polymeric substances (EPSs), which affect the increase in antibiotic resistance by restricting the transport of antibiotics to the bacterial cells. An alternative approach to treatment with antimicrobial agents is using biofilm inhibitors that regulate biofilm development without inhibiting bacterial growth. In this study, we found that citrus peel extract from Jeju Island (CPEJ) can inhibit bacterial biofilm formation. According to the results, CPEJ concentration-dependently reduces biofilm formation without affecting bacterial growth. Additionally, CPEJ decreased the production of extracellular polymeric substances but increased bacterial swarming motility. These results led to the hypothesis that CPEJ can reduce intracellular bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) concentration. The results showed that CPEJ significantly reduced the c-di-GMP level through increased phosphodiesterase activity. Altogether, these findings suggest that CPEJ as a biofilm inhibitor has new potential for pharmacological (e.g. drug and medication) and industrial applications (e.g. ship hulls, water pipes, and membrane processes biofouling control).
Collapse
Affiliation(s)
- Han-Shin Kim
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, South Korea
| | - So-Young Ham
- Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany
| | - Hwa-Soo Ryoo
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Do-Hyung Kim
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), Jeju-si 63243, South Korea
| | - Eun-Tae Yun
- Chemical and Environmental Engineering, Yale University, New Haven, CT 06520, USA
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Jeong-Hoon Park
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), Jeju-si 63243, South Korea.
| |
Collapse
|
7
|
Fontana G, Bruno M, Sottile F, Badalamenti N. The Chemistry and the Anti-Inflammatory Activity of Polymethoxyflavonoids from Citrus Genus. Antioxidants (Basel) 2022; 12:antiox12010023. [PMID: 36670885 PMCID: PMC9855034 DOI: 10.3390/antiox12010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Polymethoxyflavonoids (PMFs) are a large group of compounds belonging to the more general class of flavonoids that possess a flavan carbon framework decorated with a variable number of methoxy groups. Hydroxylated polymethoxyflavonoids (HPMFs), instead, are characterized by the presence of both hydroxyl and methoxy groups in their structural unities. Some of these compounds are the aglycone part in a glycoside structure in which the glycosidic linkage can involve the -OH at various positions. These compounds are particular to Citrus genus plants, especially in fruits, and they are present mainly in the peel. A considerable number of PMFs and HPMFs have shown promising biological activities and they are considered to be important nutraceuticals, responsible for some of the known beneficial effects on health associated with a regular consumption of Citrus fruits. Among their several actions on human health, it is notable that the relevant contribution in controlling the intracellular redox imbalance is associated with the inflammation processes. In this work, we aim to describe the status concerning the chemical identification and the anti-inflammatory activity of both PMFs and HPMFs. In particular, all of the chemical entities unambiguously identified by isolation and complete NMR analysis, and for which a biochemical evaluation on the pure compound was performed, are included in this paper.
Collapse
Affiliation(s)
- Gianfranco Fontana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| | - Maurizio Bruno
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
- Correspondence: (M.B.); (F.S.)
| | - Francesco Sottile
- Dipartimento di Architettura, Università Degli Studi di Palermo, Centro di Conservazione della Biodiversità di Interesse Agrario, Viale delle Scienze Ed. 14, 90128 Palermo, Italy
- Correspondence: (M.B.); (F.S.)
| | - Natale Badalamenti
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| |
Collapse
|
8
|
Miao W, Liu X, Li N, Bian X, Zhao Y, He J, Zhou T, Wu JL. Polarity-extended composition profiling via LC-MS-based metabolomics approaches: a key to functional investigation of Citrus aurantium L. Food Chem 2022; 405:134988. [DOI: 10.1016/j.foodchem.2022.134988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
|
9
|
Zhao X, Yan Y, Zhou WH, Feng RZ, Shuai YK, Yang L, Liu MJ, He XY, Wei Q. Transcriptome and metabolome reveal the accumulation of secondary metabolites in different varieties of Cinnamomum longepaniculatum. BMC PLANT BIOLOGY 2022; 22:243. [PMID: 35585490 PMCID: PMC9116011 DOI: 10.1186/s12870-022-03637-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/06/2022] [Indexed: 05/07/2023]
Abstract
BACKGROUND Cinnamomum longepaniculatum (Gamble) N. Chao ex H. W. Li, whose leaves produce essential oils, is a traditional Chinese medicine and economically important tree species. In our study, two C. longepaniculatum varieties that have significantly different essential oil contents and leaf phenotypes were selected as the materials to investigate secondary metabolism. RESULT The essential oil content and leaf phenotypes were different between the two varieties. When the results of both transcriptome and metabolomic analyses were combined, it was found that the differences were related to phenylalanine metabolic pathways, particularly the metabolism of flavonoids and terpenoids. The transcriptome results based on KEGG pathway enrichment analysis showed that pathways involving phenylpropanoids, tryptophan biosynthesis and terpenoids significantly differed between the two varieties; 11 DEGs (2 upregulated and 9 downregulated) were associated with the biosynthesis of other secondary metabolites, and 12 DEGs (2 upregulated and 10 downregulated) were related to the metabolism of terpenoids and polyketides. Through further analysis of the leaves, we detected 196 metabolites in C. longepaniculatum. The abundance of 49 (26 downregulated and 23 upregulated) metabolites differed between the two varieties, which is likely related to the differences in the accumulation of these metabolites. We identified 12 flavonoids, 8 terpenoids and 8 alkaloids and identified 4 kinds of PMFs from the leaves of C. longepaniculatum. CONCLUSIONS The combined results of transcriptome and metabolomic analyses revealed a strong correlation between metabolite contents and gene expression. We speculate that light leads to differences in the secondary metabolism and phenotypes of leaves of different varieties of C. longepaniculatum. This research provides data for secondary metabolite studies and lays a solid foundation for breeding ideal C. longepaniculatum plants.
Collapse
Affiliation(s)
- Xin Zhao
- Faculty of Agriculture, Forestry and Food Engineering, YiBin University, Yibin, 644000 Sichuan People’s Republic of China
| | - Yue Yan
- Faculty of Agriculture, Forestry and Food Engineering, YiBin University, Yibin, 644000 Sichuan People’s Republic of China
| | - Wan-hai Zhou
- Faculty of Agriculture, Forestry and Food Engineering, YiBin University, Yibin, 644000 Sichuan People’s Republic of China
| | - Rui-zhang Feng
- Faculty of Agriculture, Forestry and Food Engineering, YiBin University, Yibin, 644000 Sichuan People’s Republic of China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin, 644000 Sichuan People’s Republic of China
| | - Yong-kang Shuai
- Faculty of Agriculture, Forestry and Food Engineering, YiBin University, Yibin, 644000 Sichuan People’s Republic of China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin, 644000 Sichuan People’s Republic of China
| | - Li Yang
- Faculty of Agriculture, Forestry and Food Engineering, YiBin University, Yibin, 644000 Sichuan People’s Republic of China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin, 644000 Sichuan People’s Republic of China
| | - Meng-jie Liu
- Faculty of Agriculture, Forestry and Food Engineering, YiBin University, Yibin, 644000 Sichuan People’s Republic of China
| | - Xiu-yan He
- Faculty of Agriculture, Forestry and Food Engineering, YiBin University, Yibin, 644000 Sichuan People’s Republic of China
| | - Qin Wei
- Faculty of Agriculture, Forestry and Food Engineering, YiBin University, Yibin, 644000 Sichuan People’s Republic of China
- Sichuan Oil Cinnamon Engineering Technology Research Center, Yibin, 644000 Sichuan People’s Republic of China
| |
Collapse
|
10
|
Hussain H, Mamadalieva NZ, Hussain A, Hassan U, Rabnawaz A, Ahmed I, Green IR. Fruit Peels: Food Waste as a Valuable Source of Bioactive Natural Products for Drug Discovery. Curr Issues Mol Biol 2022; 44:1960-1994. [PMID: 35678663 PMCID: PMC9164088 DOI: 10.3390/cimb44050134] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/31/2022] Open
Abstract
Fruits along with vegetables are crucial for a balanced diet. These not only have delicious flavors but are also reported to decrease the risk of contracting various chronic diseases. Fruit by-products are produced in huge quantity during industrial processing and constitute a serious issue because they may pose a harmful risk to the environment. The proposal of employing fruit by-products, particularly fruit peels, has gradually attained popularity because scientists found that in many instances peels displayed better biological and pharmacological applications than other sections of the fruit. The aim of this review is to highlight the importance of fruit peel extracts and natural products obtained in food industries along with their other potential biological applications.
Collapse
Affiliation(s)
- Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Nilufar Z. Mamadalieva
- Institute of the Chemistry of Plant Substances of the Academy Sciences of Uzbekistan, Tashkent 100170, Uzbekistan;
| | - Amjad Hussain
- Department of Chemistry, University of Okara, Okara 56130, Pakistan;
| | - Uzma Hassan
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan;
| | - Aisha Rabnawaz
- Department of Chemistry, University of Okara, Okara 56130, Pakistan;
| | - Ishtiaq Ahmed
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK;
| | - Ivan R. Green
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch 7600, South Africa;
| |
Collapse
|
11
|
Chien WJ, Saputri DS, Lin HY. Valorization of Taiwan's Citrus depressa Hayata peels as a source of nobiletin and tangeretin using simple ultrasonic-assisted extraction. Curr Res Food Sci 2022; 5:278-287. [PMID: 35146444 PMCID: PMC8816667 DOI: 10.1016/j.crfs.2022.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 12/28/2022] Open
Abstract
As the highest yield crop worldwide, citrus peels that possess bioactive compounds were discarded as a futile by-product. Ultrasonication with environmentally friendly solvent (50% ethanol and ddH2O) were used in the present study to extract flavonoids from Citrus depressa Hayata peels with extraction period and fruit maturity as other variables. DPPH scavenging activity was investigated. Qualitative flavonoid content analysis was done by UV/Vis and FTIR-ATR spectra. Quantification of flavonoid using LC-MS/MS found that solvent type, fruit maturity, and ultrasonication period significantly affect the extracted flavonoid yield (p < 0.05). Extraction using 50% ethanol showed a higher yield than ddH2O. Flavonoid content was also higher in unripe than ripe samples. Nobiletin, tangeretin, and rutin were dominant among the identified compounds in all sample treatments. Flavonoid content in Citrus depressa Hayata extract was found to negatively correlate to DPPH scavenging activity, which needs further research to identify other bioactivities of these flavonoids. Utilization of simple ultrasonication method with less preparation to extract flavonoids from Citrus depressa Hayata peels. Fruit maturity, extraction time and solvent preference significantly affect the yield of extracted flavonoid. Environmentally friendly solvent for extraction, deliver a comparable yield of flavonoid compounds to other methods. The negative correlation of extracted flavonoid to DPPH scavenging activity.
Collapse
|
12
|
Gogoi M, Hati Boruah JL, Bora PK, Das DJ, Famhawite V, Biswas A, Puro N, Kalita J, Haldar S, Baishya R. Citrus macroptera induces apoptosis via death receptor and mitochondrial mediated pathway as prooxidant in human non-small cell lung cancer cells. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Wang Z, Ding Z, Li Z, Ding Y, Jiang F, Liu J. Antioxidant and antibacterial study of 10 flavonoids revealed rutin as a potential antibiofilm agent in Klebsiella pneumoniae strains isolated from hospitalized patients. Microb Pathog 2021; 159:105121. [PMID: 34343655 DOI: 10.1016/j.micpath.2021.105121] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022]
Abstract
The emergence of multidrug resistance (MDR) and extensive drug resistance (XDR) in Klebsiella pneumoniae strains has posed great threats to conventional antibiotics. Previous studies have shown that plant-derived flavonoids have inhibitory functions against pathogens. However, in K. pneumoniae, the antibacterial activity of different flavonoids against growth and biofilm formation remains a mystery. The aim of the present study was to evaluate the antioxidant abilities of different flavonoids, to screen active ingredients and to identify their inhibitory effects on K. pneumoniae growth and biofilm formation. In total, 10 flavonoids representing 4 major categories were screened and used in this study. The antioxidant capacity of each flavonoid was evaluated through a DPPH (2,2-diphenyl-1-picrylhydrazyl) assay. Rutin showed the highest level of free radical scavenging capacity, followed by kaempferol, luteolin, quercetin, apigenin, hesperidin, sinensetin, naringenin, naringin and 3,5,6,7,8,3',4'-heptamethoxyflavone. The inhibitory effects of rutin and naringin on bacterial growth were also compared. The lowest MICs of rutin were found against K. pneumoniae ATCC700603 (1024 μg/mL) and E. coli ATCC25922 (512 μg/mL). However, the MBICs were not found. Rutin showed strong inhibitory ability against both the growth curve and biofilm production. The expression profiles of 15 biofilm-related genes were analyzed in biofilm cells both with and without rutin treatment. The luxS gene and wabG gene were downregulated significantly by rutin treatment. Correlation analysis showed that mrkA gene expression was positively correlated with biofilm biomass accumulation. Our study indicated that biofilm production is correlated with the expression of several genes rather than one. MrkA gene expression was positively correlated with biofilm biomass accumulation. Our study screened rutin as a potential agent to inhibit K. pneumoniae biofilm formation.
Collapse
Affiliation(s)
- Zhibin Wang
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Zixuan Ding
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Zhaoyinqian Li
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Yinhuan Ding
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China
| | - Fan Jiang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, Shandong Province, 250012, China
| | - Jinbo Liu
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
14
|
Hamdan DI, El-Shiekh RA, El-Sayed MA, Khalil HMA, Mousa MR, Al-Gendy AA, El-Shazly AM. Phytochemical characterization and anti-inflammatory potential of Egyptian Murcott mandarin cultivar waste (stem, leaves and peel). Food Funct 2021; 11:8214-8236. [PMID: 32966492 DOI: 10.1039/d0fo01796e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The stem (S), leaf (L) and fruit peel (P) of Murcott mandarins were separately extracted using 80% ethanol and then fractionated into dichloromethane (DCM) and ethyl acetate (ET). Their metabolic profiles were studied via HPLC-PDA-ESI-MS/MS and afforded a tentative characterization of 98 compounds, including free organic acids, phenolic acid derivatives, flavonoid aglycones, flavonoid glycosides, flavonoids containing 3-hydroxyl-3-methylglutaroyl (HMG) units, coumarin derivatives and limonoids. Column chromatography resulted in isolation of six metabolites for the first time that were identified as nobiletin (C1), isosinensetin (C2), limonin (C3), 4'-demethylnobiletin (C4), stigmasterol-O-glucoside (C5) and hesperidin (C6). In vitro studies of the anti-inflammatory activity of DCM-L against cyclooxygenases (COXs) and 5-lipoxygenase (5-LOX) enzymes revealed that DCM-L showed higher activity than the other tested fractions. The in vivo gastroprotective effects of that fraction were evaluated using alcohol-induced gastric ulcers in rats. The obtained findings validated the gastroprotective and anti-ulcerogenic activities of DCM-L through its anxiolytic, anti-inflammatory, antioxidant and anti-apoptotic effects. Therefore, we recommend the use of Murcott mandarin leaves as a part of a protection strategy for gastric ulcer.
Collapse
Affiliation(s)
- Dalia I Hamdan
- Department of Pharmacognosy, Faculty of Pharmacy, Menoufia University, Shibin Elkom, 32511, Egypt.
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini st., Cairo, 11562, Egypt
| | - May A El-Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Heba M A Khalil
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Mohamed R Mousa
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211, Egypt
| | - Amal A Al-Gendy
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Assem M El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
15
|
Arunkumar M, LewisOscar F, Thajuddin N, Pugazhendhi A, Nithya C. In vitro and in vivo biofilm forming Vibrio spp: A significant threat in aquaculture. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Ashrafizadeh M, Zarrabi A, Saberifar S, Hashemi F, Hushmandi K, Hashemi F, Moghadam ER, Mohammadinejad R, Najafi M, Garg M. Nobiletin in Cancer Therapy: How This Plant Derived-Natural Compound Targets Various Oncogene and Onco-Suppressor Pathways. Biomedicines 2020; 8:biomedicines8050110. [PMID: 32380783 PMCID: PMC7277899 DOI: 10.3390/biomedicines8050110] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer therapy is a growing field, and annually, a high number of research is performed to develop novel antitumor drugs. Attempts to find new antitumor drugs continue, since cancer cells are able to acquire resistance to conventional drugs. Natural chemicals can be considered as promising candidates in the field of cancer therapy due to their multiple-targeting capability. The nobiletin (NOB) is a ubiquitous flavone isolated from Citrus fruits. The NOB has a variety of pharmacological activities, such as antidiabetes, antioxidant, anti-inflammatory, hepatoprotective, and neuroprotective. Among them, the antitumor activity of NOB has been under attention over recent years. In this review, we comprehensively describe the efficacy of NOB in cancer therapy. NOB induces apoptosis and cell cycle arrest in cancer cells. It can suppress migration and invasion of cancer cells via the inhibition of epithelial-to-mesenchymal transition (EMT) and EMT-related factors such as TGF-β, ZEB, Slug, and Snail. Besides, NOB inhibits oncogene factors such as STAT3, NF-κB, Akt, PI3K, Wnt, and so on. Noteworthy, onco-suppressor factors such as microRNA-7 and -200b undergo upregulation by NOB in cancer therapy. These onco-suppressor and oncogene pathways and mechanisms are discussed in this review.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey;
| | - Sedigheh Saberifar
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran;
| | - Farid Hashemi
- DVM. Graduated, Young Researcher and Elite Club, Kazerun Branch, Islamic Azad University, Kazeroon 7319846451, Iran;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran;
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715749, Iran;
| | - Ebrahim Rahmani Moghadam
- Student Research Committee, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran
- Correspondence: (R.M.); (M.N.); (M.G.)
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Correspondence: (R.M.); (M.N.); (M.G.)
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida-201313, India
- Correspondence: (R.M.); (M.N.); (M.G.)
| |
Collapse
|
17
|
Construction and Chemical Profile on "Activity Fingerprint" of Citri Reticulatae Pericarpium from Different Cultivars Based on HPLC-UV, LC/MS-IT-TOF, and Principal Component Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4736152. [PMID: 32190084 PMCID: PMC7072102 DOI: 10.1155/2020/4736152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/08/2020] [Indexed: 12/30/2022]
Abstract
Citri Reticulatae Pericarpium (CRP), known as Chenpi (CP) in Chinese, is a medicinal food for health and fitness. In order to find out the characteristic activity chemicals distinguishing various cultivars of CRP and provide a reference for effective development of citrus resources, an “activity fingerprint” of CRP from 21 different cultivars was established based on the evaluation of antitussive and expectorant activities. There were 18 common peaks in the HPLC fingerprint, of which 3 flavonoid glycosides and 14 polymethoxyflavonoids (PMFs) were identified by LC/MS-IT-TOF. Furthermore, five characteristic chemicals were determined and similarity calculation with principal component analysis (PCA) was combined together to compare the similarity and difference among various cultivars. The results showed that some other cultivars were also similar to C. reticulata “Chachi” except for C. reticulata “Tangerina” and C. reticulata “Dahongpao” recorded in Chinese Pharmacopoeia. Most importantly, the peels of C. reticulata “Shiyueju,” C. reticulata “Ponkan,” C. reticulata “Tribute,” and C. reticulata “Bayueju,” traditionally rarely used for medicinal food, were highly similar to that of C. reticulata “Chachi” and rich in bioactive flavonoids, which can be considered the effective medicinal resources of CRP.
Collapse
|
18
|
Barreca D, Mandalari G, Calderaro A, Smeriglio A, Trombetta D, Felice MR, Gattuso G. Citrus Flavones: An Update on Sources, Biological Functions, and Health Promoting Properties. PLANTS 2020; 9:plants9030288. [PMID: 32110931 PMCID: PMC7154817 DOI: 10.3390/plants9030288] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Abstract
Citrus spp. are among the most widespread plants cultivated worldwide and every year millions of tons of fruit, juices, or processed compounds are produced and consumed, representing one of the main sources of nutrients in human diet. Among these, the flavonoids play a key role in providing a wide range of health beneficial effects. Apigenin, diosmetin, luteolin, acacetin, chrysoeriol, and their respective glycosides, that occur in concentrations up to 60 mg/L, are the most common flavones found in Citrus fruits and juices. The unique characteristics of their basic skeleton and the nature and position of the substituents have attracted and stimulated vigorous investigations as a consequence of an enormous biological potential, that manifests itself as (among other properties) antioxidant, anti-inflammatory, antiviral, antimicrobial, and anticancer activities. This review analyzes the biochemical, pharmacological, and biological properties of Citrus flavones, emphasizing their occurrence in Citrus spp. fruits and juices, on their bioavailability, and their ability to modulate signal cascades and key metabolic enzymes both in vitro and in vivo. Electronic databases including PubMed, Scopus, Web of Science, and SciFinder were used to investigate recent published articles on Citrus spp. in terms of components and bioactivity potentials.
Collapse
Affiliation(s)
- Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (G.M.); (A.S.); (D.T.); (M.R.F.); (G.G.)
- Correspondence: ; Tel.: +39-0906765187; Fax: +39-0906765186
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (G.M.); (A.S.); (D.T.); (M.R.F.); (G.G.)
| | - Antonella Calderaro
- Department of Agricultural Science, Università degli Studi Mediterranea, Feo di Vito, IT-89124 Reggio Calabria, Italy;
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (G.M.); (A.S.); (D.T.); (M.R.F.); (G.G.)
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (G.M.); (A.S.); (D.T.); (M.R.F.); (G.G.)
| | - Maria Rosa Felice
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (G.M.); (A.S.); (D.T.); (M.R.F.); (G.G.)
| | - Giuseppe Gattuso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (G.M.); (A.S.); (D.T.); (M.R.F.); (G.G.)
| |
Collapse
|
19
|
Goh JXH, Tan LTH, Goh JK, Chan KG, Pusparajah P, Lee LH, Goh BH. Nobiletin and Derivatives: Functional Compounds from Citrus Fruit Peel for Colon Cancer Chemoprevention. Cancers (Basel) 2019; 11:E867. [PMID: 31234411 PMCID: PMC6627117 DOI: 10.3390/cancers11060867] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/19/2022] Open
Abstract
The search for effective methods of cancer treatment and prevention has been a continuous effort since the disease was discovered. Recently, there has been increasing interest in exploring plants and fruits for molecules that may have potential as either adjuvants or as chemopreventive agents against cancer. One of the promising compounds under extensive research is nobiletin (NOB), a polymethoxyflavone (PMF) extracted exclusively from citrus peel. Not only does nobiletin itself exhibit anti-cancer properties, but its derivatives are also promising chemopreventive agents; examples of derivatives with anti-cancer activity include 3'-demethylnobiletin (3'-DMN), 4'-demethylnobiletin (4'-DMN), 3',4'-didemethylnobiletin (3',4'-DMN) and 5-demethylnobiletin (5-DMN). In vitro studies have demonstrated differential efficacies and mechanisms of NOB and its derivatives in inhibiting and killing of colon cancer cells. The chemopreventive potential of NOB has also been well demonstrated in several in vivo colon carcinogenesis animal models. NOB and its derivatives target multiple pathways in cancer progression and inhibit several of the hallmark features of colorectal cancer (CRC) pathophysiology, including arresting the cell cycle, inhibiting cell proliferation, inducing apoptosis, preventing tumour formation, reducing inflammatory effects and limiting angiogenesis. However, these substances have low oral bioavailability that limits their clinical utility, hence there have been numerous efforts exploring better drug delivery strategies for NOB and these are part of this review. We also reviewed data related to patents involving NOB to illustrate the extensiveness of each research area and its direction of commercialisation. Furthermore, this review also provides suggested directions for future research to advance NOB as the next promising candidate in CRC chemoprevention.
Collapse
Affiliation(s)
- Joanna Xuan Hui Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Joo Kheng Goh
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Kok Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
- International Genome Centre, Jiangsu University, Zhenjiang 212013, China.
| | - Priyia Pusparajah
- Medical Health and Translational Research Group, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia.
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Asian Centre for Evidence Synthesis in Population, Implementation and Clinical Outcomes (PICO), Health and Well-being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Bandar Sunway 47500, Malaysia.
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
- Asian Centre for Evidence Synthesis in Population, Implementation and Clinical Outcomes (PICO), Health and Well-being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Bandar Sunway 47500, Malaysia.
| |
Collapse
|
20
|
Characteristic of interaction mechanism between β-lactoglobulin and nobiletin: A multi-spectroscopic, thermodynamics methods and docking study. Food Res Int 2019; 120:255-263. [DOI: 10.1016/j.foodres.2019.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 12/11/2022]
|
21
|
Tong C, Guo K, Xu J, Tong X, Shi S. Online extraction and cleanup–quadrupole time-of-flight tandem mass spectrometry for rapid analysis of bioactive components in natural products. Anal Bioanal Chem 2018; 411:679-687. [DOI: 10.1007/s00216-018-1491-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/08/2018] [Accepted: 11/07/2018] [Indexed: 10/27/2022]
|
22
|
Singh J, Jayaprakasha GK, Patil BS. An optimized solvent extraction and characterization of unidentified flavonoid glucuronide derivatives from spinach by UHPLC-HR-QTOF-MS. Talanta 2018; 188:763-771. [PMID: 30029444 DOI: 10.1016/j.talanta.2018.06.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 06/08/2018] [Indexed: 02/02/2023]
Abstract
A rapid, sensitive analytical method using ultra-high-pressure liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-HR-QTOF-MS) was developed for the identification and quantification of flavonoids from spinach. The extraction efficiency of flavonoids was evaluated by different solvents such as acetone, ethanol, methanol, acetone: water (70:30), ethanol: water (70:30) and methanol: water (70:30). Flavonoid identification was achieved by UV spectra, high resolution accurate mass and their fragmentation pattern. The precursor and product ions were recorded by both broadband collision ion dissociation (bbCID) and multiple reaction monitoring (MRM) techniques. Different collision energies (5, 10, 15, 20, 40, and 70 eV) were optimized to obtain the mass spectra of flavonoids in positive and negative ionization modes. For the first time, five minor flavonoid glucuronide derivatives were identified in spinach. MRM and bbCID provided glucuronide fingerprint ions at m/z 175.0278 and m/z 113.0257 respectively in negative ionization mode. The quantification of identified flavonoids was achieved by 5,3',4'-trihydroxy-3-methoxy-6:7-methylen-dioxyflavone-4'-β-D-glucuronide which was purified by semi-preparatory HPLC. The purity of the isolated compound was confirmed by NMR analysis. The identified 5,3',4'-trihydroxy-3-methoxy-6:7-methylen-dioxyflavone-4'-β-D-(2'-O-feurloyl-glucuronide) was the prominent flavonoid and the level was significantly higher in the acetone fraction (2.95 ± 0.16 µg/g FW). This study demonstrates the systematic identification of potential bioactive compounds especially glucuronide derivatives from spinach.
Collapse
Affiliation(s)
- Jashbir Singh
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences,Texas A&M University, 1500 Research Parkway, Suite A120, College Station, TX 77845, USA
| | - G K Jayaprakasha
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences,Texas A&M University, 1500 Research Parkway, Suite A120, College Station, TX 77845, USA.
| | - Bhimanagouda S Patil
- Vegetable and Fruit Improvement Center, Department of Horticultural Sciences,Texas A&M University, 1500 Research Parkway, Suite A120, College Station, TX 77845, USA.
| |
Collapse
|
23
|
Elhennawy MG, Lin HS. Dose- and time-dependent pharmacokinetics of apigenin trimethyl ether. Eur J Pharm Sci 2018; 118:96-102. [PMID: 29574080 DOI: 10.1016/j.ejps.2018.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/05/2018] [Accepted: 03/20/2018] [Indexed: 12/20/2022]
Abstract
Apigenin trimethyl ether (5,7,4'-trimethoxyflavone, ATE), one of the key polymethoxyflavones present in black ginger (rhizome of Kaempferia parviflora) possesses various health-promoting activities. To optimize its medicinal application, the pharmacokinetics of ATE was assessed in Sprague-Dawley rats with emphases to identify the impacts from dose and repeated dosing on its major pharmacokinetic parameters. Plasma ATE levels were monitored by liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Upon single intravenous administration (2 mg/kg), plasma levels of ATE declined through an apparent first-order process while dose-escalation to 4 and 8 mg/kg led to its non-linear disposition, which could be described by the Michaelis-Menten model. Similarly, dose-dependent oral pharmacokinetics was confirmed and when the dose was escalated from 5 to 15 and 45 mg/kg, much longer mean residence time (MRT0→last), higher dose-normalized maximal plasma concentration (Cmax/Dose) and exposure (AUC/Dose) were observed at 15 and/or 45 mg/kg. One-week daily oral administration of ATE at 15 mg/kg caused its accelerated elimination and the plasma exposure (AUC) after intravenous (2 mg/kg) and oral administration (15 mg/kg) dropped ~40 and 60%, respectively. As ATE displayed both dose- and time-dependent pharmacokinetics, caution is needed in the medicinal applications of ATE and/or black ginger.
Collapse
Affiliation(s)
| | - Hai-Shu Lin
- Department of Pharmacy, National University of Singapore, Singapore.
| |
Collapse
|
24
|
Gao Z, Gao W, Zeng SL, Li P, Liu EH. Chemical structures, bioactivities and molecular mechanisms of citrus polymethoxyflavones. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.036] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
25
|
Hariri BM, McMahon DB, Chen B, Adappa ND, Palmer JN, Kennedy DW, Lee RJ. Plant flavones enhance antimicrobial activity of respiratory epithelial cell secretions against Pseudomonas aeruginosa. PLoS One 2017; 12:e0185203. [PMID: 28931063 PMCID: PMC5607194 DOI: 10.1371/journal.pone.0185203] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/07/2017] [Indexed: 12/27/2022] Open
Abstract
Flavones are a class of natural plant secondary metabolites that have anti-inflammatory and anti-bacterial effects. Some flavones also activate the T2R14 bitter taste receptor, which is expressed in motile cilia of the sinonasal epithelium and activates innate immune nitric oxide (NO) production. Flavones may thus be potential therapeutics for respiratory infections. Our objective was to examine the anti-microbial effects of flavones on the common sinonasal pathogens Candida albicans, Staphylococcus aureus, and Pseudomonas aeruginosa, evaluating both planktonic and biofilm growth. Flavones had only very low-level antibacterial activity alone. They did not reduce biofilm formation, but did reduce production of the important P. aeruginosa inflammatory mediator and ciliotoxin pyocyanin. However, flavones exhibited synergy against P. aeruginosa in the presence of antibiotics or recombinant human lysozyme. They also enhanced the efficacy of antimicrobials secreted by cultured and primary human airway cells grown at air-liquid interface. This suggests that flavones may have anti-gram-negative potential as topical therapeutics when combined with antibiotics or in the context of innate antimicrobials secreted by the respiratory or other epithelia. This may have an additive effect when combined with T2R14-activated NO production. Additional studies are necessary to understand which flavone compounds or mixtures are the most efficacious.
Collapse
Affiliation(s)
- Benjamin M. Hariri
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Derek B. McMahon
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Bei Chen
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Nithin D. Adappa
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - James N. Palmer
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - David W. Kennedy
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Robert J. Lee
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
26
|
Elhennawy MG, Lin HS. Quantification of apigenin trimethyl ether in rat plasma by liquid chromatography-tandem mass spectrometry: Application to a pre-clinical pharmacokinetic study. J Pharm Biomed Anal 2017; 142:35-41. [PMID: 28494337 DOI: 10.1016/j.jpba.2017.03.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/22/2017] [Accepted: 03/31/2017] [Indexed: 10/19/2022]
Abstract
Apigenin trimethyl ether (5,7,4'-trimethoxyflavone, ATE) is a naturally occurring polymethoxyflavone with a wide range of health-promoting activities. In this study, a sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of ATE in rat plasma. Protein precipitation was applied as plasma clean-up procedure; the electrospray ionization was operated in its positive ion mode while ATE and formononetin (internal standard) were measured by multiple reactions monitoring (ATE: m/z 313.1→298.1; formononetin: 269.2→213.3). This LC-MS/MS method displayed good selectivity, sensitivity (lower limit of quantification=2.5ng/ml), accuracy (both intra- and inter-day analytical recovery within 100±10%) and precision (both intra- and inter-day RSD <10%). The matrix effect was found to be insignificant. The pharmacokinetic profiles of ATE were subsequently examined in Sprague-Dawley rats after single oral administration (10mg/kg). When given in an aqueous suspension, ATE was slowly absorbed with quite low plasma exposure (AUC). Fasting further attenuated its oral absorption and led to ∼70% drops in average maximal plasma concentration (Cmax) and AUC. When dosed in a solution formulated with 2-hydroxypropyl-β-cyclodextrin, the oral absorption of ATE was substantially improved with ∼500% increases in average Cmax and AUC. Clearly, aqueous solubility has been identified as a barrier to the oral absorption of ATE. The information obtained from this study will facilitate further medicinal exploration on ATE.
Collapse
Affiliation(s)
- Mai Gamal Elhennawy
- Department of Pharmacy, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
| | - Hai-Shu Lin
- Department of Pharmacy, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore.
| |
Collapse
|
27
|
Zhang H, Zheng J, Liu A, Xiao H, He L. Label-free Imaging and Characterization of Cancer Cell Responses to Polymethoxyflavones Using Raman Microscopy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9708-9713. [PMID: 27977189 DOI: 10.1021/acs.jafc.6b03899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We determined the cellular responses of human colon cancer HT29 and HCT116 cells to the treatments of nobiletin (NBT) and 5-demethylnobiletin (5DN) using Raman microscopy. Evaluation at both single cell and cell population levels revealed found that NBT induced more changes in the peak intensity of nucleic acid than 5DN, whereas 5DN induced more changes in the peak intensity of localized lipid than NBT. This result indicates the different modes of inhibitory action of these two PMFs against colon cancer cells. Between the two colon cancer cells tested, HCT116 cells were more sensitive to both PMFs than HT29 cells. The Raman data were generally in a good agreement with the flow cytometry data. Our results demonstrate that Raman microscopy is able to provide macromolecular information on cellular responses to anticancer treatments.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences , Beijing 100193, People's Republic of China
| | - Anna Liu
- Department of Mathematics and Statistics, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Hang Xiao
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Lili He
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| |
Collapse
|
28
|
Ke Z, Yang Y, Tan S, Zhou Z. Characterization of Polymethoxylated Flavonoids in the Peels of Chinese Wild Mandarin (Citrus reticulata Blanco) by UPLC-Q-TOF-MS/MS. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0690-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
|
30
|
Sharma K, Mahato N, Cho MH, Lee YR. Converting citrus wastes into value-added products: Economic and environmently friendly approaches. Nutrition 2016; 34:29-46. [PMID: 28063510 DOI: 10.1016/j.nut.2016.09.006] [Citation(s) in RCA: 244] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/18/2016] [Accepted: 09/20/2016] [Indexed: 01/09/2023]
Abstract
Citrus fruits, including oranges, grapefruits, lemons, limes, tangerines, and mandarins, are among the most widely cultivated fruits around the globe. Its production is increasing every year due to rising consumer demand. Citrus-processing industries generate huge amounts of wastes every year, and citrus peel waste alone accounts for almost 50% of the wet fruit mass. Citrus waste is of immense economic value as it contains an abundance of various flavonoids, carotenoids, dietary fiber, sugars, polyphenols, essential oils, and ascorbic acid, as well as considerable amounts of some trace elements. Citrus waste also contains high levels of sugars suitable for fermentation for bioethanol production. However, compounds such as D-limonene must be removed for efficient bioethanol production. The aim of the present article was to review the latest advances in various popular methods of extraction for obtaining value-added products from citrus waste/byproducts and their potential utility as a source of various functional compounds.
Collapse
Affiliation(s)
- Kavita Sharma
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Neelima Mahato
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Moo Hwan Cho
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea.
| |
Collapse
|
31
|
Rajamanikandan S, Jeyakanthan J, Srinivasan P. Binding mode exploration of LuxR-thiazolidinedione analogues, e-pharmacophore-based virtual screening in the designing of LuxR inhibitors and its biological evaluation. J Biomol Struct Dyn 2016; 35:897-916. [PMID: 27141809 DOI: 10.1080/07391102.2016.1166455] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Master quorum sensing (QS) regulator LuxR of Vibrio harveyi is a unique member of the TetR protein superfamily. Recent studies have demonstrated the contribution of thiazolidinedione analogues in blocking QS by decreasing the DNA-binding ability of LuxR. However, the precise mechanism of thiazolidinedione analogues binding to LuxR is still unclear. In the present study, molecular docking combined with molecular dynamics (MD) simulations was performed to understand the mechanism of ligand binding to the protein. The binding pattern of thiazolidinedione analogues showed strong hydrogen bonding interactions with the amine group (NH) of polar amino acid residue Asn133 and carbonyl (C=O) interaction with negatively charged amino acid residue Gln137 in the binding site of LuxR. The stability of the protein-ligand complexes was confirmed by running 50 ns of MD simulations. Further, the four-featured pharmacophore hypothesis (AHHD) consists of one acceptor (A), two hydrophobic regions (HH) and one donor (D) group was used to screen compounds from ChemBridge database. The identified hit molecules were shown to have excellent pharmacokinetic properties under the acceptable range. Based on the computational studies, ChemBridge_5343641 was selected for in vitro assays. The 1-(4-chlorophenoxy)-3-[(4,6-dimethyl-2-pyrimidinyl)thio]-2-propanol (ChemBridge_5343641) showed significant reduction in bioluminescence in a dose-dependent manner. In addition, ChemBridge_5343641 inhibits biofilm formation and motility in V. harveyi. The result from the study suggests that ChemBridge_5343641 could serve as an anti-QS molecule.
Collapse
Affiliation(s)
| | - Jeyaraman Jeyakanthan
- a Department of Bioinformatics , Alagappa University , Karaikudi , TamilNadu , India
| | - Pappu Srinivasan
- a Department of Bioinformatics , Alagappa University , Karaikudi , TamilNadu , India.,b Department of Animal Health and Management , Alagappa University , Karaikudi , TamilNadu , India
| |
Collapse
|
32
|
Russo M, Rigano F, Arigò A, Sciarrone D, Calabrò ML, Farnetti S, Dugo P, Mondello L. Rapid isolation, reliable characterization, and water solubility improvement of polymethoxyflavones from cold-pressed mandarin essential oil. J Sep Sci 2016; 39:2018-27. [DOI: 10.1002/jssc.201501366] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/24/2016] [Accepted: 03/17/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Marina Russo
- “Scienze chimiche, biologiche, farmaceutiche ed ambientali” Department; University of Messina; Messina Italy
- Chromaleont s.r.l, c/o; University of Messina; Messina Italy
- University Campus Bio-Medico of Rome; Rome Italy
| | - Francesca Rigano
- “Scienze chimiche, biologiche, farmaceutiche ed ambientali” Department; University of Messina; Messina Italy
| | - Adriana Arigò
- “Scienze chimiche, biologiche, farmaceutiche ed ambientali” Department; University of Messina; Messina Italy
| | - Danilo Sciarrone
- “Scienze chimiche, biologiche, farmaceutiche ed ambientali” Department; University of Messina; Messina Italy
| | - Maria Luisa Calabrò
- “Scienze chimiche, biologiche, farmaceutiche ed ambientali” Department; University of Messina; Messina Italy
| | - Sara Farnetti
- Division of Cellular Transplantation of surgery, Diabetes Research Institute; University of Miami; Miami FL USA
| | - Paola Dugo
- “Scienze chimiche, biologiche, farmaceutiche ed ambientali” Department; University of Messina; Messina Italy
- Chromaleont s.r.l, c/o; University of Messina; Messina Italy
- University Campus Bio-Medico of Rome; Rome Italy
| | - Luigi Mondello
- “Scienze chimiche, biologiche, farmaceutiche ed ambientali” Department; University of Messina; Messina Italy
- Chromaleont s.r.l, c/o; University of Messina; Messina Italy
- University Campus Bio-Medico of Rome; Rome Italy
| |
Collapse
|
33
|
Almasoud A, Hettiarachchy N, Rayaprolu S, Babu D, Kwon YM, Mauromoustakos A. Inhibitory effects of lactic and malic organic acids on autoinducer type 2 (AI-2) quorum sensing of Escherichia coli O157:H7 and Salmonella Typhimurium. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|