1
|
Cheng ZY, Jin JG, Yan M, Chen XY, Li JK, Gao JP, Zhou JT. Anti-hypoxia polyacetylenes and sesquiterpenoids from Codonopsis pilosula (Franch.) Nannf. Nat Prod Res 2025:1-9. [PMID: 40304441 DOI: 10.1080/14786419.2025.2498069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/15/2025] [Accepted: 04/22/2025] [Indexed: 05/02/2025]
Abstract
A new polyacetylene, codonopsisylene (1), has been extracted from the roots of Codonopsis pilosula, along with 14 previously reported compounds, including two polyacetylenes (2-3) and twelve sesquiterpenoids (4-15). The chemical structures of these compounds were thoroughly characterised using a variety of spectroscopic techniques, combined with calculated NMR and ECD data. Anti-hypoxia activities of all isolated compounds were conducted using a CCK-8 assay. Among them, compounds 3 and 6 demonstrated anti-hypoxia effects by inhibiting ROS overexpression, reducing excessive LDH release and enhancing ΔΨm.
Collapse
Affiliation(s)
- Zhuo-Yang Cheng
- School of Pharmacy, Shanxi Medical University, Taiyuan, PR China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, PR China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, PR China
| | - Jun-Ge Jin
- School of Pharmacy, Shanxi Medical University, Taiyuan, PR China
| | - Meng Yan
- School of Pharmacy, Shanxi Medical University, Taiyuan, PR China
| | - Xin-Yue Chen
- School of Pharmacy, Shanxi Medical University, Taiyuan, PR China
| | - Jian-Kuan Li
- School of Pharmacy, Shanxi Medical University, Taiyuan, PR China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, PR China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, PR China
| | - Jian-Ping Gao
- School of Pharmacy, Shanxi Medical University, Taiyuan, PR China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, PR China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, PR China
| | - Jiang-Tao Zhou
- School of Pharmacy, Shanxi Medical University, Taiyuan, PR China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, PR China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, PR China
| |
Collapse
|
2
|
Peng X, Zou Q, Yang C, Pu X, Yang H, Wang M, Chen S, Pu S, Chen X, He H, Li Y. Unveiling the multifaceted benefits of Simiao Pill in ulcerative colitis: Integrative analysis of signaling pathways, gut microbiota, and lipid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119714. [PMID: 40158828 DOI: 10.1016/j.jep.2025.119714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/05/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC), a chronic idiopathic inflammatory bowel disease, is characterized by a prolonged and recurrent course. The classical Traditional Chinese Medicine (TCM) formula Simiao Pill (SMP) has demonstrated unique and widespread therapeutic effects on diarrhea and other intestinal inflammation. However, its material basis and potential mechanisms of action remain unclear. AIM OF THE STUDY This study aims to explore the mechanisms by which SMP alleviates UC, emphasizing its anti-inflammatory properties and its role in regulating gut microbiota. MATERIALS AND METHODS The chemical composition of SMP was identified using UPLC-Q-TOF-MS/MS. Network pharmacology and molecular docking were applied to predict potential anti-UC targets and pathways. In vitro models in RAW264.7 cells and an in vivo mouse model induced by dextran sulfate sodium (DSS) were established to evaluate the potential mechanisms using molecular biology techniques. Additionally, gut microbiota changes were analyzed via 16S rRNA sequencing, and metabolic profiling was conducted using UPLC-Q-TOF-MS/MS. RESULTS SMP significantly improved UC symptoms by targeting 148 protein-related pathways, including TLR4/PI3K/Akt/NF-κB, a key inflammatory regulator. Molecular docking confirmed strong interactions between SMP compounds and targets. SMP reduced inflammation, restored gut barrier integrity, and modulated gut microbiota and lipid metabolism in UC mice. CONCLUSIONS SMP alleviates UC by regulating the TLR4/PI3K/Akt/NF-κB pathway, balancing gut microbiota, and improving lipid metabolism. These findings support SMP's potential as a UC treatment and warrant further clinical exploration.
Collapse
Affiliation(s)
- XingJu Peng
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - QiuPing Zou
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - CanJiao Yang
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - XingNa Pu
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - HengLi Yang
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Mei Wang
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Shuai Chen
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - ShiBiao Pu
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - XingLong Chen
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - HongPing He
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - YanPing Li
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
3
|
Ma Q, Noda M, Danshiitsoodol N, Sugiyama M. Atractylodes Japonica Rhizome Extract Fermented with a Plant-Derived Lacticaseibacillus paracasei ( Lactobacillus paracasei) IJH-SONE68 Improves the Wheat Gliadin-Induced Food Allergic Reaction in Mice. Nutrients 2025; 17:1151. [PMID: 40218908 PMCID: PMC11990203 DOI: 10.3390/nu17071151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Medicinal herbs produce valuable substances with therapeutic potential. The chemical structures of those substances are often converted by gut microbiota. Our previous studies showed that several kinds of bioactive molecules are newly generated in fermented medicinal herbal extract with plant-derived lactic acid bacteria (LABs). Methods: The fermented extract of Atractylodes Japonica Rhizoma (AJR), which is designated as "Byakujutsu" in Japan, with a plant-derived LAB strain IJH-SONE68 was prepared and whether the fermented extract could help reduce symptoms of food allergies, especially wheat intolerance, was confirmed using animal model. Results: It has been found that the fermented extract significantly ameliorates the anaphylaxis score (from 3.0 to 1.0, p = 0.003) of gliadin-induced allergic model mice (specific-pathogen-free, BALB/cJ) accompanied with the modulation of serum total immunoglobulin E (IgE) (from 778 to 518 ng/mL, p = 0.006), interferon (IFN)-γ (from 6.6 to 9.5 pg/mL, p < 0.001), and interleukin (IL)-4 (from 32.0 to 9.1 pg/mL, p < 0.001) levels. Conclusions: The fermented AJR extract may modulate the Th1/Th2 cell balance to alleviate the symptoms of gliadin-induced anaphylaxis in mice. The present study supports the view that the fermentation of medicinal herbal extract prepared using LABs may be a useful procedure for producing therapeutic potential compounds to maintain health.
Collapse
Affiliation(s)
| | | | | | - Masanori Sugiyama
- Department of Probiotic Science for Preventive Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan; (Q.M.); (M.N.); (N.D.)
| |
Collapse
|
4
|
Ye ZW, Yang QY, Yang DH, Lin QH, Liu XX, Li FQ, Yan FF, Luo P, Qin S, Wang F. Transdermal administration of herbal essential oil alleviates high-fat diet-induced obesity by regulating metabolism and gut microbiota. Front Pharmacol 2025; 16:1565030. [PMID: 40176906 PMCID: PMC11962428 DOI: 10.3389/fphar.2025.1565030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Obesity, a global health challenge, is characterized by excessive fat accumulation and associated metabolic disorders. The ZhiZhu decoction, a traditional Chinese herbal formula consisting of Citrus aurantium L. (ZS, ZhiShi in Chinese) and Atractylodes macrocephala Koidz (BZ, Baizhu in Chinese), is widely recognized in clinics for its gastrointestinal regulatory effects. Methods The chemical composition of ZS-BZ essential oil (ZBEO) was characterized using gas chromatography-mass spectrometry (GC-MS). Concurrently, we conducted in vitro investigations using HepG2 hepatoma cells to evaluate its anti-lipid deposition potential. To further elucidate the anti-obesity mechanisms, an in vivo model was established through high-fat diet (HFD)-induced obese rats, followed by transdermal ZBEO administration. Systemic analyses were performed integrating serum metabolomic profiling via UPLC-QTOF-MS and gut microbiota dynamics assessment through 16S rRNA gene sequencing. Results ZBEO, rich in atractylon, D-limonene, and γ-elemene and shown to reduce lipid accumulation. Transdermal ZBEO administration in obese rats led to significant weight loss and improved serum metabolic indexes related to the POMC/CART signaling pathway. Additionally, ZBEO altered gut microbiota, enhancing beneficial bacteria and affecting metabolic pathways linked to obesity. Discussion We discovered that ZBEO exerts a significant influence on obesity by modulating key biological processes, including glucose metabolism, lipid metabolism, and the composition of gut microbiota.
Collapse
Affiliation(s)
- Zu-Wen Ye
- Cancer Research Center, The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qi-Yue Yang
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, Minola, NY, United States
| | - Qiao-Hong Lin
- Cancer Research Center, The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiao-Xia Liu
- Cancer Research Center, The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Feng-Qin Li
- Cancer Research Center, The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Fang-Fang Yan
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Luo
- Cancer Research Center, The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Si Qin
- Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Fang Wang
- Cancer Research Center, The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
5
|
Wang S, Bai R, Long W, Wan X, Zhao Z, Fu H, Yang J. Rapid qualitative and quantitative detection for adulteration of Atractylodis Rhizoma using hyperspectral imaging combined with chemometric methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125426. [PMID: 39541642 DOI: 10.1016/j.saa.2024.125426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
In the field of traditional Chinese medicine, Atractylodis Rhizoma (AR) is commonly used for various diseases due to its excellent ability to dry dampness and strengthen the spleen, especially popular in East Asia. The aim of this study is to proposed Hyperspectral Imaging (HSI) in combination with chemometric methods for the rapid qualitative and quantitative detection of AR adulteration with other types of powder. Partial Least Squares Discriminant Analysis (PLS-DA) was used to construct the classification models the best, with the First-order Derivative (F-D) preprocessing method. The accuracy values of the test sets for classification models were above 99%. Furthermore, Partial Least Squares Regression (PLSR), Random Forest Regression (RFR), and BP Neural Network (BPNN) were used to quantitatively analyze the adulteration level. On the whole, the BPNN model has a relatively stable effect. The R-square (R2) values of different models were all greater than 0.97, the Root Mean Square Error (RMSE) values were all less than 0.0300, and the Relative Percentage Difference (RPD) values were over 6.00. After applying three characteristic wavelength selection algorithms, namely Iterative Retained Information Variable (IRIV), Successive Projections Algorithm (SPA), and Variable Iterative Space Shrinkage Approach (VISSA) algorithms, the classification accuracy values remained over 99.00% while the quantification models' RPD values were over 4.00. These results demonstrate the reliability of using hyperspectral imaging combined with chemometrics methods for the adulteration problems in AR.
Collapse
Affiliation(s)
- Siman Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng 100700, PR China
| | - Ruibin Bai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng 100700, PR China; Research Center for Quality Evaluation of Dao-di Herbs, Ganjiang New District, 330000, China
| | - Wanjun Long
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Xiufu Wan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng 100700, PR China
| | - Zihan Zhao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng 100700, PR China; Research Center for Quality Evaluation of Dao-di Herbs, Ganjiang New District, 330000, China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| | - Jian Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng 100700, PR China; Research Center for Quality Evaluation of Dao-di Herbs, Ganjiang New District, 330000, China.
| |
Collapse
|
6
|
Jiang D, Lin H, Liu Z, Qi K, Zhang W, Wang H, Zhang C, Zhu L, Zhu J, Zhang Y, Huang L, Wang S, Pan Y, Guo L. Polyacetylenes and sesquiterpenes in Chinese traditional herb Atractylodes lancea: biomarkers and synergistic effects in red secretory cavities. MOLECULAR HORTICULTURE 2025; 5:11. [PMID: 39901242 PMCID: PMC11792185 DOI: 10.1186/s43897-024-00130-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/25/2024] [Indexed: 02/05/2025]
Affiliation(s)
- Daiquan Jiang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China, Academy of Chinese Medical Sciences , Beijing, 100700, PR China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100700, PR China
- Agriculture and Biotechnology Center, South China, National Botanical Garden , Chinese Academy of Sciences, Guangzhou, 510645, China
| | - Huaibin Lin
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China, Academy of Chinese Medical Sciences , Beijing, 100700, PR China
| | - Zhenhua Liu
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Keke Qi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Wenjin Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Hongyang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China, Academy of Chinese Medical Sciences , Beijing, 100700, PR China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100700, PR China
| | - Chengcai Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China, Academy of Chinese Medical Sciences , Beijing, 100700, PR China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100700, PR China
| | - Lu Zhu
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiaojiao Zhu
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China, Academy of Chinese Medical Sciences , Beijing, 100700, PR China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100700, PR China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China, Academy of Chinese Medical Sciences , Beijing, 100700, PR China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100700, PR China
| | - Sheng Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China, Academy of Chinese Medical Sciences , Beijing, 100700, PR China.
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100700, PR China.
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China.
| | - Lanping Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China, Academy of Chinese Medical Sciences , Beijing, 100700, PR China.
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100700, PR China.
| |
Collapse
|
7
|
Chen S, Liu X, Zhou X, Lin W, Liu M, Ma H, Zhong K, Ma Q, Qin C. Atractylenolide-I prevents abdominal aortic aneurysm formation through inhibiting inflammation. Front Immunol 2025; 16:1486072. [PMID: 39958337 PMCID: PMC11825332 DOI: 10.3389/fimmu.2025.1486072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 01/08/2025] [Indexed: 02/18/2025] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is a degenerative disease with high mortality. Chronic inflammation plays a vital role in the formation of AAA. Atractylenolide-I (ATL-I) is a major bioactive component of Rhizoma Atractylodis Macrocephalae that exerts anti-inflammatory effects in various diseases. The purpose of this study is to investigate the role of ATL-I in the progression of AAA. Methods AAA was constructed in C57BL/6 mice by porcine pancreatic elastase (PPE)-incubation, and the diameter of the aorta was measured by ultrasound. ATL-I was administered by gavage on the second day after modeling to explore its significance in AAA. The pathological and molecular alteration was investigated by immunostaining, ELISA, qRT-PCR and Western blotting. Results ATL-I inhibited the dilatation of the abdominal aorta and decreased the incidence of AAA. ATL-I alleviated the infiltration of macrophages in the adventitia and reduced the levels of proinflammatory factor IL-1β and IL-6 in the aorta and circulatory system, while increasing the expression of anti-inflammatory factor IL-10. Moreover, ATL-I restrained loss of smooth muscle cells and elastic fiber degradation by suppressing MMP-2 and MMP-9 expression. Mechanistically, phospho-AMPK expression was elevated in AAA groups, and ATL-I administration suppressed its expression to improve the pathological damage of aorta. Conclusions ATL-I meliorated vascular inflammation by targeting AMPK signaling, ultimately inhibiting AAA formation, which provided an alternative agent for AAA treatment.
Collapse
Affiliation(s)
- Shuxiao Chen
- Department of Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaotian Liu
- Clinical Medicine, International College of Jinan University, Guangzhou, China
| | - Xincheng Zhou
- Department of Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Weixiao Lin
- School of Stomatology, Jinan University, Guangzhou, China
| | - Minting Liu
- Department of Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haoran Ma
- Department of Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Keli Zhong
- Department of Gastrointestinal Surgery, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Qiming Ma
- Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Chengjian Qin
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Key Laboratory of Medical Research Basic Guarantee for Immune-Related Diseases Research of Guangxi (Cultivation), Guangxi, China
| |
Collapse
|
8
|
Zhou W, Zheng X, Wang X, Tian Y, Wen Y, Tu Y, Lei J, Cheng H, Yu J. Bioassay-guided isolation of antibacterial and anti-inflammatory components from Atractylodes lancea. PHYTOCHEMISTRY 2024; 227:114232. [PMID: 39097216 DOI: 10.1016/j.phytochem.2024.114232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
A bioassay-guided isolation from Atractylodes lancea (Thunb.) DC. obtained 22 compounds, including eight previously undescribed sesquiterpenoids and polyacetylenes (1, 3 and 12-17), as well as fourteen known analogues, and their structures were confirmed by extensive spectroscopic methods. This study evaluated their antibacterial activity against methicillin resistant Staphylococcus aureus (MRSA) for the first time, as well as anti-inflammatory activity. Most of them, including new compounds, showed varying degrees of antibacterial activity against S. aureus and MRSA. Notably, compound 21 exhibited significant antibacterial activity against four different bacteria (MIC 6.25-20.00 μg/mL). This suggested that 21 may have the potential to be developed into a broad-spectrum antibacterial agent. Moreover, except for 9 and 11, most compounds exhibited great anti-inflammatory activity (IC50 1.92-37.91 μM), and iNOS might be a potential target of these compounds according to the molecular docking analysis.
Collapse
Affiliation(s)
- Wenhao Zhou
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University, Wuhan, 430071, China
| | - Xiaoqin Zheng
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University, Wuhan, 430071, China
| | - Xilei Wang
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University, Wuhan, 430071, China
| | - Yinghan Tian
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University, Wuhan, 430071, China
| | - Yi Wen
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University, Wuhan, 430071, China
| | - Yijun Tu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University, Wuhan, 430071, China
| | - Jiachuan Lei
- Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hong Cheng
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Jianqing Yu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
9
|
Zhou YY, Wang J, Sun Z, Sun J, Zhang XJ, Liu Y, Fang ZX, Yang BY. Two new guaiane-type sesquiterpene glycosides from Atractylodes Japonica Koidz. ex Kitam. Nat Prod Res 2024:1-8. [PMID: 39390904 DOI: 10.1080/14786419.2024.2413431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/30/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Two new guaiane-type sesquiterpene glycosides, atractylodes guaianoside I (1) and atractylodes guaianoside II (2), along with eleven known sesquiterpenes (3-13), were isolated from Atractylodes Japonica Koidz. ex Kitam. The structures of these two new compounds were elucidated by extensive spectroscopic analyses and mass spectrometric techniques. And their absolute configurations were confirmed by electronic circular dichroism (ECD) calculations. In addition, the isolated compounds were evaluated for their cytotoxic activities against three cancer cell lines HT-29, A-549, and MCF-7. Results showed that new compound 2 had inhibitory effects on three types of cancer cells, while new compound 1 only had inhibitory effects on HT-29 and MCF-7.
Collapse
Affiliation(s)
- Yuan-Yuan Zhou
- Ministry of Education, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Harbin, China
| | - Jing Wang
- Ministry of Education, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Harbin, China
| | - Zhao Sun
- Ministry of Education, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Harbin, China
| | - Jie Sun
- Ministry of Education, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Harbin, China
| | - Xiao-Juan Zhang
- Academic research department, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan Liu
- Ministry of Education, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Harbin, China
| | - Zhen-Xing Fang
- Institute of Nature and Ecology, Heilongjiang Academy of Sciences, Harbin, China
| | - Bing-You Yang
- Ministry of Education, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Harbin, China
| |
Collapse
|
10
|
Lin Y, Chen K, Zhu M, Song W, Wu G, Pan A. Atractylenolide II regulates the proliferation, ferroptosis, and immune escape of hepatocellular carcinoma cells by inactivating the TRAF6/NF-κB pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7697-7710. [PMID: 38709266 DOI: 10.1007/s00210-024-03046-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/09/2024] [Indexed: 05/07/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common and lethal tumor worldwide. Atractylenolide II (AT-II) is a natural sesquiterpenoid monomer, with anti-tumor effect. To address the effect and mechanisms of AT-II on HCC. The role and mechanisms of AT-II were assessed through cell counting kit-8, flow cytometry, enzyme-linked immunosorbent assay, immunofluorescence, and western blot experiments in Hep3B and Huh7 cells. In vivo experiments were conducted in BALB/c nude mice using immunohistochemistry and western blot assays. AT-II decreased the cell viability of Hep3B and Huh7 cells with a IC50 of 96.43 µM and 118.38 µM, respectively. AT-II increased relative Fe2+ level, which was further promoted with the incubation of erastin and declined with the ferrostatin-1 in Hep3B and Huh7 cells. AT-II enhanced the level of ROS and MDA, but reduced the GSH level, and the expression of xCT and GPX4. AT-II elevated the percent of CD8+ T cells and the IFN-γ contents, and declined the IL-10 concentrations and the expression of PD-L1 in Hep3B and Huh7 cells. AT-II downregulated the relative protein level of TRAF6, p-p65/p-65, and p-IkBα/IkBα, which was rescued with overexpression of TRAF6. Upregulation of TRAF6 also reversed the effect of AT-II on proliferation, ferroptosis, and immune escape in Hep3B cells. In vivo, AT-II reduced tumor volume and weight, the level of GPX4, xCT, and PD-L1, and the expression of TRAF6, p-p65/p-65, and p-IkBα/IkBα, with the increased expression of CD8. AT-II modulated the proliferation, ferroptosis, and immune escape of HCC cells by downregulating the TRAF6/NF-κB pathway.
Collapse
Affiliation(s)
- Yujie Lin
- Department of Traditional Chinese Medicine, Sun Yat-sen Memorial Hospital Affiliated to Sun Yat-sen University, Yuexiu District, No. 107, Yanjiang West Road, Guangzhou Guangdong Province, 510120, China
| | - Ke Chen
- Department of Traditional Chinese Medicine, Sun Yat-sen Memorial Hospital Affiliated to Sun Yat-sen University, Yuexiu District, No. 107, Yanjiang West Road, Guangzhou Guangdong Province, 510120, China
| | - Min Zhu
- Department of Traditional Chinese Medicine, Sun Yat-sen Memorial Hospital Affiliated to Sun Yat-sen University, Yuexiu District, No. 107, Yanjiang West Road, Guangzhou Guangdong Province, 510120, China
| | - Wei Song
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital Affiliated to Sun Yat-sen University Shenshan Central Hospital, Shanwei, 516600, China
| | - Guiyun Wu
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital Affiliated to Sun Yat-sen University, Yuexiu District, No. 107, Yanjiang West Road, Guangzhou Guangdong Province, 510120, China.
| | - Aizhen Pan
- Department of Traditional Chinese Medicine, Sun Yat-sen Memorial Hospital Affiliated to Sun Yat-sen University, Yuexiu District, No. 107, Yanjiang West Road, Guangzhou Guangdong Province, 510120, China.
| |
Collapse
|
11
|
He Q, Tian D, Wang Z, Zheng D, Zhi L, Ma J, An J, Zhang R. Modified Si Miao Powder granules alleviates osteoarthritis progression by regulating M1/M2 polarization of macrophage through NF-κB signaling pathway. Front Pharmacol 2024; 15:1361561. [PMID: 38974041 PMCID: PMC11224909 DOI: 10.3389/fphar.2024.1361561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Background Osteoarthritis (OA) is a chronic degenerative disease mainly characterized by cartilage damage and synovial inflammation. Si Miao Powder, an herbal formula, was recorded in ancient Chinese medicine prescription with excellent anti-inflammatory properties. Based on the classical formula, the modified Si Miao Powder (MSMP) was developed with the addition of two commonly Chinese orthopedic herbs, which had the efficacy of strengthening the therapeutic effect for OA. Methods In the in vivo experiments, thirty-six 8-week-old male C57BL/6 mice were randomly divided into six groups: sham group, OA group, celecoxib group, low-MSMP group, middle-MSMP group, and high-MSMP group. OA mice were constructed by destabilization of medial meniscus (DMM) and treated with MSMP granules or celecoxib by gavage. The effects of MSMP on cartilage, synovitis and inflammatory factor of serum were tested. For in vitro experiments, control serum and MSMP-containing serum were prepared from twenty-five C57BL/6 mice. Macrophages (RAW264.7 cells) were induced by lipopolysaccharide (LPS) and then treated with MSMP-containing serum. The expression of inflammatory factors and the change of the NF-κB pathway were tested. Results In vivo, celecoxib and MSMP alleviated OA progression in the treated groups compared with OA group. The damage was partly recovered in cartilage, the synovial inflammatory were reduced in synovium, and the concentrations of IL-6 and TNF-α were reduced and the expression of IL-10 was increased in serum. The function of the middle MSMP was most effective for OA treatment. The results of in vitro experiments showed that compared with the LPS group, the MSMP-containing serum significantly reduced the expression levels of pro-inflammatory (M1-type) factors, such as CD86, iNOS, TNF-α and IL-6, and promoted the expression levels of anti-inflammatory (M2-type) factors, such as Arg1 and IL-10. The MSMP-containing serum further inhibited NF-κB signaling pathway after LPS induction. Conclusion The study demonstrated that MSMP alleviated OA progression in mice and MSMP-containing serum modulated macrophage M1/M2 phenotype by inhibiting the NF-κB signaling pathway. Our study provided experimental evidence and therapeutic targets of MSMP for OA treatment.
Collapse
Affiliation(s)
- Qi He
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ding Tian
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zhiyuan Wang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Dan Zheng
- Department of Medical Technology, Guiyang Healthcare Vocational University, Guiyang, Guizhou, China
| | - Liqiang Zhi
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianbing Ma
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jing An
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Rui Zhang
- Translational Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Medical Technology, Guiyang Healthcare Vocational University, Guiyang, Guizhou, China
| |
Collapse
|
12
|
Zhou YY, Sun Z, Liu Y, Fang ZX, Gao HR, Liu NY, Zhang XJ, Yang BY, Kuang HX. Two new sesterterpenoids from Atractylodes japonica Koidz. ex Kitam. J Nat Med 2024; 78:702-708. [PMID: 38662303 DOI: 10.1007/s11418-024-01793-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/21/2024] [Indexed: 04/26/2024]
Abstract
Two new sesterterpenoids, atractylodes japonica terpenoid acid I (1) and atractylodes japonica terpenoid aldehyde I (2), were isolated from the rhizomes of Atractylodes japonica Koidz. ex Kitam together with ten known compounds (3-12). Their structures were elucidated on the basis of comprehensive spectroscopic analysis (1D/2D NMR, HRESIMS and IR). In addition, all of these isolated compounds were evaluated for their cytotoxic activities against human gastric cancer cell MGC-803 and human hepatocellular cancer cell HepG-2. Most of them exhibited moderate to weak inhibitory effects with IC50 values in the range of 25.15-88.85 μM except for 9-12.
Collapse
Affiliation(s)
- Yuan-Yuan Zhou
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, (Heilongjiang University of Chinese Medicine), 150040, Harbin, People's Republic of China
| | - Zhao Sun
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, (Heilongjiang University of Chinese Medicine), 150040, Harbin, People's Republic of China
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, (Heilongjiang University of Chinese Medicine), 150040, Harbin, People's Republic of China
| | - Zhen-Xing Fang
- Institute of Nature and Ecology, Heilongjiang Academy of Sciences, 150040, Harbin, People's Republic of China
| | - Hui-Rui Gao
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, (Heilongjiang University of Chinese Medicine), 150040, Harbin, People's Republic of China
| | - Ning-Yu Liu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, (Heilongjiang University of Chinese Medicine), 150040, Harbin, People's Republic of China
| | - Xiao-Juan Zhang
- Academic research department, Heilongjiang University of Traditional Chinese Medicine, 150040, Harbin, People's Republic of China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, (Heilongjiang University of Chinese Medicine), 150040, Harbin, People's Republic of China.
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, (Heilongjiang University of Chinese Medicine), 150040, Harbin, People's Republic of China.
| |
Collapse
|
13
|
Wang M, Meng J, Wang H, Hu H, Hong Y. Atractylodes macrocephala III suppresses EMT in cervical cancer by regulating IGF2BP3 through ETV5. J Cell Mol Med 2024; 28:e18081. [PMID: 38358034 PMCID: PMC10868144 DOI: 10.1111/jcmm.18081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 02/16/2024] Open
Abstract
Atractylodes macrocephala III (ATL III), with anti-inflammatory and antitumor effects, is the main compound of Atractylodes macrocephala. Whether ATL III has an effect on cervical cancer and the specific mechanism are still unclear. Here, we investigated the effects of ATL III on cervical cancer cells at different concentrations and found that ATL III downregulates insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), which was found to be highly expressed in cervical cancer tissue by RNA-Seq. In this study, we found that ATL III promotes apoptosis and regulates epithelial-mesenchymal transition (EMT) in cervical cancer cells (HeLa and SiHa cells) and that IGF2BP3 is a common target gene of ATL III in HeLa and SiHa cells. The expression level of IGF2BP3 in cervical cancer cells was proportional to their migration and invasion abilities. This was verified by transfection of cells with a small interfering RNA and an IGF2BP3 overexpression plasmid. After ATL III treatment, the migration and invasion abilities of cervical cancer cells were obviously reduced, but these effects were attenuated after overexpression of IGF2BP3. In addition, the transcription factor IGF2BP3 was predicted by the JASPAR system. After intersection with our sequencing results, we verified the promotional effect of ETV5 (ETS translocation variant 5) on IGF2BP3 and found that ALT III inhibited ETV5. In general, our research showed that ATL III inhibits the migration and invasion of cervical cancer cells by regulating IGF2BP3 through ETV5.
Collapse
Affiliation(s)
- Meixia Wang
- Department of Gynecology and ObstetricsNanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese MedicineNanjingChina
- Department of Gynecology and ObstetricsWenzhou Hospital of Integrated Traditional Chinese and Western MedicineWenzhouChina
| | - Jingwen Meng
- Department of Gynecology and ObstetricsNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Hongyun Wang
- Department of Gynecology and ObstetricsNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Huijuan Hu
- Department of Gynecology and ObstetricsWenzhou Hospital of Integrated Traditional Chinese and Western MedicineWenzhouChina
| | - Ying Hong
- Department of Gynecology and ObstetricsNanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
14
|
Li S, Sun Y, Gao Y, Yu X, Zhao C, Song X, Han F, Yu J. Spectrum-effect relationship analysis based on HPLC-FT-ICR-MS and multivariate statistical analysis to reveal the pharmacodynamic substances of Ling-Gui-Zhu-Gan decoction on Alzheimer's disease. J Pharm Biomed Anal 2024; 237:115765. [PMID: 37844366 DOI: 10.1016/j.jpba.2023.115765] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/02/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
Alzheimer's disease (AD) threatens elderly human health and still lacks effective treatment. Our previous work showed that LGZGD possessed a neuroprotective effect on the Aβ25-35-induced neurotoxicity in differentiated PC12 cells, indicating that LGZGD may be a potential drug for treatment of AD. However, its pharmacodynamic substances which show anti-inflammatory and anti-oxidant stress activities are still unrevealed. This research aims to reveal the pharmacodynamic substances of LGZGD on Aβ25-35-induced PC12 cell model of AD based on a spectrum-effect relationship study by using HPLC-FT-ICR-MS method and multivariate statistical analysis. Firstly, the chemical composition spectra of different combinations of LGZGD were recorded by HPLC-FT-ICR MS. Subsequently, Aβ25-35-induced PC12 cell model of AD was established and pharmacodynamic experiments were conducted to evaluate their anti-inflammatory and anti-oxidant activities, respectively. Finally, the potential pharmacodynamic substances were screened out through spectrum-effect relationship study accompanied by multivariate statistical analysis including bivariate correlation analysis (BCA), grey relational analysis (GRA), principal component analysis (PCA), partial least squares regression analysis (PLSR). As a result, a total of 96 chemical consistents in different combinations of LGZGD were discovered. Among them, 7 components such as isoglabrolide, licorice saponin E2, licorice saponin N2 and licoisoflavanone were directly linked with the anti-inflammatory effects, and 14 constituents such as tumulosic acid, polyporenic acid C, dehydrotumulosic acid, dehydropachymic acid, and pachymic acid were directly correlated with the anti-oxidative stress activities. In conclusion, we combined the HPLC-FT-ICR-MS spectra with pharmacodynamic indicators to develop the spectrum-effect relationships of LGZGD for the first time, and successfully revealed its potential pharmacodynamic substances in the treatment of AD from the anti-inflammatory and antioxidant pathways in the cell model.
Collapse
Affiliation(s)
- Siyue Li
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yuanfang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yutong Gao
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xinying Yu
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Chun Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xiuping Song
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Jia Yu
- School of Pharmacy, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
15
|
Ye S, Si W, Qin W, Yang L, Luo Z, Li Z, Xie Y, Pan H, Li X, Huang Z, Zhu M, Chen D. Atractylodes lancea volatile oils target ADAR2-miR-181a-5p signaling to mesenchymal stem cell chondrogenic differentiation. Anat Rec (Hoboken) 2023; 306:3006-3020. [PMID: 35446511 DOI: 10.1002/ar.24930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/17/2022] [Accepted: 03/20/2022] [Indexed: 11/07/2022]
Abstract
Atractylodeslancea Rhizoma (Rhizoma atractylodis [RA]) has long been recommended for the treatment of arthritis in traditional Chinese medicine, but its mechanism of action is still unclear. RA contains a large amount of Atractylodes lancea volatile oils (Atr). In this study, we investigated whether Atr can promote mesenchymal stem cells (MSCs) chondrogenic differentiation. The Atr were extracted from RA by steam distillation method, and the effect of Atr on MSCs was detected by the CCK8 assay. The optimal concentration of Atr for MSCs cultivation was 3 μg/ml. The differentially expressed miR-181a-5p was screened by miRNA microarray assay, and its mimics and inhibitors were transfected into MSCs. It was found that the inhibitor of miR-181a-5p could upregulate cartilage-specific genes such as SOX9, COL2A1, and ACAN. Meanwhile, we also found that the expression of gene editing enzyme ADAR2 was significantly increased in the chondrogenic differentiation of MSCs induced by Atr, and the bases of precursor sequence of miR-181a-5p were changed from A to G. After ADAR2 deletion, the expression of cartilage-specific genes was significantly down-regulated and the precursor sequence bases of miR-181a-5p were not changed. Bioinformatics analysis revealed that the predicted target gene of miR-181a-5p was yingyang1 (YY1), and the targeting relationship was verified by dual-luciferase reporter assay. After deleting YY1, the expression of cartilage-specific genes was significantly down-regulated. In conclusion, our study demonstrated that Atr can promote chondrogenic differentiation of MSC through regulation of the ADAR2-miR-181a-5p signaling pathway. This may provide a new insight into the possible mechanism of traditional Chinese medicine (Atr) in treating inflammatory joint diseases.
Collapse
Affiliation(s)
- Shanyu Ye
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Wenwen Si
- Shenzhen BaoAn Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Wei Qin
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Yang
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziwei Luo
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhen Li
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yulu Xie
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hao Pan
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinrong Li
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zifeng Huang
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Meiling Zhu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Dongfeng Chen
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
16
|
Zhen BX, Cai Q, Li F. Chemical components and protective effects of Atractylodes japonica Koidz. ex Kitam against acetic acid-induced gastric ulcer in rats. World J Gastroenterol 2023; 29:5848-5864. [PMID: 38074916 PMCID: PMC10701307 DOI: 10.3748/wjg.v29.i43.5848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/21/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Atractylodes japonica Koidz. ex Kitam. (A. japonica, Chinese name: Guan-Cangzhu, Japanese name: Byaku-jutsu), a perennial herb, which is mainly distributed in northeast area of China, it’s often used to treat digestive system diseases such as gastric ulcer (GU). However, the mechanism of its potential protective effects against GU remains unclear.
AIM To investigate the protective effects of A. japonica on acetic acid-induced GU rats.
METHODS The chemical constituents of A. japonica were determined by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) analysis. The rat model of GU was simulated by acetic acid method. The pathological changes of gastric tissues were evaluated by hematoxylin-eosin stain, the levels of epidermal growth factor (EGF), EGF receptor (EGFR), nuclear factor kappa-B (NF-κB), interleukin-1β (IL-1β), IL-10, Na+-K+-ATPase (NKA) in serum and gastric tissues were determined by enzyme-linked immunosorbent assay, and the mRNA expressions of EGFR, NF-κBp65, IkappaBalpha (IκBα) and Zonula Occludens-1 (ZO-1) in gastric tissues were determined by real-time reverse transcription polymerase chain reaction, and the efficacy was observed. Then, plasma metabolomic analysis was performed by UPLC-MS/MS to screen the specific potential biomarkers, metabolic pathways and to explore the possible mechanisms.
RESULTS 48 chemical constituents were identified. Many of them have strong pharmacological activity, the results also revealed that A. japonica significantly improved the pathological damage of gastric tissues, increased the expression levels of IL-10, IκBα related to anti-inflammatory factors, decreased the expression levels of IL-1β, NF-κB, NF-κBp65, related to proinflammatory factors, restored the levels of factors about EGF, EGFR, ZO-1 associated with ulcer healing and the levels of factors about NKA associated with energy metabolism. Metabolomic analysis identified 10 potential differential metabolites and enriched 7 related metabolic pathways.
CONCLUSION These findings contribute to the understanding of the potential mechanism of A. japonica to improve acetic acid-induced GU, and will be of great importance for the development and clinical application of natural drugs related to A. japonica.
Collapse
Affiliation(s)
- Bi-Xian Zhen
- Department of Medicine, Liaoning University of Traditional Chinese Medicine, Dalian 116600, Liaoning Province, China
| | - Qian Cai
- Department of Medicine, Liaoning University of Traditional Chinese Medicine, Dalian 116600, Liaoning Province, China
| | - Feng Li
- Department of Medicine, Liaoning University of Traditional Chinese Medicine, Dalian 116600, Liaoning Province, China
| |
Collapse
|
17
|
Zheng Y, Zhang X, Zhang R, Wang Z, Gan J, Gao Q, Yang L, Xu P, Jiang X. Inflammatory signaling pathways in the treatment of Alzheimer's disease with inhibitors, natural products and metabolites (Review). Int J Mol Med 2023; 52:111. [PMID: 37800614 PMCID: PMC10558228 DOI: 10.3892/ijmm.2023.5314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
The intricate nature of Alzheimer's disease (AD) pathogenesis poses a persistent obstacle to drug development. In recent times, neuroinflammation has emerged as a crucial pathogenic mechanism of AD, and the targeting of inflammation has become a viable approach for the prevention and management of AD. The present study conducted a comprehensive review of the literature between October 2012 and October 2022, identifying a total of 96 references, encompassing 91 distinct pharmaceuticals that have been investigated for their potential impact on AD by inhibiting neuroinflammation. Research has shown that pharmaceuticals have the potential to ameliorate AD by reducing neuroinflammation mainly through regulating inflammatory signaling pathways such as NF‑κB, MAPK, NLRP3, PPARs, STAT3, CREB, PI3K/Akt, Nrf2 and their respective signaling pathways. Among them, tanshinone IIA has been extensively studied for its anti‑inflammatory effects, which have shown significant pharmacological properties and can be applied clinically. Thus, it may hold promise as an effective drug for the treatment of AD. The present review elucidated the inflammatory signaling pathways of pharmaceuticals that have been investigated for their therapeutic efficacy in AD and elucidates their underlying mechanisms. This underscores the auspicious potential of pharmaceuticals in ameliorating AD by impeding neuroinflammation.
Collapse
Affiliation(s)
| | | | - Ruifeng Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Ziyu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Jiali Gan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Qing Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Lin Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Pengjuan Xu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Xijuan Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|
18
|
Tran KN, Nguyen NPK, Nguyen LTH, Shin HM, Yang IJ. Screening for Neuroprotective and Rapid Antidepressant-like Effects of 20 Essential Oils. Biomedicines 2023; 11:biomedicines11051248. [PMID: 37238920 DOI: 10.3390/biomedicines11051248] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Depression is a serious psychiatric disorder with high prevalence, and the delayed onset of antidepressant effects remains a limitation in the treatment of depression. This study aimed to screen essential oils that have the potential for rapid-acting antidepressant development. PC12 and BV2 cells were used to identify essential oils with neuroprotective effects at doses of 0.1 and 1 µg/mL. The resulting candidates were treated intranasally (25 mg/kg) to ICR mice, followed by a tail suspension test (TST) and an elevated plus maze (EPM) after 30 min. In each effective essential oil, five main compounds were computationally analyzed, targeting glutamate receptor subunits. As a result, 19 essential oils significantly abolished corticosterone (CORT)-induced cell death and lactate dehydrogenase (LDH) leakage, and 13 reduced lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). From in vivo experiments, six essential oils decreased the immobility time of mice in the TST, in which Chrysanthemum morifolium Ramat. and Myristica fragrans Houtt. also increased time and entries into the open arms of the EPM. Four compounds including atractylon, α-curcumene, α-farnesene, and selina-4(14),7(11)-dien-8-one had an affinity toward GluN1, GluN2B, and Glu2A receptor subunits surpassed that of the reference compound ketamine. Overall, Atractylodes lancea (Thunb.) DC and Chrysanthemum morifolium Ramat essential oils are worthy of further research for fast-acting antidepressants through interactions with glutamate receptors, and their main compounds (atractylon, α-curcumene, α-farnesene, and selina-4(14),7(11)-dien-8-one) are predicted to underlie the fast-acting effect.
Collapse
Affiliation(s)
- Khoa Nguyen Tran
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Nhi Phuc Khanh Nguyen
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Ly Thi Huong Nguyen
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Heung-Mook Shin
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - In-Jun Yang
- Department of Physiology, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| |
Collapse
|
19
|
Zhang H, Lin C, Yin L, Si J, Yu M, Li J, Li L, Zhang T, Zou Z. Bioactive constituents from the rhizomes of Atractylodes macrocephala. Fitoterapia 2023; 165:105431. [PMID: 36638848 DOI: 10.1016/j.fitote.2023.105431] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/08/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Twelve undescribed compounds including five sesquiterpenes (1-5), one monoterpene (6), and four lignans (7a/7b and 8a/8b), along with two other types (9 and 10) were isolated from the rhizomes of Atractylodes macrocephala. Among them, two pairs of enantiomers (7a/7b and 8a/8b) were successfully separated by chiral-phase HPLC, while racemate 9 could not be resolved. Their structures and absolute configurations were unambiguously elucidated by spectroscopic data analysis and electronic circular dichroism (ECD) calculations. Notably, compounds 1 and 2 are rare sesquiterpene hybrids featuring an eudesmanolactam linked to a resorcinol or methyl 2-methylpentanoat through a CN bond. Compound 3 represents the first example of eudesmanolide sesquiterpene with an oxygen-bridge between C-8 and C-14. Compounds 7a and 7b are a pair of rare enantiomeric benzodioxane norneolignans. Additionally, compound 2 exhibited weak cytotoxicity against SGC-7901 cells. Compound 4 significantly promoted the proliferation of LPS-induced IEC-6 cells with the rate of 117.2%.
Collapse
Affiliation(s)
- Haixin Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Chunyu Lin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Luying Yin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jinguang Si
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Meng Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jingrong Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Medical Sciences, Guizhou Medical University, Guiyang 550000, China
| | - Lingyu Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Tao Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Zhongmei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
20
|
Geographic Differentiation of Essential Oil from Rhizome of Cultivated Atractylodes lancea by Using GC-MS and Chemical Pattern Recognition Analysis. Molecules 2023; 28:molecules28052216. [PMID: 36903461 PMCID: PMC10004716 DOI: 10.3390/molecules28052216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The rhizome of Atractylodes lancea (RAL) is a well-known Chinese herbal medicine (CHM) that has been applied in clinical settings for thousands of years. In the past two decades, cultivated RAL has gradually replaced wild RAL and become mainstream in clinical practice. The quality of CHM is significantly influenced by its geographical origin. To date, limited studies have compared the composition of cultivated RAL from different geographical origins. As essential oil is the primary active component of RAL, a strategy combining gas chromatography-mass spectrometry (GC-MS) and chemical pattern recognition was first applied to compare the essential oil of RAL (RALO) from different regions in China. Total ion chromatography (TIC) revealed that RALO from different origins had a similar composition; however, the relative content of the main compounds varied significantly. In addition, 26 samples obtained from various regions were divided into three categories by hierarchical cluster analysis (HCA) and principal component analysis (PCA). Combined with the geographical location and chemical composition analysis, the producing regions of RAL were classified into three areas. The main compounds of RALO vary depending on the production areas. Furthermore, a one-way analysis of variance (ANOVA) revealed that there were significant differences in six compounds, including modephene, caryophyllene, γ-elemene, atractylon, hinesol, and atractylodin, between the three areas. Hinesol, atractylon, and β-eudesmol were selected as the potential markers for distinguishing different areas by orthogonal partial least squares discriminant analysis (OPLS-DA). In conclusion, by combining GC-MS with chemical pattern recognition analysis, this research has identified the chemical variations across various producing areas and developed an effective method for geographic origin tracking of cultivated RAL based on essential oils.
Collapse
|
21
|
Tang XY, Zeng JX, Wang XX, Xu WY, Zhao PC, Fan CL, Yao ZH, Yao XS, Dai Y. Chemical and metabolic profiling of Codonopsis Radix extract with an integrated strategy using ultra-high-performance liquid chromatography coupled with mass spectrometry. J Sep Sci 2023; 46:e2200723. [PMID: 36401831 DOI: 10.1002/jssc.202200723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Codonopsis radix was commonly used as food materials or herbal medicines in many countries. However, the comprehensive analysis of chemical constituents, and in vivo xenobiotics of Codonopsis radix remain unclear. In the present study, an integrated strategy with feature-based molecular networking using ultra-high-performance liquid chromatography coupled with mass spectrometry was established to systematically screen the chemical constituents and the in vivo xenobiotics of Codonopsis radix. A step-by-step manner based on a composition database, visual structure classification, discriminant ions, and metabolite software prediction was proposed to overcome the complexities due to the similar structure of chemical constituents and metabolites of Codonopsis radix. As a result, 103 compounds were tentatively characterized, 20 of which were identified by reference standards. Besides, a total of 50 xenobiotics were detected in vivo, including 26 prototypes and 24 metabolites, while the metabolic features of the pyrrolidine alkaloids were elucidated for the first time. The metabolism reactions of pyrrolidine alkaloids and sesquiterpene lactones included oxidation, methylation, hydration, hydrogenation, demethylation, glucuronidation, and sulfation. This study provided a generally applicable approach to the comprehensive investigation of the chemical and metabolic profile of traditional Chinese medicine and offered reasonable guidelines for further screening of quality control indicators and pharmacodynamics mechanism of Codonopsis radix.
Collapse
Affiliation(s)
- Xi-Yang Tang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, P. R. China
| | - Jia-Xing Zeng
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, P. R. China
| | - Xiao-Xing Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, P. R. China
| | - Wan-Yi Xu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, P. R. China
| | - Peng-Cheng Zhao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, P. R. China
| | - Cai-Lian Fan
- College of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan, P. R. China
| | - Zhi-Hong Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, P. R. China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, P. R. China
| | - Yi Dai
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, P. R. China
| |
Collapse
|
22
|
Zhuang LX, Liu Y, Wang SY, Sun Y, Pan J, Guan W, Hao ZC, Kuang HX, Yang BY. Cytotoxic Sesquiterpenoids from Atractylodes chinensis (DC.) Koidz. Chem Biodivers 2022; 19:e202200812. [PMID: 36328982 DOI: 10.1002/cbdv.202200812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
Four new sesquiterpenoids named atrchiterpenes A-D (1-4), a new natural product (5), and twelve known compounds (6-17) were isolated from Atractylodes chinensis (DC.) Koidz. Compound 1 was a rare N-containing eudesmane-type sesquiterpenoid. Structure elucidation was performed by spectroscopic techniques, including 1D, 2D NMR spectra, and HR-ESI-MS. Compounds 6-11, 14, and 17 were reported from Atractylodes for the first time. All the isolated compounds were evaluated for cytotoxicity activity. Compound 16 showed moderate cytotoxicity against HepG2 cells with an IC50 value of 5.81±0.47.
Collapse
Affiliation(s)
- Lei-Xin Zhuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, P. R. China
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, P. R. China
| | - Si-Yi Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, P. R. China
| | - Ye Sun
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, P. R. China
| | - Juan Pan
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, P. R. China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, P. R. China
| | - Zhi-Chao Hao
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, P. R. China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, P. R. China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, 150040, P. R. China
| |
Collapse
|
23
|
Wang Y, Ma SG, Li L, Yu SS. Indole alkaloids from the bark of Acacia confusa and their potential antinociceptive and anti-inflammatory activities. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:1109-1127. [PMID: 35998213 DOI: 10.1080/10286020.2022.2093195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
A pair of novel trimeric indole alkaloid enantiomers [(±)-8], five new bisindole alkaloids [4-7 and (±)-9], and three pairs of new monomeric indole alkaloid enantiomers [(±)-1-(±)-3], together with seven known alkaloids (10-16), were isolated from the bark of Acacia confusa. Their structures were determined on the basis of spectroscopic methods, especially by NMR data analyses combined with single-crystal X-ray diffraction and electronic circular dichroism analyses. Compounds 4 and 11-16 exhibited significant antinociceptive activities in an acetic acid-induced writhing test. Compounds (+)-9 and (-)-9 displayed anti-inflammatory activities through the inhibition of the NF-κB pathway, with inhibitory rates of 68.9% and 59.5%, respectively, at a concentration of 10 µM.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuang-Gang Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Li Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
24
|
Kim HY, Kim JH. Sesquiterpenoids Isolated from the Rhizomes of Genus Atractylodes. Chem Biodivers 2022; 19:e202200703. [PMID: 36323637 DOI: 10.1002/cbdv.202200703] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Atractylodes plants have been used in traditional herbal medicine to treat gastrointestinal diseases and contain various chemical compounds. Sesquiterpenoids are the most important therapeutic compounds in Atractylodes rhizomes. Based on studies reported from 2000 to 2022, we classified sesquiterpenoids by their chemical skeletons and original resources. Moreover, we discussed their biosynthesis and physicochemical and pharmacological features. We reported sesquiterpenoids with skeletal moieties, such as monocyclic sesquiterpenes (bisabolene- and elemene-type), bicyclic sesquiterpenes (eudesmane-, isopterocarpolone-, hydroxycarissone-, eremophilane-, bisesquiterpenoid-, guaiane- and spirovetivane-type and eudesmane lactones) and tricyclic sesquiterpenes (cyperene- and patchoulene-type), with their biosynthetic pathways, chemical modifications and in vivo metabolites. The pharmacological activities of sesquiterpenoids as anti-inflammatory, anti-tumor, anti-diabetic and anti-microbial and for treating gastrointestinal disorders have been reported for this genus.
Collapse
Affiliation(s)
- Han-Young Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, 50612, Korea
| | - Jung-Hoon Kim
- Division of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan, 50612, Korea
| |
Collapse
|
25
|
Tseng SH, Lee CJ, Chen SH, Chen CH, Tsai PW, Hsieh MS, Chu JS, Wang CC. Cinnamic aldehyde, an anti-inflammatory component in Du-Huo-Ji-Sheng-Tang, ameliorates arthritis in II collagenase and monosodium iodoacetate induced osteoarthritis rat models. J Tradit Complement Med 2022; 13:51-61. [PMID: 36685080 PMCID: PMC9845653 DOI: 10.1016/j.jtcme.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022] Open
Abstract
Background and aim Du-Huo-Ji-Sheng-Tang (DHJST) is a Chinese herbal formula used for arthralgia and arthritis treatment clinically. This study aims to evaluate the joint-protecting efficacy of DHJST and to identify the active constituents as the evaluation marker. Experimental procedure DHJST can be categorized into three recipes: Blood-tonifying-herbs Si-Wu-Tang (SWT), Wind-dampness-dispelling-herbs (WDH) and Qi-tonifying-herbs (TH). All formulas were used to explore the joint-protecting efficacies. Results and conclusion s: Firstly, DHJST could decrease the arthritis progression in the monosodium-iodoacetate-induced rat and cure arthritis in the type II collagenase-induced rat. Further, in lipopolysaccharide-stimulated RAW 264.7 cells, DHJST, TH and Cinnamomum cassia (CC), an ingredient in TH, were the most potent nitric oxide (NO) and prostaglandin E2 (PGE2) inhibitors. The major components, cinnamic aldehyde, showed the strongest NO and PGE2 inhibition. Up-regulated inducible NO synthase (iNOS) and cyclooxygenase-2 were inhibited by DHJST, TH, CC, and cinnamic aldehyde. In interleukin-1β-stimulated primary chondrocytes, upregulated iNOS was inhibited by DHJST, TH, Cinnamomum cassia, and cinnamic aldehyde. Upregulated matrix metalloprotease-13 was only inhibited by DHJST and TH and Eucommia ulmoides (EU) extract. Results suggest that DHJST presented joint-protective and cure arthritis effects. TH presented equal joint-protective effects as DHJST. The major anti-inflammatory ingredient in TH was Cinnamomum cassia in TH. And cinnamic aldehyde was the potent anti-inflammatory active compound in Cinnamomum cassia. Therefore, this study may facilitate the modern use of DHJST with TH as a simplified version but equally effective anti-osteoarthritic agents with cinnamic aldehyde as a quality control marker of DHJST and TH in osteoarthritis prevention or treatment.
Collapse
Affiliation(s)
- Sung-Hui Tseng
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chia-Jung Lee
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Pharmacognosy Science, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Shih-Han Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chao-Hsin Chen
- Pharmaceutical and Biotechnology Management, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Po-Wei Tsai
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Medical Science Industry, College of Health Science, Chang Jung Christian University, Tainan, Taiwan
| | - Ming-Shium Hsieh
- Orthopedics Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- En Chu Kong Hospital, New Taipei City, Taiwan
| | - Jan-Show Chu
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Chiung Wang
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- PhD Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Pharmacognosy Science, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Pharmaceutical and Biotechnology Management, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Orthopedics Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Corresponding author. School of Pharmacy, College of Pharmacy, Taipei Medical University 250 Wu-Hsing Street, Taipei, 11031, Taiwan.
| |
Collapse
|
26
|
Jiang Y, Guo K, Wang P, Zhu Y, Huang J, Ruan S. The antitumor properties of atractylenolides: Molecular mechanisms and signaling pathways. Biomed Pharmacother 2022; 155:113699. [PMID: 36116253 DOI: 10.1016/j.biopha.2022.113699] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022] Open
Abstract
Drugs that exhibit a high degree of tumor cell selectivity while minimizing normal cell toxicity are an area of active research interest as a means of designing novel antitumor agents. The pharmacological benefits of Chinese herbal medicine-based treatments have been the focus of growing research interest in recent years. Sesquiterpenoids derived from the Atractylodes macrocephala volatile oil preparations exhibit in vitro and in vivo antitumor activity. Atracylenolides exhibit anti-proliferative, anti-metastatic, and immunomodulatory activity in a range of tumor cell lines in addition to being capable of regulating metabolic activity such that it is a promising candidate drug for the treatment of diverse cancers. The present review provides a summary of recent advances in Atractylenolide-focused antitumor research efforts.
Collapse
Affiliation(s)
- Yu Jiang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, China
| | - Kaibo Guo
- Department of Oncology, Affilited Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Peipei Wang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, China
| | - Ying Zhu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, China
| | - Jiaqi Huang
- Department of postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Shanming Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou 310006, China.
| |
Collapse
|
27
|
Amin A, Hossen MJ, Fu XQ, Chou JY, Wu JY, Wang XQ, Chen YJ, Wu Y, Yin CL, Dou XB, Liang C, Chou GX, Yu ZL. Inhibition of the Akt/NF-κB pathway is involved in the anti-gastritis effects of an ethanolic extract of the rhizome of Atractylodes macrocephala. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115251. [PMID: 35381310 DOI: 10.1016/j.jep.2022.115251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gastritis can lead to ulcers and the development of gastric cancer. The rhizome of Atractylodes macrocephala Koidz. (Asteraceae), a traditional Chinese medicinal herb, is prescribed for the treatment of gastric disorders, hepatitis and rheumatism. Its bio-active compounds are considered to be particularly effective in this regard. However, the molecular processes of the herb's anti-inflammatory activity remain obscure. This study elucidates a mechanism upon which an ethanolic extract of this herb (Am-EE) exerts anti-inflammation effects in RAW264.7 macrophage cells (RAW cells) stimulated by lipopolysaccharide (LPS) treatment and HCl Ethanol-stimulated gastritis rats. AIM OF THE STUDY To investigate the anti-gastritis activities of Am-EE and explore the mode of action. MATERIALS AND METHODS Ethanol (95%) was used to prepare Am-EE. The quality of the extract was monitored by HPLC analysis. The in vivo effects of this extract were examined in an HCl Ethanol-stimulated gastritis rat model, while LPS-stimulated RAW cells were used for in vitro assays. Cell viability and nitric oxide (NO) production were observed by MTT and Griess assays. Real-time PCR was used to examine mRNA expression. The PGE2 ELISA kit was employed to detect prostaglandin E2 (PGE2). Enzyme activities and protein contents were examined by immunoblotting. Luciferase reporter gene assays (LRA) were employed to observe nuclear transcription factor (NF)-κB activity. The SPSS (SPSS Inc., Chicago, Illinois, United States) application was used for statistical examination. RESULTS HPLC analysis indicates that Am-EE contains atractylenolide-1 (AT-1, 1.33%, w/w) and atractylenolide-2 (AT-2, 1.25%, w/w) (Additional Figure. A1). Gastric tissue damage (induced by HCl Ethanol) was significantly decreased in SD rats following intra-gastric application of 35 mg/kg Am-EE. Indistinguishable to the anti-inflammation effects of 35 mg/kg ranitidine (gastric medication). Am-EE treatment also reduced LPS-mediated nitric oxide (NO) and prostaglandin E2 (PGE2) production. The mRNA and protein synthesis of inducible cyclooxygenase (COX)-2 and NO synthase (iNOS) was down-regulated following treatment in RAW cells. Am-EE decreased NF-κB (p50) nuclear protein levels and inhibited NF-κB-stimulated LRA activity in RAW cells. Lastly, Am-EE decreased the up-regulated levels of phosphorylated IκBα and Akt proteins in rat stomach lysates and in LPS challenged RAW cell samples. CONCLUSION Our study illustrates that Am-EE suppresses the Akt/IκBα/NF-κB pathway and exerts an anti-inflammatory effect. These novel conclusions provide a pharmacological basis for the clinical use of the A. macrocephala rhizome in the treatment and prevention of gastritis and gastric cancer.
Collapse
Affiliation(s)
- Aftab Amin
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Muhammad Jahangir Hossen
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Department of Animal Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
| | - Xiu-Qiong Fu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Ji-Yao Chou
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Jia-Ying Wu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Xiao-Qi Wang
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Ying-Jie Chen
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Ying Wu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Cheng-Le Yin
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Xiao-Bing Dou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Chun Liang
- Division of Life Science, Center for Cancer Research and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China; EnKang Pharmaceuticals, Limited, Guangzhou, China.
| | - Gui-Xin Chou
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zhi-Ling Yu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Research and Development Center for Natural Health Products, HKBU Institute for Research and Continuing Education, Shenzhen, China.
| |
Collapse
|
28
|
Kang X, Sun Y, Yi B, Jiang C, Yan X, Chen B, Lu L, Shi F, Luo Y, Chen Y, Wang Q, Shi R. Based on Network Pharmacology and Molecular Dynamics Simulations, Baicalein, an Active Ingredient of Yiqi Qingre Ziyin Method, Potentially Protects Patients With Atrophic Rhinitis From Cognitive Impairment. Front Aging Neurosci 2022; 14:880794. [PMID: 35754951 PMCID: PMC9226445 DOI: 10.3389/fnagi.2022.880794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022] Open
Abstract
Cognition may be improved by the active ingredients of the Yiqi Qingre Ziyin method in patients with atrophic rhinitis (AR). This study aimed to identify potential targets of the Yiqi Qingre Ziyin method for the treatment of patients with cognitive impairment. Nasal mucosal tissue samples from patients with AR were subjected to proteomic assays, and differentially expressed proteins were obtained. To explore the mechanism of AR leading to mild cognitive impairment (MCI), a differential analysis of AR related differential proteins in the MCI related GSE140831 dataset was performed. Most AR-related differential proteins are also differentially expressed in peripheral blood tissues of MCI, have similar biological functions and are enriched in similar pathways. These co-expressed differential factors in AR and MCI are known as common differential proteins of AR and MCI (CDPAM). Based on the analysis and validation of the random forest, support vector machine and neural network models, CDPAM acted as a diagnostic marker for MCI risk. Cytochrome C (CYCS) was significantly upregulated in the peripheral blood of patients with MCI. The active ingredients in the Yiqi Qingre Ziqin method were obtained and targeted 137 proteins. Among these targeted proteins, CYCS belong to the CDPAM set. Molecular docking and molecular dynamics analysis revealed that baicalein, an active ingredient in the Yiqi Qingre Ziyin method, stably targeted the CYCS protein. Results of the enrichment analysis revealed that the up-regulation of CYCS expression may have a defensive effect on the cells to resist foreign stimuli. Therefore, baicalein, an active ingredient in the Yiqi Qingre Ziyin method, may prevent the development and progression of MCI by targeting the CYCS protein.
Collapse
Affiliation(s)
- Xueran Kang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxing Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Yi
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyan Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojun Yan
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lixing Lu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangze Shi
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Ear Institute Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanbo Luo
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yisheng Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qian Wang
- Department of Central Laboratory, Taian City Central Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Runjie Shi
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Ear Institute Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Wang P, Zhao YN, Xu RZ, Zhang XW, Sun YR, Feng QM, Li ZH, Xu JY, Xie ZS, Zhang ZQ, E HC. Sesquiterpene Lactams and Lactones With Antioxidant Potentials From Atractylodes macrocephala Discovered by Molecular Networking Strategy. Front Nutr 2022; 9:865257. [PMID: 35571927 PMCID: PMC9097160 DOI: 10.3389/fnut.2022.865257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/29/2022] [Indexed: 12/24/2022] Open
Abstract
Atractylodes macrocephala rhizome (called Bái-zhú in China) has a long history as a functional food and herbal medicine in East Asia, especially China. Sesquiterpenoids are one of the main active compounds of Atractylodes macrocephala rhizome. This study aimed to explore the unknown sesquiterpenoids of A. macrocephala rhizome using a molecular networking strategy. Two new nitrogen-containing sesquiterpenoids, atractylenolactam A (1) and atractylenolactam B (2), and 2 new sesquiterpene lactones, 8-methoxy-atractylenolide V (6) and 15-acetoxyl atractylenolide III (7), along with 12 known analogs (3-5 and 8-16) were discovered and isolated. All the structures were assigned based on detailed spectroscopic analyses. The absolute configurations of 1, 2, 6, and 7 were established by time-dependent density functional theory ECD (TDDFT-ECD) calculations. All these compounds had different degrees of concentration-dependent activating effects on nuclear-factor-E2-related factor-2 (Nrf2).
Collapse
Affiliation(s)
- Pan Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Henan Province Technological Innovation Center for Solid Preparation of Traditional Chinese Medicine, Zhongjing Wanxi Pharmaceutical Co., Ltd., Nanyang, China
| | - Yi-nan Zhao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Rui-zhu Xu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiao-wei Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yi-ran Sun
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Qing-mei Feng
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhong-hua Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiang-yan Xu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhi-shen Xie
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- *Correspondence: Zhi-shen Xie
| | - Zhen-qiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Zhen-qiang Zhang
| | - Heng-chao E
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Heng-chao E
| |
Collapse
|
30
|
Cheng Y, Ping J, Chen J, Fu Y, Zhao H, Xue J. Molecular mechanism of atractylon in the invasion and migration of hepatic cancer cells based on high‑throughput sequencing. Mol Med Rep 2022; 25:112. [PMID: 35119084 PMCID: PMC8845028 DOI: 10.3892/mmr.2022.12628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/25/2021] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the molecular mechanisms of atractylon in the inhibition of invasion and migration of hepatic cancer cells. High‑throughput sequencing was used to compare the expression of long non‑coding (lnc)RNAs between hepatic carcinoma and healthy controls. A competing endogenous RNA network was constructed. The top significantly differentially expressed lncRNAs were screened and verified by reverse transcription‑quantitative PCR in vitro and in vivo. Small interfering (si)RNA against thymopoietin‑antisense 1 (TMPO‑AS1) or coiled‑coil domain‑containing 183‑antisense 1 (CCDC183‑AS1) overexpression (oe) vectors were transfected into cells following atractylon treatment. Wound healing and Matrigel assays were used to determine the effects of migration and invasion, respectively. Western blot analysis was used to detect the expression levels of invasion‑ and migration‑related proteins, including N‑cadherin, E‑cadherin and MMP‑2. Flow cytometry analysis was used to detect apoptosis. Based on transcriptome sequencing and analysis, the top seven upregulated [(FAM201A, RP11‑640M9.2, AL589743.1, TMEM51‑AS1, clathrin heavy chain‑like 1 (CLTCL1), TMPO‑AS1 and LINC00652] and top six downregulated lncRNAs (RP11‑465B22.5, CCDC183‑AS1, TCONS_00072529, RP11‑401F2.3, RP11‑290F20.1 and TCONS_00070568) were identified. Only TMPO‑AS1 and CCDC183‑AS1 were differently regulated by atractylon in vivo. The proliferative ability of HepG2 liver cancer cells decreased, whereas the apoptotic rate improved after atractylon treatment. Notably, the invasive and migratory ability of HepG2 cells significantly declined. In addition, siTMPO‑AS1 and oeCCDC183‑AS1 reduced the effect of atractylon in vitro. Atractylon was demonstrated to regulate the expression of TMPO‑AS1 and CCDC183‑AS1 and inhibited the invasion and migration of liver cancer cells. Thus, TMPO‑AS1 and CCDC183‑AS1 may be potential targets for diagnosis and treatment of hepatic carcinoma.
Collapse
Affiliation(s)
- Yang Cheng
- Institute of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Department of Liver Disease, Hospital for Infectious Diseases of Pudong District, Shanghai 201299, P.R. China
| | - Jian Ping
- Institute of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Jianjie Chen
- Department of Liver Disease, Hospital for Infectious Diseases of Pudong District, Shanghai 201299, P.R. China
| | - Yifei Fu
- Department of Liver Disease, Hospital for Infectious Diseases of Pudong District, Shanghai 201299, P.R. China
| | - Hui Zhao
- Department of Liver Disease, Hospital for Infectious Diseases of Pudong District, Shanghai 201299, P.R. China
| | - Jiahua Xue
- Department of Liver Disease, Hospital for Infectious Diseases of Pudong District, Shanghai 201299, P.R. China
| |
Collapse
|
31
|
Min D, Kim B, Ko SG, Kim W. Effect and Mechanism of Herbal Medicines on Cisplatin-Induced Anorexia. Pharmaceuticals (Basel) 2022; 15:ph15020208. [PMID: 35215322 PMCID: PMC8877473 DOI: 10.3390/ph15020208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 12/04/2022] Open
Abstract
Cisplatin is a well-known chemotherapeutic agent used to treat various types of cancers; however, it can also induce anorexia, which results in reduced food intake, loss of body weight, and lower quality of life. Although drugs such as megestrol acetate and cyproheptadine are used to decrease this severe feeding disorder, they can also induce side effects, such as diarrhea and somnolence, which limit their widespread use. Various types of herbal medicines have long been used to prevent and treat numerous gastrointestinal tract diseases; however, to date, no study has been conducted to analyze and summarize their effects on cisplatin-induced anorexia. In this paper, we analyze 12 animal studies that used either a single herbal medicine extract or mixtures thereof to decrease cisplatin-induced anorexia. Among the herbal medicines, Ginseng Radix was the most used, as it was included in seven studies, whereas both Glycyrrhizae Radix et Rhizoma and Angelicae Gigantis Radix were used in four studies. As for the mechanisms of action, the roles of serotonin and its receptors, cytokines, white blood cells, ghrelin, and leptin were investigated. Based on these results, we suggest that herbal medicines could be considered a useful treatment method for cisplatin-induced anorexia.
Collapse
Affiliation(s)
- Daeun Min
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea;
| | - Bonglee Kim
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 022447, Korea; (B.K.); (S.-G.K.)
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 022447, Korea; (B.K.); (S.-G.K.)
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 022447, Korea; (B.K.); (S.-G.K.)
- Correspondence:
| |
Collapse
|
32
|
Shan B, Chen T, Huang B, Liu Y, Chen J. Untargeted metabolomics reveal the therapeutic effects of Ermiao wan categorized formulas on rats with hyperuricemia. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114545. [PMID: 34419610 DOI: 10.1016/j.jep.2021.114545] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ermiao wan (2 MW) is one of the most frequently prescription in traditional Chinese medicine (TCM) to treat hyperuricemia. Sanmiao wan (3 MW) and Simiao wan (4 MW), two modified Ermiao wan, also show good clinical effects in the treatment of gout and hyperuricemia. However, their uric acid lowering effects and potential action mechanism still need to be systematically investigated. AIM OF THE STUDY The aim of present study was to analyze and compare the uric acid-lowering effects of 2 MW, 3 MW and 4 MW in rat with high fructose combined with potassium oxonate (HFCPO)-induced hyperuricemia and their possible mechanisms through plasma metabolomics methods. MATERIALS AND METHODS HFCPO-induced hyperuricemia rat model was established to evaluate the therapeutic effects of Ermiao wan categorized formulas (ECFs, including 2 MW, 3 MW and 4 MW). Body weight, blood uric acid, creatinine, urine uric acid and urine creatinine levels and histopathological parameters of rats were assessed. Plasma untargeted metabolomics based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) was established to collect the metabolic profiles of rats and explore the metabolic changes that occurred after each ECFs treatment. RESULTS Oral administration of ECFs could decrease the level of blood uric acid, creatinine and increase the level of urine uric acid and urine creatinine in varying degrees, and alleviated hepatocyte steatosis and atrophy and degeneration of glomerulus, vacuolar degeneration of renal tubular epithelial cells in HFCPO-induced hyperuricemia rats. Plasma untargeted metabolomics analysis showed that significant alterations were observed in metabolic signatures between the HFCPO-induced hyperuricemia group and control group. Thirty five potential biomarkers in rat plasma were identified in the screening by principal component analysis (PCA), partial least squares discrimination analysis (PLS-DA) and orthogonal partial least squares discrimination analysis (OPLS-DA). Differential metabolites related to hyperuricemia, including acylcarnitines and amino acid related metabolites, were further used to indicate relevant pathways in hyperuricemia rats, including tryptophan metabolism, arginine biosynthesis, purine metabolism, arginine and proline metabolism, beta-alanine metabolism, citrate cycle (TCA cycle), glycerophospholipid metabolism and linoleic acid metabolism. 2 MW, 3 MW and 4 MW could invert the pathological process of hyperuricemia to varying degrees through in part regulating the perturbed lipid metabolic pathway. 4 MW were better than 2 MW and 3 MW in the intervention of the disordered tricarboxylic acid metabolism and purine metabolism caused by hyperuricemia. CONCLUSION In summary, ECFs treatment could effectively alleviate symptoms of hyperuricemia and regulate metabolic disorders in HFCPO-induced hyperuricemia rats.
Collapse
Affiliation(s)
- Baixi Shan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ting Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Bixia Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jun Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
33
|
Aomatsu N, Shigemitsu K, Nakagawa H, Morooka T, Ishikawa J, Yamashita T, Tsuruoka A, Fuke A, Motoyama K, Kitagawa D, Ikeda K, Maeda K, Shirano M, Rinka H. Efficacy of Ninjin'yoeito in treating severe coronavirus disease 2019 in patients in an intensive care unit. Neuropeptides 2021; 90:102201. [PMID: 34753072 PMCID: PMC8484001 DOI: 10.1016/j.npep.2021.102201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 02/08/2023]
Abstract
Coronavirus Disease-2019 (COVID-19), an infectious disease associated with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is a global emergency with high mortality. There are few effective treatments, and many severe patients are treated in an intensive care unit (ICU). The purpose of this study was to evaluate whether the Japanese Kampo medicine ninjin'yoeito (NYT) is effective in treating ICU patients with COVID-19. Nine patients with confirmed SARS-CoV-2 infection admitted to the ICU were enrolled in this study. All patients underwent respiratory management with invasive mechanical ventilation (IMV) and enteral nutrition. Four patients received NYT (7.5 g daily) from an elemental diet tube. We retrospectively examined the prognostic nutritional index (PNI), length of IMV, length of ICU stay, length of hospital stay, rate of tracheostomy, and mortality rate. The median age of the enrolled participants was 60.0 years (4 men and 5 women). The median body mass index was 27.6. The most common comorbidity was diabetes (4 patients, 44%), followed by hypertension (3 patients, 33%) and chronic kidney disease (2 patients, 22%). The median length of IMV, ICU stay, and hospital stay were all shorter in the NYT group than in the non-NYT group (IMV; 4.0 days vs 14.3 days, ICU; 5.3 days vs 14.5 days, hospital stay; 19.9 days vs 28.2 days). In the NYT and non-NYT groups, the median PNI at admission was 29.0 and 31.2, respectively. One week after admission, the PNI was 30.7 in the NYT group and 24.4 in non-NYT group. PNI was significantly (p = 0.032) increased in the NYT group (+13.6%) than in the non-NYT group (-22.0%). The Japanese Kampo medicine NYT might be useful for treating patients with severe COVID-19 in ICU. This study was conducted in a small number of cases, and further large clinical trials are necessary.
Collapse
Affiliation(s)
- Naoki Aomatsu
- Department of Emergency and Critical Care Medical center, Osaka City General Hospital, Osaka, Japan; Department of Gastroenterological Surgery, Osaka City General Hospital, Osaka, Japan.
| | - Kazuaki Shigemitsu
- Department of Emergency and Critical Care Medical center, Osaka City General Hospital, Osaka, Japan
| | - Hidenori Nakagawa
- Department of Infectious Diseases, Osaka City General Hospital, Osaka, Japan
| | - Takaya Morooka
- Department of Emergency and Critical Care Medical center, Osaka City General Hospital, Osaka, Japan
| | - Junichi Ishikawa
- Department of Emergency and Critical Care Medical center, Osaka City General Hospital, Osaka, Japan
| | - Tomoya Yamashita
- Department of Emergency and Critical Care Medical center, Osaka City General Hospital, Osaka, Japan
| | - Ayumu Tsuruoka
- Department of Emergency and Critical Care Medical center, Osaka City General Hospital, Osaka, Japan
| | - Akihiro Fuke
- Department of Emergency and Critical Care Medical center, Osaka City General Hospital, Osaka, Japan
| | - Koka Motoyama
- Department of Emergency and Critical Care Medical center, Osaka City General Hospital, Osaka, Japan
| | - Daiki Kitagawa
- Department of Emergency and Critical Care Medical center, Osaka City General Hospital, Osaka, Japan
| | - Katsumi Ikeda
- Department of Breast Surgical Oncology, Osaka City General Hospital, Osaka, Japan
| | - Kiyoshi Maeda
- Department of Gastroenterological Surgery, Osaka City General Hospital, Osaka, Japan
| | - Michinori Shirano
- Department of Infectious Diseases, Osaka City General Hospital, Osaka, Japan
| | - Hiroshi Rinka
- Department of Gastroenterological Surgery, Osaka City General Hospital, Osaka, Japan
| |
Collapse
|
34
|
Hossen MJ, Amin A, Fu XQ, Chou JY, Wu JY, Wang XQ, Chen YJ, Wu Y, Li J, Yin CL, Liang C, Chou GX, Yu ZL. The anti-inflammatory effects of an ethanolic extract of the rhizome of Atractylodes lancea, involves Akt/NF-κB signaling pathway inhibition. JOURNAL OF ETHNOPHARMACOLOGY 2021; 277:114183. [PMID: 33991638 DOI: 10.1016/j.jep.2021.114183] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried rhizome of Atractylodes lancea (Thumb.) DC. (Compositae) has been prescribed in folk medicine for the management of various inflammatory conditions such as rheumatic diseases, gastritis and hepatitis. However, the molecular mechanisms underlying the beneficial properties of this herb remain elusive. AIM OF THE STUDY In this study, we investigated the anti-gastritis activities of Al-EE (an ethanolic extract of the herb) and explored the mechanism of action. MATERIALS AND METHODS An ethanolic extract of the Atractylodes lancea (Thumb.) DC. (Compositae) rhizome, Al-EE, was prepared with ethanol (95%) and quality controlled using HPLC analysis. To determine the in vivo effects of this extract, we utilised a HCl/EtOH-induced gastritis rat model. In vitro assays were carried out using a lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cell model. MTT assays were used to examine cell viability, while Griess assays were carried out to measure nitric oxide (NO) production. Messenger RNA expression was examined by real-time PCR. Prostaglandin E2 (PGE2) production was examined using ELISA assays. To examine protein expression and enzymatic activities, we employed western blot analysis. Nuclear transcription factor (NF)-κB activity was determined by Luciferase reporter assays. RESULTS The content of atractylenolide (AT)-1 and AT-2 in Al-EE was 0.45% and 5.07% (w/w), respectively (Supplementary Fig. 1). Al-EE treatment suppressed the production of NO and PGE2, reduced the mRNA expression of inducible NO synthase (iNOS), cyclooxygenase (COX)-2 and tumor necrosis factor (TNF)-α, while also reducing the protein levels of iNOS and COX-2 in RAW264.7 macrophage cells. Furthermore, Al-EE inhibited the nuclear protein levels of NF-κB (p65) and NF-κB-driven luciferase reporter gene activity in RAW264.7 macrophage cells. Critically, intra-gastric injection of Al-EE (25 mg/kg) attenuated HCl/EtOH-induced gastric damage in SD rats, while the phosphorylation of Akt and IκBα was suppressed by Al-EE in vitro and in vivo. CONCLUSION In summary, Al-EE has significant anti-gastritis effects in vivo and in vitro, which can be associated with the inhibition of the Akt/IκBα/NF-κB signalling pathway. This mechanistic finding provides a pharmacological basis for the use of the A. lancea rhizome in the clinical treatment of various inflammatory conditions.
Collapse
Affiliation(s)
- Muhammad Jahangir Hossen
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Department of Animal Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
| | - Aftab Amin
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Xiu-Qiong Fu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Ji-Yao Chou
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Jia-Ying Wu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Xiao-Qi Wang
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Ying-Jie Chen
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Ying Wu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Junkui Li
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Cheng-Le Yin
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Chun Liang
- Division of Life Science, Center for Cancer Research and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China.
| | - Gui-Xin Chou
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zhi-Ling Yu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Research and Development Center for Natural Health Products, HKBU Institute of Research and Continuing Education, Shenzhen, China.
| |
Collapse
|
35
|
Si JG, Zhang HX, Yu M, Li LY, Zhang HW, Jia HM, Ma LY, Qin LL, Zhang T, Zou ZM. Sesquiterpenoids from the rhizomes of Atractylodes macrocephala and their protection against lipopolysaccharide-induced neuroinflammation in microglia BV-2 cells. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
36
|
Deng M, Chen H, Long J, Song J, Xie L, Li X. Atractylenolides (I, II, and III): a review of their pharmacology and pharmacokinetics. Arch Pharm Res 2021; 44:633-654. [PMID: 34269984 DOI: 10.1007/s12272-021-01342-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 07/08/2021] [Indexed: 02/05/2023]
Abstract
Atractylodes macrocephala Koidz is a widely used as a traditional Chinese medicine. Atractylenolides (-I, -II, and -III) are a class of lactone compounds derived from Atractylodes macrocephala Koidz. Research into atractylenolides over the past two decades has shown that atractylenolides have anti-cancer, anti-inflammatory, anti-platelet, anti-osteoporosis, and antibacterial activity; protect the nervous system; and regulate blood glucose and lipids. Because of structural differences, both atractylenolide-I and atractylenolide-II have remarkable anti-cancer activities, and atractylenolide-I and atractylenolide-III have remarkable anti-inflammatory and neuroprotective activities. We therefore recommend further clinical research on the anti-cancer, anti-inflammatory and neuroprotective effects of atractylenolides, determine their therapeutic effects, alone or in combination. To investigate their ability to regulate blood glucose and lipid, as well as their anti-platelet, anti-osteoporosis, and antibacterial activities, both in vitro and in vivo studies are necessary. Atractylenolides are rapidly absorbed but slowly metabolized; thus, solubilization studies may not be necessary. However, due to the inhibitory effects of atractylenolides on metabolic enzymes, it is necessary to pay attention to the possible side effects of combining atractylenolides with other drugs, in clinical application. In short, atractylenolides have considerable medicinal value and warrant further study.
Collapse
Affiliation(s)
- Mao Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Huijuan Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Jiaying Long
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Jiawen Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China.
| |
Collapse
|
37
|
Sun C, Zhang X, Yu F, Liu C, Hu F, Liu L, Chen J, Wang J. Atractylenolide I alleviates ischemia/reperfusion injury by preserving mitochondrial function and inhibiting caspase-3 activity. J Int Med Res 2021; 49:300060521993315. [PMID: 33641489 PMCID: PMC7923999 DOI: 10.1177/0300060521993315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE Myocardial ischemia/reperfusion (I/R) injury causes various severe heart diseases, including myocardial infarction. This study aimed to determine the therapeutic effect of atractylenolide I (ATR-I), which is an active ingredient isolated from Atractylodes macrocephala, on myocardial I/R injury. METHODS Male Sprague-Dawley rats were randomly allocated to the five following groups (nine rats/group): control, I/R, and I/R + ATR-I preconditioning (10, 50, and 250 µg). The effects of ATR-I on rats with I/R injury were verified in cardiomyocytes with hypoxia/reoxygenation. Production of reactive oxygen species was determined. The proliferative ability of cardiomyocytes was detected using the bromodeoxyuridine assay. Mitochondrial membrane potential was measured using flow cytometry. Cellular apoptosis was assessed by flow cytometry and the terminal dUTP-digoxigenin nick end labeling assay. RESULTS I/R and hypoxia/reoxygenation injury increased mitochondrial dysfunction and activated caspase-3 and Bax/B cell lymphoma 2 expression in vitro and in vivo. ATR-I pretreatment dose-dependently significantly attenuated myocardial apoptosis and suppressed oxidative stress as reflected by increased mitochondrial DNA copy number and superoxide dismutase activity, and decreased reactive oxygen species and Ca2+ content. CONCLUSION ATR-I protects against I/R injury by protecting mitochondrial function and inhibiting activation of caspase-3.
Collapse
Affiliation(s)
- Caiqin Sun
- Department of Cardiology, Jingjiang People's Hospital, Jingjiang, Jiangsu, P. R. China
| | - Xuesong Zhang
- Department of Pathology, Jingjiang People's Hospital, Jingjiang, Jiangsu, P. R. China
| | - Fei Yu
- Department of Cardiology, Jingjiang People's Hospital, Jingjiang, Jiangsu, P. R. China
| | - Chen Liu
- Department of Cardiology, Jingjiang People's Hospital, Jingjiang, Jiangsu, P. R. China
| | - Fangbin Hu
- Department of Cardiology, Jingjiang People's Hospital, Jingjiang, Jiangsu, P. R. China
| | - Li Liu
- Department of Cardiology, Jingjiang People's Hospital, Jingjiang, Jiangsu, P. R. China
| | - Jing Chen
- Department of Pathology, Jingjiang People's Hospital, Jingjiang, Jiangsu, P. R. China
| | - Jue Wang
- Department of Pathology, Jingjiang People's Hospital, Jingjiang, Jiangsu, P. R. China
| |
Collapse
|
38
|
Zeng H, Gao H, Zhang M, Wang J, Gu Y, Wang Y, Zhang H, Liu P, Zhang X, Zhao L. Atractylon Treatment Attenuates Pulmonary Fibrosis via Regulation of the mmu_circ_0000981/miR-211-5p/TGFBR2 Axis in an Ovalbumin-Induced Asthma Mouse Model. Inflammation 2021; 44:1856-1864. [PMID: 33855682 DOI: 10.1007/s10753-021-01463-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/09/2020] [Accepted: 04/03/2021] [Indexed: 12/01/2022]
Abstract
Asthma-induced pulmonary fibrosis (PF) is an important public health concern that has few treatment options given its poorly understood etiology; however, the epithelial to mesenchymal transition (EMT) of pulmonary epithelial cells has been implicated to play an important role in inducing PF. Although previous studies have found atractylon (Atr) to have anti-inflammatory effects, whether Atr has anti-PF abilities remains unknown. The purpose of the current study was to validate the protective efficiency of Atr in both an animal model of ovalbumin (OVA)-induced asthma and an EMT model induced by transforming growth factor-β1 (TGF-β1) using TC-1 cells. The results of this study revealed that Atr treatment suppressed OVA-induced PF via fibrosis-related protein expression. Atr treatment suppressed OVA-induced circRNA-0000981 and TGFBR2 expression but promoted miR-211-5p expression. In vivo studies revealed that Atr suppressed TGF-β1-induced EMT and fibrosis-related protein expression via suppressing circRNA-0000981 and TGFBR2 expression. The results also suggested that the downregulation of circRNA-0000981 expression suppressed TGFBR2 by sponging miR-211-5p, which was validated by a luciferase reporter assay. Collectively, the findings of the present study suggest that Atr treatment attenuates PF by regulating the mmu_circ_0000981/miR-211-5p/TGFBR2 axis in an OVA-induced asthma mouse model.
Collapse
Affiliation(s)
- Haizhu Zeng
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China.
| | - Hongchang Gao
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China
| | - Meilan Zhang
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China
| | - Jinrui Wang
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China
| | - Yuxia Gu
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China
| | - Yumeng Wang
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China
| | - Huali Zhang
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China
| | - Panpan Liu
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China
| | - Xia Zhang
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China
| | - Lei Zhao
- Department of Respiratory Medicine, Shanghai Gongli Hospital, 219 Miao-Pu Road, Shanghai, 200135, People's Republic of China.
| |
Collapse
|
39
|
Atractylon treatment prevents sleep-disordered breathing-induced cognitive dysfunction by suppression of chronic intermittent hypoxia-induced M1 microglial activation. Biosci Rep 2021; 40:225130. [PMID: 32490526 PMCID: PMC7295624 DOI: 10.1042/bsr20192800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 05/15/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic intermittent hypoxia (CIH) induced by sleep-disordered breathing (SDB) is a key factor involved in cognitive dysfunction (CD). Increasing evidence has shown that atractylon (ATR) has anti-inflammatory effects. However, it remains unclear if ATR has a protective effect against SDB-induced nerve cell injury and CD. So, in the present study, CIH-exposed mice and CIH-induced BV2 cells were used to mimic SDB. The results showed that ATR treatment decreased CIH-induced CD and the expression of inflammatory factors in the hippocampal region by suppression of M1 microglial activation and promotion of M2 microglial activation. Also, ATR treatment promoted sirtuin 3 (SIRT3) expression. Down-regulation of SIRT3 decreased the protective effect of ATR against CIH-induced microglial cell injury. Furthermore, in vitro detection found that SIRT3 silencing suppressed ATR-induced M2 microglial activation after exposure to CIH conditions. Taken together, these results indicate that ATR treatment prevents SDB-induced CD by inhibiting CIH-induced M1 microglial activation, which is mediated by SIRT3 activation.
Collapse
|
40
|
Zhang WJ, Zhao ZY, Chang LK, Cao Y, Wang S, Kang CZ, Wang HY, Zhou L, Huang LQ, Guo LP. Atractylodis Rhizoma: A review of its traditional uses, phytochemistry, pharmacology, toxicology and quality control. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113415. [PMID: 32987126 PMCID: PMC7521906 DOI: 10.1016/j.jep.2020.113415] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 09/04/2020] [Accepted: 09/20/2020] [Indexed: 05/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atractylodis Rhizoma (AR), mainly includes Atractylodes lancea (Thunb.) DC. (A. lancea) and Atractylodes chinensis (DC.) Koidz. (A. chinensis) is widely used in East Asia as a diuretic and stomachic drug, for the treatment of rheumatic diseases, digestive disorders, night blindness, and influenza as it contains a variety of sesquiterpenoids and other components of medicinal importance. AIM OF THE REVIEW A systematic summary on the botany, traditional uses, phytochemistry, pharmacology, toxicology, and quality control of AR was presented to explore the future therapeutic potential and scientific potential of this plant. MATERIALS AND METHODS A review of the literature was performed by consulting scientific databases including Google Scholar, Web of Science, Baidu Scholar, Springer, PubMed, ScienceDirect, CNKI, etc. Plant taxonomy was confirmed to the database "The Plant List". RESULTS Over 200 chemical compounds have been isolated from AR, notably sesquiterpenoids and alkynes. Various pharmacological activities have been demonstrated, especially improving gastrointestinal function and thus allowed to assert most of the traditional uses of AR. CONCLUSIONS The researches on AR are extensive, but gaps still remain. The molecular mechanism, structure-activity relationship, potential synergistic and antagonistic effects of these components need to be further elucidated. It is suggested that further studies should be carried out in the aspects of comprehensive evaluation of the quality of medicinal materials, understanding of the "effective forms" and "additive effects" of the pharmacodynamic substances based on the same pharmacophore of TCM, and its long-term toxicity in vivo and clinical efficacy.
Collapse
Affiliation(s)
- Wen-Jin Zhang
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Zhen-Yu Zhao
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Li-Kun Chang
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ye Cao
- Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Sheng Wang
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chuan-Zhi Kang
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hong-Yang Wang
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Li Zhou
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lu-Qi Huang
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Lan-Ping Guo
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
41
|
Auxtero MD, Chalante S, Abade MR, Jorge R, Fernandes AI. Potential Herb-Drug Interactions in the Management of Age-Related Cognitive Dysfunction. Pharmaceutics 2021; 13:124. [PMID: 33478035 PMCID: PMC7835864 DOI: 10.3390/pharmaceutics13010124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Late-life mild cognitive impairment and dementia represent a significant burden on healthcare systems and a unique challenge to medicine due to the currently limited treatment options. Plant phytochemicals have been considered in alternative, or complementary, prevention and treatment strategies. Herbals are consumed as such, or as food supplements, whose consumption has recently increased. However, these products are not exempt from adverse effects and pharmacological interactions, presenting a special risk in aged, polymedicated individuals. Understanding pharmacokinetic and pharmacodynamic interactions is warranted to avoid undesirable adverse drug reactions, which may result in unwanted side-effects or therapeutic failure. The present study reviews the potential interactions between selected bioactive compounds (170) used by seniors for cognitive enhancement and representative drugs of 10 pharmacotherapeutic classes commonly prescribed to the middle-aged adults, often multimorbid and polymedicated, to anticipate and prevent risks arising from their co-administration. A literature review was conducted to identify mutual targets affected (inhibition/induction/substrate), the frequency of which was taken as a measure of potential interaction. Although a limited number of drugs were studied, from this work, interaction with other drugs affecting the same targets may be anticipated and prevented, constituting a valuable tool for healthcare professionals in clinical practice.
Collapse
Affiliation(s)
- Maria D. Auxtero
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Susana Chalante
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Mário R. Abade
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Rui Jorge
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
- Polytechnic Institute of Santarém, School of Agriculture, Quinta do Galinheiro, 2001-904 Santarém, Portugal
- CIEQV, Life Quality Research Centre, IPSantarém/IPLeiria, Avenida Dr. Mário Soares, 110, 2040-413 Rio Maior, Portugal
| | - Ana I. Fernandes
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| |
Collapse
|
42
|
Zhao YN, Gao G, Ma JL, Xu RZ, Guo T, Wu LM, Liu XG, Xie ZS, Xu JY, Zhang ZQ, Wang P. Two new sesquiterpenes from the rhizomes of Atractylodes macrocephala and their biological activities. Nat Prod Res 2021; 36:1230-1235. [PMID: 33401972 DOI: 10.1080/14786419.2020.1869970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Two new sesquiterpenes, named selina-4(14),7,11-trien-9-ol (1) and selina-4(14),11-dien-7-ol (2), along with two known compounds were isolated from rhizomes of Atractylodes macrocephala Koidz. All structures were assigned on the basis of detailed spectroscopic analyses. The absolute configuration of 1 was established by TDDFT-ECD calculations. Compound 1 was found to moderately inhibit LSD1 activity with IC50 value of 34.0 μM. Compounds 1 and 4 exhibited a regulate effect on Keap1-Nrf2-ARE pathway.
Collapse
Affiliation(s)
- Yi-Nan Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Gai Gao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jin-Lian Ma
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Rui-Zhu Xu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Tao Guo
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Li-Min Wu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xin-Guang Liu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhi-Shen Xie
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiang-Yan Xu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhen-Qiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Pan Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Zhongjing Wanxi Pharmaceutical Co., Ltd, Zhengzhou, China
| |
Collapse
|
43
|
Preventive Effect of the Japanese Traditional Herbal Medicine Boiogito on Posttraumatic Osteoarthritis in Rats. MEDICINES 2020; 7:medicines7120074. [PMID: 33291715 PMCID: PMC7761896 DOI: 10.3390/medicines7120074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 01/15/2023]
Abstract
Background: Considering the anti-inflammatory properties of the Japanese traditional Kampo medicine Boiogito (BO), we aimed to investigate the therapeutic effect of BO to prevent the development of knee osteoarthritis (KOA) in rats with surgically induced KOA. Methods: Destabilization of the medial meniscus (DMM) was performed to induce osteoarthritis in the right knees of 12-week-old Wistar rats under general anesthesia. The rats were orally administered 3% BO in standard powder chow for 4 weeks after surgery (controls: n = 6; sham group: n = 6; DMM group: n = 5; DMM + BO group: n = 5). During this period, the rotarod test was performed to monitor locomotive function. After 4 weeks, histological assessment was performed on the right knee. Results: Oral administration of BO improved locomotive function in the rotarod test. Walking time on postoperative days 1, 14, or later was significantly longer in the DMM + BO group than in the DMM group. Histologically, the DMM group showed significant progression of KOA, which, in the DMM + BO group, was strongly suppressed, as assessed by the Osteoarthritis Research Society International score. Conclusions: Our results showed that oral administration of BO had a clinically preventive effect on early stage posttraumatic KOA.
Collapse
|
44
|
Bailly C. Atractylenolides, essential components of Atractylodes-based traditional herbal medicines: Antioxidant, anti-inflammatory and anticancer properties. Eur J Pharmacol 2020; 891:173735. [PMID: 33220271 DOI: 10.1016/j.ejphar.2020.173735] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022]
Abstract
The rhizome of the plant Atractylodes macrocephala Koidz is the major constituent of the Traditional Chinese Medicine Baizhu, frequently used to treat gastro-intestinal diseases. Many traditional medicine prescriptions based on Baizhu and the similar preparation Cangzhu are used in China, Korea and Japan as Qi-booster. These preparations contain atractylenolides, a small group of sesquiterpenoids endowed with antioxidant and anti-inflammatory properties. Atractylenolides I, II and III also display significant anticancer properties, reviewed here. The capacity of AT-I/II/IIII to inhibit cell proliferation and to induce cancer cell death have been analyzed, together with their effects of angiogenesis, metastasis, cell differentiation and stemness. The immune-modulatory properties of ATs are discussed. AT-I has been tested clinically for the treatment of cancer-induced cachexia with encouraging results. ATs, alone or combined with cytotoxic drugs, could be useful to treat cancers or to reduce side effects of radio and chemotherapy. Several signaling pathways have been implicated in their multi-targeted mechanisms of action, in particular those involving the central regulators TLR4, NFκB and Nrf2. A drug-induced reduction of inflammatory cytokines production (TNFα, IL-6) also characterizes these molecules which are generally weakly cytotoxic and well tolerated in vivo. Inhibition of Janus kinases (notably JAK2 and JAK3 targeted by AT-I and AT-III, respectively) has been postulated. Information about their metabolism and toxicity are limited but the long-established traditional use of the Atractylodes and the diversity of anticancer effects reported with AT-I and AT-III should encourage further studies with these molecules and structurally related natural products.
Collapse
|
45
|
Zhang C, Su T, Yu D, Wang F, Yue C, Wang HQ. Revealing active ingredients, potential targets, and action mechanism of Ermiao fang for treating endometritis based on network pharmacology strategy. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:113051. [PMID: 32505843 DOI: 10.1016/j.jep.2020.113051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/12/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ermiao fang (EMF) is a traditional Chinese medicinal herbal formula from ancient times and recorded in the pharmacopeia of the People's Republic of China. It is composed of two typical Chinese herbal medicines, Cortex Phellodendri (Huangbai), the bark of Phellodendron chinensis Schneid. (Rutaceae), and Rhizoma Atractylodis (Cangzhu), the rhizome of Atractylodes lancea (Thunb.) DC. (Compositae). EMF has been clinically used for the treatment of endometritis for many years in China. AIM OF THE STUDY This study was aimed to identify the active ingredients, potential targets, and mechanism of action of EMF for the treatment of endometritis. MATERIALS AND METHODS In this research, the pharmacological effects of EMF on endometritis were first evaluated by establishing a rat model of endometritis. A network pharmacology-based analytical strategy was then used to predict its targets and signaling pathways. An endometritis-related protein target and compound database was built for EMF. The compounds in EMF and those absorbed into the blood were identified by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS). High-throughput virtual screening and molecule docking methods were used to predict the protein targets of EMF. The surface plasmon resonance analysis (SPR) method was used to validate the affinity between the compound and proteins. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was used to predict the related pathways. Western blotting analysis was used to evaluate the expression of key proteins in the related pathways. RESULTS The animal study showed that EMF could reduce uterine inflammation in rats with endometritis. Then, an ingredient database including 187 compounds and a protein target database including 836 proteins were constructed. Twenty-four compounds in EMF were identified by UHPLC-Q-TOF/MS, among which eight compounds were present in rat plasma after an oral administration of EMF. Afterward, 39 potential target proteins were predicted by the high-throughput screening method, and 20 of them were selected after further screening using molecular docking. Subsequently, an ingredient-target network was constructed, and the target proteins were classified into the NF-κB and MAPK signal pathways by KEGG pathway enrichment analysis. Finally, the affinity between the active ingredients and the target proteins was verified by SPR. The Western blotting analysis showed that EMF significantly inhibited the elevated NF-κB and MAPK pathway proteins in rats with endometritis. CONCLUSIONS EMF exhibited a significant pharmacological effect on rats with endometritis. Network pharmacology analysis revealed that eight compounds were absorbed into the blood after oral administration and interacted with 20 targets. Western blotting analysis indicated that EMF exerted anti-inflammatory effects by inhibiting the NF-κB and MAPK signaling pathway proteins in the treatment of endometritis.
Collapse
Affiliation(s)
- Chao Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Tong Su
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Dan Yu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Fei Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Chunhua Yue
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Hai-Qiao Wang
- Department of Traditional Chinese Medicine, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 201112, China.
| |
Collapse
|
46
|
Long X, Kim YG, Pyo YK, Yi R, Zhao X, Park KY. Inhibitory effect of Jangkanghwan (Korean traditional food) on experimental ulcerative colitis in mice. J Food Biochem 2020; 44:e13488. [PMID: 33015841 DOI: 10.1111/jfbc.13488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022]
Abstract
Jangkanghwan (JKH) can delay weight loss in mice, promote weight gain during recovery, and reduce colonic shortening and colon weight. In addition, the murine disease activity index was controlled after treatment using JKH. It can reduce the content of pro-inflammatory factors in serum and expression in tissues, such as interleukin (IL)-6, IL-1β, tumor necrosis factor-α, interferon-γ, cyclooxygenase-2, and nuclear factor kappa-B; in contrast, the content and expression of IL-10 and the inhibitor of nuclear factor kappa-B kinase-α in the serum and tissues were increased. The mRNA expression of the colitis characteristic biomarker monocyte chemoattractant protein-1 and macrophage inflammatory protein-3α were reduced in colon tissues. Using next-generation sequencing technology, the Bacteroidetes phylum in the JKH group decreased, while the Firmicutes phylum increased, and the number of beneficial bacteria-Bifidobacteriaceae, Lactobacillaceae, and Akkermansiaceae-increased. PRACTICAL APPLICATIONS: JKH is a mixture of colonic healthy foods composed of Atractylodes macrocephala koidzumi, radish leaves, Viscum album var. coloratum, dried Zingiber officinale Roscoe, etc. According to UPLC-Q-TOF MS analysis, JKH consists mainly of 17 active substances, such as pheophorbide A, nabumetone alcohol, dehydrocostus lactone, plantamajoside, kaempferol 3, 7-dirhamnoside, quercetin 3-D-glucuronide, and viscumneoside III. We investigated the preventive effects of JKH on dextran sulfate sodium (DSS)-induced ulcerative colitis in a murine model and found that JKH can reduce the damage in mice caused by DSS treatment.
Collapse
Affiliation(s)
- Xingyao Long
- Department of Food Science and Biotechnology, Cha University, Seongnam, South Korea.,Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, P.R. China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, P.R. China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, P.R. China
| | | | | | - Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, P.R. China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, P.R. China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, P.R. China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, P.R. China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, P.R. China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, P.R. China
| | - Kun-Young Park
- Department of Food Science and Biotechnology, Cha University, Seongnam, South Korea.,Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, P.R. China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, P.R. China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, P.R. China
| |
Collapse
|
47
|
Four new sesquiterpene lactones from Atractylodes macrocephala and their CREB agonistic activities. Fitoterapia 2020; 147:104730. [PMID: 32971205 DOI: 10.1016/j.fitote.2020.104730] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/19/2023]
Abstract
One new bisesquiterpenoid, biepiasreorlid II (1), three new sesquiterpene lactones 8α-methoxy-epiasterolid (4), 3β-acetoxyl-8-epiasterolid (5), and 3β-acetoxyl-atractylenolide I (6), along with five known analogues (2-3 and 7-9), were obtained from rhizome of Atractylodes macrocephala Koidz. All structures were assigned on the basis of detailed spectroscopic analyses. The absolute configuration of 1 was established by the analysis of single-crystal X-ray diffraction with Ga Kα radiation, and 4-6 were elucidated by TDDFT-ECD calculations. The CREB agonistic activity was investigated in HEK293T cells using dual luciferase reporter assay. Compounds 1, 2, 5, and 7-9 exhibited strong to agonistic activities on CREB.
Collapse
|
48
|
Zhao J, Jin X, Yang C, Quinto M, Shang H, Li D. Gas purge micro solvent extraction: A rapid and powerful tool for essential oil chromatographic fingerprints. J Pharm Biomed Anal 2020; 187:113339. [DOI: 10.1016/j.jpba.2020.113339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/01/2020] [Accepted: 04/27/2020] [Indexed: 12/31/2022]
|
49
|
Jeong J, Chung H, Ha B, Gil J, Lee J, Lee Y, Kim MR, Oh M, Park CG, Chang JK, Hong CP, Park S, Lee Y. Development of 18 microsatellite markers for Atractylodes japonica. APPLICATIONS IN PLANT SCIENCES 2020; 8:e11350. [PMID: 32477846 PMCID: PMC7249270 DOI: 10.1002/aps3.11350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/08/2020] [Indexed: 06/11/2023]
Abstract
PREMISE Atractylodes japonica (Asteraceae) is endemic to East Asia, where its rhizomes are used in traditional medicine. To investigate the genetic diversity of this species, we developed polymorphic microsatellite markers. METHODS AND RESULTS We obtained a total of 175,825 simple sequence repeat (SSR) loci using the Illumina HiSeq 2500 system. Eighteen polymorphic SSR primer pairs were selected to determine heterozygosity levels and allele numbers in 80 individuals from four A. japonica populations. The levels of observed and expected heterozygosity ranged from 0.000 to 1.000 and from 0.133 to 0.892, respectively. Cross-amplification in the related species A. macrocephala and A. lancea was successful in 15 and 14 of the 18 markers, respectively. CONCLUSIONS These microsatellite markers will be useful for future studies involving A. japonica population genetics and breeding.
Collapse
Affiliation(s)
- Jin‐Tae Jeong
- Department of Herbal Crop ResearchNational Institute of Horticultural and Herbal Science (NIHHS)Rural Development AdministrationEumseong27709Republic of Korea
- Division of Plant BiotechnologyChonnam National UniversityGwangju61186Republic of Korea
| | - Hee Chung
- Department of Industrial Plant Science and TechnologyChungbuk National UniversityCheongju28644Republic of Korea
| | - Bo‐Keun Ha
- Division of Plant BiotechnologyChonnam National UniversityGwangju61186Republic of Korea
| | - Jinsu Gil
- Department of Industrial Plant Science and TechnologyChungbuk National UniversityCheongju28644Republic of Korea
| | - Jeong‐Hoon Lee
- Department of Herbal Crop ResearchNational Institute of Horticultural and Herbal Science (NIHHS)Rural Development AdministrationEumseong27709Republic of Korea
| | - Yun‐Ji Lee
- Department of Herbal Crop ResearchNational Institute of Horticultural and Herbal Science (NIHHS)Rural Development AdministrationEumseong27709Republic of Korea
| | - Mi Ran Kim
- Department of BioresourcesFoundation of Agri, Tech, Commercialization and Transfer (FACT)Iksan54672Republic of Korea
| | - MyeongWon Oh
- Department of Herbal Crop ResearchNational Institute of Horticultural and Herbal Science (NIHHS)Rural Development AdministrationEumseong27709Republic of Korea
| | - Chun Geon Park
- Department of Herbal Crop ResearchNational Institute of Horticultural and Herbal Science (NIHHS)Rural Development AdministrationEumseong27709Republic of Korea
| | - Jae Ki Chang
- Department of Herbal Crop ResearchNational Institute of Horticultural and Herbal Science (NIHHS)Rural Development AdministrationEumseong27709Republic of Korea
| | | | - Sin‐Gi Park
- Theragen Etex Bio InstituteSuwon16229Republic of Korea
| | - Yi Lee
- Department of Industrial Plant Science and TechnologyChungbuk National UniversityCheongju28644Republic of Korea
| |
Collapse
|
50
|
Anti-Tumor Activity of Atractylenolide I in Human Colon Adenocarcinoma In Vitro. Molecules 2020; 25:molecules25010212. [PMID: 31947901 PMCID: PMC6983257 DOI: 10.3390/molecules25010212] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/30/2019] [Accepted: 12/31/2019] [Indexed: 01/05/2023] Open
Abstract
Atractylodes macrocephala is known to exhibit multi-arrays of biologic activity in vitro. However, detail of its anti-tumor activity is lacking. In this study, the effects of atractylenolide I (AT-I), a bio-active compound present in Atractylodes macrocephala rhizome was studied in the human colorectal adenocarcinoma cell line HT-29. The results showed that AT-I induced apoptosis of human colon cancer cells through activation of the mitochondria-dependent pathway. The IC50 of AT-I was 277.6 μM, 95.7 μM and 57.4 μM, after 24, 48 and 72 h of incubation with HT-29, respectively. TUNEL and Annexin V-FITC/PI double stain assays showed HT-29 DNA fragmentation after cell treatment with various AT-I concentrations. Western blotting analysis revealed activation of both initiator and executioner caspases, including caspase 3, caspase 7, and caspase 9, as well as PARP, after HT-29 treatment with AT-I via downregulation of pro-survival Bcl-2, and upregulation of anti-survival Bcl-2 family proteins, including Bax, Bak, Bad, Bim, Bid and Puma. The studies show for the first time that AT-I is an effective drug candidate towards the HT-29 cell.
Collapse
|