1
|
Melfi F, D'Agostino I, Carradori S, Carta F, Angeli A, Costa G, Renzi G, Čikoš A, Vullo D, Rešetar J, Ferraroni M, Baroni C, Mancuso F, Gitto R, Ambrosio FA, Marchese E, Torcasio R, Amodio N, Capasso C, Alcaro S, Supuran CT. O-derivatization of natural tropolone and β-thujaplicin leading to effective inhibitors of human carbonic anhydrases IX and XII. Eur J Med Chem 2025; 290:117552. [PMID: 40179613 DOI: 10.1016/j.ejmech.2025.117552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/05/2025]
Abstract
Herein we report the chemical derivatization of the naturally occurring Tropolone (TRP) and its related compound β-Thujaplicin (β-TJP) as well as their in vitro assessment for inhibition of the physio/pathologically relevant hCAs isoforms I, II, VA; VII, IX and XII to obtain a first set of inhibition data useful for driving selected derivatives towards appropriate biomedical exploitation. The selected compound 17β was characterized for its chemical stability and assessed for its antiproliferative activity on a multiple myeloma model and showed potent pro-apoptotic features jointly with a safe toxicity profile on healthy cells. The binding mode of β-TJP within the hCA II was assessed by means of X-ray crystallography of the hCA II/β-TJP complex and showed almost complete superposition with the hCA II/TRP adduct reported in the literature. The data produced were used to elaborate a binding prediction model of such compounds on the hCAs VA, IX, and XII which are directly connected to important diseases. Overall, the achievements reported in this work are in the sustainment of the exploitation of naturally occurring troponoloid-based structures for biomedical purposes and thus contribute to the field in extending the variety of available chemical features.
Collapse
Affiliation(s)
- Francesco Melfi
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | | | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy.
| | - Fabrizio Carta
- Neurofarba Department, University of Florence, Sesto Fiorentino, 50019, Florence, Italy.
| | - Andrea Angeli
- Neurofarba Department, University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università"Magna Græcia" di Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy; Net4Science Academic Spin-Off, Università"Magna Græcia" di Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy
| | - Gioele Renzi
- Neurofarba Department, University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Ana Čikoš
- NMR Centre, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Daniela Vullo
- Neurofarba Department, University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Josip Rešetar
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, 66100, Chieti, Italy
| | - Marta Ferraroni
- 'Ugo Schiff' Chemistry Department, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Chiara Baroni
- 'Ugo Schiff' Chemistry Department, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Francesca Mancuso
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. D'Alcontres 13, 98166, Messina, Italy
| | - Rosaria Gitto
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. D'Alcontres 13, 98166, Messina, Italy
| | - Francesca Alessandra Ambrosio
- Dipartimento di Scienze della Salute, Università"Magna Græcia" di Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy
| | - Emanuela Marchese
- Dipartimento di Scienze della Salute, Università"Magna Græcia" di Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy
| | - Roberta Torcasio
- Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy; Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, 87036, Rende, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università"Magna Græcia" di Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy; Net4Science Academic Spin-Off, Università"Magna Græcia" di Catanzaro, Campus "S. Venuta", 88100, Catanzaro, Italy
| | - Claudiu T Supuran
- Neurofarba Department, University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| |
Collapse
|
2
|
Supuran CT. Multi- and polypharmacology of carbonic anhydrase inhibitors. Pharmacol Rev 2025; 77:100004. [PMID: 39952696 DOI: 10.1124/pharmrev.124.001125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Eight genetically distinct families of the enzyme carbonic anhydrase (CA, EC 4.2.1.1) have been described in organisms overall in the phylogenetic tree. They catalyze the hydration of CO2 to bicarbonate and protons and are involved in pH regulation, chemosensing, and metabolism. The 15 α-CA isoforms present in humans are pharmacological drug targets known for decades, their inhibitors being used as diuretics, antiglaucoma, antiepileptic, or antiobesity drugs, as well as for the management of acute mountain sickness, idiopathic intracranial hypertension, and recently, as antitumor theragnostic agents. Other potential applications include the use of CA inhibitors (CAIs) in inflammatory conditions, cerebral ischemia, neuropathic pain, or Alzheimer/Parkinson disease management. CAs from pathogenic bacteria, fungi, protozoans, and nematodes have started to be considered as drug targets in recent years, with notable advances being registered. CAIs have a complex multipharmacology probably unique to this enzyme, which has been exploited intensely but may lead to other relevant applications in the future due to the emergence of drug design approaches that afforded highly isoform-selective compounds for most α-CAs known to date. They belong to a multitude of chemical classes (sulfonamides and isosteres, [iso]coumarins and related compounds, mono- and dithiocarbamates, selenols, ninhydrines, boronic acids, benzoxaboroles, etc). The polypharmacology of CAIs will also be discussed because drugs originally discovered for the treatment of non-CA related conditions (topiramate, zonisamide, celecoxib, pazopanib, thiazide, and high-ceiling diuretics) show effective inhibition against many CAs, which led to their repurposing for diverse pharmacological applications. SIGNIFICANCE STATEMENT: CAIs have multiple pharmacologic applications, such as diuretics, antiglaucoma, antiepileptic, antiobesity, antiacute mountain sickness, anti-idiopathic intracranial hypertension, and antitumor drugs. Their use in inflammatory conditions, cerebral ischemia, neuropathic pain, or neurodegenerations has started to be investigated recently. Parasite carbonic anhydrases are also drug targets for anti-infectives with novel mechanisms of action that can bypass drug resistance to commonly used agents. Drugs discovered for the management of other conditions that effectively inhibit these enzymes exert interesting polypharmacologic effects.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
3
|
Padhy I, Sharma T, Banerjee B, Mohapatra S, Sahoo CR, Padhy RN. Structure based exploration of mitochondrial alpha carbonic anhydrase inhibitors as potential leads for anti-obesity drug development. Daru 2024; 32:907-924. [PMID: 39276204 PMCID: PMC11554982 DOI: 10.1007/s40199-024-00535-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 08/11/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND Obesity has emerged as a major health challenge globally in the last two decades. Dysregulated fatty acid metabolism and de novo lipogenesis are prime causes for obesity development which ultimately trigger other co-morbid pathological conditions thereby risking life longevity. Fatty acid metabolism and de novo lipogenesis involve several biochemical steps both in cytosol and mitochondria. Reportedly, the high catalytically active mitochondrial carbonic anhydrases (CAVA/CAVB) regulate the intercellular depot of bicarbonate ions and catalyze the rapid carboxylation of pyruvate and acetyl-co-A to acetyl-co-A and malonate respectively, which are the precursors of fatty acid synthesis and lipogenesis. Several in vitro and in vivo investigations indicate inhibition of mitochondrial carbonic anhydrase isoforms interfere in the functioning of pyruvate, fatty acid and succinate pathways. Targeting of mitochondrial carbonic anhydrase isoforms (CAVA/CAVB) could thereby modulate gluconeogenetic as well as lipogenetic pathways and pave way for designing of novel leads in the development pipeline of anti-obesity medications. METHODS The present review unveils a diverse chemical space including synthetic sulphonamides, sulphamates, sulfamides and many natural bioactive molecules which selectively inhibit the mitochondrial isoform CAVA/CAVB with an emphasis on major state-of-art drug design strategies. RESULTS More than 60% similarity in the structural framework of the carbonic anhydrase isoforms has converged the drug design methods towards the development of isoform selective chemotypes. While the benzene sulphonamide derivatives selectively inhibit CAVA/CAVB in low nanomolar ranges depending on the substitutions on the phenyl ring, the sulpamates and sulpamides potently inhibit CAVB. The virtual screening and drug repurposing methods have also explored many non-sulphonamide chemical scaffolds which can potently inhibit CAVA. CONCLUSION The review could pave way for the development of novel and effective anti-obesity drugs which can modulate the energy metabolism.
Collapse
Affiliation(s)
- Ipsa Padhy
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Tripti Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India.
- School of Pharmaceutical Sciences and Research, Chhatrapati Shivaji Maharaj University, Panvel, Navi Mumbai, Maharashtra, 410221, India.
| | - Biswajit Banerjee
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Sujata Mohapatra
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Chita R Sahoo
- ICMR-Regional Medical Research Centre, Department of Health Research, Ministry of Health & Family Welfare, Govt. of India, Bhubaneswar, India
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| |
Collapse
|
4
|
Shah M, Shahab M, Ullah S, Bibi S, Rahman NU, Jamil J, Arafat Y, Al-Harrasi A, Murad W, Shao H. Exploring the aroma profile and biomedical applications of Scutellaria nuristanica Rech. F.: A new insight as a natural remedy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155928. [PMID: 39126924 DOI: 10.1016/j.phymed.2024.155928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND The Scutellaria genus has promising therapeutic capabilities as an aromatherapy. Based on that and local practices of S. nuristanica Rech. F. The essential oil was studied for the first time for its diverse biomedical applications. PURPOSE This study aimed to evaluate and validate their therapeutic capabilities by screening the essential oil ingredients and examining their antimicrobial, antioxidant, carbonic anhydrase, and antidiabetic using further In silico assessment and In vivo anti-inflammatory and analgesic capabilities to devise novel sources as natural remedies alternative to the synthetic drugs. METHODS Essential oil was obtained through hydrodistillation, and the constituents were profiled using GC-MS. The antimicrobial assessment was conducted using an agar well diffusion assay. Free radical scavenging capabilities were determined by employing DPPH and ABTS assay. The carbonic anhydrase-II was examined using colorimetric assay, while the antidiabetic significance was performed using α-Glucosidase assay. The anti-inflammatory significance was examined through carrageenan-induced paw edema, and the analgesic features of the essential oil were determined using an acetic acid-induced writhing assay. RESULTS Fifty constituents were detected in S. nuristanica essential oil (SNEO), contributing 95.93 % of the total EO, with the predominant constituents being 24-norursa-3,12-diene (10.12 %), 3-oxomanoyl oxide (9.94 %), methyl 7-abieten-18-oate (8.85 %). SNEO presented significance resistance against the Gram-positive bacterial strains (GPBSs), Bacillus atrophaeus and Bacillus subtilis, as compared to the Salmonella typhi and Klebsiella pneumoniae, Gram-negative bacterial strains (GNBSs) as well as two fungal strains Aspergillus parasiticus and Aspergillus niger associated with their respective standards. Considerable free radical scavenging capacity was observed in DPPH compared to the ABTS assay when correlated with ascorbic acid. In addition, when equated with their standards, SNEO offered considerable in vitro carbonic anhydrase II and antidiabetic capabilities. Additionally, the antidiabetic behavior of the 9 dominant compounds of SNEO was tested via In silico techniques, such as molecular docking, which assisted in the assessment of the significance of binding contacts of protein with each chemical compound and pharmacokinetic evaluations to examine the drug-like characteristics. Molecular dynamic simulations at 100 ns and binding free energy evaluations such as PBSA and GBSA models explain the molecular mechanics and stability of molecular complexes. It was also observed that SNEO depicted substantial anti-inflammatory and analgesic capabilities. CONCLUSION Hence, it was concluded that the SNEO comprises bioactive ingredients with biomedical significance, such as anti-microbial, antioxidant, CA-II, antidiabetic, anti-inflammatory, and analgesic agents. The computational validation also depicted that SNEO could be a potent source for the discovery of anti-diabetic drugs.
Collapse
Affiliation(s)
- Muddaser Shah
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China; Department of Botany, University of Swabi, Swabi, Khyber Pakhtunkhwa 23320, Pakistan; Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al M0uz, Nizwa 616, Oman
| | - Muhammad Shahab
- Department of Botany, University of Malakand Chakdara, Chakdara 18800, Pakistan
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al M0uz, Nizwa 616, Oman
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad 41000, Pakistan; Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Najeeb Ur Rahman
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al M0uz, Nizwa 616, Oman
| | - Johar Jamil
- Department of Microbiology, University of Swabi, Swabi, Khyber Pakhtunkhwa 23320, Pakistan
| | - Yasir Arafat
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al M0uz, Nizwa 616, Oman
| | - Waheed Murad
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Hua Shao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China.
| |
Collapse
|
5
|
Ma J, Fan J, Xia Y, Kou X, Ke Q, Zhao Y. Preparation of aromatic β-cyclodextrin nano/microcapsules and corresponding aromatic textiles: A review. Carbohydr Polym 2023; 308:120661. [PMID: 36813345 DOI: 10.1016/j.carbpol.2023.120661] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Fragrance finishing of textiles is receiving substantial interest, with aromatherapy being one of the most popular aspects of personal health care. However, the longevity of aroma on textiles and presence after subsequent launderings are major concerns for aromatic textiles directly loaded with essential oils. These drawbacks can be weakened by incorporating essential oil-complexed β-cyclodextrins (β-CDs) onto various textiles. This article reviews various preparation methods of aromatic β-cyclodextrin nano/microcapsules, as well as a wide variety of methods for the preparation of aromatic textiles based on them before and after forming, proposing future trends in preparation processes. The review also covers the complexation of β-CDs with essential oils, and the application of aromatic textiles based on β-CD nano/microcapsules. Systematic research on the preparation of aromatic textiles facilitates the realization of green and simple industrialized large-scale production, providing needed application potential in the fields of various functional materials.
Collapse
Affiliation(s)
- Jiajia Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Jiaxuan Fan
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Yichang Xia
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Xingran Kou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Qinfei Ke
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Yi Zhao
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China.
| |
Collapse
|
6
|
Badrey MG, Gomha SM, Abdelmonsef AH, El-Reedy AAM. Syntheses and Molecular Docking Analysis of Some New Thiazole and Thiazine Derivatives as Three Armed Molecules with a Triazine Ring as a Core Component: A Search for anti-Obesity Agents. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2173617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- Mohamed G. Badrey
- Department of Chemistry, Faculty of Science, Fayoum University, El-Fayoum, Egypt
- Department of Chemistry, Faculty of Science and Arts-Almandaq, Al-Baha University, Al-Baha, Saudi Arabia
| | - Sobhi M. Gomha
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia
- Department of Chemistry, Faculty of Science, University of Cairo, Giza, Egypt
| | | | - Ahmed A. M. El-Reedy
- Department of Basic and Applied Science, Faculty of Oral and Dental Medicine, Nahda University, Beni-Suef, Egypt
| |
Collapse
|
7
|
Yaccoubi F, El-Naggar M, Abdelrazek FM, Gomha SM, Farghaly MS, Abolibda TZ, Ali LA, Abdelmonsef AH. Pyrido-pyrimido-thiadiazinones: green synthesis, molecular docking studies and biological investigation as obesity inhibitors. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2159210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ferid Yaccoubi
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie Organique Structurale LR99ES14, Campus Universitaire, 2092 Tunis, Tunisia
- Department of Chemistry, Faculty of Science and Humanity Studies at Al Quwayiyah, Shaqra University, Al-Quwayiyah 19245, Saudi Arabia
| | - Mohamed El-Naggar
- Depatement of Chemistry, Pure and Applied Chemistry Group, Faculty of Sciences, University of Sharjah, Sharjah 27272, UAE
- National Institute of Oceanography and Fisheries, kayet Bay, Alexandria, Egypt
| | - Fathy M. Abdelrazek
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Sobhi M. Gomha
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Mohamed S. Farghaly
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Science & Technology Center of Excellence, Ministry of Military Production, Cairo, Egypt
| | - Tariq Z. Abolibda
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Lobna A. Ali
- Cell Biology and Histochemistry, Zoology Department, Faculty of Science, South Valley University, Qena, Egypt
| | | |
Collapse
|
8
|
Abstract
The mitochondrial isoforms VA/VB of metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) are involved in metabolic processes, such as de novo lipogenesis and fatty acid biosynthesis. We review the drug design landscape for obtaining CA VA/VB-selective/effective inhibitors, starting from the clinical observations that CA inhibitory drugs, such as the antiepileptics topiramate and zonisamide, or the diuretic acetazolamide induce a significant weight loss. The main approaches for designing such compounds consisted in drug repurposing of already known CA inhibitors (CAIs); screening of synthetic/natural products libraries both in the classical and virtual modes, and de novo drug design using the tail approach. A number of such studies allowed the identification of lead compounds diverse from sulphonamides, such as tropolones, phenols, polyphenols, flavones, glycosides, fludarabine, lenvatinib, rufinamide, etc., for which the binding mode to the enzyme is not always well understood. Classical drug design studies of sulphonamides, sulfamates and sulfamides afforded low nanomolar mitochondrial CA-selective inhibitors, but detailed antiobesity studies were poorly performed with most of them. A breakthrough in the field may be constituted by the design of hybrids incorporating CAIs and other antiobesity chemotypes.
Collapse
Affiliation(s)
- Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Firenze, Italy
| |
Collapse
|
9
|
Chen Y, Qin Q, Luo J, Dong Y, Lin C, Chen H, Cao Y, Chen Y, Su Z. Litchi flower essential oil balanced lipid metabolism through the regulation of DAF-2/IIS, MDT-15/SBP-1, and MDT-15/NHR-49 pathway. Front Nutr 2022; 9:934518. [PMID: 36337637 PMCID: PMC9627157 DOI: 10.3389/fnut.2022.934518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/11/2022] [Indexed: 12/02/2022] Open
Abstract
Many litchi flowers are discarded in China every year. The litchi flower is rich in volatile compounds and exhibits strong anti-obesity activity. Litchi flower essential oil (LFEO) was extracted by the continuous phase transformation device (CPTD) independently developed by our research group to recycle the precious material resources in litchi flowers. However, its fat-reducing effect and mechanism remain unclear. Employing Caenorhabditis elegans as a model, we found that LFEO significantly reduced fat storage and triglyceride (TG) content in normal, glucose-feeding, and high-fat conditions. LFEO significantly reduced body width in worms and significantly decreased both the size and number of lipid droplets in ZXW618. LFEO treatment did not affect energy intake but increased energy consumption by enhancing the average speed of worms. Further, LFEO might balance the fat metabolism in worms by regulating the DAF-2/IIS, sbp-1/mdt-15, and nhr-49/mdt-15 pathways. Moreover, LFEO might inhibit the expression of the acs-2 gene through nhr-49 and reduce β-oxidation activity. Our study presents new insights into the role of LFEO in alleviating fat accumulation and provides references for the large-scale production of LFEO to promote the development of the litchi circular economy.
Collapse
Affiliation(s)
- Yun Chen
- South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Qiao Qin
- South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jingrui Luo
- South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yusi Dong
- South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Chunxiu Lin
- South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Houbin Chen
- South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yong Cao
- South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yunjiao Chen
- South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zuanxian Su
- South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
10
|
Rafiq K, Khan A, Ur Rehman N, Halim SA, Khan M, Ali L, Hilal Al-Balushi A, Al-Busaidi HK, Al-Harrasi A. New Carbonic Anhydrase-II Inhibitors from Marine Macro Brown Alga Dictyopteris hoytii Supported by In Silico Studies. Molecules 2021; 26:7074. [PMID: 34885658 PMCID: PMC8658806 DOI: 10.3390/molecules26237074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
In continuation of phytochemical investigations of the methanolic extract of Dictyopteris hoytii, we have obtained twelve compounds (1-12) through column chromatography. Herein, three compounds, namely, dimethyl 2-bromoterepthalate (3), dimethyl 2,6-dibromoterepthalate (4), and (E)-3-(4-(dimethoxymethyl)phenyl) acrylic acid (5) are isolated for the first time as a natural product, while the rest of the compounds (1, 2, 6-12) are known and isolated for the first time from this source. The structures of the isolated compounds were elucidated by advanced spectroscopic 1D and 2D NMR techniques including 1H, 13C, DEPT, HSQC, HMBC, COSY, NEOSY, and HR-MS and comparison with the reported literature. Furthermore, eight compounds (13-20) previously isolated by our group from the same source along with the currently isolated compounds (1-12) were screened against the CA-II enzyme. All compounds, except 6, 8, 14, and 17, were evaluated for in vitro bovine carbonic anhydrase-II (CA-II) inhibitory activity. Eventually, eleven compounds (1, 4, 5, 7, 9, 10, 12, 13, 15, 18, and 19) exhibited significant inhibitory activity against CA-II with IC50 values ranging from 13.4 to 71.6 μM. Additionally, the active molecules were subjected to molecular docking studies to predict the binding behavior of those compounds. It was observed that the compounds exhibit the inhibitory potential by specifically interacting with the ZN ion present in the active site of CA-II. In addition to ZN ion, two residues (His94 and Thr199) play an important role in binding with the compounds that possess a carboxylate group in their structure.
Collapse
Affiliation(s)
- Kashif Rafiq
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Nizwa 616, Oman; (K.R.); (A.K.); (S.A.H.); (M.K.); (L.A.)
| | - Ajmal Khan
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Nizwa 616, Oman; (K.R.); (A.K.); (S.A.H.); (M.K.); (L.A.)
| | - Najeeb Ur Rehman
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Nizwa 616, Oman; (K.R.); (A.K.); (S.A.H.); (M.K.); (L.A.)
| | - Sobia Ahsan Halim
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Nizwa 616, Oman; (K.R.); (A.K.); (S.A.H.); (M.K.); (L.A.)
| | - Majid Khan
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Nizwa 616, Oman; (K.R.); (A.K.); (S.A.H.); (M.K.); (L.A.)
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Liaqat Ali
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Nizwa 616, Oman; (K.R.); (A.K.); (S.A.H.); (M.K.); (L.A.)
- Department of Chemistry, University of Mianwali, Mianwali 42200, Pakistan
| | - Abdullah Hilal Al-Balushi
- Oman Animal and Plant Genetic Resources Center, P.O. Box 92, Muscat 123, Oman; (A.H.A.-B.); (H.K.A.-B.)
| | - Haitham Khamis Al-Busaidi
- Oman Animal and Plant Genetic Resources Center, P.O. Box 92, Muscat 123, Oman; (A.H.A.-B.); (H.K.A.-B.)
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Nizwa 616, Oman; (K.R.); (A.K.); (S.A.H.); (M.K.); (L.A.)
| |
Collapse
|
11
|
Application of Nano-β-Cyclodextrin to Induce Biosynthesis of Phenylpropanoids and Antioxidant Activity of Basil. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2021. [DOI: 10.1007/s40995-021-01163-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Nocentini A, Angeli A, Carta F, Winum JY, Zalubovskis R, Carradori S, Capasso C, Donald WA, Supuran CT. Reconsidering anion inhibitors in the general context of drug design studies of modulators of activity of the classical enzyme carbonic anhydrase. J Enzyme Inhib Med Chem 2021; 36:561-580. [PMID: 33615947 PMCID: PMC7901698 DOI: 10.1080/14756366.2021.1882453] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inorganic anions inhibit the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) generally by coordinating to the active site metal ion. Cyanate was reported as a non-coordinating CA inhibitor but those erroneous results were subsequently corrected by another group. We review the anion CA inhibitors (CAIs) in the more general context of drug design studies and the discovery of a large number of inhibitor classes and inhibition mechanisms, including zinc binders (sulphonamides and isosteres, dithiocabamates and isosteres, thiols, selenols, benzoxaboroles, ninhydrins, etc.); inhibitors anchoring to the zinc-coordinated water molecule (phenols, polyamines, sulfocoumarins, thioxocoumarins, catechols); CAIs occluding the entrance to the active site (coumarins and derivatives, lacosamide), as well as compounds that bind outside the active site. All these new chemotypes integrated with a general procedure for obtaining isoform-selective compounds (the tail approach) has resulted, through the guidance of rigorous X-ray crystallography experiments, in the development of highly selective CAIs for all human CA isoforms with many pharmacological applications.
Collapse
Affiliation(s)
- Alessio Nocentini
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Andrea Angeli
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Fabrizio Carta
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | | | - Raivis Zalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Clemente Capasso
- Institute of Biosciences and Bioresources, National Research Council, Napoli, Italy
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| |
Collapse
|
13
|
Emerging role of carbonic anhydrase inhibitors. Clin Sci (Lond) 2021; 135:1233-1249. [PMID: 34013961 DOI: 10.1042/cs20210040] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
Inhibition of carbonic anhydrase (CA, EC 4.2.1.1) was clinically exploited for decades, as most modern diuretics were obtained considering as lead molecule acetazolamide, the prototypical CA inhibitor (CAI). The discovery and characterization of multiple human CA (hCA) isoforms, 15 of which being known today, led to new applications of their inhibitors. They include widely clinically used antiglaucoma, antiepileptic and antiobesity agents, antitumor drugs in clinical development, as well as drugs for the management of acute mountain sickness and idiopathic intracranial hypertension (IIH). Emerging roles of several CA isoforms in areas not generally connected to these enzymes were recently documented, such as in neuropathic pain, cerebral ischemia, rheumatoid arthritis, oxidative stress and Alzheimer's disease. Proof-of-concept studies thus emerged by using isoform-selective inhibitors, which may lead to new clinical applications in such areas. Relevant preclinical models are available for these pathologies due to the availability of isoform-selective CAIs for all human isoforms, belonging to novel classes of compounds, such as coumarins, sulfocoumarins, dithiocarbamates, benzoxaboroles, apart the classical sulfonamide inhibitors. The inhibition of CAs from pathogenic bacteria, fungi, protozoans or nematodes started recently to be considered for obtaining anti-infectives with a new mechanism of action.
Collapse
|
14
|
Phytochemical Profile and In Vitro Antioxidant, Antimicrobial, Vital Physiological Enzymes Inhibitory and Cytotoxic Effects of Artemisia jordanica Leaves Essential Oil from Palestine. Molecules 2021; 26:molecules26092831. [PMID: 34068826 PMCID: PMC8126209 DOI: 10.3390/molecules26092831] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 01/14/2023] Open
Abstract
Artemisia jordanica (AJ) is one of the folkloric medicinal plants and grows in the arid condition used by Palestinian Bedouins in the Al-Naqab desert for the treatment of diabetes and gastrointestinal infections. The current investigation aimed, for the first time, to characterize the (AJ) essential oil (EO) components and evaluate EO’s antioxidant, anti-obesity, antidiabetic, antimicrobial, anti-inflammatory, and cytotoxic activities. The gas chromatography-mass spectrometer (GC-MS) technique was utilized to characterize the chemical ingredients of (AJ) EO, while validated biochemical approaches were utilized to evaluate the antioxidant, anti-obesity and antidiabetic. The microbicidal efficacy of (AJ) EO was measured utilizing the broth microdilution assay. Besides, the cytotoxic activity was estimated utilizing the (MTS) procedure. Finally, the anti-inflammatory activity was measured utilizing a COX inhibitory screening test kit. The analytical investigation revealed the presence of 19 molecules in the (AJ) EO. Oxygenated terpenoids, including bornyl acetate (63.40%) and endo-borneol (17.75%) presented as major components of the (AJ) EO. The EO exhibited potent antioxidant activity compared with Trolox, while it showed a weak anti-lipase effect compared with orlistat. In addition, the tested EO displayed a potent α-amylase suppressing effect compared with the positive control acarbose. Notably, the (AJ) EO exhibited strong α-glucosidase inhibitory potential compared with the positive control acarbose. The EO had has a cytotoxic effect against all the screened tumor cells. In fact, (AJ) EO showed potent antimicrobial properties. Besides, the EO inhibited the enzymes COX-1 and COX-2, compared with the anti-inflammatory drug ketoprofen. The (AJ) EO has strong antioxidant, antibacterial, antifungal, anti-α-amylase, anti-α-glucosidase, and COX inhibitory effects which could be a favorite candidate for the treatment of various neurodegenerative diseases caused by harmful free radicals, microbial resistance, diabetes, and inflammations. Further in-depth investigations are urgently crucial to explore the importance of such medicinal plants in pharmaceutical production.
Collapse
|
15
|
Shende P, Narvenker R. Herbal nanotherapy: A new paradigm over conventional obesity treatment. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Swelling of biodegradable polymers for the production of nanocapsules and films with the incorporation of essential oils. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03465-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Maruca A, Lanzillotta D, Rocca R, Lupia A, Costa G, Catalano R, Moraca F, Gaudio E, Ortuso F, Artese A, Trapasso F, Alcaro S. Multi-Targeting Bioactive Compounds Extracted from Essential Oils as Kinase Inhibitors. Molecules 2020; 25:E2174. [PMID: 32384767 PMCID: PMC7249159 DOI: 10.3390/molecules25092174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 12/12/2022] Open
Abstract
Essential oils (EOs) are popular in aromatherapy, a branch of alternative medicine that claims their curative effects. Moreover, several studies reported EOs as potential anti-cancer agents by inducing apoptosis in different cancer cell models. In this study, we have considered EOs as a potential resource of new kinase inhibitors with a polypharmacological profile. On the other hand, computational methods offer the possibility to predict the theoretical activity profile of ligands, discovering dangerous off-targets and/or synergistic effects due to the potential multi-target action. With this aim, we performed a Structure-Based Virtual Screening (SBVS) against X-ray models of several protein kinases selected from the Protein Data Bank (PDB) by using a chemoinformatics database of EOs. By evaluating theoretical binding affinity, 13 molecules were detected among EOs as new potential kinase inhibitors with a multi-target profile. The two compounds with higher percentages in the EOs were studied more in depth by means Induced Fit Docking (IFD) protocol, in order to better predict their binding modes taking into account also structural changes in the receptor. Finally, given its good binding affinity towards five different kinases, cinnamyl cinnamate was biologically tested on different cell lines with the aim to verify the antiproliferative activity. Thus, this work represents a starting point for the optimization of the most promising EOs structure as kinase inhibitors with multi-target features.
Collapse
Affiliation(s)
- Annalisa Maruca
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus Universitario “S. Venuta”, Viale Europa, Loc. Germaneto, 88100 Catanzaro, Italy; (A.M.); (G.C.); (R.C.); (F.O.); (A.A.)
- Net4Science srl, Università “Magna Græcia” di Catanzaro, Campus Universitario “S. Venuta”, Viale Europa, Loc. Germaneto, 88100 Catanzaro, Italy; (R.R.); (A.L.); (F.M.)
| | - Delia Lanzillotta
- Department of Experimental and Clinical Medicine, Università “Magna Græcia” di Catanzaro, Campus Universitario “S. Venuta”, Viale Europa, Loc. Germaneto, 88100 Catanzaro, Italy; (D.L.); (F.T.)
| | - Roberta Rocca
- Net4Science srl, Università “Magna Græcia” di Catanzaro, Campus Universitario “S. Venuta”, Viale Europa, Loc. Germaneto, 88100 Catanzaro, Italy; (R.R.); (A.L.); (F.M.)
- Department of Experimental and Clinical Medicine, Università “Magna Græcia” di Catanzaro, Campus Universitario “S. Venuta”, Viale Europa, Loc. Germaneto, 88100 Catanzaro, Italy; (D.L.); (F.T.)
| | - Antonio Lupia
- Net4Science srl, Università “Magna Græcia” di Catanzaro, Campus Universitario “S. Venuta”, Viale Europa, Loc. Germaneto, 88100 Catanzaro, Italy; (R.R.); (A.L.); (F.M.)
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus Universitario “S. Venuta”, Viale Europa, Loc. Germaneto, 88100 Catanzaro, Italy; (A.M.); (G.C.); (R.C.); (F.O.); (A.A.)
- Net4Science srl, Università “Magna Græcia” di Catanzaro, Campus Universitario “S. Venuta”, Viale Europa, Loc. Germaneto, 88100 Catanzaro, Italy; (R.R.); (A.L.); (F.M.)
| | - Raffaella Catalano
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus Universitario “S. Venuta”, Viale Europa, Loc. Germaneto, 88100 Catanzaro, Italy; (A.M.); (G.C.); (R.C.); (F.O.); (A.A.)
- Net4Science srl, Università “Magna Græcia” di Catanzaro, Campus Universitario “S. Venuta”, Viale Europa, Loc. Germaneto, 88100 Catanzaro, Italy; (R.R.); (A.L.); (F.M.)
| | - Federica Moraca
- Net4Science srl, Università “Magna Græcia” di Catanzaro, Campus Universitario “S. Venuta”, Viale Europa, Loc. Germaneto, 88100 Catanzaro, Italy; (R.R.); (A.L.); (F.M.)
- Department of Pharmacy, University “Federico II” of Naples, Via D. Montesano 49, 80131 Naples, Italy
| | - Eugenio Gaudio
- Lymphoma and Genomics Research Program, the Institute of Oncology Research, 6500 Bellinzona, Switzerland;
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus Universitario “S. Venuta”, Viale Europa, Loc. Germaneto, 88100 Catanzaro, Italy; (A.M.); (G.C.); (R.C.); (F.O.); (A.A.)
- Net4Science srl, Università “Magna Græcia” di Catanzaro, Campus Universitario “S. Venuta”, Viale Europa, Loc. Germaneto, 88100 Catanzaro, Italy; (R.R.); (A.L.); (F.M.)
| | - Anna Artese
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus Universitario “S. Venuta”, Viale Europa, Loc. Germaneto, 88100 Catanzaro, Italy; (A.M.); (G.C.); (R.C.); (F.O.); (A.A.)
- Net4Science srl, Università “Magna Græcia” di Catanzaro, Campus Universitario “S. Venuta”, Viale Europa, Loc. Germaneto, 88100 Catanzaro, Italy; (R.R.); (A.L.); (F.M.)
| | - Francesco Trapasso
- Department of Experimental and Clinical Medicine, Università “Magna Græcia” di Catanzaro, Campus Universitario “S. Venuta”, Viale Europa, Loc. Germaneto, 88100 Catanzaro, Italy; (D.L.); (F.T.)
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus Universitario “S. Venuta”, Viale Europa, Loc. Germaneto, 88100 Catanzaro, Italy; (A.M.); (G.C.); (R.C.); (F.O.); (A.A.)
- Net4Science srl, Università “Magna Græcia” di Catanzaro, Campus Universitario “S. Venuta”, Viale Europa, Loc. Germaneto, 88100 Catanzaro, Italy; (R.R.); (A.L.); (F.M.)
| |
Collapse
|
18
|
Costa G, Carta F, Ambrosio FA, Artese A, Ortuso F, Moraca F, Rocca R, Romeo I, Lupia A, Maruca A, Bagetta D, Catalano R, Vullo D, Alcaro S, Supuran CT. A computer-assisted discovery of novel potential anti-obesity compounds as selective carbonic anhydrase VA inhibitors. Eur J Med Chem 2019; 181:111565. [PMID: 31387062 DOI: 10.1016/j.ejmech.2019.111565] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 11/25/2022]
Abstract
The human Carbonic anhydrases (hCA) VA and VB play a key role in ureagenesis, gluconeogenesis, lipogenesis and in the metabolism regulation, thus representing highly popular drug targets. Albeit several hCA inhibitors have been designed and are currently in clinical use, serious drug interactions have been reported due to their poor selectivity. In this perspective, the drug repurposing approach could be a useful tool in order to investigate the drug promiscuity/polypharmacology profile. In this study, virtual screening techniques and in vitro assays were combined to identify novel selective hCA VA inhibitors from among around 94000 compounds. The docking analysis highlighted 12 promising best hits, biologically characterized in terms of their hCA VA inhibitory activity. Interestingly, among them, the anticancer agents fludarabine and lenvatinib and the antiepileptic rufinamide were able to selectively inhibit the enzyme activity in the micromolar range, while a pyrido-indole derivative, the homovanillic acid sulfate and the desacetyl metabolite of the antibacterial cephapirin in the nanomolar range.
Collapse
Affiliation(s)
- Giosuè Costa
- Dipartimento di Scienze della Salute, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy; Net4Science Academic Spin-Off, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Fabrizio Carta
- Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche, Università; degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | - Francesca Alessandra Ambrosio
- Dipartimento di Scienze della Salute, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Anna Artese
- Dipartimento di Scienze della Salute, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy; Net4Science Academic Spin-Off, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy.
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy; Net4Science Academic Spin-Off, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Federica Moraca
- Department of Pharmacy, University "Federico II" of Naples, Via D. Montesano, 49 I-80131, Naples, Italy; Net4Science Academic Spin-Off, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy; Dipartimento di Scienze della Salute, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Roberta Rocca
- Dipartimento di Scienze della Salute, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy; Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy; Net4Science Academic Spin-Off, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Isabella Romeo
- Dipartimento di Chimica e Tecnologie chimiche, Università della Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Cosenza, Italy; Net4Science Academic Spin-Off, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Antonio Lupia
- Dipartimento di Scienze della Salute, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy; Net4Science Academic Spin-Off, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Annalisa Maruca
- Dipartimento di Scienze della Salute, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy; Net4Science Academic Spin-Off, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Donatella Bagetta
- Dipartimento di Scienze della Salute, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy; Net4Science Academic Spin-Off, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Raffaella Catalano
- Dipartimento di Scienze della Salute, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy; Net4Science Academic Spin-Off, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Daniela Vullo
- Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche, Università; degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy; Net4Science Academic Spin-Off, "Magna Græcia" University of Catanzaro, Campus "S. Venuta", Viale Europa, Germaneto, 88100, Catanzaro, Italy
| | - Claudiu T Supuran
- Dipartimento NEUROFARBA, Sezione di Scienze Farmaceutiche, Università; degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
19
|
Exploration of ligand binding modes towards the identification of compounds targeting HuR: a combined STD-NMR and Molecular Modelling approach. Sci Rep 2018; 8:13780. [PMID: 30214075 PMCID: PMC6137155 DOI: 10.1038/s41598-018-32084-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/29/2018] [Indexed: 12/18/2022] Open
Abstract
Post-transcriptional processes have been recognised as pivotal in the control of gene expression, and impairments in RNA processing are reported in several pathologies (i.e., cancer and neurodegeneration). Focusing on RNA-binding proteins (RBPs), the involvement of Embryonic Lethal Abnormal Vision (ELAV) or Hu proteins and their complexes with target mRNAs in the aetiology of various dysfunctions, has suggested the great potential of compounds able to interfere with the complex stability as an innovative pharmacological strategy for the treatment of numerous diseases. Here, we present a rational follow-up investigation of the interaction between ELAV isoform HuR and structurally-related compounds (i.e., flavonoids and coumarins), naturally decorated with different functional groups, by means of STD-NMR and Molecular Modelling. Our results represent the foundation for the development of potent and selective ligands able to interfere with ELAV–RNA complexes.
Collapse
|
20
|
Dick BL, Patel A, McCammon JA, Cohen SM. Effect of donor atom identity on metal-binding pharmacophore coordination. J Biol Inorg Chem 2017; 22:605-613. [PMID: 28389830 DOI: 10.1007/s00775-017-1454-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/28/2017] [Indexed: 01/03/2023]
Abstract
The inhibition and binding of three metal-binding pharmacophores (MBPs), 2-hydroxycyclohepta-2,4,6-trien-1-one (tropolone), 2-mercaptopyridine-N-oxide (1,2-HOPTO), and 2-hydroxycyclohepta-2,4,6-triene-1-thione (thiotropolone) to human carbonic anhydrase II (hCAII) and a mutant protein hCAII L198G were investigated. These MBPs displayed bidentate coordination to the active site Zn(II) metal ion, but the MBPs respond to the mutation of L198G differently, as characterized by inhibition activity assays and X-ray crystallography. The L198G mutation increases the active site volume thereby decreasing the steric pressure exerted on MBPs upon binding, allowing changes in MBP coordination to be observed. When comparing the binding mode of tropolone to thiotropolone or 1,2-HOPTO (O,O versus O,S donor sets), structural modifications of the hCAII active site were shown to have a stronger effect on MBPs with an O,O versus O,S donor set. These findings were corroborated with density functional theory (DFT) calculations of model coordination complexes. These results suggest that the MBP binding geometry is a malleable interaction, particularly for certain ligands, and that the identity of the donor atoms influences the response of the ligand to changes in the protein active site environment. Understanding underlying interactions between a MBP and a metalloenzyme active site may aid in the design and development of potent metalloenzyme inhibitors.
Collapse
Affiliation(s)
- Benjamin L Dick
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Ashay Patel
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA.,Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.,Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, USA.,National Biomedical Computation Resource, University of California San Diego, La Jolla, CA, USA
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA.
| |
Collapse
|
21
|
Mohamed MA, Abdel-Aziz AAM, Sakr HM, El-Azab AS, Bua S, Supuran CT. Synthesis and human/bacterial carbonic anhydrase inhibition with a series of sulfonamides incorporating phthalimido moieties. Bioorg Med Chem 2017; 25:2524-2529. [DOI: 10.1016/j.bmc.2017.03.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 12/18/2022]
|
22
|
Entezari Heravi Y, Bua S, Nocentini A, Del Prete S, Saboury AA, Sereshti H, Capasso C, Gratteri P, Supuran CT. Inhibition of Malassezia globosa carbonic anhydrase with phenols. Bioorg Med Chem 2017; 25:2577-2582. [PMID: 28343756 DOI: 10.1016/j.bmc.2017.03.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/09/2017] [Accepted: 03/15/2017] [Indexed: 12/22/2022]
Abstract
A panel of 22 phenols was investigated as inhibitors of the β-class carbonic anhydrase (CAs, EC 4.2.1.1) from the fungal parasite Malassezia globosa (MgCA), a validated anti-dandruff drug target. The displayed inhibitory activities were compared to the ones previously reported against the off-target widely distributed human (h) isoforms hCA I and II. All tested phenols possessed a better efficacy in inhibiting MgCA than the clinically used sulfonamide acetazolamide, with KIs in the range of 2.5 and 65.0μM. A homology-built model of MgCA was also used for understanding the binding mode of phenols to the fungal enzyme. Indeed, a wide network of hydrogen bonds and hydrophobic interactions between the phenol and active site residues were evidenced. The OH moiety of the inhibitor was observed anchored to the zinc-coordinated water, also making hydrogen bonds with Ser48 and Asp49. The diverse substituents at the phenolic scaffold were observed to interact with different portions of the hydrophobic pocket according to their nature and position. Considering the effective MgCA inhibitory properties of phenols, beside to the rather low inhibition against the off-target hCA I and II, this class of compounds might be of considerable interest in the cosmetics field as potential anti-dandruff drugs.
Collapse
Affiliation(s)
- Yeganeh Entezari Heravi
- Department of Chemistry, Faculty of Science, University of Tehran, Tehran, Iran; Università degli Studi di Firenze, Department NEUROFARBA - Pharmaceutical and Nutraceutical Section, University of Firenze, via Ugo Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Silvia Bua
- Università degli Studi di Firenze, Department NEUROFARBA - Pharmaceutical and Nutraceutical Section, University of Firenze, via Ugo Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Alessio Nocentini
- Università degli Studi di Firenze, Department NEUROFARBA - Pharmaceutical and Nutraceutical Section, University of Firenze, via Ugo Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy; Università degli Studi di Firenze, Department NEUROFARBA - Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, via Ugo Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Sonia Del Prete
- Università degli Studi di Firenze, Department NEUROFARBA - Pharmaceutical and Nutraceutical Section, University of Firenze, via Ugo Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy; Istituto di Bioscienze e Biorisorse (IBBR)-CNR, Via P. Castellino 111, 80131 Napoli, Italy
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hassan Sereshti
- Department of Chemistry, Faculty of Science, University of Tehran, Tehran, Iran
| | - Clemente Capasso
- Istituto di Bioscienze e Biorisorse (IBBR)-CNR, Via P. Castellino 111, 80131 Napoli, Italy
| | - Paola Gratteri
- Università degli Studi di Firenze, Department NEUROFARBA - Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, via Ugo Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Department NEUROFARBA - Pharmaceutical and Nutraceutical Section, University of Firenze, via Ugo Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
23
|
Design, synthesis and biological activities of novel 5-isopropyl-2-methylphenolhydrazide-based sulfonamide derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2759-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|