1
|
Yan Q, Li Z, Sun R, Jin H, Ma L, Li C. Promoted expression of a lipase for its application in EPA/DHA enrichment and mechanistic insights into its substrate specificity. Int J Biol Macromol 2025; 296:139628. [PMID: 39798747 DOI: 10.1016/j.ijbiomac.2025.139628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Expanding toolkits of EPA/DHA enrichment from natural sources is essential for better satisfying increasing demands for them. Lipase K80, from Proteus vulgaris K80, showed an application potential in EPA/DHA enrichment, whereas no desired heterologous expression in generally regarded as safe (GRAS) hosts restricted its relevant applications. In this study, expression of lipase K80 in a well-reputed GRAS host, Pichia pastoris, was achieved and further enhanced via combining disruption of its C-terminal KKL motif with co-expression of N-Acetyltransferase Mpr1, with a cumulative increment of nearly 200% in the secretion level and the volumetric activity. Its application in EPA/DHA enrichment from fish oil was thereafter obtained with merits of low temperature and much less time, yielding an increase of ~31% in their total percentage. To gain mechanistic insights into its substrate chain-length specificity, we performed molecular dynamics simulation and revealed the substrate-dependent significant yet divergent conformational shifts of predominantly distal surface-exposed regions, suggesting a predominant long-range modulation mechanism. Together, this work provided in-depth insights into substrate specificity of lipase K80 and an alternate engineering site, the C-terminal KKL motif, for its expression optimization in P. pastoris, as well as extended toolboxes of EPA/DHA enrichment and application scopes of lipase K80.
Collapse
Affiliation(s)
- Qinfang Yan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Zhaoyang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Rongjing Sun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Hanmei Jin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Linxin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China.
| | - Chunhua Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
2
|
Yang X, Lin S, Chen Y, Chen W, Lan D, Wang Y. Efficient Enzymatic Enrichment of High-purity Nervonic Acid from Malania oleifera Seed Oil. J Oleo Sci 2024; 73:99-111. [PMID: 38171735 DOI: 10.5650/jos.ess23170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Nervonic acid (NA) is a monounsaturated fatty acid vital for brain health and is of emerging importance in various industrial applications, including therapeutics, food, and cosmetics. Given the growing demands of the food and pharmaceutical industries, there's a pressing need for high-purity NA. Previously, NA constituents in plant seed oils were chemically transformed into nervonic acid ethyl ester (NAEE) to facilitate extraction from seed oils. In this study, we present an enzymatic approach to convert NA constituents in Malania oleifera seed oil to NAEE. Combined with the utilization of the semi-preparative chromatography, we achieved a remarkable purity of 97.52% NAEE. Compared to conventional chemical preparations characterized by multiple steps, prolonged processing times, and low yields and purities, our enzymatic method stands out as a more efficient and advantageous alternative. On top of that, this innovative approach is environmentally friendly and circumvents health and safety issues associated with chemical processes.
Collapse
Affiliation(s)
- Ximei Yang
- School of Food Science and Engineering, South China University of Technology
| | - Sen Lin
- School of Food Science and Engineering, South China University of Technology
| | - Ying Chen
- School of Food Science and Engineering, South China University of Technology
| | - Wen Chen
- School of Food Science and Engineering, South China University of Technology
| | - Dongming Lan
- School of Food Science and Engineering, South China University of Technology
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology
- Guangdong Youmei Institute of Intelligent Bio-manufacturing Co., Ltd
| |
Collapse
|
3
|
Liu X, Xu W, Wang W, Luo R, Yang B, Lan D, Wang Y. Physicochemical properties and feasibility of coconut oil-based diacylglycerol as an alternative fat for healthy non-dairy creamer. Food Chem X 2023; 19:100749. [PMID: 37780246 PMCID: PMC10534128 DOI: 10.1016/j.fochx.2023.100749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 10/03/2023] Open
Abstract
Non-dairy creamers have been widely used for coffee whitening and texture improvement. To avoid the intake of trans fatty acids from partially hydrogenated oil, coconut oil-based diacylglycerol (CO-DAG) was applied in non-dairy creamer as core material. In this study, effects of DAG content (30, 50, 70, 90%) on the characteristics of CO-DAG were evaluated, including rheological and thermodynamic properties. The CO-DAG with a content of 50% exhibited a wide plastic range and contained mixture of β and β' polymorphic forms. Using CO-DAG (50%) as core material, the physicochemical properties of non-dairy creamer were characterized and compared with commercial products. The results indicated that CO-DAG-based non-dairy creamers showed similar encapsulation efficiency (92.74%) and thermal stability to commercial products. Furthermore, CO-DAG-based non-dairy creamer showed higher whiteness index (54.20) than commercial non-dairy creamers (50.22) when applied to black coffee. Overall, it is anticipated that CO-DAG-based non-dairy creamers have great potentials in coffee whitening.
Collapse
Affiliation(s)
- Xuan Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wanli Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Weifei Wang
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Riming Luo
- Guangdong Yue-shan Special Nutrition Technology Co., Ltd., Foshan 528000, China
| | - Bo Yang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Dongming Lan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Youmei Institute of Inteligent Bio-manufacturing Co., Ltd, Foshan 528200, China
| |
Collapse
|
4
|
Li J, Zhang S, Kuang Y, Bi Y, Wang H. A review on losses and transformation mechanisms of common antioxidants. J AM OIL CHEM SOC 2023. [DOI: 10.1002/aocs.12684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jun Li
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan China
| | - Shuning Zhang
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan China
| | - Yongyan Kuang
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan China
| | - Yanlan Bi
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan China
| | - Hongyan Wang
- College of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou Henan China
| |
Collapse
|
5
|
Yi M, You Y, Zhang Y, Wu G, Karrar E, Zhang L, Zhang H, Jin Q, Wang X. Highly Valuable Fish Oil: Formation Process, Enrichment, Subsequent Utilization, and Storage of Eicosapentaenoic Acid Ethyl Esters. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020672. [PMID: 36677730 PMCID: PMC9865908 DOI: 10.3390/molecules28020672] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023]
Abstract
In recent years, as the demand for precision nutrition is continuously increasing, scientific studies have shown that high-purity eicosapentaenoic acid ethyl ester (EPA-EE) functions more efficiently than mixed omega-3 polyunsaturated fatty acid preparations in diseases such as hyperlipidemia, heart disease, major depression, and heart disease; therefore, the market demand for EPA-EE is growing by the day. In this paper, we attempt to review EPA-EE from a whole-manufacturing-chain perspective. First, the extraction, refining, and ethanolysis processes (fish oil and ethanol undergo transesterification) of EPA-EE are described, emphasizing the potential of green substitute technologies. Then, the method of EPA enrichment is thoroughly detailed, the pros and cons of different methods are compared, and current developments in monomer production techniques are addressed. Finally, a summary of current advanced strategies for dealing with the low oxidative stability and low bioavailability of EPA-EE is presented. In conclusion, understanding the entire production process of EPA-EE will enable us to govern each step from a macro perspective and accomplish the best use of EPA-EE in a more cost-effective and environmentally friendly way.
Collapse
Affiliation(s)
- Mengyuan Yi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yue You
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yiren Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- Correspondence: (G.W.); (L.Z.); Tel.: +86-510-85876799 (G.W.); +86-510-85351730 (L.Z.)
| | - Emad Karrar
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Le Zhang
- Wuxi Children’s Hospital, Children’s Hospital Affiliated to Jiangnan University, Wuxi 214023, China
- Correspondence: (G.W.); (L.Z.); Tel.: +86-510-85876799 (G.W.); +86-510-85351730 (L.Z.)
| | - Hui Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Chen Y, Liu K, Yang Z, Chang M, Wang X, Wang X. Lipase-catalyzed two-step hydrolysis for concentration of acylglycerols rich in ω-3 polyunsaturated fatty acids. Food Chem 2023; 400:134115. [DOI: 10.1016/j.foodchem.2022.134115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 10/14/2022]
|
7
|
Zhang H, Secundo F, Sun J, Mao X. Advances in enzyme biocatalysis for the preparation of functional lipids. Biotechnol Adv 2022; 61:108036. [PMID: 36130694 DOI: 10.1016/j.biotechadv.2022.108036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
Abstract
Functional lipids, mainly ω-3 polyunsaturated fatty acids (n-3 PUFAs) such as eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic (DHA; 22:6n-3), are known to have a variety of health benefits. Lipases and phospholipases are widely used to prepare different forms of structured lipids, since biocatalytic methods can be carried out under mild conditions, preserving the quality of the products. On the other hand, many processes still are conducted at high temperatures and with organic solvents, which are conditions unfavorable for the production of nutritional products. This article gives an updated overview of enzyme biocatalysis methods for the preparation of different derivatives containing n-3 PUFAs, including specific reactions, enzyme immobilization research for high-efficiency catalysis, and enzyme engineering technologies (higher selectivity, stability, and activity). Furthermore, advanced control strategies of biocatalytic processes and reactors are presented. The future prospect and opportunities for marine functional lipids are also discussed. Therefore, the obtainment of enzymes endowed with superior properties and the development of optimized processes, still have to be pursued to achieve greener bio-catalyzed processes.
Collapse
Affiliation(s)
- Haiyang Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Francesco Secundo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, v. Mario Bianco 9, Milan 20131, Italy
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
8
|
Zhou J, Lee YY, Mao Y, Wang Y, Zhang Z. Future of Structured Lipids: Enzymatic Synthesis and Their New Applications in Food Systems. Foods 2022; 11:2400. [PMID: 36010399 PMCID: PMC9407428 DOI: 10.3390/foods11162400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Structured lipids (SLs) refer to a new type of functional lipid obtained by modifying natural triacylglycerol (TAG) through the restructuring of fatty acids, thereby altering the composition, structure, and distribution of fatty acids attached to the glycerol backbones. Due to the unique functional characteristics of SLs (easy to absorb, low in calories, reduced serum TAG, etc.), there is increasing interest in the research and application of SLs. SLs were initially prepared using chemical methods. With the wide application of enzymes in industries and the advantages of enzymatic synthesis (mild reaction conditions, high catalytic efficiency, environmental friendliness, etc.), synthesis of SLs using lipase has aroused great interest. This review summarizes the reaction system of SL production and introduces the enzymatic synthesis and application of some of the latest SLs discussed/developed in recent years, including medium- to long-chain triacylglycerol (MLCT), diacylglycerol (DAG), EPA- and DHA-enriched TAG, human milk fat substitutes, and esterified propoxylated glycerol (EPG). Lastly, several new ways of applying SLs (powdered oil, DAG plastic fat, inert gas spray oil, and emulsion) in the future food industry are also highlighted.
Collapse
Affiliation(s)
- Jun Zhou
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, 601 Huangpu Ave West, Guangzhou 510632, China
| | - Yee-Ying Lee
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Yilin Mao
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, 601 Huangpu Ave West, Guangzhou 510632, China
- Guangdong Joint International Research Centre of Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, 601 Huangpu Ave West, Guangzhou 510632, China
| | - Zhen Zhang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, 601 Huangpu Ave West, Guangzhou 510632, China
| |
Collapse
|
9
|
Zhou D, Zhao M, Wang J, Faiza M, Chen X, Cui J, Liu N, Li D. A novel and efficient method for punicic acid-enriched diacylglycerol preparation: Enzymatic ethanolysis of pomegranate seed oil catalyzed by Lipozyme 435. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Cheng Y, Zhang L, Li Z, Yang G, Chen J, Bi Y. Synthesis of DHA-enriched triglyceride through glycerolysis: Process parameters and reuse of partially inactivated lipase. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
Fan ZK, Ma WJ, Zhang W, Li H, Zhai J, Zhao T, Guo XF, Sinclair AJ, Li D. Elevated serum phosphatidylcholine (16:1/22:6) levels promoted by fish oil and vitamin D 3 are highly correlated with biomarkers of non-alcoholic fatty liver disease in Chinese subjects. Food Funct 2022; 13:11705-11714. [DOI: 10.1039/d2fo02349k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphatidylcholine (16:1/22:6) was associated with improving inflammation and lipid metabolism.
Collapse
Affiliation(s)
- Ze-kai Fan
- Institute of Nutrition & Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Wen-jun Ma
- Institute of Nutrition & Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Wei Zhang
- Songshan Hospital of Qingdao University, Qingdao, China
| | - Hui Li
- Songshan Hospital of Qingdao University, Qingdao, China
| | - Jie Zhai
- Songshan Hospital of Qingdao University, Qingdao, China
| | - Ting Zhao
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao-fei Guo
- Institute of Nutrition & Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Andrew J. Sinclair
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, Australia
- Faculty of Health, Deakin University, Burwood, Australia
| | - Duo Li
- Institute of Nutrition & Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
12
|
Li D, Zhang J, Faiza M, Shi L, Wang W, Liu N, Wang Y. The enhancement of rice bran oil quality through a novel moderate biorefining process. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Li D, Zhong X, Faiza M, Wang W, Lian W, Liu N, Wang Y. Simultaneous preparation of edible quality medium and high purity diacylglycerol by a novel combined approach. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Wang X, Zhao X, Qin X, Zhao Z, Yang B, Wang Y. Properties of immobilized MAS1-H108A lipase and its application in the efficient synthesis of n-3 PUFA-rich triacylglycerols. Bioprocess Biosyst Eng 2020; 44:575-584. [PMID: 33216225 DOI: 10.1007/s00449-020-02470-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/22/2020] [Indexed: 01/01/2023]
Abstract
This study reports the properties of immobilized MAS1-H108A lipase from marine Streptomyces sp. strain W007 on XAD1180 resin and its application in the synthesis of n-3 polyunsaturated fatty acids (PUFA)-rich triacylglycerols (TAG) for the first time. It was found that the optimal temperature and pH for both immobilized MAS1-H108A lipase and free lipase MAS1-H108A were 70 °C and 7.0, respectively. However, immobilized MAS1-H108A lipase exhibited higher thermostability when compared with free lipase MAS1-H108A. It was also interesting that both immobilized MAS1-H108A lipase and free lipase MAS1-H108A showed no regiospecificity in the hydrolysis of triolein. Subsequently, immobilized MAS1-H108A lipase and free lipase MAS1-H108A were employed to catalyze glycerolysis of n-3 PUFA-rich ethyl esters (EE) and esterification of n-3 PUFA with glycerol under vacuum in the solvent-free system. The results showed that n-3 PUFA-rich TAG were synthesized efficiently by non-regiospecific immobilized MAS1-H108A lipase and TAG contents separately reached 92.07% and 76.13% during the esterification and glycerolysis reactions, which were significantly higher than those (71.82% and 39.62%, respectively) obtained by free lipase MAS1-H108A. Besides, TAG exhibited similar n-3 PUFA composition to the substrate. These findings indicated that non-regiospecific immobilized MAS1-H108A lipase is a promising and efficient biocatalyst for the industrial synthesis of n-3 PUFA-rich TAG.
Collapse
Affiliation(s)
- Xiumei Wang
- College of Environmental and Biological Engineering, Putian University, Putian, 351100, China
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian, 351100, China
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China
| | - Xiaoxu Zhao
- College of Environmental and Biological Engineering, Putian University, Putian, 351100, China
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Putian, 351100, China
| | - Xiaoli Qin
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Zexin Zhao
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China
| | - Bo Yang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China
| | - Yonghua Wang
- Guangdong Research Center of Lipid Science and Applied Engineering Technology, School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
15
|
Ortiz C, Ferreira ML, Barbosa O, dos Santos JCS, Rodrigues RC, Berenguer-Murcia Á, Briand LE, Fernandez-Lafuente R. Novozym 435: the “perfect” lipase immobilized biocatalyst? Catal Sci Technol 2019. [DOI: 10.1039/c9cy00415g] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Novozym 435 (N435) is a commercially available immobilized lipase produced by Novozymes with its advantages and drawbacks.
Collapse
Affiliation(s)
- Claudia Ortiz
- Escuela de Microbiología
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | - María Luján Ferreira
- Planta Piloto de Ingeniería Química – PLAPIQUI
- CONICET
- Universidad Nacional del Sur
- 8000 Bahía Blanca
- Argentina
| | - Oveimar Barbosa
- Departamento de Química
- Facultad de Ciencias
- Universidad del Tolima
- Ibagué
- Colombia
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira
- Redenção
- Brazil
| | - Rafael C. Rodrigues
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales
- Departamento de Química Inorgánica
- Universidad de Alicante
- Alicante
- Spain
| | - Laura E. Briand
- Centro de Investigación y Desarrollo en Ciencias Aplicadas-Dr. Jorge J. Ronco
- Universidad Nacional de La Plata
- CONICET
- Buenos Aires
- Argentina
| | | |
Collapse
|
16
|
Lian W, Wang W, Tan CP, Wang J, Wang Y. Immobilized Talaromyces thermophilus lipase as an efficient catalyst for the production of LML-type structured lipids. Bioprocess Biosyst Eng 2018; 42:321-329. [DOI: 10.1007/s00449-018-2036-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/02/2018] [Indexed: 10/27/2022]
|
17
|
Lian W, Li D, Zhang L, Wang W, Faiza M, Tan CP, Yang B, Lan D, Wang Y. Synthesis of conjugated linoleic acid-rich triacylglycerols by immobilized mutant lipase with excellent capability and recyclability. Enzyme Microb Technol 2018; 117:56-63. [DOI: 10.1016/j.enzmictec.2018.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/29/2018] [Accepted: 06/17/2018] [Indexed: 11/16/2022]
|
18
|
Liu N, Li D, Wang W, Hollmann F, Xu L, Ma Y, Yang B, Bai W, Sun X, Wang Y. Production and immobilization of lipase PCL and its application in synthesis of α-linolenic acid-rich diacylglycerol. J Food Biochem 2018. [DOI: 10.1111/jfbc.12574] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Nan Liu
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Daoming Li
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Weifei Wang
- Sericultural and Agri-food Research Institute, Guangdong Academy of Agricultural Sciences; Guangzhou 510610 China
| | - Frank Hollmann
- Department of Biotechnology; Delft University of Technology, Van der Maasweg 9; Delft 2629HZ The Netherlands
| | - Long Xu
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Yunjian Ma
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Bo Yang
- School of Bioscience and Bioengineering; South China University of Technology; Guangzhou 510006 China
| | - Weidong Bai
- College of Food Science and Technology; Zhongkai University of Agriculture and Engineering; Guangzhou 510225 China
| | - Xiaotao Sun
- Beijing Key Laboratory of Flavor Chemistry; Beijing Technology and Business University; Beijing 100048 China
| | - Yonghua Wang
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|
19
|
Urrutia P, Arrieta R, Alvarez L, Cardenas C, Mesa M, Wilson L. Immobilization of lipases in hydrophobic chitosan for selective hydrolysis of fish oil: The impact of support functionalization on lipase activity, selectivity and stability. Int J Biol Macromol 2018; 108:674-686. [DOI: 10.1016/j.ijbiomac.2017.12.062] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/06/2017] [Accepted: 12/10/2017] [Indexed: 02/03/2023]
|
20
|
Li D, Liu P, Wang W, Yang B, Ou S, Wang Y. An efficient upgrading approach to produce n -3 polyunsaturated fatty acids-rich edible grade oil from high-acid squid visceral oil. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Xu L, Zhang L, Li D, Liu P, Tan CP, Wang W, Liu X, Yang B, Lan D, Wang Y. Deep Eutectic Solvents Enable the Enhanced Production ofn-3PUFA-Enriched Triacylglycerols. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201700300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Long Xu
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 PR China
| | - Li Zhang
- College of Life Science; Tarim University; Alar Xinjiang 843300 PR China
| | - Daoming Li
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 PR China
| | - Pengzhan Liu
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 PR China
| | - Chin-Ping Tan
- Faculty of Food Science and Technology; Department of Food Technology; Universiti Putra Malaysia; Serdang Selangor 43400 Malaysia
| | - Weifei Wang
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 PR China
| | - Xiangqian Liu
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 PR China
| | - Bo Yang
- School of Bioscience and Bioengineering; South China University of Technology; Guangzhou 510006 PR China
| | - Dongming Lan
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 PR China
| | - Yonghua Wang
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 PR China
| |
Collapse
|
22
|
Li D, Wang W, Liu P, Xu L, Faiza M, Yang B, Wang L, Lan D, Wang Y. Immobilization ofCandida antarcticaLipase B Onto ECR1030 Resin and its Application in the Synthesis of n-3 PUFA-Rich Triacylglycerols. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201700266] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Daoming Li
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Weifei Wang
- School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 China
| | - Pengzhan Liu
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Long Xu
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Muniba Faiza
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Bo Yang
- School of Bioscience and Bioengineering; South China University of Technology; Guangzhou 510006 China
| | - Leyuan Wang
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Dongming Lan
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Yonghua Wang
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|
23
|
Li D, Liu P, Wang W, Wang X, Yang B, Wang Y. An Innovative Deacidification Approach for Producing Partial Glycerides-Free Rice Bran Oil. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-1896-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Preparation of Highly Pure n-3 PUFA-Enriched Triacylglycerols by Two-Step Enzymatic Reactions Combined with Molecular Distillation. J AM OIL CHEM SOC 2016. [DOI: 10.1007/s11746-016-2928-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|