1
|
Cui K, Fang L, Ding R, Ni R, Liang J, Li T, Wang J, Liu J, Guan S, Dong Z, Wu X, Zheng Y. Dissipation and metabolism of fluxapyroxad, oxathiapiprolin and penthiopyrad in grapes: A comprehensive risk assessment from field to raisins. Food Chem 2025; 485:144510. [PMID: 40306051 DOI: 10.1016/j.foodchem.2025.144510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/09/2025] [Accepted: 04/23/2025] [Indexed: 05/02/2025]
Abstract
Understanding the residue fate of new pesticides in crops is essential to ensure their safe use and to safeguard human health. The present study examined the dissipation, metabolism, processing factors (PFs) and risk assessment of fluxapyroxad, oxathiapiprolin and penthiopyrad in grapes from field to raisins. The half-lives of the three pesticides in grapes ranged from 9.00 to 12.60 days following first-order kinetics. PAM, a penthiopyrad metabolite, was detected in grapes at 28.10-51.37 μg/kg. Most pesticide residues were concentrated in raisins during sun, shade and oven drying of fresh grapes (PF range, 0.70-2.39, most >1). In contrast, peeling and washing removed different amounts of pesticide residues from grapes (PF range, 0.27-0.81). Results of chronic and acute dietary risk assessments suggest that dietary exposure to the selected pesticides from grapes does not pose a human health concern. This study offers reliable guidance for the rational use of these pesticides in grape plantations.
Collapse
Affiliation(s)
- Kai Cui
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Liping Fang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Ruiyan Ding
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Rui Ni
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China; College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, People's Republic of China
| | - Jingyun Liang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Teng Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Jian Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Junhua Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China
| | - Shuai Guan
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China.
| | - Zhan Dong
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan, Shandong 250100, People's Republic of China.
| | - Xiaohu Wu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Yongquan Zheng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| |
Collapse
|
2
|
Zhou F, Zhou C, Zhang W, Zalán Z, Shi H, Kan J, Chen K, Cai T. Determination of twelve mycotoxins in red and green Sichuan peppers using QuEChERS method with LC-MS/MS. Food Chem 2025; 464:141822. [PMID: 39504895 DOI: 10.1016/j.foodchem.2024.141822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/08/2024]
Abstract
The detection of mycotoxins in Sichuan peppers is crucial for ensuring food safety. Hence, an efficient detection approach based on the QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) method followed by LC-MS/MS (liquid chromatography-tandem mass spectrometry) was established for the analysis of various mycotoxins in dried red and green Sichuan peppers. Samples were extracted with a solution containing 99 % acetonitrile and 1 % formic acid. A new adsorbent, namely, ENVI-Carb, and primary secondary amines were used as purifying agents. The proposed method demonstrated good linearity (R2 ≥ 0.999), satisfactory recovery (77.3 %-109.2 %), and good repeatability (intraday and interday relative standard deviations ≤9.7 %) in dried red and green Sichuan peppers. Its limits of detection in red and green Sichuan peppers were 0.2-0.6 and 0.1-0.7 μg/kg, respectively. The established method can effectively eliminate complex matrix interference and provides an effective approach for the high-throughput detection of mycotoxins in various complex food matrices.
Collapse
Affiliation(s)
- Fenglan Zhou
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Chunjie Zhou
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing Institute for Food and Drug Control, No. 1, Chunlan 2(nd) Road, Yubei District, Chongqing 401121, PR China
| | - Wenhua Zhang
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Zsolt Zalán
- Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, Buda Campus, Villányi str. 29-43, Budapest H-1118, Hungary
| | - Hui Shi
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Jianquan Kan
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Kewei Chen
- College of Food Science, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing Institute for Food and Drug Control, No. 1, Chunlan 2(nd) Road, Yubei District, Chongqing 401121, PR China; Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Specialty Food Co-built by Sichuan and Chongqing, Chongqing 400715, PR China.
| | - Tian Cai
- School of Chemistry and Chemical Engineering, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China.
| |
Collapse
|
3
|
Fei Q, Liu C, Luo Y, Chen H, Ma F, Xu S, Wu W. Rational design, synthesis, and antimicrobial evaluation of novel 1,2,4-trizaole-substituted 1,3,4-oxadiazole derivatives with a dual thioether moiety. Mol Divers 2025; 29:255-267. [PMID: 38687400 DOI: 10.1007/s11030-024-10848-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/12/2024] [Indexed: 05/02/2024]
Abstract
In this paper, a series of novel 1,2,4-trizaole-substituted 1,3,4-oxadiazole derivatives with a dual thioether moiety were constructed. The synthetic compounds were characterized by 1H NMR, 13C NMR, HRMS, and single crystal diffraction. The antimicrobial activities of title compounds against fungi (Pyricutaria oryzae Cav., Phomopsis sp., Botryosphaeria dothidea, cucumber Botrytis cinerea, tobacco Botrytis cinerea, blueberry Botrytis cinerea) and bacteria (Xanthomonas oryzae pv. oryzicola, Xoc; Xanthomonas axonopodis pv. citri, Xac) revealed these compounds possessed excellent antibacterial activity through mycelial growth rate method and turbidity method, respectively. Among them, compounds 7a, 7d, 7g, 7k, 7l, and 7n had the antibacterial inhibition rate of 90.68, 97.86, 93.61, 97.70, 97.26, and 92.34%, respectively. The EC50 values of 7a, 7d, 7g, 7k, 7l, and 7n were 58.31, 48.76, 58.50, 40.11, 38.15, and 46.99 μg/mL, separately, superior to that of positive control pesticide thiodiazole copper (104.26 μg/mL). The molecular docking simulation of compound 7l and glutathione s-transferase also confirmed its good activity. The in vivo bioassay toward Xac infected citrus leaves was also performed to evaluate the potential of compounds as efficient antibacterial reagent. Further study of antibacterial mechanism was also carried out, including extracellular polysaccharide production, permeability of bacterial membrane, and scanning electron microscope observations. The excellent antibacterial activities of these compounds provided a strong support for its application for preventing and control plant diseases.
Collapse
Affiliation(s)
- Qiang Fei
- Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, Guiyang University, Guiyang, 550005, People's Republic of China
- School of Food Science and Engineering, Guiyang University, Guiyang, 550005, People's Republic of China
| | - Chunyi Liu
- Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, Guiyang University, Guiyang, 550005, People's Republic of China
- School of Food Science and Engineering, Guiyang University, Guiyang, 550005, People's Republic of China
| | - Yanbi Luo
- Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, Guiyang University, Guiyang, 550005, People's Republic of China
- School of Food Science and Engineering, Guiyang University, Guiyang, 550005, People's Republic of China
| | - Haijiang Chen
- Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, Guiyang University, Guiyang, 550005, People's Republic of China.
- School of Food Science and Engineering, Guiyang University, Guiyang, 550005, People's Republic of China.
| | - Fengwei Ma
- Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, Guiyang University, Guiyang, 550005, People's Republic of China
- School of Food Science and Engineering, Guiyang University, Guiyang, 550005, People's Republic of China
| | - Su Xu
- Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, Guiyang University, Guiyang, 550005, People's Republic of China.
- School of Food Science and Engineering, Guiyang University, Guiyang, 550005, People's Republic of China.
| | - Wenneng Wu
- Guizhou Engineering Research Center for Characteristic Flavor Perception and Quality Control of Drug-Food Homologous Resources, Guiyang University, Guiyang, 550005, People's Republic of China.
- School of Food Science and Engineering, Guiyang University, Guiyang, 550005, People's Republic of China.
| |
Collapse
|
4
|
Lee JW, Kim JS, Park JH, Noh HH, Oh MS, Kim JH, Son KA. Investigation of Residue Dissipation of Fluxapyroxad and Its Metabolites in Chinese Cabbage and Spring Scallion Using Different Application Methods. PLANTS (BASEL, SWITZERLAND) 2024; 13:2448. [PMID: 39273932 PMCID: PMC11397662 DOI: 10.3390/plants13172448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024]
Abstract
Fluxapyroxad, a persistent fungicide in soil, was investigated for differences in residue dissipation in Chinese cabbage and spring scallion through the application methods of soil, foliar, and systemic treatment. Soil application of 0.4% granule fluxapyroxad resulted in residues up to 0.09 mg kg-1 in the scallion, while it did not contribute to the residues in the harvested cabbage. The 50% dissipation time (DT50) of fluxapyroxad in the scallion was 6.8 days. The residues from systemic treatment were highly correlated with foliar application in both the cabbage and the scallion, and the initial residue and DT50 values were similar for foliar and systemic treatments. In comparing the residues from the systemic treatments between the two crops, the initial residue was 3.11 and 0.22 mg kg-1 in the cabbage and the scallion after the systemic treatment, respectively. The DT50 values were 2.6 and 12.2 days in the cabbage and the scallion, respectively. The theoretical dilution effect due to crop growth was higher for the cabbage (4-fold) than for the scallion (1.2-fold), and the half-lives of fluxapyroxad without considering the dilution effect were 6.4 days in the cabbage and 17.8 days in the scallion. Thus, the residue difference was drastically reduced after 14 days from the last treatment.
Collapse
Affiliation(s)
- Ji Won Lee
- Residual Agrochemical Evaluation Division, National Institute of Agricultural Science, RDA, Wanju 55365, Republic of Korea
| | - Jin-Seong Kim
- Division of Applied Life Science, Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ji Hyun Park
- Residual Agrochemical Evaluation Division, National Institute of Agricultural Science, RDA, Wanju 55365, Republic of Korea
| | - Hyun Ho Noh
- Residual Agrochemical Evaluation Division, National Institute of Agricultural Science, RDA, Wanju 55365, Republic of Korea
| | - Min Seok Oh
- Residual Agrochemical Evaluation Division, National Institute of Agricultural Science, RDA, Wanju 55365, Republic of Korea
| | - Jin-Hyo Kim
- Division of Applied Life Science, Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kyeong-Ae Son
- Residual Agrochemical Evaluation Division, National Institute of Agricultural Science, RDA, Wanju 55365, Republic of Korea
| |
Collapse
|
5
|
Zhao Y, Luo F, Jiao F, Tang T, Wu S, Wang F, Zhao X. Combined toxic effects of fluxapyroxad and multi-walled carbon nanotubes in Xenopus laevis larvae. CHEMOSPHERE 2024; 362:142685. [PMID: 38909862 DOI: 10.1016/j.chemosphere.2024.142685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Carbon nanomaterials rarely exist in isolation in the natural environment, and their combined effects cannot be ignored. Multi-walled carbon nanotubes (MWCNTs) have shown tremendous potential applications in diverse fields, including pollution remediation, biomedicine, energy, and smart agriculture. However, the combined toxicities of MWCNTs and pesticides on non-target organisms, particularly amphibians, are often overlooked. Fluxapyroxad (FLX), a significant succinate dehydrogenase inhibitor fungicide, has been extensively utilized for the protection of food and cash crops and control of fungi. This raises the possibility of coexistence of MWCNTs and FLX. The objective of this study was to explore the individual and combined toxic effects of FLX and MWCNTs on the early life stages of Xenopus laevis. Embryos were exposed to varying concentrations of FLX (0, 5, and 50 μg/L) either alone or in combination with MWCNTs (100 μg/L) for a duration of 17 days. The findings indicated that co-exposure to FLX and MWCNTs worsened the inhibition of growth, liver damage, and dysregulation of enzymatic activity in tadpoles. Liver transcriptomic analysis further revealed that the presence of MWCNTs exacerbated the disturbances in glucose and lipid metabolism caused by FLX. Additionally, the combined exposure groups exhibited amplified alterations in the composition and function of the gut microflora. Our study suggests that it is imperative to pay greater attention to the agricultural applications, management and ecological risks of MWCNTs in the future, considering MWCNTs may significantly enhance the toxicity of FLX.
Collapse
Affiliation(s)
- Yang Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fang Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fang Jiao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, China
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shenggan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Feidi Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
6
|
Zhao Y, Jiao F, Tang T, Wu S, Wang F, Zhao X. Adverse effects and potential mechanisms of fluxapyroxad in Xenopus laevis on carbohydrate and lipid metabolism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121710. [PMID: 37137408 DOI: 10.1016/j.envpol.2023.121710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/21/2023] [Accepted: 04/22/2023] [Indexed: 05/05/2023]
Abstract
Fungicides are one of significant contributing factors to the rapid decline of amphibian species worldwide. Fluxapyroxad (FLX), an effective and broad-spectrum succinate dehydrogenase inhibitor fungicide, has attracted major concerns due to its long-lasting in the environment. However, the potential toxicity of FLX in the development of amphibians remains mostly unknown. In this research, the potential toxic effects and mechanisms of FLX on Xenopus laevis were investigated. In the acute toxicity test, the 96 h median lethal concentration (LC50) of FLX to X. laevis tadpoles was 1.645 mg/L. Based on the acute toxicity result, tadpoles at the stage 51 were exposed to 0, 0.00822, 0.0822, and 0.822 mg/L FLX during 21 days. Results demonstrated that FLX exposure led to an apparent delay in the growth and development of tadpoles and associated with severe liver injury. Additionally, FLX induced glycogen depletion and lipid accumulation in the liver of X. laevis. The biochemical analysis of plasma and liver indicated that FLX exposure could perturb liver glucose and lipid homeostasis by altering enzyme activity related to glycolysis, gluconeogenesis, fatty acid synthesis, and oxidation. Consistent with the biochemical result, FLX exposure altered the liver transcriptome profile, and the enrichment analysis of differential expression genes highlighted the adverse effects of FLX exposure on steroid biosynthesis, PPAR signaling pathway, glycolysis/gluconeogenesis, and fatty acid metabolism in the tadpole liver. Overall, our study was the first to reveal that sub-lethal concentrations of FLX could induce liver damage and produce obvious interference effects on carbohydrate and lipid metabolism of Xenopus, providing new insight into the potential chronic hazards of FLX for amphibians.
Collapse
Affiliation(s)
- Yang Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fang Jiao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, China
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shenggan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Feidi Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
7
|
A Nationwide Study of Residual Fate of Fluxapyroxad and Its Metabolites in Peanut Crops Across China: Assessment of Human Exposure Potential. Molecules 2022; 28:molecules28010194. [PMID: 36615390 PMCID: PMC9822388 DOI: 10.3390/molecules28010194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Elaborating on the residual fate of fluxapyroxad and its metabolites based on their nationwide application was vital to protect the human population from their hazardous effects. In this study, a rapid and sensitive analytical method was developed to trace fluxapyroxad and two of its metabolites in peanut matrices using an ultrahigh chromatography method coupled with mass spectrometry (UHPLC−MS/MS) within 3.5 min. The occurrence, pharmacokinetic degradation and terminal magnitudes of fluxapyroxad were reflected in the original deposition of 8.41−38.15 mg/kg, half−lives of 2.5−8.6 d and final concentrations of 0.004−37.38 mg/kg in peanut straw. The total concentrations of fluxapyroxad in peanut straw (0.04−39.28 mg/kg) were significantly higher than those in peanut kernels (<0.001−0.005 mg/kg) and an obvious concentration effect was observed in fresh (0.01−11.56 mg/kg) compared dried peanut straw (0.04−38.97 mg/kg). Fluxapyroxad was demethylated to 3−(difluoromethyl)−N−(3′,4′,5′−trifluoro[1,1′−biphenyl]−2−yl)−1H−pyrazole−4−carboxamide (M700F008, 0.02−5.69 mg/kg) and further N−glycosylated to 3−(difluoromethyl)−1−(ß−D−glucopyranosyl)−N−(3′,4′,5′−triflurobipheny−2−yl)−1H−pyrzaole−4−carboxamide (M700F048, 0.04−39.28 mg/kg).The risk quotients of the total fluxapyroxad for the urban groups were significantly higher than those for the rural groups, and were both negatively correlated with the age of the groups, although both acute (ARfD%, 0.006−0.012%) and chronic (ADI%, 0.415−1.289%) risks are acceptable for the human population. The high-potential health risks of fluxapyroxad should be continuously emphasized for susceptible toddlers (1−3 years), especially those residing in urban areas.
Collapse
|
8
|
Yu H, Zhang J, Chen Y, Chen J, Qiu Y, Zhao Y, Li H, Xia S, Chen S, Zhu J. The adverse effects of fluxapyroxad on the neurodevelopment of zebrafish embryos. CHEMOSPHERE 2022; 307:135751. [PMID: 35863420 DOI: 10.1016/j.chemosphere.2022.135751] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Fluxapyroxad (Flu), one of the succinate dehydrogenase-inhibited (SDHI) fungicides, has been extensively used in crop fungal disease control. Despite its increasing use in modern agriculture and long-term retention in the environment, the potentially toxic effects of Flu in vivo, especially on neurodevelopment, remain under-evaluated. In this study, zebrafish embryos were exposed to Flu at concentrations of 0.5, 0.75, and 1 mg/L for 96 h to evaluate the neurotoxicity of Flu. The results showed that Flu caused concentration-dependent malformations, including shorter body length, smaller head and eyes, and yolk sac edema. After exposure to Flu, larval zebrafish exhibited severe motor aberrations. Flu at a concentration of 1 mg/L significantly decreased dopamine level and notably altered acetylcholinesterase (AChE) activity and acetylcholine (ACh) content. Abnormal central nervous system (CNS) neurogenesis and disordered motor neuron development were observed in Tg (HUC-GFP) and Tg (hb9-GFP) zebrafish in Flu-treated groups. The expression of key genes involved in neurotransmission and neurodevelopment further proved that Flu impaired the zebrafish nervous system. This work contributes to our understanding of the neurotoxic effects and mechanisms induced by Flu in zebrafish and may help us take precautions against the neurotoxicity of Flu.
Collapse
Affiliation(s)
- Huilin Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Junhui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yinghong Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Juan Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yang Qiu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yan Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Honghao Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Shengyao Xia
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Jiajin Zhu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
9
|
Sun Y, Yang Z, Liu Q, Sun X, Chen L, Sun L, Gu W. Design, Synthesis, and Fungicidal Evaluation of Novel 1,3-Benzodioxole-Pyrimidine Derivatives as Potential Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7360-7374. [PMID: 35671047 DOI: 10.1021/acs.jafc.2c00734] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A series of novel 1,3-benzodioxole-pyrimidine derivatives were designed and synthesized. The in vitro bioassay indicated that compounds 4e, 4g, 4n, 5c, and 5e displayed excellent fungicidal activities against test fungal strains. Especially, in the in vitro experiments, 5c exhibited a broad spectrum of fungicidal activity against Botrytis cinerea, Rhizoctonia solani, Fusarium oxysporum, Alternaria solani, and Gibberella zeae with EC50 values of 0.44, 6.96, 6.99, 0.07, and 0.57 mg/L, respectively, which were significantly more potent than those of positive control boscalid (EC50: 5.02, >50, >50, 0.16, and 1.28 mg/L). In vivo testing on tomato fruits and leaves showed that 5c displayed considerable protective and curative efficacy against A. solani. Scanning electron microscopy analysis indicated that 5c possessed a strong ability to destroy the surface morphology of mycelia and seriously interfere with the growth of the fungal pathogen. In the in vitro enzyme inhibition assay, 5c exhibited pronounced succinate dehydrogenase (SDH) inhibitory activity with an IC50 value of 3.41 μM, equivalent to that of boscalid (IC50: 3.40 μM). In addition, fluorescence quenching experiment further confirmed the strong interaction of 5c with SDH. Through chiral resolution, 5c was separated into two enantiomers. Among them, (S)-5c exhibited stronger fungicidal activity (EC50: 0.06 mg/L) and SDH inhibitory (2.92 μM) activity than the R-enantiomer (EC50: 0.17 mg/L and SDH IC50: 3.68 μM), which was in accordance with the molecular docking study (CDOCKER Interaction Energy for (R)-5c and (S)-5c: -28.23 and -29.98 kcal/mol, respectively). These results presented a promising lead for the discovery of novel SDHIs as antifungal pesticides.
Collapse
Affiliation(s)
- Yue Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zihui Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qingsong Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xuebao Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Linlin Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lu Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wen Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
10
|
Yang X, Wu C, Su W, Yu J. Mechanochemical C−X/C−H Functionalization: An Alternative Strategy Access to Pharmaceuticals. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xinjie Yang
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| | - Chongyang Wu
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| | - Weike Su
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| | - Jingbo Yu
- Zhejiang University of Technology Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Chaowang Road 18# 310014 Hangzhou CHINA
| |
Collapse
|
11
|
Yang Y, Li Y, Huang Z, Tian Y, Qian C, Duan Y. Trace detection of organophosphorus pesticides in vegetables via enrichment by magnetic zirconia and temperature-assisted ambient micro-fabricated glow discharge plasma desorption ionization mass spectrometry. Analyst 2021; 146:6944-6954. [PMID: 34647931 DOI: 10.1039/d1an01600h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this study, an innovative rapid detection technology for quickly screening and quantifying organophosphorus pesticides (OPPs) in vegetables was developed based on ambient micro-fabricated glow discharge plasma desorption/ionization mass spectrometry (MFGDP-MS), where Fe3O4/ZrO2 synthesized by a one-step coprecipitation was used for enrichment. It can not only effectively enrich OPPs, but can be separated by an external magnetic field, thereby simplifying the traditional steps of centrifugation and cleanup in sample preparation. The introduction of a temperature control system (TCS) can tackle the problem of the low ionization efficiency in MFGDP and expand its application range. Under optimized experimental conditions, the limits of detection (LODs) of the standard solution as low as 0.0068-0.7500 μg L-1 mm-2 were achieved, with relative standard deviations (RSDs) being less than 17.8%. Moreover, vegetable extracts were spiked to evaluate the accuracy of the method, and good recoveries (76.9-123.5%) were obtained. Remarkably, it took no more than 7 minutes from sample preparation to testing, resulting in significantly improved ability of the quantitative detection of plentiful samples.
Collapse
Affiliation(s)
- Yuhan Yang
- Research Center of Analytical Instrumentation, Northwest University, Xi'an 710069, Shaanxi, China. .,Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Yuting Li
- Research Center of Analytical Instrumentation, Northwest University, Xi'an 710069, Shaanxi, China. .,Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Zhijun Huang
- Research Center of Analytical Instrumentation, Northwest University, Xi'an 710069, Shaanxi, China. .,Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Yonghui Tian
- Research Center of Analytical Instrumentation, Northwest University, Xi'an 710069, Shaanxi, China. .,Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, Shaanxi, China
| | - Cheng Qian
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, Shaanxi, China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Northwest University, Xi'an 710069, Shaanxi, China. .,Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, Shaanxi, China
| |
Collapse
|
12
|
García-Domínguez P. Synthesis of L–Au(I)–CF 2H Complexes and Their Application as Transmetalation Shuttles to the Difluoromethylation of Aryl Iodides. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Schusterova D, Hajslova J, Kocourek V, Pulkrabova J. Pesticide Residues and Their Metabolites in Grapes and Wines from Conventional and Organic Farming System. Foods 2021; 10:307. [PMID: 33540835 PMCID: PMC7913069 DOI: 10.3390/foods10020307] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/01/2022] Open
Abstract
In this study, the occurrence of pesticide residues and their metabolites in grapes and wines was investigated. A targeted analysis of 406 pesticide residues in 49 wine and grape samples from organic and conventional production were performed using the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) extraction method, followed by ultra-high-performance liquid chromatography coupled with tandem mass spectrometry. Multiple residues (>4 residues/sample) were detected in 22 tested samples. The most commonly detected residues were fungicides (e.g., boscalid) and insecticides (e.g., methoxyfenozide). An ultra-high-performance liquid chromatography-high resolution mass spectrometry method (UHPLC-(HR)MS) was used for screening of pesticide metabolites. We also provide a method and database for detecting pesticide metabolites (extending our previously published database to 49 metabolites originating from 25 pesticides). An introduced strategy of targeted screening of pesticide metabolites was applied for authentication of 27 organic grapes and wines. In total, 23 samples were free of quantifiable residues/detected metabolites or contained residues approved for organic production.
Collapse
Affiliation(s)
| | | | | | - Jana Pulkrabova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technicka 3, 166 28 Prague, Czech Republic; (D.S.); (J.H.); (V.K.)
| |
Collapse
|
14
|
Xu Y, Li X, Zhang W, Jiang H, Pu Y, Cao J, Jiang W. Zirconium(Ⅳ)-based metal-organic framework for determination of imidacloprid and thiamethoxam pesticides from fruits by UPLC-MS/MS. Food Chem 2020; 344:128650. [PMID: 33229159 DOI: 10.1016/j.foodchem.2020.128650] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/21/2020] [Accepted: 11/12/2020] [Indexed: 11/19/2022]
Abstract
Zirconium(Ⅳ)-based metal-organic framework (MOF)-UiO-66-NH2 was fabricated to adsorb the imidacloprid and thiamethoxam in fruit samples before analysis using UPLC-MS/MS. The UiO-66-NH2 was confirmed by SEM, FTIR, and XRD. Key experimental parameters were investigated by response surface methodology (RSM). The desirability recovery of imidacloprid was 94.52% under optimum conditions (mount of adsorbent = 52.48 mg, volume of eluent = 5.18 mL, pH = 9, extraction time = 15 min). The desirability recovery of thiamethoxam was 93.57% under optimum conditions (mount of adsorbent = 50.58 mg, volume of eluent = 2.6 mL, pH = 5.65, extraction time = 11.94 min). Under the optimal conditions, the actual recovery of imidacloprid and thiamethoxam was 92.39% and 94.37%, respectively. Besides, the method was applied successfully to detect imidacloprid and thiamethoxam in different fruit samples. The results demonstrated that the UiO-66-NH2 is an excellent adsorbent for the extraction imidacloprid and thiamethoxam from fruit samples.
Collapse
Affiliation(s)
- Yan Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xiangxin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wanli Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Haitao Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yijing Pu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
15
|
Tian F, Qiao C, Luo J, Guo L, Pang T, Pang R, Li J, Wang C, Wang R, Xie H. Development of a fast multi-residue method for the determination of succinate dehydrogenase inhibitor fungicides in cereals, vegetables and fruits by modified QuEChERS and UHPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1152:122261. [DOI: 10.1016/j.jchromb.2020.122261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/24/2020] [Accepted: 07/05/2020] [Indexed: 12/17/2022]
|
16
|
Wu YY, Shao WB, Zhu JJ, Long ZQ, Liu LW, Wang PY, Li Z, Yang S. Novel 1,3,4-Oxadiazole-2-carbohydrazides as Prospective Agricultural Antifungal Agents Potentially Targeting Succinate Dehydrogenase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13892-13903. [PMID: 31774673 DOI: 10.1021/acs.jafc.9b05942] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A novel simple 1,3,4-oxadiazole-2-carbohydrazide was reported to discover low-cost and versatile antifungal agents. Bioassay results suggested that a majority of the designed compounds were extremely bioactive against four types of fungi and two kinds of oomycetes. This extreme bioactivity was highlighted by the applausive inhibitory effects of compounds 4b, 4h, 5c, 5g, 5h, 5i, 5m, 5p, 5t, and 5v against Gibberella zeae, affording EC50 values ranging from 0.486 to 0.799 μg/mL, which were superior to that of fluopyram (2.96 μg/mL) and comparable to those of carbendazim (0.947 μg/mL) and prochloraz (0.570 μg/mL). Meanwhile, compounds 4g, 5f, 5i, and 5t showed significant actions against Fusarium oxysporum with EC50 values of 0.652, 0.706, 0.813, and 0.925 μg/mL, respectively. Pharmacophore exploration suggested that the N'-phenyl-1,3,4-oxadiazole-2-carbohydrazide pattern is necessary for the bioactivity. Molecular docking of 5h with succinate dehydrogenase (SDH) indicated that it can completely locate the inside of the binding pocket via hydrogen-bonding and hydrophobic interactions, revealing that this novel framework might target SDH. This result was further verified by the significant inhibitory effect on SDH activity. In addition, scanning electron microscopy patterns were performed to elucidate the anti-G. zeae mechanism. Given these features, this type of framework is a suitable template for future exploration of alternative SDH inhibitors against plant microbial infections.
Collapse
Affiliation(s)
- Yuan-Yuan Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R & D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Wu-Bin Shao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R & D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Jian-Jun Zhu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R & D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Zhou-Qing Long
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R & D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Li-Wei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R & D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R & D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
| | - Zhong Li
- College of Pharmacy , East China University of Science & Technology , Shanghai 200237 , China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Center for R & D of Fine Chemicals of Guizhou University , Guiyang 550025 , China
- College of Pharmacy , East China University of Science & Technology , Shanghai 200237 , China
| |
Collapse
|
17
|
Wu J, Zhi S, Jia C, Li X, Zhu X, Zhao E. Dispersive solid‐phase extraction combined with dispersive liquid‐liquid microextraction for simultaneous determination of seven succinate dehydrogenase inhibitor fungicides in watermelon by ultra high performance liquid chromatography with tandem mass spectrometry. J Sep Sci 2019; 42:3688-3696. [DOI: 10.1002/jssc.201900862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/27/2019] [Accepted: 10/03/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Junxue Wu
- Institute of Plant and Environmental ProtectionBeijing Academy of Agriculture and Forestry Science Beijing P. R. China
| | - Shenwei Zhi
- Institute of Plant and Environmental ProtectionBeijing Academy of Agriculture and Forestry Science Beijing P. R. China
- College of Plant ProtectionShenyang Agricultural University Shenyang P. R. China
| | - Chunhong Jia
- Institute of Plant and Environmental ProtectionBeijing Academy of Agriculture and Forestry Science Beijing P. R. China
| | - Xinghai Li
- College of Plant ProtectionShenyang Agricultural University Shenyang P. R. China
| | - Xiaodan Zhu
- Institute of Plant and Environmental ProtectionBeijing Academy of Agriculture and Forestry Science Beijing P. R. China
| | - Ercheng Zhao
- Institute of Plant and Environmental ProtectionBeijing Academy of Agriculture and Forestry Science Beijing P. R. China
| |
Collapse
|
18
|
Dissipation, persistence, and risk assessment of fluxapyroxad and penthiopyrad residues in perilla leaf (Perilla frutescens var. japonica Hara). PLoS One 2019; 14:e0212209. [PMID: 30964876 PMCID: PMC6456207 DOI: 10.1371/journal.pone.0212209] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/29/2019] [Indexed: 11/24/2022] Open
Abstract
The objective of this study was to determine the residual characteristics and to calculate the persistence of the fungicides fluxapyroxad (15.3% suspension concentrate) and penthiopyrad (20% emulsifiable concentrate) on the leaves of greenhouse-cultivated perilla (Perilla frutescens var. japonica Hara). Fluxapyroxad was diluted 2,000-fold and penthiopyrad was diluted 4,000-fold. Each solution was sprayed 3 times onto crops at 7-d intervals before harvest. Leaf samples were collected at 3 h (0 d), 1, 3, 5 and 7 d after the third and final treatment. The recovery ranges of fluxapyroxad and penthiopyrad and their metabolites were 74.2%–104.1%. Pesticide residue analyses indicated that fluxapyroxad and penthiopyrad residues in perilla leaves dissipated over time. The persistence of fluxapyroxad and penthiopyrad residues 7 d after the final spray were 50.0% ± 4.9% and 44.2% ± 2.8% of those measured 3 h (0 d) after the final spray, respectively. The percent acceptable daily intake (%ADI)—which was assessed according to the daily food intake by Koreans according to age—was < 7.3%. Therefore, it was determined that the health risk was low. The perception that residual pesticides are present in large amounts in perilla leaf has led to consumer concern. However, in this study, the amounts of pesticide in perilla leaf decreased over time. Although it has been hypothesized that the risk of pesticide intake would be higher in younger children, the results actually suggest the opposite. Therefore, the pesticides in question are considered to be safe for use on perilla leaves.
Collapse
|
19
|
Ceballos-Alcantarilla E, López-Puertollano D, Agulló C, Abad-Fuentes A, Abad-Somovilla A, Mercader JV. Combined heterologies for monoclonal antibody-based immunoanalysis of fluxapyroxad. Analyst 2018; 143:5718-5727. [PMID: 30378598 DOI: 10.1039/c8an01771a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nowadays, instrumental methodologies and rapid bioanalytical techniques complement each other for the analysis of toxic chemical compounds. Fluxapyroxad was commercialized a few years ago as a fungicide and today it is being used worldwide to control a variety of pests. In the present study, the development of monoclonal antibody-based immunochemical methods for the analysis of this chemical in food samples was evaluated for the first time. Novel haptens were synthesized and protein bioconjugates were prepared. High-affinity and specific monoclonal antibodies to fluxapyroxad were generated from two haptens with alternative linker tethering sites. Haptens with linker site heterology and a structurally heterologous hapten with a minor modification of the molecule conformation and volume but with a significant alteration of the electronic density of the pyrazole moiety were evaluated for immunoassay development. Direct and indirect competitive immunoassays were characterized and optimized, showing IC50 values for fluxapyroxad of 0.14 and 0.05 ng mL-1, respectively. The combination of two heterologies was particularly adequate in the indirect format. The two developed immunoassays showed excellent recoveries and coefficients of variation in fluxapyroxad-fortified plums and four varieties of grapes. Finally, a good correlation was found between the indirect immunoassay and UPLC-MS/MS when fruit samples with incurred residues of fluxapyroxad were analyzed. These monoclonal antibody-based immunochemical methods hold great promise for fluxapyroxad monitoring.
Collapse
Affiliation(s)
- Eric Ceballos-Alcantarilla
- Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Agustí Escardino 7, 46980 Paterna, Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
20
|
Hu M, Qiu J, Zhang H, Fan X, Liu K, Zeng D, Tan H. Method Development and Validation of Indaziflam and Its Five Metabolites in Soil, Water, and Fruits by Modified QuEChERS and UHPLC-MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10300-10308. [PMID: 30212200 DOI: 10.1021/acs.jafc.8b04186] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A method for simultaneously determining indaziflam and its five metabolites in soil, water, and fruits using ultraperformance liquid chromatography/tandem mass spectrometry was established. The analytes were eluted in <4.5 min. Positive electrospray ionization mode was used. The analytes were extracted using acetonitrile containing 1% ammonium hydroxide, and then the extracts were purified using octadecylsilane and PRiME HLB cartridges. The quantification limits were 0.01-1.01 μg kg-1. The linearities of the calibrations for all analytes were excellent ( R2 > 0.9952). The recoveries at spike concentrations of 0.01, 0.1, and 1 mg kg-1 were 81.3-112.1%. The intraday and interday relative standard deviations were <13.5% and <12.3%, respectively. The method was successfully used to determine indaziflam and its five metabolites in samples from markets and fields. The results confirmed that the method is an effective and robust procedure for routinely determining indaziflam and its metabolites in soil, water, and fruit samples.
Collapse
Affiliation(s)
- Mingfeng Hu
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture , Guangxi University , Nanning , Guangxi 530004 , People's Republic of China
| | - Jingsi Qiu
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture , Guangxi University , Nanning , Guangxi 530004 , People's Republic of China
| | - Hui Zhang
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture , Guangxi University , Nanning , Guangxi 530004 , People's Republic of China
| | - Xiaosu Fan
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture , Guangxi University , Nanning , Guangxi 530004 , People's Republic of China
| | - Kunfeng Liu
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture , Guangxi University , Nanning , Guangxi 530004 , People's Republic of China
| | - Dongqiang Zeng
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture , Guangxi University , Nanning , Guangxi 530004 , People's Republic of China
| | - Huihua Tan
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture , Guangxi University , Nanning , Guangxi 530004 , People's Republic of China
| |
Collapse
|
21
|
Li H, Somerson J, Xia F, Plaxco KW. Electrochemical DNA-Based Sensors for Molecular Quality Control: Continuous, Real-Time Melamine Detection in Flowing Whole Milk. Anal Chem 2018; 90:10641-10645. [PMID: 30141321 PMCID: PMC6555152 DOI: 10.1021/acs.analchem.8b01993] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ability to monitor specific molecules in real-time directly in a flowing sample stream and in a manner that does not adulterate that stream could greatly augment quality control in, for example, food processing and pharmaceutical manufacturing. Because they are continuous, reagentless, and able to work directly in complex samples, electrochemical DNA-based (E-DNA) sensors, a modular and, thus, general sensing platform, are promising candidates to fill this role. In support, we describe here an E-DNA sensor supporting the continuous, real-time measurement of melamine in flowing milk. Using target-driven DNA triplex formation to generate an electrochemical output, the sensor responds to rising and falling melamine concentration in seconds without contaminating the product stream. The continuous, autonomous, real-time operation of sensors such as this could provide unprecedented safety, convenience, and cost-effectiveness relative to the batch processes historically employed in molecular quality control.
Collapse
Affiliation(s)
- Hui Li
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Jacob Somerson
- Interdepartmental Program in Biomolecular Science and Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Kevin W. Plaxco
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
22
|
Zhu SQ, Liu YL, Li H, Xu XH, Qing FL. Direct and Regioselective C–H Oxidative Difluoromethylation of Heteroarenes. J Am Chem Soc 2018; 140:11613-11617. [DOI: 10.1021/jacs.8b08135] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Sheng-Qing Zhu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 LinglingLu, Shanghai 200032, China
| | - Yin-Li Liu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 LinglingLu, Shanghai 200032, China
| | - Huan Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North RenminLu, Shanghai 201620, China
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 LinglingLu, Shanghai 200032, China
| | - Feng-Ling Qing
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 LinglingLu, Shanghai 200032, China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North RenminLu, Shanghai 201620, China
| |
Collapse
|
23
|
Wei D, Wu X, Xu J, Dong F, Liu X, Zheng Y, Ji M. Determination of Ochratoxin A contamination in grapes, processed grape products and animal-derived products using ultra-performance liquid chromatography-tandem mass spectroscopy system. Sci Rep 2018; 8:2051. [PMID: 29391603 PMCID: PMC5794868 DOI: 10.1038/s41598-018-20534-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/18/2018] [Indexed: 11/08/2022] Open
Abstract
We developed a sensitive and rapid analytical method to determine the level of Ochratoxin A contamination in grapes, processed grape products and in foods of animal origin (a total of 11 different food matrices). A pretreatment that followed a "quick, easy, cheap, effective, rugged, and safe" protocol was optimized to extract Ochratoxin A from the matrices, and the extracted Ochratoxin A was then detected with the use of a highly sensitive ultra-performance liquid chromatography-tandem mass spectrometry system. Good linearities of Ochratoxin A were obtained in the range of 0.1-500 µg L-1 (correlation coefficient (R2) > 0.9994 in each case). Mean recovery from the 11 matrices ranged from 70.3 to 114.7%, with a relative standard deviation ≤19.2%. The method is easy to use and yields reliable results for routine determination of Ochratoxin A in food products of grape and animal origin. In store-purchased foods and foods obtained from the field and wholesale suppliers, the Ochratoxin A concentration ranged from undetectable to 10.14 µg kg-1, with the more contaminated samples being mainly those of processed grape products. Our results indicate that the necessity for regulation of and supervision during the processing of grape products.
Collapse
Affiliation(s)
- Dongmei Wei
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China
- Risk Assessment Laboratory for biological hazards of agricultural product quality and safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaohu Wu
- Risk Assessment Laboratory for biological hazards of agricultural product quality and safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jun Xu
- Risk Assessment Laboratory for biological hazards of agricultural product quality and safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fengshou Dong
- Risk Assessment Laboratory for biological hazards of agricultural product quality and safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xingang Liu
- Risk Assessment Laboratory for biological hazards of agricultural product quality and safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yongquan Zheng
- Risk Assessment Laboratory for biological hazards of agricultural product quality and safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Mingshan Ji
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110161, China.
| |
Collapse
|
24
|
Zahn E, Wolfrum J, Knebel C, Heise T, Weiß F, Poetz O, Marx-Stoelting P, Rieke S. Mixture effects of two plant protection products in liver cell lines. Food Chem Toxicol 2018; 112:299-309. [DOI: 10.1016/j.fct.2017.12.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 01/22/2023]
|
25
|
Gautam M, Fomsgaard IS. Liquid chromatography-tandem mass spectrometry method for simultaneous quantification of azoxystrobin and its metabolites, azoxystrobin free acid and 2-hydroxybenzonitrile, in greenhouse-grown lettuce. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 34:2173-2180. [PMID: 28934012 DOI: 10.1080/19440049.2017.1382729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/17/2017] [Indexed: 10/18/2022]
Abstract
Lettuce is an important part of the diet in Europe. The permitted levels of pesticides in lettuce are strictly regulated and there is growing urge among food safety authorities to analyse pesticide metabolites as well. Azoxystrobin is one of pesticides that is frequently detected in lettuce. Although there are several analytical methods for the determination of azoxystrobin in lettuce, a sensitive method for the determination of its metabolites in lettuce is lacking. This study aimed at developing an extraction and LC-MS/MS method for the simultaneous determination of azoxystrobin, and its metabolites azoxystrobin free acid and 2-hydroxybenzonitrile in lettuce. Accelerated solvent extraction, QuEChERS extraction, and shaking extraction were compared using various solvents. The final method consisted of shaking freeze-dried sample in 0.1% formic acid in 80% aqueous acetonitrile. The selected method was validated by spiking each analyte at 125 ng/g and 500 ng/g. The method resulted in acceptable recovery for 2-hydroxybenzonitrile, azoxystrobin free acid, and azoxystrobin, with a RSD of <10%. The matrix-matched calibration curve for each analyte was linear over the range of quantification, with a correlation coefficient ≥0.98. The method was sensitive for the determination of 2-hydroxybenzonitrile, azoxystrobin free acid, and azoxystrobin, with limits of quantification of 0.36, 0.48, and 0.68 ng/g dry weight, respectively. The method was successfully applied to quantify 2-hydroxybenzonitrile, azoxystrobin free acid, and azoxystrobin in greenhouse-grown lettuce.
Collapse
Affiliation(s)
- Maheswor Gautam
- a Department of Agroecology , Aarhus University , Slagelse , Denmark
| | - Inge S Fomsgaard
- a Department of Agroecology , Aarhus University , Slagelse , Denmark
| |
Collapse
|
26
|
Pan X, Dong F, Chen Z, Xu J, Liu X, Wu X, Zheng Y. The application of chiral ultra-high-performance liquid chromatography tandem mass spectrometry to the separation of the zoxamide enantiomers and the study of enantioselective degradation process in agricultural plants. J Chromatogr A 2017; 1525:87-95. [DOI: 10.1016/j.chroma.2017.10.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 09/19/2017] [Accepted: 10/06/2017] [Indexed: 01/01/2023]
|
27
|
Li J, Sun M, Chang Q, Hu X, Kang J, Fan C. Determination of Pesticide Residues in Teas via QuEChERS Combined with Dispersive Liquid–Liquid Microextraction Followed by Gas Chromatography–Tandem Mass Spectrometry. Chromatographia 2017. [DOI: 10.1007/s10337-017-3362-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|