1
|
Zhang H, Ji Y, Jiang Z, Yang G, Kong C, Shen Z, Yuan T, Shen X. Arsenic toxicity in Antarctic krill oil and its impact on human intestinal cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117680. [PMID: 39798443 DOI: 10.1016/j.ecoenv.2025.117680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
Arsenic is a pervasive environmental pollutant that can bioaccumulate in Antarctic krill through the food chain, posing potential risks to human health. This study investigates the toxic effects of arsenic in Antarctic krill oil (AKO) on Caco-2 cells, focusing on oxidative stress and apoptosis induction. AKO is nutrient-rich and contains various arsenic species, including arsenite (As³⁺), arsenate (As⁵⁺), dimethyl arsinic acid (DMA), and arsenobetaine (AsB), each exhibiting different toxic potencies. Caco-2 cells were treated with arsenic standards and AKO to assess cell viability, lactate dehydrogenase (LDH) release, oxidative stress markers (superoxide dismutase [SOD], catalase [CAT], malondialdehyde [MDA], and glutathione peroxidase [GSH-Px]), reactive oxygen species (ROS) production, and apoptosis. Results demonstrated dose-dependent cytotoxicity, with As³ ⁺ being the most toxic, followed by As⁵⁺, DMA, and AsB. After 24 hours of exposure, cell viability in the high-concentration AKO group decreased to 63.95 %. Arsenic exposure elevated ROS levels, disrupted mitochondrial membrane potential, upregulated apoptosis-related genes such as Caspase-3, Caspase-9, and Bax, and downregulated the PI3K/AKT/mTOR signaling pathway. This study elucidates the mechanisms underlying arsenic toxicity in AKO and underscores its implications for food safety assessments.
Collapse
Affiliation(s)
- Haiyan Zhang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Yunyun Ji
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Zhongquan Jiang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China; Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Ministry of Ecology and Environment, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guangxin Yang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Cong Kong
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Zhemin Shen
- Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Ministry of Ecology and Environment, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Yuan
- Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Ministry of Ecology and Environment, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaosheng Shen
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China.
| |
Collapse
|
2
|
Deng Y, Jiang M, Wang M, Ren K, Luo X, Luo Y, Chen Q, Lu CA, Huang CZ, Liu Q. Synergistic Mitochondrial Genotoxicity of Carbon Dots and Arsenate in Earthworms Eisenia fetida across Generations: The Critical Role of Binding. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39258979 DOI: 10.1021/acs.est.4c05753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The escalating utilization of carbon dots (CDs) in agriculture raises ecological concerns. However, their combined toxicity with arsenic remains poorly understood. Herein, we investigated the combined mitochondrial genotoxicity of CDs and arsenate at environmentally relevant concentrations across successive earthworm generations. Iron-doped CDs (CDs-Fe) strongly bound to arsenate and arsenite, while nitrogen-doped CDs (CDs-N) exhibited weaker binding. Both CDs enhanced arsenate bioaccumulation without affecting its biotransformation, with most arsenate being reduced to arsenite. CDs-Fe generated significantly more reactive oxygen species than did CDs-N, causing stronger mitochondrial DNA (mtDNA) damage. Arsenate further exacerbated the oxidative mtDNA damage induced by CDs-N, as evidenced by increased reactive oxygen species, elevated 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OHdG) levels, and a higher correlation between 8-OHdG and mtDNA damage. This was due to arsenic inhibiting the antioxidant enzyme catalase. This exacerbation was negligible with CDs-Fe because their strong binding with arsenic prevented catalase inhibition. Maternal mitochondrial DNA damage was inherited by filial earthworms, which experienced significant weight loss in coexposure groups coupled with mtDNA toxicity. This study reveals the synergistic genotoxicity of CDs and arsenate, suggesting that CDs could disrupt the arsenic biogeochemical cycle, increase arsenate risk to terrestrial animals, and influence ecosystem stability and health through multigenerational impacts.
Collapse
Affiliation(s)
- Yuhan Deng
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Min Jiang
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Mao Wang
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Kewei Ren
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xia Luo
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Yan Luo
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Qing Chen
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Chensheng Alex Lu
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Cheng Zhi Huang
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Qingqing Liu
- College of Resources and Environment, Southwest University, Chongqing 400716, China
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Muhammad J, Xu P, Khan S, Su JQ, Sarwar T, Nazneen S, Khan A. Arsenic contribution of poultry manure towards soils and food plants contamination and associated cancer risk in Khyber Pakhtunkhwa, Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3321-3342. [PMID: 34542787 DOI: 10.1007/s10653-021-01096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Exposure to high level of arsenic (As) through the ingestion of contaminated soil, dust and food plants can pose health risk to humans. This study investigates the total arsenic (As), arsenobetaine (AsB), monomethylarsenate (MMA), dimethylarsenate (DMA), arsenite (As3+) and arsenate (As5+) concentrations in poultry feed, manure, agricultural soils and food plants collected from Khyber Pakhtunkhwa Province, Pakistan. The total mean As concentrations in the edible parts of food plants ranged from 0.096 mg kg-1 to 1.25 mg kg-1 with percentile (P) values (P25-0.039, P50-0.0765, P75-0.165 1 mg kg-1 to P25-0.95, P50-1.23, P75-1.6 1 mg kg-1) and exceeded the food safety limit (0.1 mg kg-1) of Food & Agriculture Organization (FAO) and World Health Organization (WHO) in all plant species except Pisum sativum (pea) and Mentha arvensis (mint). The risk to human health was assessed through the average daily intake (ADI), hazards quotient (HQ), health risk index (HRI) and lifetime cancer risk (LTCR). The highest average daily intake of As via the ingestion of Malva neglecta (mallow, a leafy plant) was observed for adults and children. The ADI for adults and children (2.36 × 10-4 mg kg-1 day-1 and 6.33 × 10-4 mg kg-1 day-1) was about 13% and 5%, respectively, of the Bench Mark Dose Limit (BMDL0.5) of 3.00 × 10-3 mg kg-1 day-1 set by WHO. The HRI was 3 times more in the children (2.1) than the adults (0.79), posing non-cancer health risks (health risk index > 1) for children. The LTCR values were slightly higher (1.53 × 10-4) relative to USEPA and WHO limits (1 × 10-6 to 1 × 10-4) for children whereas a minimal cancer risk was observed for adults via consumption of selected food plants. The results showed that poultry manure can contaminate food plants that may lead to cancer and non-cancer risks in agricultural areas, Pakistan. Thus, it is important to minimize As concentration in poultry feed to safeguard human health and environment from adverse effects.
Collapse
Affiliation(s)
- Juma Muhammad
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
- Department of Environmental Sciences, Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Pakistan
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Ping Xu
- China National Rice Research Institute, Hangzhou, 310006, China
| | - Sardar Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Jian Qiang Su
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Tasneem Sarwar
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Shahla Nazneen
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Alamgir Khan
- Department of Forestry, Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Pakistan
| |
Collapse
|
4
|
Exposure to Environmental Arsenic and Emerging Risk of Alzheimer's Disease: Perspective Mechanisms, Management Strategy, and Future Directions. TOXICS 2021; 9:toxics9080188. [PMID: 34437506 PMCID: PMC8402411 DOI: 10.3390/toxics9080188] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer’s disease (AD) is one of the most prevailing neurodegenerative diseases, characterized by memory dysfunction and the presence of hyperphosphorylated tau and amyloid β (Aβ) aggregates in multiple brain regions, including the hippocampus and cortex. The exact etiology of AD has not yet been confirmed. However, epidemiological reports suggest that populations who were exposed to environmental hazards are more likely to develop AD than those who were not. Arsenic (As) is a naturally occurring environmental risk factor abundant in the Earth’s crust, and human exposure to As predominantly occurs through drinking water. Convincing evidence suggests that As causes neurotoxicity and impairs memory and cognition, although the hypothesis and molecular mechanism of As-associated pathobiology in AD are not yet clear. However, exposure to As and its metabolites leads to various pathogenic events such as oxidative stress, inflammation, mitochondrial dysfunctions, ER stress, apoptosis, impaired protein homeostasis, and abnormal calcium signaling. Evidence has indicated that As exposure induces alterations that coincide with most of the biochemical, pathological, and clinical developments of AD. Here, we overview existing literature to gain insights into the plausible mechanisms that underlie As-induced neurotoxicity and the subsequent neurological deficits in AD. Prospective strategies for the prevention and management of arsenic exposure and neurotoxicity have also been discussed.
Collapse
|
5
|
Bolan S, Seshadri B, Keely S, Kunhikrishnan A, Bruce J, Grainge I, Talley NJ, Naidu R. Bioavailability of arsenic, cadmium, lead and mercury as measured by intestinal permeability. Sci Rep 2021; 11:14675. [PMID: 34282255 PMCID: PMC8289861 DOI: 10.1038/s41598-021-94174-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 06/25/2021] [Indexed: 12/17/2022] Open
Abstract
In this study, the intestinal permeability of metal(loid)s (MLs) such as arsenic (As), cadmium (Cd), lead (Pb) and mercury (Hg) was examined, as influenced by gut microbes and chelating agents using an in vitro gastrointestinal/Caco-2 cell intestinal epithelium model. The results showed that in the presence of gut microbes or chelating agents, there was a significant decrease in the permeability of MLs (As-7.5%, Cd-6.3%, Pb-7.9% and Hg-8.2%) as measured by apparent permeability coefficient value (Papp), with differences in ML retention and complexation amongst the chelants and the gut microbes. The decrease in ML permeability varied amongst the MLs. Chelating agents reduce intestinal absorption of MLs by forming complexes thereby making them less permeable. In the case of gut bacteria, the decrease in the intestinal permeability of MLs may be associated to a direct protection of the intestinal barrier against the MLs or indirect intestinal ML sequestration by the gut bacteria through adsorption on bacterial surface. Thus, both gut microbes and chelating agents can be used to decrease the intestinal permeability of MLs, thereby mitigating their toxicity.
Collapse
Affiliation(s)
- Shiv Bolan
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Balaji Seshadri
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Simon Keely
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Anitha Kunhikrishnan
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, Australia
| | - Jessica Bruce
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Ian Grainge
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Nicholas J Talley
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW, Australia.
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
6
|
Li Z, Chen X, Zhang X, Wang Y, Li D, Gao H, Duan X. Selective solid-phase extraction of four phenylarsonic compounds from feeds, edible chicken and pork with tailoring imprinted polymer. Food Chem 2021; 347:129054. [PMID: 33484954 DOI: 10.1016/j.foodchem.2021.129054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/01/2020] [Accepted: 01/05/2021] [Indexed: 11/25/2022]
Abstract
The novel molecularly imprinted microspheres for four phenylarsonic compounds have been firstly prepared with the reversible addition-fragmentation chain transfer polymerization in a suspension system. The resulting polymeric microspheres were characterized by infrared spectrum, scanning electron microscope and differential scanning calorimetry. With serial adsorption experiments, the polymeric microspheres showed highly specific molecular recognition, fast mass transfer rate and robust adsorption of the substrates. Then, the imprinted polymer was used as the solid-phase extraction adsorbent to extract the phenylarsonic compounds from the feeds, edible chicken and pork. The cartridge was washed with 2 mL ethyl acetate and eluted with 3 mL of methanol- acetic acid (90:10, v/v). The recoveries of the molecularly imprinted solid-phase extraction (MISPE) column ranged from 83.4% to 95.1%. This work provided a versatile approach for the specific extraction of the organoarsenic compounds from complicated matrices and exhibited a bright future for the application of MISPE column.
Collapse
Affiliation(s)
- Zhaozhou Li
- Henan Engineering Research Center of Food Material/National Demonstration Center for Experimental Food Processing and Safety Education, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Xiujin Chen
- Henan Engineering Research Center of Food Material/National Demonstration Center for Experimental Food Processing and Safety Education, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China.
| | - Xiwen Zhang
- Henan Engineering Research Center of Food Material/National Demonstration Center for Experimental Food Processing and Safety Education, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Yao Wang
- Henan Engineering Research Center of Food Material/National Demonstration Center for Experimental Food Processing and Safety Education, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Daomin Li
- Henan Engineering Research Center of Food Material/National Demonstration Center for Experimental Food Processing and Safety Education, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Hongli Gao
- Henan Engineering Research Center of Food Material/National Demonstration Center for Experimental Food Processing and Safety Education, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Xu Duan
- Henan Engineering Research Center of Food Material/National Demonstration Center for Experimental Food Processing and Safety Education, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, China
| |
Collapse
|
7
|
Yan Y, Chen J, Galván AE, Garbinski LD, Zhu YG, Rosen BP, Yoshinaga M. Reduction of Organoarsenical Herbicides and Antimicrobial Growth Promoters by the Legume Symbiont Sinorhizobium meliloti. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13648-13656. [PMID: 31682413 DOI: 10.1021/acs.est.9b04026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Massive amounts of methyl [e.g., methylarsenate, MAs(V)] and aromatic arsenicals [e.g., roxarsone (4-hydroxy-3-nitrophenylarsonate, Rox(V)] have been utilized as herbicides for weed control and growth promotors for poultry and swine, respectively. The majority of these organoarsenicals degrade into more toxic inorganic species. Here, we demonstrate that the legume symbiont Sinorhizobium meliloti both reduces MAs(V) to MAs(III) and catalyzes sequential two-step reduction of nitro and arsenate groups in Rox(V), producing the highly toxic trivalent amino aromatic derivative 4-hydroxy-3-aminophenylarsenite (HAPA(III)). The existence of this process suggests that S. meliloti possesses the ability to transform pentavalent methyl and aromatic arsenicals into antibiotics to provide a competitive advantage over other microbes, which would be a critical process for the synthetic aromatic arsenicals to function as antimicrobial growth promoters. The activated trivalent aromatic arsenicals are degraded into less-toxic inorganic species by an MAs(III)-demethylating aerobe, suggesting that environmental aromatic arsenicals also undergo a multiple-step degradation pathway, in analogy with the previously reported demethylation pathway of the methylarsenate herbicide. We further show that an FAD-NADPH-dependent nitroreductase encoded by mdaB gene catalyzes nitroreduction of roxarsone both in vivo and in vitro. Our results demonstrate that environmental organoarsenicals trigger competition between members of microbial communities, resulting in gradual degradation of organoarsenicals and contamination by inorganic arsenic.
Collapse
Affiliation(s)
- Yu Yan
- Department of Environmental Science and Engineering , Huaqiao University , Xiamen 361021 , Fujian , China
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| | - Jian Chen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| | - Adriana E Galván
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| | - Luis D Garbinski
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen 361021 , Fujian , China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environ-mental Sciences , Chinese Academy of Sciences , Beijing 100085 , Hebei , China
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine , Florida International University , Miami 33199 , Florida , United States
| |
Collapse
|
8
|
Cai Z, Zhang Y, Zhang Y, Miao X, Li S, Yang H, Ling Q, Hoffmann PR, Huang Z. Use of a Mouse Model and Human Umbilical Vein Endothelial Cells to Investigate the Effect of Arsenic Exposure on Vascular Endothelial Function and the Associated Role of Calpains. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:77003. [PMID: 31274337 PMCID: PMC6792366 DOI: 10.1289/ehp4538] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND Arsenic (As) is a well-known environmental contaminant. Chronic exposure to As is known to increase the risk of cardiovascular diseases, including atherosclerosis, hypertension, diabetes, and stroke. However, the detailed mechanisms by which As causes vascular dysfunction involving endothelial integrity and permeability is unclear. OBJECTIVES Our goal was to investigate how exposure to As leads to endothelial dysfunction. METHODS Arsenic trioxide (ATO) was used to investigate the effects and mechanisms by which exposure to As leads to endothelial dysfunction using a mouse model and cultured endothelial cell monolayers. RESULTS Compared with the controls, mice exposed chronically to As (10 ppb in drinking water supplied by ATO) exhibited greater vascular permeability to Evans blue dye and fluorescein isothiocyanate-labeled bovine serum albumin (FITC-BSA). In addition, endothelial monolayers treated with ATO ([Formula: see text] As) exhibited greater intracellular gaps and permeability to low-density lipoprotein or transmigrating THP-1 cells. Furthermore, activity and protein levels of calpain-1 (CAPN-1) were significantly higher in aortas and human umbilical vein endothelial cells (HUVECs) treated with ATO. These results were consistent with effects of ATO treatment and included a rapid increase of intracellular calcium ([Formula: see text]) and higher levels of CAPN-1 in the plasma membrane. Endothelial cell dysfunction and the proteolytic disorganization of vascular endothelial cadherin (VE-cadherin) in HUVECs in response to ATO were partially mitigated by treatment with a CAPN-1 inhibitor (ALLM) but not a CAPN-2 inhibitor (Z-LLY-FMK). CONCLUSIONS This study found that in mice and HUVEC models, exposure to ATO led to CAPN-1 activation by increasing [Formula: see text] and CAPN-1 translocation to the plasma membrane. The study also suggested that inhibitor treatment may have a role in preventing the vascular endothelial dysfunction associated with As exposure. The findings presented herein suggest that As-induced endothelial dysfunction involves the hyperactivation of the CAPN proteolytic system. https://doi.org/10.1289/EHP4538.
Collapse
Affiliation(s)
- Zhihui Cai
- Department of Biotechnology, Jinan University, Guangzhou, Guangdong Province, China
| | - Yanqing Zhang
- Department of Biotechnology, Jinan University, Guangzhou, Guangdong Province, China
| | - Yutian Zhang
- Department of Biotechnology, Jinan University, Guangzhou, Guangdong Province, China
| | - Xiaofeng Miao
- Department of Biotechnology, Jinan University, Guangzhou, Guangdong Province, China
| | - Shu Li
- Department of Biotechnology, Jinan University, Guangzhou, Guangdong Province, China
| | - Hui Yang
- Department of Biotechnology, Jinan University, Guangzhou, Guangdong Province, China
| | - Qinjie Ling
- Department of Biotechnology, Jinan University, Guangzhou, Guangdong Province, China
| | - Peter R. Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Zhi Huang
- Department of Biotechnology, Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
9
|
Calatayud M, Xiong C, Du Laing G, Raber G, Francesconi K, van de Wiele T. Salivary and Gut Microbiomes Play a Significant Role in in Vitro Oral Bioaccessibility, Biotransformation, and Intestinal Absorption of Arsenic from Food. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:14422-14435. [PMID: 30403856 PMCID: PMC6300781 DOI: 10.1021/acs.est.8b04457] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/01/2018] [Accepted: 11/07/2018] [Indexed: 05/18/2023]
Abstract
The release of a toxicant from a food matrix during the gastrointestinal digestion is a crucial determinant of the toxicant's oral bioavailability. We present a modified setup of the human simulator of the gut microbial ecosystem (SHIME), with four sequential gastrointestinal reactors (oral, stomach, small intestine, and colon), including the salivary and colonic microbiomes. Naturally arsenic-containing rice, mussels, and nori seaweed were digested in the presence of microorganisms and in vitro oral bioaccessibility, bioavailability, and metabolism of arsenic species were evaluated following analysis by using HPLC/mass spectrometry. When food matrices were digested with salivary bacteria, the soluble arsenic in the gastric digestion stage increased for mussel and nori samples, but no coincidence impact was found in the small intestinal and colonic digestion stages. However, the simulated small intestinal absorption of arsenic was increased in all food matrices (1.2-2.7 fold higher) following digestion with salivary microorganisms. No significant transformation of the arsenic species occurred except for the arsenosugars present in mussels and nori. In those samples, conversions between the oxo arsenosugars were observed in the small intestinal digestion stage whereupon the thioxo analogs became major metabolites. These results expand our knowledge on the likely metabolism and oral bioavailabiltiy of arsenic during human digestion, and provide valuable information for future risk assessments of dietary arsenic.
Collapse
Affiliation(s)
- Marta Calatayud
- Center
for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Chan Xiong
- Institute
of Chemistry, NAWI Graz, University of Graz, 8010 Graz, Austria
- (C.X.) Phone: +43 (0)316
380-5318; e-mail:
| | - Gijs Du Laing
- Department
of Green Chemistry and Technology, Ghent
University, 9000 Ghent, Belgium
| | - Georg Raber
- Center
for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Kevin Francesconi
- Institute
of Chemistry, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Tom van de Wiele
- Center
for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- (T.V.d.W.) Phone: +32 9
264 59 76; fax: + 32 9 264 62 48; e-mail:
| |
Collapse
|
10
|
Liu Q, Lu X, Peng H, Popowich A, Tao J, Uppal JS, Yan X, Boe D, Le XC. Speciation of arsenic – A review of phenylarsenicals and related arsenic metabolites. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Liu Q, Leslie EM, Moe B, Zhang H, Douglas DN, Kneteman NM, Le XC. Metabolism of a Phenylarsenical in Human Hepatic Cells and Identification of a New Arsenic Metabolite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1386-1392. [PMID: 29280623 DOI: 10.1021/acs.est.7b05081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Environmental contamination and human consumption of chickens could result in potential exposure to Roxarsone (3-nitro-4-hydroxyphenylarsonic acid), an organic arsenical that has been used as a chicken feed additive in many countries. However, little is known about the metabolism of Roxarsone in humans. The objective of this research was to investigate the metabolism of Roxarsone in human liver cells and to identify new arsenic metabolites of toxicological significance. Human primary hepatocytes and hepatocellular carcinoma HepG2 cells were treated with 20 or 100 μM Roxarsone. Arsenic species were characterized using a strategy of complementary chromatography and mass spectrometry. The results showed that Roxarsone was metabolized to more than 10 arsenic species in human hepatic cells. A new metabolite was identified as a thiolated Roxarsone. The 24 h IC50 values of thiolated Roxarsone for A549 lung cancer cells and T24 bladder cancer cells were 380 ± 80 and 42 ± 10 μM, respectively, more toxic than Roxarsone, whose 24 h IC50 values for A549 and T24 were 9300 ± 1600 and 6800 ± 740 μM, respectively. The identification and toxicological studies of the new arsenic metabolite are useful for understanding the fate of arsenic species and assessing the potential impact of human exposure to Roxarsone.
Collapse
Affiliation(s)
- Qingqing Liu
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta , 10-102 Clinical Sciences Building, Edmonton, Alberta, Canada T6G 2G3
| | - Elaine M Leslie
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta , 10-102 Clinical Sciences Building, Edmonton, Alberta, Canada T6G 2G3
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta , 7-08A Medical Sciences Building, Edmonton, Alberta, Canada T6G 2H7
| | - Birget Moe
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta , 10-102 Clinical Sciences Building, Edmonton, Alberta, Canada T6G 2G3
- Alberta Centre for Toxicology, Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary , Calgary, Alberta, Canada T2N 4N1
| | - Hongquan Zhang
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta , 10-102 Clinical Sciences Building, Edmonton, Alberta, Canada T6G 2G3
| | - Donna N Douglas
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Walter C. Mackenzie Health Sciences Centre , Edmonton, Alberta, Canada T6G 2B7
| | - Norman M Kneteman
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Walter C. Mackenzie Health Sciences Centre , Edmonton, Alberta, Canada T6G 2B7
| | - X Chris Le
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta , 10-102 Clinical Sciences Building, Edmonton, Alberta, Canada T6G 2G3
| |
Collapse
|
12
|
Fu QL, Blaney L, Zhou DM. Identifying Plant Stress Responses to Roxarsone in Soybean Root Exudates: New Insights from Two-Dimensional Correlation Spectroscopy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:53-62. [PMID: 29240415 DOI: 10.1021/acs.jafc.7b04706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Roxarsone (ROX) is an organoarsenic feed additive of increasing interest used in the poultry industry. Soybean responses to ROX stress were investigated in root exudates (REs) using two-dimensional correlation spectroscopy (2D-COS) with fluorescence and Fourier transform infrared spectra. Environmentally relevant ROX concentrations caused negligible toxicity to crop growth and photosynthesis activity but blackened soybean roots at high concentrations. 2D-COS analysis revealed that the protein-like fluorophore and C═C and C═O, aliphatic OH, and polysaccharide C-O-H moieties in soybean REs were most sensitive to ROX stress. Heterospectral 2D-COS results suggested that aromatic, amide I, quinone, ketone, and aliphatic functional groups were the foundational components of protein-like and short-wavelength excited humic-like fluorophores in soybean REs. Carboxyl and phenolic moieties were related to the long-wavelength excited humic-like fluorophore. Overall, 2D-COS combined with molecular-based spectral analysis of REs provided an innovative approach to characterize the physiological responses of crops to contaminants at sublethal levels.
Collapse
Affiliation(s)
- Qing-Long Fu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences , Nanjing, Jiangsu 210008, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Lee Blaney
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County , 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Dong-Mei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences , Nanjing, Jiangsu 210008, People's Republic of China
| |
Collapse
|
13
|
Wang X, Geng A, Dong Y, Fu C, Li H, Zhao Y, Li QX, Wang F. Comparison of Translocation and Transformation from Soil to Rice and Metabolism in Rats for Four Arsenic Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8992-8998. [PMID: 28862447 DOI: 10.1021/acs.jafc.7b01779] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Arsenic (As) is ubiquitously present in the environment. The toxicity of As is related to its forms. This study was designed to compare the translocation and transformation of four As species from soil to rice, and metabolism in rats for four arsenic species. A set of 26550 data was obtained from pot experiments of rice plants grown in soil fortified with four As species, and 4050 data were obtained from rat experiments in which 81 rats were administered with the four As species. The total As in grain from the methyl arsenate fortified soil was 6.1, 4.9, and 5.2 times that from As(III), As(V), and dimethyl arsenate fortified soil, respectively. The total As in husk was 1.2-7.8 times greater than that in grain. After oral administration of each As species to rats, 83-96% was accumulatively excreted via feces and urine, while 0.1-16% was detected in blood. The translocation, transformation, and metabolism of different forms of arsenic vary greatly.
Collapse
Affiliation(s)
- Xu Wang
- Public Monitoring Center for Agro-Product, Guangdong Academy of Agricultural Sciences , Guangzhou 510640, China
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa , Honolulu, Hawaii 96822, United States
- Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture , Guangzhou 510640, China
| | - Anjing Geng
- Public Monitoring Center for Agro-Product, Guangdong Academy of Agricultural Sciences , Guangzhou 510640, China
- Research Center for Trace Elements (Guangzhou) of Huazhong Agricultural University, Guangdong Academy of Agricultural Sciences , Guangzhou 510640, China
| | - Yan Dong
- Department of Immunology, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine , Guangzhou 510405, China
| | - Chongyun Fu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences , Guangzhou 510640, China
| | - Hanmin Li
- Research Center for Trace Elements (Guangzhou) of Huazhong Agricultural University, Guangdong Academy of Agricultural Sciences , Guangzhou 510640, China
| | - Yarong Zhao
- Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture , Guangzhou 510640, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa , Honolulu, Hawaii 96822, United States
| | - Fuhua Wang
- Public Monitoring Center for Agro-Product, Guangdong Academy of Agricultural Sciences , Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture , Guangzhou 510640, China
| |
Collapse
|
14
|
Fan W, Zhang X, Zhang Y, Wang P, Zhang L, Yin Z, Yao J, Xiang W. Functional organic material for roxarsone and its derivatives recognition via molecular imprinting. J Mol Recognit 2017; 31. [DOI: 10.1002/jmr.2625] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/05/2017] [Accepted: 02/20/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Weigang Fan
- Center for Green Chemistry and Organic Functional Materials Laboratory; Xinjiang Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences; Urumqi China
- University of the Chinese Academy of Sciences; Beijing China
| | - Xuemin Zhang
- Center for Green Chemistry and Organic Functional Materials Laboratory; Xinjiang Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences; Urumqi China
- University of the Chinese Academy of Sciences; Beijing China
| | - Yagang Zhang
- Center for Green Chemistry and Organic Functional Materials Laboratory; Xinjiang Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences; Urumqi China
- University of the Chinese Academy of Sciences; Beijing China
- Department of Chemical & Environmental Engineering; Xinjiang Institute of Engineering; Urumqi China
| | - Penglei Wang
- Center for Green Chemistry and Organic Functional Materials Laboratory; Xinjiang Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences; Urumqi China
- University of the Chinese Academy of Sciences; Beijing China
| | - Letao Zhang
- Center for Green Chemistry and Organic Functional Materials Laboratory; Xinjiang Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences; Urumqi China
| | - Zhaoming Yin
- Department of Chemical & Environmental Engineering; Xinjiang Institute of Engineering; Urumqi China
| | - Jun Yao
- College of pharmacy; Xinjiang Medical University; Urumqi China
| | - Wei Xiang
- College of pharmacy; Xinjiang Medical University; Urumqi China
| |
Collapse
|
15
|
Roggenbeck BA, Banerjee M, Leslie EM. Cellular arsenic transport pathways in mammals. J Environ Sci (China) 2016; 49:38-58. [PMID: 28007179 DOI: 10.1016/j.jes.2016.10.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 06/06/2023]
Abstract
Natural contamination of drinking water with arsenic results in the exposure of millions of people world-wide to unacceptable levels of this metalloid. This is a serious global health problem because arsenic is a Group 1 (proven) human carcinogen and chronic exposure is known to cause skin, lung, and bladder tumors. Furthermore, arsenic exposure can result in a myriad of other adverse health effects including diseases of the cardiovascular, respiratory, neurological, reproductive, and endocrine systems. In addition to chronic environmental exposure to arsenic, arsenic trioxide is approved for the clinical treatment of acute promyelocytic leukemia, and is in clinical trials for other hematological malignancies as well as solid tumors. Considerable inter-individual variability in susceptibility to arsenic-induced disease and toxicity exists, and the reasons for such differences are incompletely understood. Transport pathways that influence the cellular uptake and export of arsenic contribute to regulating its cellular, tissue, and ultimately body levels. In the current review, membrane proteins (including phosphate transporters, aquaglyceroporin channels, solute carrier proteins, and ATP-binding cassette transporters) shown experimentally to contribute to the passage of inorganic, methylated, and/or glutathionylated arsenic species across cellular membranes are discussed. Furthermore, what is known about arsenic transporters in organs involved in absorption, distribution, and metabolism and how transport pathways contribute to arsenic elimination are described.
Collapse
Affiliation(s)
- Barbara A Roggenbeck
- Department of Physiology and Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| | - Mayukh Banerjee
- Department of Physiology and Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Elaine M Leslie
- Department of Physiology and Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, T6G 2H7, Canada; Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|