1
|
Martínez-Ranz M, Kidibule PE, Jiménez-Ortega E, Valcárcel J, Vázquez JA, Sanz-Aparicio J, Fernández-Lobato M. Boosting Biocatalytic Efficiency: Engineering of Chitinase Chit33 with Chitin and Cellulose Binding Domains for Sustainable Chitin Conversion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11121-11131. [PMID: 40279401 DOI: 10.1021/acs.jafc.4c10364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Endochitinase Chit33 has shown great potential in converting chitin, a recalcitrant waste, into bioactive chitooligosaccharides (COS). This study evaluates how cellulose-binding domain (CBD) and chitin-binding domain (ChBD) affect the hydrolytic activity and product specificity of Chit33. Recombinant proteins were produced and isolated with a simple yeast extracellular medium concentration. The domain functionality was proved using chitin and cellulose supports. ChBD provided more stable immobilization than CBD but reduced the Chit33 activity. CBD enhanced the enzyme activity on both colloidal (α-/β-allomorphs) and crystalline chitin, doubling it on α-chitin, although not on their deacetylated forms. Besides, CBD increased the COS production from the colloidal forms of α-/β-chitin (by 30% and 85%, respectively) and expanded the product diversity from 1 to 9 N-acetylglucosamine units. In contrast, Chit33-ChBD predominantly yielded chitin tetrasaccharides. These findings highlight the importance of selecting appropriate binding domains to tailor product specificity, as polymerization and acetylation degrees directly impact the COS biological properties.
Collapse
Affiliation(s)
- María Martínez-Ranz
- Department of Molecular Biology, Centre of Molecular Biology Severo Ochoa, CSIC-UAM, University Autonomous of Madrid, Madrid 28049, Spain
| | - Peter E Kidibule
- Department of Molecular Biology, Centre of Molecular Biology Severo Ochoa, CSIC-UAM, University Autonomous of Madrid, Madrid 28049, Spain
- Faculty of Chemistry, Biotechnology, and Food Sciences, Norwegian University of Life Sciences, P.O. Box 5003, Elizabeth N-1432 Ås, Norway
| | - Elena Jiménez-Ortega
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, CSIC, Madrid 28006, Spain
| | - Jesús Valcárcel
- Recycling and Valorisation of Waste Materials Group (REVAL), Institute of Marine Research, IIM-CSIC, Galicia 36208, Spain
| | - José Antonio Vázquez
- Recycling and Valorisation of Waste Materials Group (REVAL), Institute of Marine Research, IIM-CSIC, Galicia 36208, Spain
| | - Julia Sanz-Aparicio
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, CSIC, Madrid 28006, Spain
| | - María Fernández-Lobato
- Department of Molecular Biology, Centre of Molecular Biology Severo Ochoa, CSIC-UAM, University Autonomous of Madrid, Madrid 28049, Spain
| |
Collapse
|
2
|
Zhao D, Zhou N, Wu C, Wu B, Chen F, Zhang A, Chen K. The application of chitin materials in enzymatic catalysis: A review. Carbohydr Polym 2025; 352:123172. [PMID: 39843077 DOI: 10.1016/j.carbpol.2024.123172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025]
Abstract
Enzymatic catalysis offers notable advantages, including exceptional catalytic efficiency, selectivity, and the ability to operate under mild conditions. However, its widespread application is hindered by the high costs associated with enzymes and cofactors. Materials-mediated immobilization technology has proven effective in the recycling of enzymes and cofactors. An optimal carrier material for protein immobilization must be non-toxic, biocompatible, and should not compromise the biological activity or structure of the enzymes. Compared to synthetic polymers, chitin is a promising carrier given its low cost, renewability, abundance of functional groups, and notable biocompatibility and biodegradability. Although numerous reviews on chitosan and other polymers for immobilization have been published, few have addressed using chitin as supports. In this review, chitin-based materials mediated enzyme immobilization, the one-step purification and immobilization of enzymes, as well as co-immobilization of enzymes and cofactors were summarized. Particularly, the significance of chitin materials in the field of enzymatic catalysis was emphasized. This study has the potential to open new avenues for immobilized biocatalysts.
Collapse
Affiliation(s)
- Dexin Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ning Zhou
- Petrochemical Research Institute of Petrochina Co., Ltd., Beijing 102206, China
| | - Chaoqiang Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Bin Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Feifei Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Alei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
3
|
Gu C, Chen J, Huang X, Jiang Y, Ou N, Yang D, Jiang M, Pan L. The Impact of Chitinase Binding Domain Truncation on the Properties of CaChi18B from Chitinilyticum aquatile CSC-1. Mar Drugs 2025; 23:93. [PMID: 40137279 PMCID: PMC11943626 DOI: 10.3390/md23030093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025] Open
Abstract
The chitinase binding domain (ChBD) plays a crucial role in the properties of enzymes. To assess its impact, we cloned a truncated mutant of the chitinase gene CaChi18B from the novel chitinase-producing facultative anaerobic bacterium Chitinilyticum aquatile CSC-1, designated as CaChi18B_ΔChBDs. The recombinant chitinase was successfully expressed and purified, exhibiting a specific activity of 3.48 U/mg on colloidal chitin, with optimal conditions at 45 °C and pH 6.0, and retaining over 80% activity at temperatures up to 40 °C. Kinetic analysis revealed that the Km value was 1.159 mg mL-1 and the Vmax was 10.37 μM min-1 mg-1. Compared to CaChi18B_ΔChBD1, which has only the first ChBD truncated at the N-terminus, CaChi18B_ΔChBDs exhibited minor changes in the optimal temperature and pH, while the Km and Vmax values increased significantly. CaChi18B_ΔChBDs exhibited tolerance to various metal ions, with K+ and NH4+ enhancing activity, while Cu2+ significantly inhibited it. Most organic reagents had minimal impact, except for formic acid, which severely reduced activity. The primary hydrolysis product in the initial phase was GlcNAc, contrasting with (GlcNAc)2 for CaChi18B_ΔChBD1. These findings indicated that the ChBD influences the enzyme's Km, Vmax, and product distribution, enhancing our understanding of ChBD's roles and advancing chitin utilization.
Collapse
Affiliation(s)
- Chenxi Gu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China; (C.G.); (X.H.)
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning 530007, China; (J.C.); (D.Y.)
| | - Jianrong Chen
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning 530007, China; (J.C.); (D.Y.)
| | - Xinyue Huang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China; (C.G.); (X.H.)
| | - Yongqiang Jiang
- Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China; (Y.J.); (N.O.)
| | - Na Ou
- Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China; (Y.J.); (N.O.)
| | - Dengfeng Yang
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning 530007, China; (J.C.); (D.Y.)
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China; (C.G.); (X.H.)
| | - Lixia Pan
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning 530007, China; (J.C.); (D.Y.)
| |
Collapse
|
4
|
Lyu YD, Chen PT. Development of a Chitin-Based Purification System Utilizing Chitin-Binding Domain and Tobacco Etch Virus Protease Cleavage for Efficient Recombinant Protein Recovery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22229-22236. [PMID: 39340448 DOI: 10.1021/acs.jafc.4c07832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
This study aims to develop an efficient chitin-based purification system, leveraging a novel design where the target proteins, superfolding green fluorescent protein (sfGFP) and Thermus antranikianii trehalose synthase (TaTS), fused with a chitin-binding domain (ChBD) from Bacillus circulans WL-12 chitinase A1 and a tobacco etch virus protease (TEVp) cleavage site. This configuration allows for the effective immobilization of the target proteins on chitin beads, facilitating the removal of endogenous proteins. A mutant TEVp, H-TEVS219V-ChBD, fused with the His-tag and ChBD, is employed to cleave the target proteins from the chitin beads specifically. Subsequently, fresh chitin beads are added for adsorption to remove H-TEVS219V-ChBD in the solution, thereby significantly improving the purity of the target protein. Our results confirm that this system can efficiently and specifically purify and recover sfGFP and TaTS, achieving electrophoretic-grade purity exceeding 90%. This system holds significant potential for industrial production and other applications.
Collapse
Affiliation(s)
- Yao-Dong Lyu
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan
| | - Po-Ting Chen
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan
| |
Collapse
|
5
|
Yin C, Sun J, Guo W, Xue Y, Zhang H, Mao X. High-Yield Synthesis of Phosphatidylserine in a Well-Designed Mixed Micellar System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:504-515. [PMID: 38060812 DOI: 10.1021/acs.jafc.3c06584] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
A sustainable enzymatic system is essential for efficient phosphatidylserine (PS) synthesis in industrial production. Conventional biphasic systems face challenges such as excessive organic solvent usage, enzyme-intensive processes, and increased costs. This study introduces a novel approach using chitin nanofibrils (ChNFs) as an immobilization material for phospholipase D (PLD) in a mixed micellar system stabilized by the food-grade emulsifier sodium deoxycholate (SDC). The immobilized enzyme, ChNF-chiA1, was quickly prepared in a one-step process, eliminating the need for purification. By optimizing the reaction conditions, including l-Ser concentration (1.0 M), SDC concentration (10 mM), reaction time (8 h), and enzyme dosage (1.0 U), a remarkable PS yield of 96.74% was achieved in the solvent-free mixed micellar system. The catalytic efficiency of ChNF-chiA1 surpassed that of the free PLD-chiA1 biphasic system by 6.0-fold. This innovative and green biocatalytic technology offers a reusable solution for the high-value enzymatic synthesis of phospholipids, providing a promising avenue for industrial applications.
Collapse
Affiliation(s)
- Chengmei Yin
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Jianan Sun
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Weilong Guo
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yong Xue
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Haiyang Zhang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xiangzhao Mao
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, 266404 Qingdao, China
| |
Collapse
|
6
|
Ruiz-Ramírez S, Jiménez-Flores R. Invited review: Properties of β-galactosidases derived from Lactobacillaceae species and their capacity for galacto-oligosaccharide production. J Dairy Sci 2023; 106:8193-8206. [PMID: 37678769 DOI: 10.3168/jds.2023-23392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/16/2023] [Indexed: 09/09/2023]
Abstract
β-galactosidase (enzymatic class 3.2.1.23) is one of the dairy industry's most important and widely used enzymes. The enzyme is part of a large family known to catalyze hydrolysis and transglycosylation reactions. Its hydrolytic activity is commonly used to decrease lactose content in dairy products, while its transglycosylase activity has recently been used to synthesize galacto-oligosaccharides (GOS). During the past couple of years, researchers have focused on studying β-galactosidase isolated and purified from lactic acid bacteria. This review will focus on β-galactosidase purified and characterized from what used to be the Lactobacillus genera. Furthermore, particular emphasis is given to its kinetics, biochemical characteristics, GOS production, market, and utilization by Lactobacilllaceae species.
Collapse
Affiliation(s)
- Silvette Ruiz-Ramírez
- Department of Food Science and Technology, Parker Food Science & Technology Building, The Ohio State University, Columbus, OH 43210
| | - Rafael Jiménez-Flores
- Department of Food Science and Technology, Parker Food Science & Technology Building, The Ohio State University, Columbus, OH 43210.
| |
Collapse
|
7
|
Bai Y, Yu G, Zhou HM, Amarasinghe O, Zhou Y, Zhu P, Li Q, Zhang L, Nguele Meke F, Miao Y, Chapman E, Tao WA, Zhang ZY. PTP4A2 promotes lysophagy by dephosphorylation of VCP/p97 at Tyr805. Autophagy 2023; 19:1562-1581. [PMID: 36300783 PMCID: PMC10240998 DOI: 10.1080/15548627.2022.2140558] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/02/2022] Open
Abstract
Overexpression of PTP4A phosphatases are associated with advanced cancers, but their biological functions are far from fully understood due to limited knowledge about their physiological substrates. VCP is implicated in lysophagy via collaboration with specific cofactors in the ELDR complex. However, how the ELDR complex assembly is regulated has not been determined. Moreover, the functional significance of the penultimate and conserved Tyr805 phosphorylation in VCP has not been established. Here, we use an unbiased substrate trapping and mass spectrometry approach and identify VCP/p97 as a bona fide substrate of PTP4A2. Biochemical studies show that PTP4A2 dephosphorylates VCP at Tyr805, enabling the association of VCP with its C-terminal cofactors UBXN6/UBXD1 and PLAA, which are components of the ELDR complex responsible for lysophagy, the autophagic clearance of damaged lysosomes. Functionally, PTP4A2 is required for cellular homeostasis by promoting lysophagy through facilitating ELDR-mediated K48-linked ubiquitin conjugate removal and autophagosome formation on the damaged lysosomes. Deletion of Ptp4a2 in vivo compromises the recovery of glycerol-injection induced acute kidney injury due to impaired lysophagy and sustained lysosomal damage. Taken together, our data establish PTP4A2 as a critical regulator of VCP and uncover an important role for PTP4A2 in maintaining lysosomal homeostasis through dephosphorylation of VCP at Tyr805. Our study suggests that PTP4A2 targeting could be a potential therapeutic approach to treat cancers and other degenerative diseases by modulating lysosomal homeostasis and macroautophagy/autophagy.Abbreviations: AAA+: ATPases associated with diverse cellular activities; AKI: acute kidney injury; CBB: Coomassie Brilliant Blue; CRISPR: clustered regularly interspaced short palindromic repeats; ELDR: endo-lysosomal damage response; GFP: green fluorescent protein; GST: glutathione S-transferase; IHC: immunohistochemistry; IP: immunoprecipitation; LAMP1: lysosomal-associated membrane protein 1; LC-MS: liquid chromatography-mass spectrometry; LGALS3/Gal3: galectin 3; LLOMe: L-leucyl-L-leucine methyl ester; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; PLAA: phospholipase A2, activating protein; PTP4A2: protein tyrosine phosphatase 4a2; PUB: NGLY1/PNGase/UBA- or UBX-containing protein; PUL: PLAP, Ufd3, and Lub1; TFEB: transcription factor EB; UBXN6/UBXD1: UBX domain protein 6; UPS: ubiquitin-proteasome system; VCP/p97: valosin containing protein; VCPIP1: valosin containing protein interacting protein 1; YOD1: YOD1 deubiquitinase.
Collapse
Affiliation(s)
- Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, USA
| | - Guimei Yu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, USA
| | - Hong-Ming Zhou
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Yuan Zhou
- Department of Biochemistry, Purdue University, West Lafayette, USA
| | - Peipei Zhu
- Department of Chemistry, Purdue University, West Lafayette, USA
| | - Qinglin Li
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, USA
| | - Lujuan Zhang
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA
| | - Frederick Nguele Meke
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, USA
| | - Yiming Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, USA
| | - Eli Chapman
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, A, USA
| | - W. Andy Tao
- Department of Chemistry, Purdue University, West Lafayette, USA
- Department of Biochemistry, Purdue University, West Lafayette, USA
- Center for Cancer Research
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, USA
- Department of Chemistry, Purdue University, West Lafayette, USA
- Center for Cancer Research
- Institute for Drug Discovery, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
8
|
Yin C, Zhang H, Mao X. Cellulose nanofibril-stabilized Pickering emulsion as a high-performance interfacial biocatalysis system for the synthesis of phosphatidylserine. Food Chem 2023; 399:133865. [DOI: 10.1016/j.foodchem.2022.133865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
|
9
|
Duan F, Sun T, Zhang J, Wang K, Wen Y, Lu L. Recent innovations in immobilization of β-galactosidases for industrial and therapeutic applications. Biotechnol Adv 2022; 61:108053. [DOI: 10.1016/j.biotechadv.2022.108053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022]
|
10
|
Wang J, Cheng H, Zhao Z, Zhang Y. Efficient production of inositol from glucose via a tri-enzymatic cascade pathway. BIORESOURCE TECHNOLOGY 2022; 353:127125. [PMID: 35398211 DOI: 10.1016/j.biortech.2022.127125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Inositol is an essential intermediate in cosmetics, food, medicine and other industries. However, developing an efficient biotransformation system for large-scale production of inositol remains challenging. Herein, a tri-enzymatic cascade route with three novel enzymes including polyphosphate glucokinase (PPGK) from Thermobifida fusca, inositol 3-phosphate synthase (IPS) from Archaeoglobus profundus DSM 5631 and inositol monophosphatase (IMP) from Thermotoga petrophila RKU-1 was designed and reconstructed for the production of inositol from glucose. The problem of poor cooperativity of the cascade reactions was addressed by ribosome binding site (RBS) optimization of PPGK and replication of IPS. Under the optimum biotransformation conditions, the engineered whole-cell immobilized with colloidal chitin transformed 120 g/L glucose to 110.8 g/L inositol with 92.3% conversion in four cycles of reuse, representing the highest titer of inositol to date. Furthermore, this is the first study for inositol production using a three-enzyme coordinated immobilized single-cell.
Collapse
Affiliation(s)
- Jiaping Wang
- Hangzhou Wahaha Group Co. Ltd., Hangzhou 310018, China; Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou 310018, China
| | - Hui Cheng
- Hangzhou Wahaha Group Co. Ltd., Hangzhou 310018, China; Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou 310018, China
| | - Zhihong Zhao
- Hangzhou Wahaha Group Co. Ltd., Hangzhou 310018, China; Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou 310018, China
| | - Yimin Zhang
- Hangzhou Wahaha Group Co. Ltd., Hangzhou 310018, China; Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou 310018, China.
| |
Collapse
|
11
|
Liu Y, Ba F, Liu WQ, Wu C, Li J. Plug-and-Play Functionalization of Protein–Polymer Conjugates for Tunable Catalysis Enabled by Genetically Encoded “Click” Chemistry. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yushi Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fang Ba
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
12
|
Miao H, Zhao Y, Ma Y, Han N, Zhe Y, Tang X, Huang Z. Improving the thermostability of endo-β-1,4-glucanase by the fusion of a module subdivided from hyperthermophilic CBM9_1-2. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Production and Digestibility Studies of β-Galactosyl Xylitol Derivatives Using Heterogeneous Catalysts of LacA β-Galactosidase from Lactobacillus Plantarum WCFS1. Molecules 2022; 27:molecules27041235. [PMID: 35209024 PMCID: PMC8877486 DOI: 10.3390/molecules27041235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 12/10/2022] Open
Abstract
The synthesis of β-galactosyl xylitol derivatives using immobilized LacA β-galactosidase from Lactobacillus plantarum WCFS1 is presented. These compounds have the potential to replace traditional sugars by their properties as sweetener and taking the advantages of a low digestibility. The enzyme was immobilized on different supports, obtaining immobilized preparations with different activity and stability. The immobilization on agarose-IDA-Zn-CHO in the presence of galactose allowed for the conserving of 78% of the offered activity. This preparation was 3.8 times more stable than soluble. Since the enzyme has polyhistidine tags, this support allowed the immobilization, purification and stabilization in one step. The immobilized preparation was used in synthesis obtaining two main products and a total of around 68 g/L of β-galactosyl xylitol derivatives and improving the synthesis/hydrolysis ratio by around 30% compared to that of the soluble enzyme. The catalyst was recycled 10 times, preserving an activity higher than 50%. The in vitro intestinal digestibility of the main β-galactosyl xylitol derivatives was lower than that of lactose, being around 6 and 15% for the galacto-xylitol derivatives compared to 55% of lactose after 120 min of digestion. The optimal amount immobilized constitutes a very useful tool to synthetize β-galactosyl xylitol derivatives since it can be used as a catalyst with high yield and being recycled for at least 10 more cycles.
Collapse
|
14
|
Engineering of a chitosanase fused to a carbohydrate-binding module for continuous production of desirable chitooligosaccharides. Carbohydr Polym 2021; 273:118609. [PMID: 34561008 DOI: 10.1016/j.carbpol.2021.118609] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 01/16/2023]
Abstract
Chitooligosaccharides (CHOS) with multiple biological activities are usually produced through enzymatic hydrolysis of chitosan or chitin. However, purification and recycling of the enzyme have largely limited the advancement of CHOS bioproduction. Here, we engineered a novel enzyme by fusing the native chitosanase Csn75 with a carbohydrate-binding module (CBM) that can specifically bind to curdlan. The recombinase Csn75-CBM was successfully expressed by Pichia pastoris and allowed one-step purification and immobilization in the chitosanase immobilized curdlan packed-bed reactor (CICPR), where a maximum adsorption capacity of 39.59 mg enzyme/g curdlan was achieved. CHOS with degrees of polymerization of 2-5 (a hydrolysis yield of 97.75%), 3-6 (75.45%), and 3-7 (73.2%) were continuously produced by adjusting the ratio of enzyme and chitosan or the flow rate of chitosan. Moreover, the CICPR exhibited good stability and reusability after several cycles. The recombinase Csn75-CBM has greatly improved the efficiency of the bioproduction of CHOS.
Collapse
|
15
|
Gao C, Wang J, Guo L, Hu G, Liu J, Song W, Liu L, Chen X. Immobilization of Microbial Consortium for Glutaric Acid Production from Lysine. ChemCatChem 2021. [DOI: 10.1002/cctc.202101245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cong Gao
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 P. R. China
- International Joint Laboratory on Food Safety Jiangnan University Lihu Road 1800 Wuxi 214122 P. R. China
| | - Jiaping Wang
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 P. R. China
- International Joint Laboratory on Food Safety Jiangnan University Lihu Road 1800 Wuxi 214122 P. R. China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 P. R. China
- International Joint Laboratory on Food Safety Jiangnan University Lihu Road 1800 Wuxi 214122 P. R. China
| | - Guipeng Hu
- School of Pharmaceutical Science Jiangnan University Lihu Road 1800 Wuxi 214122 P. R. China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 P. R. China
- International Joint Laboratory on Food Safety Jiangnan University Lihu Road 1800 Wuxi 214122 P. R. China
| | - Wei Song
- School of Pharmaceutical Science Jiangnan University Lihu Road 1800 Wuxi 214122 P. R. China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 P. R. China
- International Joint Laboratory on Food Safety Jiangnan University Lihu Road 1800 Wuxi 214122 P. R. China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology Jiangnan University Lihu Road 1800 Wuxi 214122 P. R. China
- International Joint Laboratory on Food Safety Jiangnan University Lihu Road 1800 Wuxi 214122 P. R. China
| |
Collapse
|
16
|
Su H, Gao L, Sun J, Mao X. Engineering a carbohydrate binding module to enhance chitinase catalytic efficiency on insoluble chitinous substrate. Food Chem 2021; 355:129462. [PMID: 33848938 DOI: 10.1016/j.foodchem.2021.129462] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/25/2020] [Accepted: 02/22/2021] [Indexed: 11/15/2022]
Abstract
Development of a high-performance chitinase for efficient biotransformation of insoluble chitinous substrate would be highly valuable in industry. In this study, the chitin-binding domains (ChBDs) of chitinase SaChiA4 were successfully modified to improve the enzymatic activity. The engineered substitution variant R-SaChiA4, which had the exogenous ChBD of chitinase ChiA1 from Bacillus circulans WL-12 (ChBDChiA1) substituted for its original ChBDChiA4, increased its activity by nearly 54% (28.0 U/mg) towards chitin powder, and by 49% towards colloidal chitin, compared with the wild-type. The substrate-binding assay demonstrated that the ChBD could enhance the capacity of enzymatic hydrolysis by promoting substrate affinity, and molecular dynamics simulations indicated that this could be due to hydrophobic interactions in different substrate binding modes. This work advances the understanding of the role of the ChBD, and provides a step towards the achievement of industrial-scale hydrolysis and utilization of insoluble chitin.
Collapse
Affiliation(s)
- Haipeng Su
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Li Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
17
|
Zhou N, Zhang A, Wei G, Yang S, Xu S, Chen K, Ouyang P. Cadaverine Production From L-Lysine With Chitin-Binding Protein-Mediated Lysine Decarboxylase Immobilization. Front Bioeng Biotechnol 2020; 8:103. [PMID: 32195228 PMCID: PMC7062646 DOI: 10.3389/fbioe.2020.00103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/03/2020] [Indexed: 12/26/2022] Open
Abstract
Lysine decarboxylase (CadA) can directly convert L-lysine to cadaverine, which is an important platform chemical that can be used to produce polyamides. However, the non-recyclable and the poor pH tolerance of pure CadA hampered its practical application. Herein, a one-step purification and immobilization procedure of CadA was established to investigate the cadaverine production from L-lysine. Renewable biomass chitin was used as a carrier for lysine decarboxylase (CadA) immobilization via fusion of a chitin-binding domain (ChBD). Scanning electron microscopy, laser scanning confocal microscopy, fourier transform infrared spectra, elemental analysis, and thermal gravimetric analysis proved that the fusion protein ChBD-CadA can be adsorbed on chitin effectively. Furthermore, the fusion protein (ChBD-CadA) existed better pH stability compared to wild CadA, and kept over 73% of the highest activity at pH 8.0. Meanwhile, the ChBD-CadA showed high specificity toward chitin and reached 93% immobilization yield within 10 min under the optimum conditions. The immobilized ChBD-CadA (I-ChBD-CadA) could efficiently converted L-lysine at 200.0 g/L to cadaverine at 135.6 g/L in a batch conversion within 120 min, achieving a 97% molar yield of the substrate L-lysine. In addition, the I-ChBD-CadA was able to be reused under a high concentration of L-lysine and retained over 57% of its original activity after four cycles of use without acid addition to maintain pH. These results demonstrate that immobilization of CadA using chitin-binding domain has the potential in cadaverine production on an industrial scale.
Collapse
Affiliation(s)
- Ning Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Alei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Guoguang Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Sai Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Sheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
18
|
Pham ML, Tran AM, Kittibunchakul S, Nguyen TT, Mathiesen G, Nguyen TH. Immobilization of β-Galactosidases on the Lactobacillus Cell Surface Using the Peptidoglycan-Binding Motif LysM. Catalysts 2019; 9:443. [PMID: 31595189 PMCID: PMC6783300 DOI: 10.3390/catal9050443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Lysin motif (LysM) domains are found in many bacterial peptidoglycan hydrolases. They can bind non-covalently to peptidoglycan and have been employed to display heterologous proteins on the bacterial cell surface. In this study, we aimed to use a single LysM domain derived from a putative extracellular transglycosylase Lp_3014 of Lactobacillus plantarum WCFS1 to display two different lactobacillal β-galactosidases, the heterodimeric LacLM-type from Lactobacillus reuteri and the homodimeric LacZ-type from Lactobacillus delbrueckii subsp. bulgaricus, on the cell surface of different Lactobacillus spp. The β-galactosidases were fused with the LysM domain and the fusion proteins, LysM-LacLMLreu and LysM-LacZLbul, were successfully expressed in Escherichia coli and subsequently displayed on the cell surface of L. plantarum WCFS1. β-Galactosidase activities obtained for L. plantarum displaying cells were 179 and 1153 U per g dry cell weight, or the amounts of active surface-anchored β-galactosidase were 0.99 and 4.61 mg per g dry cell weight for LysM-LacLMLreu and LysM-LacZLbul, respectively. LysM-LacZLbul was also displayed on the cell surface of other Lactobacillus spp. including L. delbrueckii subsp. bulgaricus, L. casei and L. helveticus, however L. plantarum is shown to be the best among Lactobacillus spp. tested for surface display of fusion LysM-LacZLbul, both with respect to the immobilization yield as well as the amount of active surface-anchored enzyme. The immobilized fusion LysM-β-galactosidases are catalytically efficient and can be reused for several repeated rounds of lactose conversion. This approach, with the β-galactosidases being displayed on the cell surface of non-genetically modified food-grade organisms, shows potential for applications of these immobilized enzymes in the synthesis of prebiotic galacto-oligosaccharides.
Collapse
Affiliation(s)
- Mai-Lan Pham
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| | - Anh-Minh Tran
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
- Department of Biology, Faculty of Fundamental Sciences, Ho Chi Minh City University of Medicine and Pharmacy, 217 Hong Bang, Ho Chi Minh City, Vietnam
| | - Suwapat Kittibunchakul
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
| | - Tien-Thanh Nguyen
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi, Vietnam
| | - Geir Mathiesen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), N-1432 Ås, Norway
| | - Thu-Ha Nguyen
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, A-1190 Vienna, Austria
- Correspondence: ; Tel.: +43-1-47654-75215; Fax: +43-1-47654-75039
| |
Collapse
|
19
|
Lin S, Qin Z, Chen Q, Fan L, Zhou J, Zhao L. Efficient Immobilization of Bacterial GH Family 46 Chitosanase by Carbohydrate-Binding Module Fusion for the Controllable Preparation of Chitooligosaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6847-6855. [PMID: 31132258 DOI: 10.1021/acs.jafc.9b01608] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chitooligosaccharide has been reported to possess diverse bioactivities. The development of novel strategies for obtaining optimum degree of polymerization (DP) chitooligosaccharides has become increasingly important. In this study, two glycoside hydrolase family 46 chitosanases were studied for immobilization on curdlan (insoluble β-1,3-glucan) using a novel carbohydrate binding module (CBM) family 56 domain from a β-1,3-glucanase. The CBM56 domain provided a spontaneous and specific sorption of the fusion proteins onto a curdlan carrier, and two fusion enzymes showed increased enzyme stability in comparison with native enzymes. Furthermore, a continuous packed-bed reactor was constructed with chitosanase immobilized on a curdlan carrier to control the enzymatic hydrolysis of chitosan. Three chitooligosaccharide products with different molecular weights were prepared in optimized reaction conditions. This study provides a novel CBM tag for the stabilization and immobilization of enzymes. The controllable hydrolysis strategy offers potential for the industrial-scale preparation of chitooligosaccharides with different desired DPs.
Collapse
Affiliation(s)
- Si Lin
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry , East China University of Science and Technology , Shanghai 200237 , China
| | - Zhen Qin
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry , East China University of Science and Technology , Shanghai 200237 , China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT) , Shanghai 200237 , China
| | - Qiming Chen
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry , East China University of Science and Technology , Shanghai 200237 , China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT) , Shanghai 200237 , China
| | - Liqiang Fan
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry , East China University of Science and Technology , Shanghai 200237 , China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT) , Shanghai 200237 , China
| | - Jiachun Zhou
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry , East China University of Science and Technology , Shanghai 200237 , China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT) , Shanghai 200237 , China
| | - Liming Zhao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry , East China University of Science and Technology , Shanghai 200237 , China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT) , Shanghai 200237 , China
| |
Collapse
|
20
|
Qin Z, Lin S, Qiu Y, Chen Q, Zhang Y, Zhou J, Zhao L. One-step immobilization-purification of enzymes by carbohydrate-binding module family 56 tag fusion. Food Chem 2019; 299:125037. [PMID: 31279128 DOI: 10.1016/j.foodchem.2019.125037] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/27/2022]
Abstract
Immobilization of enzymes is an essential strategy with outstanding prospects in biocatalytic processes. Nontoxic, inexpensive immobilized enzyme approach is especially important for food enzymes. We here demonstrate that a carbohydrate-binding module family 56 domain (CBM56-Tag) mediates the immobilization of fusion enzymes with the curdlan (β-1,3-glucan) particle support, thereby enabling the one-step immobilization-purification of target enzymes. CBM56-Tag exhibits an immunoglobulin-like β-sandwich fold, which can be adsorbed by curdlan via hydrogen bond-mediated binding. The maximum adsorption capacity of a fusion chitosanase (CBM56-GsCsn46A) on curdlan is 50.72 mg/g. The immobilized enzyme could be directly used in the packed-bed reactor. This immobilization strategy utilizes a natural polysaccharide without any treatment, avoiding the negative environmental effects. Moreover, the one step immobilization-purification simplifies the purification step, which reduces the use of chemicals. Our study provides a nontoxic and inexpensive immobilization strategy for the biocatalytic reaction in food industry.
Collapse
Affiliation(s)
- Zhen Qin
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Si Lin
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China
| | - Yongjun Qiu
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Qiming Chen
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Jiachun Zhou
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China
| | - Liming Zhao
- School of Biotechnology, State Key Laboratory of Bioreactor Engineering, R&D Center of Separation and Extraction Technology in Fermentation Industry, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai 200237, China.
| |
Collapse
|
21
|
Wu B, Yu Q, Chang S, Pedroso MM, Gao Z, He B, Schenk G. Expansin assisted bio-affinity immobilization of endoxylanase from Bacillus subtilis onto corncob residue: Characterization and efficient production of xylooligosaccharides. Food Chem 2019; 282:101-108. [DOI: 10.1016/j.foodchem.2019.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 11/13/2018] [Accepted: 01/03/2019] [Indexed: 01/07/2023]
|