1
|
Tai J, Hu H, Cao X, Liang X, Lu Y, Zhang H. Identification of animal species of origin in meat based on glycopeptide analysis by UPLC-QTOF-MS. Anal Bioanal Chem 2023; 415:7235-7246. [PMID: 37957327 DOI: 10.1007/s00216-023-04992-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/31/2023] [Accepted: 09/26/2023] [Indexed: 11/15/2023]
Abstract
Adulteration of meat and meat products causes a concerning threat for consumers. It is necessary to develop novel robust and sensitive methods which can authenticate the origin of meat species to compensate for the drawbacks of existing methods. In the present study, the sarcoplasmic proteins of six meat species, namely, pork, beef, mutton, chicken, duck and turkey, were analyzed by one-dimensional gel electrophoresis. It was found that enolase could be used as a potential biomarker protein to distinguish between livestock and poultry meats. The glycosylation sites and glycans of enolase were analyzed by UPLC-QTOF-MS and a total of 41 glycopeptides were identified, indicating that the enolase N-glycopeptide profiles of different meats were species-specific. The identification models of livestock meat, poultry and mixed animal were established based on the glycopeptide contents, and the explanation degree of the three models was higher than 90%. The model prediction performance and feasibility results showed that the average prediction accuracy of the three models was 75.43%, with the animal-derived meat identification model showing superiority in identifying more closely related species. The obtained results indicated that the developed strategy was promising for application in animal-derived meat species monitoring and the quality supervision of animal-derived food.
Collapse
Affiliation(s)
- Jingjing Tai
- School of Food and Bioengineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang, China
| | - Huang Hu
- School of Agriculture, JinHua Polytechnic, Jinhua, 321016, Zhejiang, China
| | - Xiaoji Cao
- Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xinle Liang
- School of Food and Bioengineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang, China
| | - Yanbin Lu
- School of Food and Bioengineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang, China
| | - Hong Zhang
- School of Food and Bioengineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
2
|
Guo RR, Lageveen-Kammeijer GSM, Wang W, Dalebout H, Zhang W, Wuhrer M, Liu L, Heijs B, Voglmeir J. Analysis of Immunogenic Galactose-α-1,3-galactose-Containing N-Glycans in Beef, Mutton, and Pork Tenderloin by Combining Matrix-Assisted Laser Desorption/Ionization-Mass Spectroscopy and Capillary Electrophoresis Hyphenated with Mass Spectrometry via Electrospray Ionization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4184-4192. [PMID: 36809004 DOI: 10.1021/acs.jafc.2c08067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Severe allergic reactions to certain types of meat following tick bites have been reported in geographic regions which are endemic with ticks. This immune response is directed to a carbohydrate antigen (galactose-α-1,3-galactose or α-Gal), which is present in glycoproteins of mammalian meats. At the moment, asparagine-linked complex carbohydrates (N-glycans) with α-Gal motifs in meat glycoproteins and in which cell types or tissue morphologies these α-Gal moieties are present in mammalian meats are still unclear. In this study, we analyzed α-Gal-containing N-glycans in beef, mutton, and pork tenderloin and provided for the first time the spatial distribution of these types of N-glycans in various meat samples. Terminal α-Gal-modified N-glycans were found to be highly abundant in all analyzed samples (55, 45, and 36% of N-glycome in beef, mutton, and pork, respectively). Visualizations of the N-glycans with α-Gal modification revealed that this motif was mainly present in the fibroconnective tissue. To conclude, this study contributes to a better understanding of the glycosylation biology of meat samples and provides guidance for processed meat products, in which only meat fibers are required as an ingredient (i.e., sausages or canned meat).
Collapse
Affiliation(s)
- Rui-Rui Guo
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | | | - Wenjun Wang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Hans Dalebout
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Wangang Zhang
- National Center of Meat Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bram Heijs
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Deng Y, Zhao J, Li S. Quantitative estimation of enzymatic released specific oligosaccharides from Hericium erinaceus polysaccharides using CE-LIF. J Pharm Anal 2023; 13:201-208. [PMID: 36908854 PMCID: PMC9999295 DOI: 10.1016/j.jpha.2022.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
Polysaccharides exhibit multiple pharmacological activities which are closely related to their structural features. Therefore, quantitatively quality control of polysaccharides based on their chemical characteristics is important for their application in biomedical and functional food sciences. However, polysaccharides are mixed macromolecular compounds that are difficult to isolate and lack standards, making them challenging to quantify directly. In this study, we proposed an improved saccharide mapping method based on the release of specific oligosaccharides for the assessment of Hericium erinaceus polysaccharides from laboratory cultured and different regions of China. Briefly, a polysaccharide from H. erinaceus was digested by β-(1-3)-glucanase, and the released specific oligosaccharides were labeled with 8-aminopyrene-1,3,6-trisulfonic-acid (APTS) and separated by using micellar electrokinetic chromatography (MEKC) coupled with laser induced fluorescence (LIF), and quantitatively estimated. MEKC presented higher resolution compared to polysaccharide analysis using carbohydrate gel electrophoresis (PACE), and provided great peak capacity between oligosaccharides with polymerization degree of 2 (DP2) and polymerization degree of 6 (DP6) in a dextran ladder separation. The results of high performance size exclusion chromatography coupled with multi-angle laser light scattering and refractive index detector (HPSEC-MALLS-RI) showed that 12 h was sufficient for complete digestion of polysaccharides from H. erinaceus. Laminaritriose (DP3) was used as an internal standard for quantification of all the oligosaccharides. The calibration curve for DP3 showed a good linear regression (R 2 > 0.9988). The limit of detection (LOD) and limit of quantification (LOQ) values were 0.05 μg/mL and 0.2 μg/mL, respectively. The recovery for DP3 was 87.32 (±0.03)% in the three independent injections. To sum up, this proposed method is helpful for improving the quality control of polysaccharides from H. erinaceus as well as other materials.
Collapse
Affiliation(s)
- Yong Deng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China.,Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau, Macao SAR, 999078, China.,Macao Centre for Testing of Chineese Medicine, University of Macau, Macao SAR, 999078, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China.,Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau, Macao SAR, 999078, China.,Macao Centre for Testing of Chineese Medicine, University of Macau, Macao SAR, 999078, China
| | - Shaoping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China.,Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau, Macao SAR, 999078, China.,Macao Centre for Testing of Chineese Medicine, University of Macau, Macao SAR, 999078, China
| |
Collapse
|
4
|
Wang H, Gao Y, He Q, Liao J, Zhou S, Liu Y, Guo C, Li X, Zhao X, Pan Y. 2-Hydrazinoterephthalic Acid as a Novel Negative-Ion Matrix-Assisted Laser Desorption/Ionization Matrix for Qualitative and Quantitative Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Analysis of N-Glycans in Peach Allergy Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:952-962. [PMID: 36541565 DOI: 10.1021/acs.jafc.2c06822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Glycans recently attracted considerable attention as the proposal of cross-reactive carbohydrate determinants for food allergy. Matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) is powerful in analyzing biomolecules, while its applications in glycans are still challenging. Herein, a novel reactive matrix-assisted laser desorption/ionization (MALDI) matrix, 2-hydrazinoterephthalic acid, was rationally designed and synthesized. It provides uniform co-crystallization with glycans and only produces deprotonated ions with high intensities in the negative-ion mode. In combination with sinapic acid, a rapid and high-throughput method was established for on-target analysis of glycans with a superior limit of detection at the femtomole level and a good linearity (R2 > 0.999). Furthermore, the established method was successfully applied to quantify N-glycans in different cultivars and tissues of peach [Prunus persica (L.) Batsch]. Our work suggests the potential role of N-glycans as biomarkers for food-borne allergy and lays a methodological foundation for the elucidation of the possible relationship between carbohydrate epitopes and food allergy.
Collapse
Affiliation(s)
- Huiwen Wang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Yuexia Gao
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Quan He
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Jiancong Liao
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Shiwen Zhou
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Yaqin Liu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Cheng Guo
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, People's Republic of China
| | - Xian Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Xiaoyong Zhao
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| |
Collapse
|
5
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Guo R, Zhang T, Lambert TOT, Wang T, Voglmeir J, Rand KD, Liu L. PNGase H + variant from Rudaea cellulosilytica with improved deglycosylation efficiency for rapid analysis of eukaryotic N-glycans and hydrogen deuterium exchange mass spectrometry analysis of glycoproteins. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9376. [PMID: 35945033 PMCID: PMC9541014 DOI: 10.1002/rcm.9376] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The analysis of glycoproteins and the comparison of protein N-glycosylation from different eukaryotic origins require unbiased and robust analytical workflows. The structural and functional analysis of vertebrate protein N-glycosylation currently depends extensively on bacterial peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidases (PNGases), which are indispensable enzymatic tools in releasing asparagine-linked oligosaccharides (N-glycans) from glycoproteins. So far, only limited PNGase candidates are available for N-glycans analysis, and particularly the analysis of plant and invertebrate N-glycans is hampered by the lack of suitable PNGases. Furthermore, liquid chromatography-mass spectrometry (LC-MS) workflows, such as hydrogen deuterium exchange mass spectrometry (HDX-MS), require a highly efficient enzymatic release of N-glycans at low pH values to facilitate the comprehensive structural analysis of glycoproteins. Herein, we describe a previously unstudied superacidic bacterial N-glycanase (PNGase H+ ) originating from the soil bacterium Rudaea cellulosilytica (Rc), which has significantly improved enzymatic properties compared to previously described PNGase H+ variants. Active and soluble recombinant PNGase Rc was expressed at a higher protein level (3.8-fold) and with higher specific activity (~56% increase) compared to the currently used PNGase H+ variant from Dyella japonicum (Dj). Recombinant PNGase Rc was able to deglycosylate the glycoproteins horseradish peroxidase and bovine lactoferrin significantly faster than PNGase Dj (10 min vs. 6 h). The versatility of PNGase Rc was demonstrated by releasing N-glycans from a diverse array of samples such as peach fruit, king trumpet mushroom, mouse serum, and the soil nematode Caenorhabditis elegans. The presence of only two disulfide bonds shown in the AlphaFold protein model (so far all other superacidic PNGases possess more disulfide bonds) could be corroborated by intact mass- and peptide mapping analysis and provides a possible explanation for the improved recombinant expression yield of PNGase Rc.
Collapse
Affiliation(s)
- Rui‐Rui Guo
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Tian‐Chan Zhang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | | | - Ting Wang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Kasper D. Rand
- Protein Analysis Group, Department of PharmacyUniversity of CopenhagenCopenhagenDenmark
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and TechnologyNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
7
|
Wang T, Liu L, Voglmeir J. mAbs N-glycosylation: Implications for biotechnology and analytics. Carbohydr Res 2022; 514:108541. [DOI: 10.1016/j.carres.2022.108541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/29/2022]
|
8
|
Deng Y, Chen LX, Zhu BJ, Zhao J, Li SP. A quantitative method for polysaccharides based on endo-enzymatic released specific oligosaccharides: A case of Lentinus edodes. Int J Biol Macromol 2022; 205:15-22. [PMID: 35181321 DOI: 10.1016/j.ijbiomac.2022.02.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/05/2023]
Abstract
Polysaccharides exhibit multiple pharmacological activities, which are closely related to their structural characteristics. Therefore, quantitative quality control of polysaccharides based on chemical properties is of importance for their applications. However, polysaccharides are mixed macromolecular compounds that are difficult to separate, and the lack of standards made direct quantification more difficult. In this study, we proposed a new quantitative method based on the released specific oligosaccharides for polysaccharides from Lentinus edodes (shiitake) and other related fungi. Specific oligosaccharides were firstly released from polysaccharides using 1,3-β-glucanase, then derivatized with 2-aminobenzamide (2-AB), which further separated by hydrophilic interaction chromatography (HILIC) and quantitatively determined by UPLC coupled with fluorescence detector (FLR). Laminaritriose was used as the universal standard for quantification of all the oligosaccharides. This method was validated according to linearity, limit of detection, limit of quantitation, precision, accuracy, repeatability and stability. In addition, the four specific oligosaccharides released from polysaccharides in L. edodes were qualitatively analyzed by extracted ion chromatogram (EIC) from UPLC-MS profiles, which were identified to be disaccharide, trisaccharide and tetrasccharide. The proposed strategy not only realized the quantitative analysis of polysaccharides by UPLC-FLR, but also could achieve the qualitative distinction of different polysaccharides.
Collapse
Affiliation(s)
- Yong Deng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau, Macao SAR, China
| | - Ling-Xiao Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau, Macao SAR, China
| | - Bao-Jie Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau, Macao SAR, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau, Macao SAR, China.
| | - Shao-Ping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Joint Laboratory of Chinese Herbal Glycoengineering and Testing Technology, University of Macau, Macao SAR, China.
| |
Collapse
|
9
|
Liu S, Li X, Yang X, Zhou L, Liang X, Qiu R, Fa Y. A capillary electrophoresis method for the determination of soluble monosaccharides in Ginkgo biloba leaves. J Sep Sci 2021; 45:623-630. [PMID: 34793622 DOI: 10.1002/jssc.202100749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/05/2022]
Abstract
A method for the simultaneous determination of six monosaccharides by pre-column derivatization with 1-phenyl-3-methyl-5-pyrazolone and capillary electrophoresis was developed in this work. The derivatization (i.e., reaction temperature, capillary electrophoresis duration, and extraction number) and separation (i.e., pH and buffer concentration) conditions for capillary electrophoresis were optimized. Results showed that the limits of detection under optimal conditions were in the range of 0.036-0.35 mg/L with a mean correlation coefficient >0.99. The recoveries were in the range of 87.3-108.49%, and the relative standard deviations of intra- and inter-day variations were in the ranges of 2.2-3.8 and 3.2-5.0%, respectively. The method was successfully applied to the analysis of six free monosaccharides in three types of Ginkgo biloba leaves.
Collapse
Affiliation(s)
- Shuo Liu
- Qingdao University of Science and Technology, College of Chemical Engineering, No.53, Zhengzhou Road, Qingdao, Shandong, 266000, P. R. China.,CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao, Shandong, 266000, P. R. China
| | - Xin Li
- Qingdao University of Science and Technology, College of Chemical Engineering, No.53, Zhengzhou Road, Qingdao, Shandong, 266000, P. R. China.,CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao, Shandong, 266000, P. R. China
| | - Xifeng Yang
- Qingdao University of Science and Technology, College of Chemical Engineering, No.53, Zhengzhou Road, Qingdao, Shandong, 266000, P. R. China.,CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao, Shandong, 266000, P. R. China
| | - Linhui Zhou
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao, Shandong, 266000, P. R. China.,Department of Veterinary and Agricultural Sciences, The University of Melbourne, Grattan Street Parkville, Melbourne, VIC 3010, Australia
| | - Xiangfeng Liang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao, Shandong, 266000, P. R. China.,Innovation Academy for Green Manufacture, Chinese Academy of Sciences, No.1 North Second Street, Zhongguancun, Beijing, 100190, P. R. China
| | - Ruchen Qiu
- Qingdao University of Science and Technology, College of Chemical Engineering, No.53, Zhengzhou Road, Qingdao, Shandong, 266000, P. R. China
| | - Yun Fa
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao, Shandong, 266000, P. R. China
| |
Collapse
|
10
|
Beihammer G, Maresch D, Altmann F, Van Damme EJM, Strasser R. Lewis A Glycans Are Present on Proteins Involved in Cell Wall Biosynthesis and Appear Evolutionarily Conserved Among Natural Arabidopsis thaliana Accessions. FRONTIERS IN PLANT SCIENCE 2021; 12:630891. [PMID: 33777069 PMCID: PMC7991798 DOI: 10.3389/fpls.2021.630891] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/18/2021] [Indexed: 05/02/2023]
Abstract
N-glycosylation is a highly abundant protein modification present in all domains of life. Terminal sugar residues on complex-type N-glycans mediate various crucial biological processes in mammals such as cell-cell recognition or protein-ligand interactions. In plants, the Lewis A trisaccharide constitutes the only known outer-chain elongation of complex N-glycans. Lewis A containing complex N-glycans appear evolutionary conserved, having been identified in all plant species analyzed so far. Despite their ubiquitous occurrence, the biological function of this complex N-glycan modification is currently unknown. Here, we report the identification of Lewis A bearing glycoproteins from three different plant species: Arabidopsis thaliana, Nicotiana benthamiana, and Oryza sativa. Affinity purification via the JIM84 antibody, directed against Lewis A structures on complex plant N-glycans, was used to enrich Lewis A bearing glycoproteins, which were subsequently identified via nano-LC-MS. Selected identified proteins were recombinantly expressed and the presence of Lewis A confirmed via immunoblotting and site-specific N-glycan analysis. While the proteins identified in O. sativa are associated with diverse functions, proteins from A. thaliana and N. benthamiana are mainly involved in cell wall biosynthesis. However, a Lewis A-deficient mutant line of A. thaliana showed no change in abundance of cell wall constituents such as cellulose or lignin. Furthermore, we investigated the presence of Lewis A structures in selected accessions from the 1001 genome database containing amino acid variations in the enzymes required for Lewis A biosynthesis. Besides one relict line showing no detectable levels of Lewis A, the modification was present in all other tested accessions. The data provided here comprises the so far first attempt at identifying Lewis A bearing glycoproteins across different species and will help to shed more light on the role of Lewis A structures in plants.
Collapse
Affiliation(s)
- Gernot Beihammer
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Daniel Maresch
- Division of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Friedrich Altmann
- Division of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Els J. M. Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- *Correspondence: Richard Strasser
| |
Collapse
|
11
|
Smolikova G, Gorbach D, Lukasheva E, Mavropolo-Stolyarenko G, Bilova T, Soboleva A, Tsarev A, Romanovskaya E, Podolskaya E, Zhukov V, Tikhonovich I, Medvedev S, Hoehenwarter W, Frolov A. Bringing New Methods to the Seed Proteomics Platform: Challenges and Perspectives. Int J Mol Sci 2020; 21:E9162. [PMID: 33271881 PMCID: PMC7729594 DOI: 10.3390/ijms21239162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
For centuries, crop plants have represented the basis of the daily human diet. Among them, cereals and legumes, accumulating oils, proteins, and carbohydrates in their seeds, distinctly dominate modern agriculture, thus play an essential role in food industry and fuel production. Therefore, seeds of crop plants are intensively studied by food chemists, biologists, biochemists, and nutritional physiologists. Accordingly, seed development and germination as well as age- and stress-related alterations in seed vigor, longevity, nutritional value, and safety can be addressed by a broad panel of analytical, biochemical, and physiological methods. Currently, functional genomics is one of the most powerful tools, giving direct access to characteristic metabolic changes accompanying plant development, senescence, and response to biotic or abiotic stress. Among individual post-genomic methodological platforms, proteomics represents one of the most effective ones, giving access to cellular metabolism at the level of proteins. During the recent decades, multiple methodological advances were introduced in different branches of life science, although only some of them were established in seed proteomics so far. Therefore, here we discuss main methodological approaches already employed in seed proteomics, as well as those still waiting for implementation in this field of plant research, with a special emphasis on sample preparation, data acquisition, processing, and post-processing. Thereby, the overall goal of this review is to bring new methodologies emerging in different areas of proteomics research (clinical, food, ecological, microbial, and plant proteomics) to the broad society of seed biologists.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
| | - Daria Gorbach
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Elena Lukasheva
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Gregory Mavropolo-Stolyarenko
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Tatiana Bilova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Alena Soboleva
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Alexander Tsarev
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Ekaterina Romanovskaya
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Ekaterina Podolskaya
- Institute of Analytical Instrumentation, Russian Academy of Science; 190103 St. Petersburg, Russia;
- Institute of Toxicology, Russian Federal Medical Agency; 192019 St. Petersburg, Russia
| | - Vladimir Zhukov
- All-Russia Research Institute for Agricultural Microbiology; 196608 St. Petersburg, Russia; (V.Z.); (I.T.)
| | - Igor Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology; 196608 St. Petersburg, Russia; (V.Z.); (I.T.)
- Department of Genetics and Biotechnology, St. Petersburg State University; 199034 St. Petersburg, Russia
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
| | - Wolfgang Hoehenwarter
- Proteome Analytics Research Group, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany;
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| |
Collapse
|
12
|
Guo RR, Comamala G, Yang HH, Gramlich M, Du YM, Wang T, Zeck A, Rand KD, Liu L, Voglmeir J. Discovery of Highly Active Recombinant PNGase H + Variants Through the Rational Exploration of Unstudied Acidobacterial Genomes. Front Bioeng Biotechnol 2020; 8:741. [PMID: 32719787 PMCID: PMC7348039 DOI: 10.3389/fbioe.2020.00741] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/10/2020] [Indexed: 11/13/2022] Open
Abstract
Peptide-N 4-(N-acetyl-β-glucosaminyl) asparagine amidases (PNGases, N-glycanases, EC 3.5.1.52) are indispensable tools in releasing N-glycans from glycoproteins. So far, only a limited number of PNGase candidates are available for the structural analysis of glycoproteins and their glycan moieties. Herein, a panel of 13 novel PNGase H+ candidates (the suffix H+ refers to the acidic pH optimum of these acidobacterial PNGases) was tested in their recombinant form for their deglycosylation performance. One candidate (originating from the bacterial species Dyella japonica) showed superior properties both in solution-phase and immobilized on amino-, epoxy- and nitrilotriacetate resins when compared to currently acidic available PNGases. The high expression yield compared to a previously described PNGase H+, broad substrate specificity, and good storage stability of this novel N-glycanase makes it a valuable tool for the analysis of protein glycosylation.
Collapse
Affiliation(s)
- Rui-Rui Guo
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Gerard Comamala
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Huan-Huan Yang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Marius Gramlich
- Natural and Medical Sciences Institute (NMI), University of Tubingen, Reutlingen, Germany
| | - Ya-Min Du
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ting Wang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Anne Zeck
- Natural and Medical Sciences Institute (NMI), University of Tubingen, Reutlingen, Germany
| | - Kasper Dyrberg Rand
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
13
|
Tuzimski T, Petruczynik A. Review of New Trends in the Analysis of Allergenic Residues in Foods and Cosmetic Products. J AOAC Int 2020; 103:997-1028. [PMID: 33241349 PMCID: PMC8370415 DOI: 10.1093/jaoacint/qsaa015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/03/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Allergies represent an important health problem in industrialized countries. Allergen sensitization is an important risk factor for the development of allergic diseases; thus, the identification of an individual's allergen sensitization is essential for the diagnosis and treatment of diseases. OBJECTIVE This review compares different modern methods applied for the analysis of allergens in various matrices (from 2015 to the end of September 2019). CONCLUSIONS Immunological methods are still most frequently used for detection of allergens. These methods are sensitive, but the lack of specificity and cross-reaction of some antibodies can still be a relevant source of errors. DNA-based methods are fast and reliable for determination of protein allergens, but the epitopes of protein allergens with posttranslational modifications and their changes, originated during various processing, cannot be identified through the use of this method. Methods based on application of biosensors are very rapid and easy to use, and can be readily implemented as screening methods to monitor allergens. Recent developments of new high-resolution MS instruments are encouraging and enable development in the analysis of allergens. Fast, very sensitive, reliable, and accurate detection and quantification of allergens in complex samples can be used in the near future. Mass spectrometry coupled with LC, GC, or electrophoretic methods bring additional advances in allergen analysis. The use of LC-MS or LC-MS/MS for the quantitative detection of allergens in various matrices is at present gaining acceptance as a protein-based confirmatory technique over the routinely performed enzyme-linked immunosorbent assays.
Collapse
Affiliation(s)
- Tomasz Tuzimski
- Medical University of Lublin, Department of Physical Chemistry, 4A Chodzki Street, Lublin, Poland, 20-093
| | - Anna Petruczynik
- Medical University of Lublin, Department of Inorganic Chemistry, 4A Chodzki Street, Lublin, Poland, 20-093
| |
Collapse
|
14
|
Li C, Lu Y, Chen X, Yang M, Zou Z, Han J, Gao X, Tang R, Wang C, Huang L, Wang Z. Analysis of the N-Glycoforms and Immunoactivity of Chinese Yam (Dioscorea opposita Thunb.) Glycoprotein 30CYGP. J Proteome Res 2019; 19:28-35. [DOI: 10.1021/acs.jproteome.9b00102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Mass spectrometry-based qualitative and quantitative N-glycomics: An update of 2017-2018. Anal Chim Acta 2019; 1091:1-22. [PMID: 31679562 DOI: 10.1016/j.aca.2019.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 12/14/2022]
Abstract
N-glycosylation is one of the most frequently occurring protein post-translational modifications (PTMs) with broad cellular, physiological and pathological relevance. Mass spectrometry-based N-glycomics has become the state-of-the-art instrumental analytical pipeline for sensitive, high-throughput and comprehensive characterization of N-glycans and N-glycomes. Improvement and new development of methods in N-glycan release, enrichment, derivatization, isotopic labeling, separation, ionization, MS, tandem MS and informatics accompany side-by-side wider and deeper application. This review provides a comprehensive update of mass spectrometry-based qualitative and quantitative N-glycomics in the years of 2017-2018.
Collapse
|
16
|
Zhang YY, Senan AM, Wang T, Liu L, Voglmeir J. 1-(2-Aminoethyl)-3-methyl-1 H-imidazol-3-ium tetrafluoroborate: synthesis and application in carbohydrate analysis. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2019-0117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Reductive alkylation of the carbonyl group of carbohydrates with fluorescence or ionizing labels is a prerequisite for the sensitive analysis of carbohydrates by chromatographic and mass spectrometric techniques. Herein, 1-(2-aminoethyl)-3-methyl-1H-imidazol-3-ium tetrafluoroborate ([MIEA][BF4]) was successfully synthesized using tert-butyl N-(2-bromoethyl)carbamate and N-methylimidazole as starting materials. MIEA+ was then investigated as a multifunctional oligosaccharide label for glycan profiling and identification using LC-ESI-ToF and by MALDI-ToF mass spectrometry. The reductive amination of this diazole with carbohydrates was exemplified by labeling N-glycans from the model glycoproteins horseradish peroxidase, RNase B, and bovine lactoferrin. The produced MIEA+ glycan profiles were comparable to the corresponding 2AB labeled glycan derivatives and showed improved ESI-MS ionization efficiency over the respective 2AB derivatives, with detection sensitivity in the low picomol to the high femtomol range.
Collapse
Affiliation(s)
- Yao Y. Zhang
- Glycomics and Glycan Bioengineering Center , Nanjing Agricultural University , Nanjing , China
| | - Ahmed M. Senan
- Glycomics and Glycan Bioengineering Center , Nanjing Agricultural University , Nanjing , China
| | - Ting Wang
- Glycomics and Glycan Bioengineering Center , Nanjing Agricultural University , Nanjing , China
| | - Li Liu
- Glycomics and Glycan Bioengineering Center , Nanjing Agricultural University , Nanjing , China
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Center , Nanjing Agricultural University , Nanjing , China
| |
Collapse
|
17
|
Zheng F, Du YM, Lin XS, Zhou LQ, Bai Y, Yu XB, Voglmeir J, Liu L. N-Glycosylation Plays an Essential and Species-Specific Role in Anti-Infection Function of Milk Proteins Using Listeria monocytogenes as Model Pathogen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10774-10781. [PMID: 31479258 DOI: 10.1021/acs.jafc.9b03154] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The released milk N-glycome has been found to possess antipathogenic activity. Natively, they are covalently linked onto proteins. Whether the conjugated N-glycans still have antipathogenic properties and how the glycosylation influences the antipathogenic activity of proteins remain unclear. Herein, we compared the quantitative differences of milk protein N-glycosylation and the antilisterial differences of native milk proteins, released N-glycan pools, and deglycosylated proteins between human and bovine milk. N-glycosylation exhibited to be quantitatively species-specific. The entire growth inhibitory activity and the majority of the antiadhesive activity against Listeria monocytogenes of milk whey proteins, although not as high as the released N-glycans, are attributed to N-glycosylation. Moreover, all N-glycan-bearing samples from human milk showed better growth inhibitory activities than those from bovine milk. Generally, N-glycosylation significantly contributes to the antilisterial function of milk proteins and to the functional differences between species. This gives novel insights into the role of these glycoconjugates in nature.
Collapse
Affiliation(s)
| | - Ya M Du
- School of Food Science and Engineering , Qilu University of Technology (Shandong Academy of Science) , Jinan 250353 , China
| | | | | | | | | | | | | |
Collapse
|
18
|
Shi Z, Yin B, Li Y, Zhou G, Li C, Xu X, Luo X, Zhang X, Qi J, Voglmeir J, Liu L. N-Glycan Profile as a Tool in Qualitative and Quantitative Analysis of Meat Adulteration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10543-10551. [PMID: 31464438 DOI: 10.1021/acs.jafc.9b03756] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Adulteration of meat and meat products causes concerns to consumers. It is necessary to develop novel robust and sensitive methods that can authenticate the origin of meat by qualitative and quantitative means to minimize the drawbacks of the existing methods. This study has shown that the protein N-glycosylation profiles of different meats are species specific and thus can be used for meat authentication. Based on the N-glycan pattern, the investigated five meat species (beef, chicken, pork, duck, and mutton) can be distinguished by principal component analysis, and partial least square regression was performed to build a calibration and validation model for the prediction of adulteration ratio. Using this method, beef samples adulterated with a lower-value duck meat could be detected down to the addition ratio as low as 2.2%. The most distinguishing N-glycans from beef and duck were elucidated for the detailed structures.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xin Luo
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering , Shandong Agricultural University , Taian , Shandong 271018 , China
| | - Xibin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering , Shandong Agricultural University , Taian , Shandong 271018 , China
- New Hope Liuhe Co. Ltd. , Beijing 100102 , China
| | - Jun Qi
- Anhui Engineering Laboratory for Agro-products Processing , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | | | | |
Collapse
|
19
|
Tjondro HC, Loke I, Chatterjee S, Thaysen-Andersen M. Human protein paucimannosylation: cues from the eukaryotic kingdoms. Biol Rev Camb Philos Soc 2019; 94:2068-2100. [PMID: 31410980 DOI: 10.1111/brv.12548] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022]
Abstract
Paucimannosidic proteins (PMPs) are bioactive glycoproteins carrying truncated α- or β-mannosyl-terminating asparagine (N)-linked glycans widely reported across the eukaryotic domain. Our understanding of human PMPs remains limited, despite findings documenting their existence and association with human disease glycobiology. This review comprehensively surveys the structures, biosynthetic routes and functions of PMPs across the eukaryotic kingdoms with the aim of synthesising an improved understanding on the role of protein paucimannosylation in human health and diseases. Convincing biochemical, glycoanalytical and biological data detail a vast structural heterogeneity and fascinating tissue- and subcellular-specific expression of PMPs within invertebrates and plants, often comprising multi-α1,3/6-fucosylation and β1,2-xylosylation amongst other glycan modifications and non-glycan substitutions e.g. O-methylation. Vertebrates and protists express less-heterogeneous PMPs typically only comprising variable core fucosylation of bi- and trimannosylchitobiose core glycans. In particular, the Manα1,6Manβ1,4GlcNAc(α1,6Fuc)β1,4GlcNAcβAsn glycan (M2F) decorates various human neutrophil proteins reportedly displaying bioactivity and structural integrity demonstrating that they are not degradation products. Less-truncated paucimannosidic glycans (e.g. M3F) are characteristic glycosylation features of proteins expressed by human cancer and stem cells. Concertedly, these observations suggest the involvement of human PMPs in processes related to innate immunity, tumorigenesis and cellular differentiation. The absence of human PMPs in diverse bodily fluids studied under many (patho)physiological conditions suggests extravascular residence and points to localised functions of PMPs in peripheral tissues. Absence of PMPs in Fungi indicates that paucimannosylation is common, but not universally conserved, in eukaryotes. Relative to human PMPs, the expression of PMPs in plants, invertebrates and protists is more tissue-wide and constitutive yet, similar to their human counterparts, PMP expression remains regulated by the physiology of the producing organism and PMPs evidently serve essential functions in development, cell-cell communication and host-pathogen/symbiont interactions. In most PMP-producing organisms, including humans, the N-acetyl-β-hexosaminidase isoenzymes and linkage-specific α-mannosidases are glycoside hydrolases critical for generating PMPs via N-acetylglucosaminyltransferase I (GnT-I)-dependent and GnT-I-independent truncation pathways. However, the identity and structure of many species-specific PMPs in eukaryotes, their biosynthetic routes, strong tissue- and development-specific expression, and diverse functions are still elusive. Deep exploration of these PMP features involving, for example, the characterisation of endogenous PMP-recognising lectins across a variety of healthy and N-acetyl-β-hexosaminidase-deficient human tissue types and identification of microbial adhesins reactive to human PMPs, are amongst the many tasks required for enhanced insight into the glycobiology of human PMPs. In conclusion, the literature supports the notion that PMPs are significant, yet still heavily under-studied biomolecules in human glycobiology that serve essential functions and create structural heterogeneity not dissimilar to other human N-glycoprotein types. Human PMPs should therefore be recognised as bioactive glycoproteins that are distinctly different from the canonical N-glycoprotein classes and which warrant a more dedicated focus in glycobiological research.
Collapse
Affiliation(s)
- Harry C Tjondro
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Ian Loke
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia.,Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Sayantani Chatterjee
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| |
Collapse
|
20
|
Wang M, Zheng F, Wang T, Lyu YM, Alteen MG, Cai ZP, Cui ZL, Liu L, Voglmeir J. Characterization of Stackebrandtia nassauensis GH 20 Beta-Hexosaminidase, a Versatile Biocatalyst for Chitobiose Degradation. Int J Mol Sci 2019; 20:ijms20051243. [PMID: 30871033 PMCID: PMC6429369 DOI: 10.3390/ijms20051243] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/21/2019] [Accepted: 03/04/2019] [Indexed: 12/31/2022] Open
Abstract
An unstudied β-N-acetylhexosaminidase (SnHex) from the soil bacterium Stackebrandtia nassauensis was successfully cloned and subsequently expressed as a soluble protein in Escherichia coli. Activity tests and the biochemical characterization of the purified protein revealed an optimum pH of 6.0 and a robust thermal stability at 50 °C within 24 h. The addition of urea (1 M) or sodium dodecyl sulfate (1% w/v) reduced the activity of the enzyme by 44% and 58%, respectively, whereas the addition of divalent metal ions had no effect on the enzymatic activity. PUGNAc (O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate) strongly inhibited the enzyme in sub-micromolar concentrations. The β-N-acetylhexosaminidase was able to hydrolyze β1,2-linked, β1,3-linked, β1,4-linked, and β1,6-linked GlcNAc residues from the non-reducing end of various tested glycan standards, including bisecting GlcNAc from one of the tested hybrid-type N-glycan substrates. A mutational study revealed that the amino acids D306 and E307 bear the catalytically relevant side acid/base side chains. When coupled with a chitinase, the β-N-acetylhexosaminidase was able to generate GlcNAc directly from colloidal chitin, which showed the potential of this enzyme for biotechnological applications.
Collapse
Affiliation(s)
- Meng Wang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Feng Zheng
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ting Wang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yong-Mei Lyu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Matthew G Alteen
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| | - Zhi-Peng Cai
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhong-Li Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
21
|
Development of a colorimetric PNGase activity assay. Carbohydr Res 2019; 472:58-64. [PMID: 30476755 DOI: 10.1016/j.carres.2018.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/19/2018] [Accepted: 11/10/2018] [Indexed: 11/22/2022]
Abstract
PNGases are crucial targets and valuable tools in analyzing asparagine-linked carbohydrate moieties (N-glycans) of glycoproteins. Activity tests of PNGases have been little improved since their discovery four decades ago, and still rely on observing deglycosylation patterns of glycoproteins or glycopeptides using SDS-PAGE or HPLC analysis. These techniques cannot be easily adapted for automated sampling and high-throughput procedures. Herein, we describe a PNGase activity assay which relies on the conversion of WST-1, a yellowish, water-soluble tetrazolium dye (sodium 2-(4-Iodophenyl)-3-(4-nitro-phenyl)-5-(2,4-disulfophenyl)-2H-tetrazolate), into a blue formazan dye. In this work, we showed that WST-1 could be reduced by N-glycans, which were enzymatically released from glycoprotein substrates. After optimization of the assay conditions, the robustness of the method was challenged by quantifying the activity of various PNGase isoforms at different purification stages using a microwell plate reader. Furthermore, the assay could be used to obtain steady-state kinetics of PNGase H+ wild-type and mutant variants, which showed significant differences in their enzymatic reaction rates. The simplicity and robustness of this method might be of benefit for the detection of PNGase activity in routine applications of large amounts of samples.
Collapse
|
22
|
Ikegami T. Hydrophilic interaction chromatography for the analysis of biopharmaceutical drugs and therapeutic peptides: A review based on the separation characteristics of the hydrophilic interaction chromatography phases. J Sep Sci 2019; 42:130-213. [DOI: 10.1002/jssc.201801074] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/17/2018] [Accepted: 11/18/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Tohru Ikegami
- Faculty of Molecular Chemistry and Engineering; Kyoto Institute of Technology; Kyoto Japan
- Institute of Pharmaceutical Sciences; Pharmaceutical (Bio-) Analysis; Eberhard-Karls Universität Tübingen; Tübingen Germany
| |
Collapse
|
23
|
The ammonia-catalyzed release of glycoprotein N-glycans. Glycoconj J 2018; 35:411-420. [PMID: 30196374 DOI: 10.1007/s10719-018-9827-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/28/2018] [Accepted: 05/25/2018] [Indexed: 12/12/2022]
Abstract
Despite the great significance of release and analysis of glycans from glycoproteins, the existing N-glycan release methods are undermined by some limitations and deficiencies. The traditional enzymatic protocols feature high N-glycan release specificity but are generally costly and inefficient for some types of N-glycans. The existing chemical methods require harsh reaction conditions or are accompanied by the remarkable formation of by-products. Herein, we describe a versatile chemical method for the release and analysis of N-glycans from glycoproteins. This method differs from the existing methods as only aqueous ammonia is used to catalyze the N-glycan release reactions. Optimization of reaction conditions was performed using RNase B as a model glycoprotein and the obtained results indicated a highest N-glycan yield in ammonia at 60 °C for 16 h. Comparison of this method with traditional enzymatic protocols and recently reported NaClO methods confirmed the good reliability and efficiency of the novel approach. We also successfully applied this method to some complex biological samples, such as Ginkgo seed protein, fetal bovine serum (FBS) and hen egg white, and demonstrated its great compatibility with various neutral N-glycans, core α-1,3-fucosylated N-glycans and sialylated N-glycans. This method is very simple and cost-effective, enabling convenient analysis and large-scale preparation of released reducing N-glycans from various biological samples for structural and functional glycomics studies.
Collapse
|
24
|
Du YM, Zheng SL, Liu L, Voglmeir J, Yedid G. Analysis of N-glycans from Raphanus sativus Cultivars Using PNGase H. J Vis Exp 2018. [PMID: 29985337 DOI: 10.3791/57979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In recent years, the carbohydrate moieties of plants have received considerable attention, as they are a potential source of cross-reactive, allergy-provoking immune responses. In addition, carbohydrate structures also play a critical role in plant metabolism. Here, we present a simple and rapid method for preparing and analyzing N-glycans from different cultivars of radish (Raphanus sativus) using an N-glycanase specific for the release of plant-derived carbohydrate structures. To achieve this, crude trichloroacetic acid precipitates of radish homogenates were treated with PNGase H+, and labeled using 2-aminobenzamide as a fluorescent tag. The labeled N-glycan samples were subsequently analyzed by ultra performance liquid chromatography (UPLC) separation and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry for a detailed structural evaluation and to quantify relative abundancies of the radish-derived N-glycan structures. This protocol can also be used for the analysis of N-glycans from various other plant species, and may be useful for further investigation of the function and effects of N-glycans on human health.
Collapse
Affiliation(s)
- Ya-Min Du
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University
| | - Shen-Li Zheng
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University;
| | - Gabriel Yedid
- College of Life Science, Nanjing Agricultural University;
| |
Collapse
|
25
|
Zhao W, Chen Y, Xue S, Yu Z, Yu H, Liu J, Li J, Chen F. MALDI-TOF-MS characterization of N-linked glycoprotein derived from ginger with ACE inhibitory activity. Food Funct 2018; 9:2755-2761. [PMID: 29671439 DOI: 10.1039/c8fo00156a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Herein, the ability of ginger glycoproteins to inhibit the angiotensin-converting enzyme (ACE) is characterized. The activity is monitored via HPLC, and then the crude glycoproteins are enriched with lectin microarrays and magnetic microspheres. The N-linked glycans released from the enriched glycoproteins by PNGase F are identified by MALDI-TOF-MS. The results suggest that the crude ginger glycoproteins are active against ACE with an IC50 value of 0.83 ± 0.09 mg mL-1. The ginger glycoproteins are enriched by concanavalin A (Con A) and solanum tuberosum (Potato) lectin (STL), and the structures of the N-glycans released from the ginger glycoproteins include high-mannose type glycans, fucosylated-type glycans, and hybrid-type glycans, as analyzed by MALDI-TOF-MS. The results of this study are expected to provide a reference for the glycan structure of ginger glycoproteins with ACE-inhibitory activity.
Collapse
Affiliation(s)
- Wenzhu Zhao
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|