1
|
Piñeiro M, Parera V, Ortiz JE, Llalla-Cordova O, Manrique S, Castro B, Ighani M, Luna LC, Feresin GE. Agro-Industrial Waste from Pistacia vera: Chemical Profile and Bioactive Properties. PLANTS (BASEL, SWITZERLAND) 2025; 14:1420. [PMID: 40430983 PMCID: PMC12115079 DOI: 10.3390/plants14101420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 04/24/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025]
Abstract
In Argentina and globally, pistachio (Pistacia vera) production has significantly grown, driven by its high nutritional value and food industry demand. Its harvesting and processing generate about 40% of pistachio waste (PW), including leaves, twigs, seed coats, green, and empty kernels. Underutilized PW has led to environmental problems, including soil and water contamination by landfill accumulation. However, it could be a potential source of undiscovered bioactive compounds. This study aimed to characterize the chemical profile and to evaluate the bioactive properties of PW. The dried pistachio waste (dPW) was used to prepare the pistachio waste decoction (PWD) (10% w/v). The total phenolic content (TPC) and flavonoid content (FC) were quantified, and the chemical profile was analyzed using UPLC-DAD-ESI-MS/MS. Nematicidal activity against Meloidogyne incognita (J2), acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition, antioxidant capacity (ABTS, DPPH, FRAP), and phytotoxicity on Allium cepa, Lactuca sativa, and Raphanus sativus were evaluated. The UPLC-DAD-ESI-MS/MS analysis identified 26 compounds, including phenolics, flavonoids, and unsaturated fatty acids. The main compounds were gallic acid, anacardic acid, and quercetin derivatives. The TPC and FC were 212.65 mg GAE/g dPW and 0.022 mg QE/g dPW, respectively, displaying strong antioxidant activity across the assays DPPH, ABTS, and FRAP. PWD exhibited nematicidal activity against M. incognita (J2) (LC50 = 0.12% at 24 h). Alterations in the cuticle were observed, including structural disorganization and detachment from internal tissues. Additionally, a remarkable cholinesterase inhibitory effect was detected at 2.0% PWD (42.65% for AChE and 58.90% for BuChE). PWD showed low phytotoxic effects across the tested species, and the germination percentage (GP) and the mean germination time (MGT) were not significantly affected (GP > 79%). These findings highlight the potential of PW as a sustainable alternative for M. incognita control, the remarkable nematicidal, anticholinesterase, and antioxidant properties, and the low phytotoxicity, supporting its use in sustainable agricultural practices.
Collapse
Affiliation(s)
- Mauricio Piñeiro
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan (UNSJ), San Juan 5400, Argentina; (M.P.); (V.P.); (S.M.); (B.C.); (L.C.L.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT CONICET, San Juan 5400, Argentina;
| | - Victoria Parera
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan (UNSJ), San Juan 5400, Argentina; (M.P.); (V.P.); (S.M.); (B.C.); (L.C.L.)
| | - Javier E. Ortiz
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan (UNSJ), San Juan 5400, Argentina; (M.P.); (V.P.); (S.M.); (B.C.); (L.C.L.)
| | - Olimpia Llalla-Cordova
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT CONICET, San Juan 5400, Argentina;
| | - Sofia Manrique
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan (UNSJ), San Juan 5400, Argentina; (M.P.); (V.P.); (S.M.); (B.C.); (L.C.L.)
| | - Brisa Castro
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan (UNSJ), San Juan 5400, Argentina; (M.P.); (V.P.); (S.M.); (B.C.); (L.C.L.)
| | | | - Lorena C. Luna
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan (UNSJ), San Juan 5400, Argentina; (M.P.); (V.P.); (S.M.); (B.C.); (L.C.L.)
| | - Gabriela E. Feresin
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan (UNSJ), San Juan 5400, Argentina; (M.P.); (V.P.); (S.M.); (B.C.); (L.C.L.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT CONICET, San Juan 5400, Argentina;
| |
Collapse
|
2
|
Tsuda T. Preventive effects against cognitive decline and obesity via the combination of dietary factors and exercise: can dietary factors replace or complement the beneficial effects of exercise? Food Funct 2025; 16:3243-3254. [PMID: 40197497 DOI: 10.1039/d4fo06349j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Regular exercise is known to have positive effects on a variety of health outcomes, including the prevention of obesity and cognitive decline. Several recent reports have suggested that combining exercise with dietary factors such as flavonoids can amplify health functions. While the addition of dietary factors synergistically or additively enhances the beneficial effects of exercise, the addition of exercise may also reduce the amount of dietary factors needed to obtain their beneficial effects. This review describes (1) the exercise-induced improvement of health functions focusing on cognitive function, (2) several studies that investigated the effects that combining flavonoids with exercise has on obesity and cognitive function, and (3) the synergistic effect of inducing beige adipocyte formation to potentially explain the mechanism of the preventive effects of combining dietary factors and exercise on obesity, including new findings on lactate obtained through these studies. Finally, we summarize the following challenges and issues in research on developing the combination of dietary factors and exercise: clarifying the appropriate types and intensities of exercise and appropriate intake of dietary factors for obtaining the optimal combined effect, accumulating results of human interventional studies, and examining the benefits of this combination in improving the memory and learning ability of young adults and children. As scientists studying functional foods, we should focus more on exercise-replacement and exercise-complementing dietary factors in our research. This journal will play an important role in elucidating the molecular mechanisms underlying the combined effects of dietary factors and exercise.
Collapse
Affiliation(s)
- Takanori Tsuda
- School of Bioscience and Biotechnology and Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan.
| |
Collapse
|
3
|
Hu DG, Marri S, Hulin JA, Ansaar R, Mackenzie PI, McKinnon RA, Meech R. Activation of Cryptic Donor Splice Sites within the UDP-Glucuronosyltransferase (UGT)1A First-Exon Region Generates Variant Transcripts That Encode UGT1A Proteins with Truncated Aglycone-Binding Domains. Drug Metab Dispos 2024; 52:526-538. [PMID: 38565302 DOI: 10.1124/dmd.123.001565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/19/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
The human UDP-glucuronosyltransferases (UGTs) have crucial roles in metabolizing and clearing numerous small lipophilic compounds. The UGT1A locus generates nine UGT1A mRNAs, 65 spliced transcripts, and 34 circular RNAs. In this study, our analysis of published UGT-RNA capture sequencing (CaptureSeq) datasets identified novel splice junctions that predict 24 variant UGT1A transcripts derived from ligation of exon 2 to unique sequences within the UGT1A first-exon region using cryptic donor splice sites. Of these variants, seven (1A1_n1, 1A3_n3, 1A4_n4, 1A5_n1, 1A8_n2, 1A9_n2, 1A10_n7) are predicted to encode UGT1A proteins with truncated aglycone-binding domains. We assessed their expression profiles and deregulation in cancer using four RNA sequencing (RNA-Seq) datasets of paired normal and cancerous drug-metabolizing tissues from large patient cohorts. Variants were generally coexpressed with their canonical counterparts with a higher relative abundance in tumor than in normal tissues. Variants showed tissue-specific expression with high interindividual variability but overall low abundance. However, 1A8_n2 showed high abundance in normal and cancerous colorectal tissues, with levels that approached or surpassed canonical 1A8 mRNA levels in many samples. We cloned 1A8_n2 and showed expression of the predicted protein (1A8_i3) in human embryonic kidney (HEK)293T cells. Glucuronidation assays with 4-methylumbelliferone (4MU) showed that 1A8_i3 had no activity and was unable to inhibit the activity of 1A8_i1 protein. In summary, the activation of cryptic donor splice sites within the UGT1A first-exon region expands the UGT1A transcriptome and proteome. The 1A8_n2 cryptic donor splice site is highly active in colorectal tissues, representing an important cis-regulatory element that negatively regulates the function of the UGT1A8 gene through pre-mRNA splicing. SIGNIFICANT STATEMENT: The UGT1A locus generates nine canonical mRNAs, 65 alternately spliced transcripts, and 34 different circular RNAs. The present study reports a series of novel UDP-glucuronosyltransferase (UGT)1A variants resulting from use of cryptic donor splice sites in both normal and cancerous tissues, several of which are predicted to encode variant UGT1A proteins with truncated aglycone-binding domains. Of these, 1A8_n2 shows exceptionally high abundance in colorectal tissues, highlighting its potential role in the first-pass metabolism in gut through the glucuronidation pathway.
Collapse
Affiliation(s)
- Dong Gui Hu
- College of Medicine and Public Health, Flinders Health and Medical Research Institute Flinders University, Bedford Park, Australia
| | - Shashikanth Marri
- College of Medicine and Public Health, Flinders Health and Medical Research Institute Flinders University, Bedford Park, Australia
| | - Julie-Ann Hulin
- College of Medicine and Public Health, Flinders Health and Medical Research Institute Flinders University, Bedford Park, Australia
| | - Radwan Ansaar
- College of Medicine and Public Health, Flinders Health and Medical Research Institute Flinders University, Bedford Park, Australia
| | - Peter I Mackenzie
- College of Medicine and Public Health, Flinders Health and Medical Research Institute Flinders University, Bedford Park, Australia
| | - Ross A McKinnon
- College of Medicine and Public Health, Flinders Health and Medical Research Institute Flinders University, Bedford Park, Australia
| | - Robyn Meech
- College of Medicine and Public Health, Flinders Health and Medical Research Institute Flinders University, Bedford Park, Australia
| |
Collapse
|
4
|
Zhang C, Sha Y, Wang Q, Liu J, Zhang P, Cheng S, Qin P. Integrative metabolome and transcriptome profiling provide insights into elucidation of the synthetic mechanisms of phenolic compounds in Yunnan hulled wheat (Triticum aestivum ssp. yunnanense King). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4109-4127. [PMID: 38308467 DOI: 10.1002/jsfa.13293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Yunnan hulled wheat grains (YHWs) have abundant phenolic compounds (PCs). However, a systematic elucidation of the phenolic characteristics and molecular basis in YHWs is currently lacking. The aim of the study, for the first time, was to conduct metabolomic and transcriptomic analyses of YHWs at different developmental stages. RESULTS A total of five phenolic metabolite classes (phenolic acids, flavonoids, quinones, lignans and coumarins, and tannins) and 361 PCs were identified, with flavonoids and phenolic acids being the most abundant components. The relative abundance of the identified PCs showed a dynamic decreasing pattern with grain development, and the most significant differences in accumulation were between the enlargement and mature stage, which is consistent with the gene regulation patterns of the corresponding phenolic biosynthesis pathway. Through co-expression and co-network analysis, PAL, HCT, CCR, F3H, CHS, CHI and bZIP were identified and predicted as candidate key enzymes and transcription factors. CONCLUSION The results broaden our understanding of PC accumulation in wheat whole grains, especially the differential transfer between immature and mature grains. The identified PCs and potential regulatory factors provide important information for future in-depth research on the biosynthesis of PCs and the improvement of wheat nutritional quality. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chuanli Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- College of Tropical Crops, Yunnan Agricultural University, Kunming, China
| | - Yun Sha
- Agricultural Technology Extension Station of Lincang, Lincang, China
| | - Qianchao Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Junna Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Ping Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Shunhe Cheng
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Jiangshu Lixiahe Institue of Agriculture Science, Yangzhou, China
| | - Peng Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
5
|
Tao C, Wang Q, Ji J, Zhou Z, Yue B, Zhang R, Jiang S, Yuan T. Utilization of carbon catabolite repression for efficiently biotransformation of anthraquinone O-glucuronides by Streptomyces coeruleorubidus DM. Front Microbiol 2024; 15:1393073. [PMID: 38690368 PMCID: PMC11058961 DOI: 10.3389/fmicb.2024.1393073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
Carbon catabolite repression (CCR) is a highly conserved mechanism that regulates carbon source utilization in Streptomyces. CCR has a negative impact on secondary metabolite fermentation, both in industrial and research settings. In this study, CCR was observed in the daunorubicin (DNR)-producing strain Streptomyces coeruleorubidus DM, which was cultivated in high concentration of carbohydrates. Unexpectedly, DM exhibited a high ability for anthraquinone glucuronidation biotransformation under CCR conditions with a maximum bioconversion rate of 95% achieved at pH 6, 30°C for 24 h. The co-utilization of glucose and sucrose resulted in the highest biotransformation rate compared to other carbon source combinations. Three novel anthraquinone glucuronides were obtained, with purpurin-O-glucuronide showing significantly improved water solubility, antioxidant activity, and antibacterial bioactivity. Comparative transcript analysis revealed that glucose and sucrose utilization were significantly upregulated as DM cultivated under CCR condition, which strongly enhance the biosynthetic pathway of the precursors Uridine diphosphate glucuronic acid (UDPGA). Meanwhile, the carbon metabolic flux has significantly enhanced the fatty acid biosynthesis, the exhaust of acetyl coenzyme A may lead to the complete repression of the biosynthesis of DNR, Additionally, the efflux transporter genes were simultaneously downregulated, which may contribute to the anthraquinones intracellular glucuronidation. Overall, our findings demonstrate that utilizing CCR can be a valuable strategy for enhancing the biotransformation efficiency of anthraquinone O-glucuronides by DM. This approach has the potential to improve the bioavailability and therapeutic potential of these compounds, opening up new possibilities for their pharmaceutical applications.
Collapse
Affiliation(s)
- Chen Tao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Quyi Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junyang Ji
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziyue Zhou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bingjie Yue
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ran Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shu Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medical Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tianjie Yuan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
6
|
Lee ZJ, Xie C, Duan X, Ng K, Suleria HAR. Optimization of Ultrasonic Extraction Parameters for the Recovery of Phenolic Compounds in Brown Seaweed: Comparison with Conventional Techniques. Antioxidants (Basel) 2024; 13:409. [PMID: 38671858 PMCID: PMC11047748 DOI: 10.3390/antiox13040409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Seaweed, in particular, brown seaweed, has gained research interest in the past few years due to its distinctive phenolic profile that has a multitude of bioactive properties. In order to obtain the maximum extraction efficiency of brown seaweed phenolic compounds, Response Surface Methodology was utilized to optimize the ultrasound-assisted extraction (UAE) conditions such as the amplitude, time, solvent:solid ratio, and NaOH concentration. Under optimal conditions, UAE had a higher extraction efficiency of free and bound phenolic compounds compared to conventional extraction (stirred 16 h at 4 °C). This led to higher antioxidant activity in the seaweed extract obtained under UAE conditions. The profiling of phenolic compounds using LC-ESI-QTOF-MS/MS identified a total of 25 phenolics with more phenolics extracted from the free phenolic extraction compared to the bound phenolic extracts. Among them, peonidin 3-O-diglucodise-5-O-glucoside and hesperidin 5,7-O-diglucuronide are unique compounds that were identified in P. comosa, E. radiata and D. potatorum, which are not reported in plants. Overall, our findings provided optimal phenolic extraction from brown seaweed for research into employing brown seaweed as a functional food.
Collapse
Affiliation(s)
| | | | | | | | - Hafiz A. R. Suleria
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville 3052, Australia; (Z.J.L.); (C.X.); (X.D.); (K.N.)
| |
Collapse
|
7
|
Ding L, Liu Y, Meng X, Jiang Y, Lin J, Cheng S, Xu Z, Zhao X, Li H, Wang Y, Li Z. Biomarker and genomic analyses reveal molecular signatures of non-cardioembolic ischemic stroke. Signal Transduct Target Ther 2023; 8:222. [PMID: 37248226 DOI: 10.1038/s41392-023-01465-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Acute ischemic stroke (AIS) is a major cause of disability and mortality worldwide. Non-cardioembolic ischemic stroke (NCIS), which constitutes the majority of AIS cases, is highly heterogeneous, thus requiring precision medicine treatments. This study aimed to investigate the molecular mechanisms underlying NCIS heterogeneity. We integrated data from the Third China National Stroke Registry, including clinical phenotypes, biomarkers, and whole-genome sequencing data for 7695 patients with NCIS. We identified 30 molecular clusters based on 63 biomarkers and explored the comprehensive landscape of biological heterogeneity and subpopulations in NCIS. Dimensionality reduction revealed fine-scale subpopulation structures associated with specific biomarkers. The subpopulations with biomarkers for inflammation, abnormal liver and kidney function, homocysteine metabolism, lipid metabolism, and gut microbiota metabolism were associated with a high risk of unfavorable clinical outcomes, including stroke recurrence, disability, and mortality. Several genes encoding potential drug targets were identified as putative causal genes that drive the clusters, such as CDK10, ERCC3, and CHEK2. We comprehensively characterized the genetic architecture of these subpopulations, identified their molecular signatures, and revealed the potential of the polybiomarkers and polygenic prediction for assessing clinical outcomes. Our study demonstrates the power of large-scale molecular biomarkers and genomics to understand the underlying biological mechanisms of and advance precision medicine for NCIS.
Collapse
Affiliation(s)
- Lingling Ding
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, 100070, China
| | - Yu Liu
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xia Meng
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yong Jiang
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, 100070, China
| | - Jinxi Lin
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Si Cheng
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Zhe Xu
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, 100070, China
| | - Hao Li
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, 100070, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
- Clinical Center for Precision Medicine in Stroke, Capital Medical University, Beijing, 100070, China
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, 100070, China.
- Chinese Institute for Brain Research, Beijing, China.
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, 100070, China.
| |
Collapse
|
8
|
Bayazid AB, Lim BO. Quercetin Is An Active Agent in Berries against Neurodegenerative Diseases Progression through Modulation of Nrf2/HO1. Nutrients 2022; 14:5132. [PMID: 36501161 PMCID: PMC9737775 DOI: 10.3390/nu14235132] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
Berries are well-known fruits for their antioxidant effects due to their high content of flavonoids, and quercetin is one of the potent bioactive flavonoids. Although oxidative stress is an inevitable outcome in cells due to energy uptake and metabolism and other factors, excessive oxidative stress is considered a pivotal mediator for the cell death and leads to the progression of neurodegenerative diseases (NDDs). Furthermore, oxidative stress triggers inflammation that leads to neuronal cell loss. Alzheimer's, Parkinson's, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and so on are the main neurodegenerative diseases. Hence, AD and PD are the most affected NDDs and cause the most lethality without any effective cure. Since AD and PD are the most common NDDs, therefore, in this study, we will describe the effect of oxidative stress on AD and PD. Targeting oxidative stress could be a very effective way to prevent and cure NDDs. Thus, the nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO1) are potent endogenous antioxidant modulatory pathways, which also show cytoprotective activities. Modulation of Nrf2/HO1 signaling pathways through a biological approach could be an effective way to treat with NDDs. Quercetin is a natural polyphenol, which protects neurodegeneration, remarkably by suppressing oxidative stress and inflammation. Thus, quercetin could be a very effective agent against NDDs. We will discuss the benefits and challenges of quercetin to treat against NDDs, focusing on molecular biology.
Collapse
Affiliation(s)
- Al Borhan Bayazid
- Medicinal Biosciences, Department of Applied Life Science, Konkuk University, Chungju 27478, Republic of Korea
| | - Beong Ou Lim
- Medicinal Biosciences, Department of Applied Life Science, Konkuk University, Chungju 27478, Republic of Korea
- Human Bioscience Corporate R&D Center, Human Bioscience Corp. 268 Chungwondaero, Chungju 27478, Republic of Korea
| |
Collapse
|
9
|
Crescenzi MA, D’Urso G, Piacente S, Montoro P. UPLC-ESI-QTRAP-MS/MS Analysis to Quantify Bioactive Compounds in Fennel ( Foeniculum vulgare Mill.) Waste with Potential Anti-Inflammatory Activity. Metabolites 2022; 12:701. [PMID: 36005573 PMCID: PMC9414302 DOI: 10.3390/metabo12080701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023] Open
Abstract
Foeniculum vulgare is a perennial aromatic plant whose cultivation produces large amounts of waste rich in bioactive compounds with promising anti-inflammatory activities. Nine selected metabolites were quantified through Ultra Performance Liquid Chromatography (UPLC) hyphenated to QTRAP mass spectrometry by using MRM (multiple reaction monitoring) was performed on four parts of fennel: bulb, stem, little stem, and leaf. Analysis revealed significant differences in the amount of quantified metabolites, suggesting that little stem and leaf are the most valuable parts of the waste. Phenolic acids and glycosylated flavonoids were quantified for their known possible anti-inflammatory activities; in fact, due to this reason their ability to inhibit COX-1 and COX-2 isoforms was evaluated through a fluorometric assay, resulting in specific inhibitors of COX-2 at certain concentrations. In conclusion, as the leaf of fennel may be beneficial to human health, clinical studies should include it in nutraceuticals or functional foods for human consumption.
Collapse
Affiliation(s)
- Maria Assunta Crescenzi
- Department of Pharmacy, University of the Study of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy; (M.A.C.); (S.P.)
- Ph.D. Program in Drug Discovery & Development, Department of Pharmacy, University of the Study of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy
| | - Gilda D’Urso
- Department of Pharmacy, University of the Study of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy; (M.A.C.); (S.P.)
| | - Sonia Piacente
- Department of Pharmacy, University of the Study of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy; (M.A.C.); (S.P.)
| | - Paola Montoro
- Department of Pharmacy, University of the Study of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano, Italy; (M.A.C.); (S.P.)
| |
Collapse
|
10
|
Cheatham CL, Nieman DC, Neilson AP, Lila MA. Enhancing the Cognitive Effects of Flavonoids With Physical Activity: Is There a Case for the Gut Microbiome? Front Neurosci 2022; 16:833202. [PMID: 35273477 PMCID: PMC8902155 DOI: 10.3389/fnins.2022.833202] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/20/2022] [Indexed: 12/20/2022] Open
Abstract
Age-related cognitive changes can be the first indication of the progression to dementias, such as Alzheimer's disease. These changes may be driven by a complex interaction of factors including diet, activity levels, genetics, and environment. Here we review the evidence supporting relationships between flavonoids, physical activity, and brain function. Recent in vivo experiments and human clinical trials have shown that flavonoid-rich foods can inhibit neuroinflammation and enhance cognitive performance. Improved cognition has also been correlated with a physically active lifestyle, and with the functionality and diversity of the gut microbiome. The great majority (+ 90%) of dietary flavonoids are biotransformed into phytoactive phenolic metabolites at the gut microbiome level prior to absorption, and these prebiotic flavonoids modulate microbiota profiles and diversity. Health-relevant outcomes from flavonoid ingestion may only be realized in the presence of a robust microbiome. Moderate-to-vigorous physical activity (MVPA) accelerates the catabolism and uptake of these gut-derived anti-inflammatory and immunomodulatory metabolites into circulation. The gut microbiome exerts a profound influence on cognitive function; moderate exercise and flavonoid intake influence cognitive benefits; and exercise and flavonoid intake influence the microbiome. We conclude that there is a potential for combined impacts of flavonoid intake and physical exertion on cognitive function, as modulated by the gut microbiome, and that the combination of a flavonoid-rich diet and routine aerobic exercise may potentiate cognitive benefits and reduce cognitive decline in an aging population, via mechanisms mediated by the gut microbiome. Mechanistic animal studies and human clinical interventions are needed to further explore this hypothesis.
Collapse
Affiliation(s)
- Carol L. Cheatham
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David C. Nieman
- Human Performance Lab, Department of Biology, Appalachian State University, Kannapolis, NC, United States
| | - Andrew P. Neilson
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Mary Ann Lila
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| |
Collapse
|
11
|
Ma D, Xu B, Feng J, Hu H, Tang J, Yin G, Xie Y, Wang C. Dynamic Metabolomics and Transcriptomics Analyses for Characterization of Phenolic Compounds and Their Biosynthetic Characteristics in Wheat Grain. Front Nutr 2022; 9:844337. [PMID: 35252312 PMCID: PMC8888538 DOI: 10.3389/fnut.2022.844337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/21/2022] [Indexed: 01/17/2023] Open
Abstract
Phenolic compounds are important bioactive phytochemicals with potential health benefits. In this study, integrated metabolomics and transcriptomics analysis was used to analyze the metabolites and differentially expressed genes in grains of two wheat cultivars (HPm512 with high antioxidant activity, and ZM22 with low antioxidant activity) during grain development. A total of 188 differentially expressed phenolic components, including 82 phenolic acids, 81 flavonoids, 10 lignans, and 15 other phenolics, were identified in the developing wheat grains, of which apigenin glycosides were identified as the primary flavonoid component. The relative abundance of identified phenolics showed a decreasing trend with grain development. Additionally, 51 differentially expressed phenolic components were identified between HPm512 and ZM22, of which 41 components, including 23 flavonoids, were up-regulated in HPm512. In developing grain, most of the identified differentially expressed genes involved in phenolic accumulation followed a similar trend. Integrated metabolomics and transcriptomics analysis revealed that certain genes encoding structural proteins, glycosyltransferase, and transcription factors were closely related to metabolite accumulation. The relatively higher accumulation of phenolics in HPm512 could be due to up-regulated structural and regulatory genes. A sketch map was drawn to depict the synthetic pathway of identified phenolics and their corresponding genes. This study enhanced the current understanding of the accumulation of phenolics in wheat grains. Besides, active components and their related genes were also identified, providing crucial information for the improvement of wheat's nutritional quality.
Collapse
Affiliation(s)
- Dongyun Ma
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- Henan Technology Innovation Center of Wheat, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Dongyun Ma
| | - Beiming Xu
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
- Henan Technology Innovation Center of Wheat, Henan Agricultural University, Zhengzhou, China
| | - Jianchao Feng
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
- Henan Technology Innovation Center of Wheat, Henan Agricultural University, Zhengzhou, China
| | - Haizhou Hu
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
- Henan Technology Innovation Center of Wheat, Henan Agricultural University, Zhengzhou, China
| | - Jianwei Tang
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
| | - Guihong Yin
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
| | - Yingxin Xie
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
- Henan Technology Innovation Center of Wheat, Henan Agricultural University, Zhengzhou, China
| | - Chenyang Wang
- College of Agronomy/National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou, China
- The National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- Henan Technology Innovation Center of Wheat, Henan Agricultural University, Zhengzhou, China
- Chenyang Wang
| |
Collapse
|
12
|
Teng H, Deng H, He Y, Lv Q, Chen L. The role of dietary flavonoids for modulation of ATP binding cassette transporter mediated multidrug resistance. EFOOD 2021. [DOI: 10.53365/efood.k/144604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Flavonoids are widely existing compounds with enormous pharmacological effects from food and medicine. However, the low bioavailability in intestinal absorption and metabolism limits their clinical application. Intestinal efflux ABC (ATP binding cassette) transporters, including P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins (MRPs), act as "pumping doors" to regulate the efflux of flavonoids from intestinal epithelial cells into the intestinal cavity or the systemic circulation. The present review describes the critical effect of ABC transporters involved in the efflux of flavonoids which depend on its efflux direction. And the role of flavonoids for modulation of intestinal ABC transporters was emphasized and several examples were given. We summarized that the resistance effect of flavonoid-mediated multidrug on ABC transporters may influence the bioavailability of drugs, bioactive ingredients and/or toxic compounds upon dietary uptake. Meanwhile, flavonoids functionalized as reversing agents of the ABC transporter may be an important mechanism for unexpected food-drug, food-toxin or food-food interactions. The overview also indicates that elucidation of the action and mechanism of the intestinal metabolic enzymes-efflux transporters coupling will lay a foundation for improving the bioavailability of flavonoids <i>in vivo</i> and increasing their clinical efficacy.
Collapse
|
13
|
Dare AP, Günther CS, Grey AC, Guo G, Demarais NJ, Cordiner S, McGhie TK, Boldingh H, Hunt M, Deng C, Karppinen K, Jaakola L, Espley RV. Resolving the developmental distribution patterns of polyphenols and related primary metabolites in bilberry (Vaccinium myrtillus) fruit. Food Chem 2021; 374:131703. [PMID: 34902814 DOI: 10.1016/j.foodchem.2021.131703] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 01/01/2023]
Abstract
Bilberry (Vaccinium myrtillus) is a commercially important wild berry species, which accumulates high amounts of polyphenols, particularly anthocyanins, in the skin and flesh. Whilst a number of studies have quantified these phytochemicals in intact ripe bilberry fruit, we extend the current knowledge by investigating the spatial distribution of anthocyanin-associated polyphenols in fruit tissue, and study their links with primary metabolism during ripening. To address this, we used LC-MS and mass spectrometry imaging to measure and map primary and secondary metabolites in fruit. Correlation analysis showed that five sugars displayed strong positive correlations with anthocyanin accumulation, whereas all amino acids were negatively correlated. The accumulation patterns of polyphenols correlated in fruit skin and flesh, but altered with development. Finally, spatial segmentation analysis revealed that the chemical signatures of ripening first appear at defined regions under the skin and rapidly expand to encompass the entire fruit at the eating-ripe stage.
Collapse
Affiliation(s)
- Andrew P Dare
- The New Zealand Institute for Plant and Food Research Ltd, 120 Mt Albert Road, 1025 Auckland, New Zealand.
| | - Catrin S Günther
- The New Zealand Institute for Plant and Food Research Ltd, 120 Mt Albert Road, 1025 Auckland, New Zealand
| | - Angus C Grey
- Department of Physiology, School of Medical Sciences, The University of Auckland, 85 Park Road, Grafton, Auckland 1023 New Zealand
| | - George Guo
- Department of Physiology, School of Medical Sciences, The University of Auckland, 85 Park Road, Grafton, Auckland 1023 New Zealand
| | - Nicholas J Demarais
- School of Biological Sciences, University of Auckland, Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Sarah Cordiner
- The New Zealand Institute for Plant and Food Research Ltd, Batchelar Road, Fitzherbert, 4474 Palmerston North, New Zealand
| | - Tony K McGhie
- The New Zealand Institute for Plant and Food Research Ltd, Batchelar Road, Fitzherbert, 4474 Palmerston North, New Zealand
| | - Helen Boldingh
- The New Zealand Institute for Plant and Food Research Ltd, Ruakura Campus, Bisley Rd, Hamilton 3214, New Zealand
| | - Martin Hunt
- The New Zealand Institute for Plant and Food Research Ltd, Batchelar Road, Fitzherbert, 4474 Palmerston North, New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant and Food Research Ltd, 120 Mt Albert Road, 1025 Auckland, New Zealand
| | - Katja Karppinen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway
| | - Laura Jaakola
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway; NIBIO, Norwegian Institute of Bioeconomy Research, NO-1431 Ås, Norway
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Ltd, 120 Mt Albert Road, 1025 Auckland, New Zealand
| |
Collapse
|
14
|
Contente ML, Annunziata F, Cannazza P, Donzella S, Pinna C, Romano D, Tamborini L, Barbosa FG, Molinari F, Pinto A. Biocatalytic Approaches for an Efficient and Sustainable Preparation of Polyphenols and Their Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13669-13681. [PMID: 34762407 DOI: 10.1021/acs.jafc.1c05088] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many sectors of industry, such as food, cosmetics, nutraceuticals, and pharmaceuticals, have increased their interest in polyphenols due to their beneficial properties. These molecules are widely found in Nature (plants) and can be obtained through direct extraction from vegetable matrices. Polyphenols introduced through the diet may be metabolized in the human body via different biotransformations leading to compounds having different bioactivities. In this context, enzyme-catalyzed reactions are the most suitable approach to produce modified polyphenols that not only can be studied for their bioactivity but also can be labeled as green, natural products. This review aims to give an overview of the potential of biocatalysis as a powerful tool for the modification of polyphenols to enhance their bioaccessibility, bioavailability, biological activity or modification of their physicochemical properties. The main polyphenol transformations occurring during their metabolism in the human body have been also presented.
Collapse
Affiliation(s)
- Martina Letizia Contente
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Francesca Annunziata
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Pietro Cannazza
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Silvia Donzella
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Cecilia Pinna
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Diego Romano
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Lucia Tamborini
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Francisco Geraldo Barbosa
- Department of Organic and Inorganic Chemistry, Sciences Center, Federal University of Ceará, Fortaleza-CE 60455-970, Brazil
| | - Francesco Molinari
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
15
|
Callizot N, Campanari ML, Rouvière L, Jacquemot G, Henriques A, Garayev E, Poindron P. Huperzia serrata Extract 'NSP01' With Neuroprotective Effects-Potential Synergies of Huperzine A and Polyphenols. Front Pharmacol 2021; 12:681532. [PMID: 34526893 PMCID: PMC8435632 DOI: 10.3389/fphar.2021.681532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Huperzia serrata (Thunb.) Trevis is widely used in traditional asiatic medicine to treat many central disorders including, schizophrenia, cognitive dysfunction, and dementia. The major alkaloid, Huperzine A (HA), of H. serrata is a well-known competitive reversible inhibitor of acetylcholinesterase (AChE) with neuroprotective effects. Inspired by the tradition, we developed a green one-step method using microwave assisted extraction to generate an extract of H. serrata, called NSP01. This green extract conserves original neuropharmacological activity and chemical profile of traditional extract. The neuroprotective activity of NSP01 is based on a precise combination of three major constituents: HA and two phenolic acids, caffeic acid (CA) and ferulic acid (FA). We show that CA and FA potentiate HA-mediated neuroprotective activity. Importantly, the combination of HA with CA and FA does not potentiate the AChE inhibitory property of HA which is responsible for its adverse side effects. Collectively, these experimental findings demonstrated that NSP01, is a very promising plant extract for the prevention of Alzheimer's disease and memory deficits.
Collapse
Affiliation(s)
- N. Callizot
- Neuro-Sys SAS, Neuro-Pharmacology Department, Gardanne, France
| | - ML Campanari
- Neuro-Sys SAS, Neuro-Pharmacology Department, Gardanne, France
| | - L Rouvière
- Neuro-Sys SAS, Neuro-Pharmacology Department, Gardanne, France
| | | | - A. Henriques
- Neuro-Sys SAS, Neuro-Pharmacology Department, Gardanne, France
| | | | - P. Poindron
- Neuro-Sys SAS, Neuro-Pharmacology Department, Gardanne, France
| |
Collapse
|
16
|
Adiji OA, Docampo-Palacios ML, Alvarez-Hernandez A, Pasinetti GM, Wang X, Dixon RA. UGT84F9 is the major flavonoid UDP-glucuronosyltransferase in Medicago truncatula. PLANT PHYSIOLOGY 2021; 185:1617-1637. [PMID: 33694362 PMCID: PMC8133618 DOI: 10.1093/plphys/kiab016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Mammalian phase II metabolism of dietary plant flavonoid compounds generally involves substitution with glucuronic acid. In contrast, flavonoids mainly exist as glucose conjugates in plants, and few plant UDP-glucuronosyltransferase enzymes have been identified to date. In the model legume Medicago truncatula, the major flavonoid compounds in the aerial parts of the plant are glucuronides of the flavones apigenin and luteolin. Here we show that the M. truncatula glycosyltransferase UGT84F9 is a bi-functional glucosyl/glucuronosyl transferase in vitro, with activity against a wide range of flavonoid acceptor molecules including flavones. However, analysis of metabolite profiles in leaves and roots of M. truncatula ugt84f9 loss of function mutants revealed that the enzyme is essential for formation of flavonoid glucuronides, but not most flavonoid glucosides, in planta. We discuss the use of plant UGATs for the semi-synthesis of flavonoid phase II metabolites for clinical studies.
Collapse
Affiliation(s)
- Olubu A Adiji
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
| | - Maite L Docampo-Palacios
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
| | - Anislay Alvarez-Hernandez
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
| | - Giulio M Pasinetti
- Department of Psychiatry, The Mount Sinai School of Medicine, New York City, New York 10029
| | - Xiaoqiang Wang
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203
| |
Collapse
|
17
|
Bao M, Li J, Chen H, Chen Z, Xu D, Wen Y. Enantioselective effects of imazethapyr on the secondary metabolites and nutritional value of wheat seedlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143759. [PMID: 33279196 DOI: 10.1016/j.scitotenv.2020.143759] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/31/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
The secondary metabolism of plants is key for mediating responses to environmental stress, but few studies have examined how the relationship between secondary metabolism and the stress response of plants is affected by exposure to chiral herbicides. Here, we studied the enantioselective disturbance of the chiral herbicide imazethapyr (IM) on the secondary metabolism and nutrient levels of wheat seedlings. The bioactive enantiomer R-IM significantly increased the contents of major secondary metabolites, including phenolic acids, flavonoids, and carotenoids but greatly inhibited the production of benzoxazine. The antioxidant system also responded strongly to R-IM; specifically, the activities of SOD, CAT, and GPX enzymes were all significantly induced, and the GSH content initially increased but then decreased. Furthermore, the nutrient levels of wheat seedlings were also affected; dietary fiber content decreased, while the contents of the microelements Fe, Mn, and Zn increased. In sum, this study provides new insight into the phytotoxic effects of IM and raises new questions on the role of secondary metabolites and nutrients in mediating enantioselective effects.
Collapse
Affiliation(s)
- Manxin Bao
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun Li
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hui Chen
- College of Science and Technology, Ningbo University, Ningbo 315211, China
| | - Zunwei Chen
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, United States
| | - Dongmei Xu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
18
|
Docampo-Palacios ML, Alvarez-Hernández A, Adiji O, Gamiotea-Turro D, Valerino-Diaz AB, Viegas LP, Ndukwe IE, de Fátima Â, Heiss C, Azadi P, Pasinetti GM, Dixon RA. Glucuronidation of Methylated Quercetin Derivatives: Chemical and Biochemical Approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14790-14807. [PMID: 33289379 PMCID: PMC8136248 DOI: 10.1021/acs.jafc.0c04500] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Botanical supplements derived from grapes are functional in animal model systems for the amelioration of neurological conditions, including cognitive impairment. Rats fed with grape extracts accumulate 3'-O-methyl-quercetin-3-O-β-d-glucuronide (3) in their brains, suggesting 3 as a potential therapeutic agent. To develop methods for the synthesis of 3 and the related 4'-O-methyl-quercetin-7-O-β-d-glucuronide (4), 3-O-methyl-quercetin-3'-O-β-d-glucuronide (5), and 4'-O-methyl-quercetin-3'-O-β-d-glucuronide (6), which are not found in the brain, we have evaluated both enzymatic semisynthesis and full chemical synthetic approaches. Biocatalysis by mammalian UDP-glucuronosyltransferases generated multiple glucuronidated products from 4'-O-methylquercetin, and is not cost-effective. Chemical synthetic methods, on the other hand, provided good results; 3, 5, and 6 were obtained in six steps at 12, 18, and 30% overall yield, respectively, while 4 was synthesized in five steps at 34% overall yield. A mechanistic study on the unexpected regioselectivity observed in the quercetin glucuronide synthetic steps is also presented.
Collapse
Affiliation(s)
- Maite L Docampo-Palacios
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton 76203, Texas, United States
| | - Anislay Alvarez-Hernández
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton 76203, Texas, United States
| | - Olubu Adiji
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton 76203, Texas, United States
| | - Daylin Gamiotea-Turro
- Chemistry Institute-Araraquara, UNESP-São Paulo State University, São Paulo 01049-010, Brazil
| | | | - Luís P Viegas
- Coimbra Chemistry Center, Chemistry Department, University of Coimbra, Coimbra 3004-531, Portugal
| | - Ikenna E Ndukwe
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens 30602, Georgia, United States
| | - Ângelo de Fátima
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton 76203, Texas, United States
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens 30602, Georgia, United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens 30602, Georgia, United States
| | - Giulio M Pasinetti
- Department of Psychiatry, The Mount Sinai School of Medicine, New York 10029, New York, United States
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton 76203, Texas, United States
| |
Collapse
|
19
|
Development and validation of an LC-MS/MS method for the quantification of flavonoid glucuronides (wogonoside, baicalin, and apigenin-glucuronide) in the bile and blood samples: Application to a portal vein infusion study. Anal Biochem 2020; 601:113723. [PMID: 32298642 DOI: 10.1016/j.ab.2020.113723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/19/2020] [Accepted: 04/05/2020] [Indexed: 12/20/2022]
Abstract
Glucuronidation is one of the major metabolic pathways for flavonoids. However, quantification of flavonoid glucuronides in biological samples, especially in the bile, is sometimes challenging due to signal suppression by bile acids. The purpose of this study is to establish a robust LC-MS/MS method for directly measuring flavonoid glucuronides in bile and blood. Wogonoside (wogonin-7-O-glucuronide), baicalin (baicalein-7-O-glucuronide) and apigenin-7-O-glucuronide were used as the model compounds and taurocholic acid (T-CA) were used as the model bile acid to establish the method. Bile samples were processed using solid phase extraction (SPE) and blood samples were prepared using protein precipitation method. The analytes were separated on a Resteck HPLC (50 mm × 2.1 mm ID, 1.7 μm) column using acetonitrile and 0.1% formic acid in water as the mobile phases. The mass analysis was performed in an AB Sciex 5500 Qtrap mass spectrometer via multiple reaction monitoring (MRM) in the positive mode. The results showed that the linear range of the above three analytes were 10 nM-5000 nM in the bile and 1.56 nM-4000 nM in the blood, respectively. The recoveries of three glucuronides were >85% and the matrix effects were <20% at low, medium and high concentrations in the bile and the blood. The results also showed that >90% of these bile acids were removed by the selected SPE procedure to facilitate glucuronide analysis. The validated method was successfully applied to a portal vein infusion study using rats to quantify baicalin, wogonoside, and apigenin-glucuronide in bile and blood samples.
Collapse
|
20
|
Kaszás L, Alshaal T, El-Ramady H, Kovács Z, Koroknai J, Elhawat N, Nagy É, Cziáky Z, Fári M, Domokos-Szabolcsy É. Identification of Bioactive Phytochemicals in Leaf Protein Concentrate of Jerusalem Artichoke ( Helianthus tuberosus L.). PLANTS (BASEL, SWITZERLAND) 2020; 9:E889. [PMID: 32674454 PMCID: PMC7411585 DOI: 10.3390/plants9070889] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022]
Abstract
Jerusalem artichoke (JA) is widely known to have inulin-rich tubers. However, its fresh aerial biomass produces significant levels of leaf protein and economic bioactive phytochemicals. We have characterized leaf protein concentrate (JAPC) isolated from green biomass of three Jerusalem artichoke clones, Alba, Fuseau, and Kalevala, and its nutritional value for the human diet or animal feeding. The JAPC yield varied from 28.6 to 31.2 g DM kg-1 green biomass with an average total protein content of 33.3% on a dry mass basis. The qualitative analysis of the phytochemical composition of JAPC was performed by ultra-high performance liquid chromatography-electrospray ionization-Orbitrap/mass spectrometry analysis (UHPLC-ESI-ORBITRAP-MS/MS). Fifty-three phytochemicals were successfully identified in JAPC. In addition to the phenolic acids (especially mono- and di-hydroxycinnamic acid esters of quinic acids) several medically important hydroxylated methoxyflavones, i.e., dimethoxy-tetrahydroxyflavone, dihydroxy-methoxyflavone, hymenoxin, and nevadensin, were detected in the JAPC for the first time. Liquiritigenin, an estrogenic-like flavanone, was measured in the JAPC as well as butein and kukulkanin B, as chalcones. The results also showed high contents of the essential amino acids and polyunsaturated fatty acids (PUFAs; 66-68%) in JAPC. Linolenic acid represented 39-43% of the total lipid content; moreover, the ratio between ω-6 and ω-3 fatty acids in the JAPC was ~0.6:1. Comparing the JA clones, no major differences in phytochemicals, fatty acid, or amino acid compositions were observed. This paper confirms the economic and nutritional value of JAPC as it is not only an alternative plant protein source but also as a good source of biological valuable phytochemicals.
Collapse
Affiliation(s)
- László Kaszás
- Department of Agricultural Botany, Plant Physiology and Biotechnology (MEK), Debrecen University, Böszörményi Street 138, 4032 Debrecen, Hungary; (L.K.); (H.E.-R.); (Z.K.); (J.K.); (N.E.); (É.N.); (M.F.); (É.D.-S.)
| | - Tarek Alshaal
- Department of Agricultural Botany, Plant Physiology and Biotechnology (MEK), Debrecen University, Böszörményi Street 138, 4032 Debrecen, Hungary; (L.K.); (H.E.-R.); (Z.K.); (J.K.); (N.E.); (É.N.); (M.F.); (É.D.-S.)
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Hassan El-Ramady
- Department of Agricultural Botany, Plant Physiology and Biotechnology (MEK), Debrecen University, Böszörményi Street 138, 4032 Debrecen, Hungary; (L.K.); (H.E.-R.); (Z.K.); (J.K.); (N.E.); (É.N.); (M.F.); (É.D.-S.)
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Zoltán Kovács
- Department of Agricultural Botany, Plant Physiology and Biotechnology (MEK), Debrecen University, Böszörményi Street 138, 4032 Debrecen, Hungary; (L.K.); (H.E.-R.); (Z.K.); (J.K.); (N.E.); (É.N.); (M.F.); (É.D.-S.)
| | - Judit Koroknai
- Department of Agricultural Botany, Plant Physiology and Biotechnology (MEK), Debrecen University, Böszörményi Street 138, 4032 Debrecen, Hungary; (L.K.); (H.E.-R.); (Z.K.); (J.K.); (N.E.); (É.N.); (M.F.); (É.D.-S.)
| | - Nevien Elhawat
- Department of Agricultural Botany, Plant Physiology and Biotechnology (MEK), Debrecen University, Böszörményi Street 138, 4032 Debrecen, Hungary; (L.K.); (H.E.-R.); (Z.K.); (J.K.); (N.E.); (É.N.); (M.F.); (É.D.-S.)
- Department of Biological and Environmental Sciences, Faculty of Home Economic, Al-Azhar University, Tanta 31732, Egypt
| | - Éva Nagy
- Department of Agricultural Botany, Plant Physiology and Biotechnology (MEK), Debrecen University, Böszörményi Street 138, 4032 Debrecen, Hungary; (L.K.); (H.E.-R.); (Z.K.); (J.K.); (N.E.); (É.N.); (M.F.); (É.D.-S.)
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4407 Nyíregyháza, Hungary;
| | - Miklós Fári
- Department of Agricultural Botany, Plant Physiology and Biotechnology (MEK), Debrecen University, Böszörményi Street 138, 4032 Debrecen, Hungary; (L.K.); (H.E.-R.); (Z.K.); (J.K.); (N.E.); (É.N.); (M.F.); (É.D.-S.)
| | - Éva Domokos-Szabolcsy
- Department of Agricultural Botany, Plant Physiology and Biotechnology (MEK), Debrecen University, Böszörményi Street 138, 4032 Debrecen, Hungary; (L.K.); (H.E.-R.); (Z.K.); (J.K.); (N.E.); (É.N.); (M.F.); (É.D.-S.)
| |
Collapse
|
21
|
Wang CY, Chen ZZ, Guo YX, Sun HJ, Zhang GL, Kuang MA, Yang SX, Li XM, Díaz de la Garza RI, Gou JY. Isolation of wheat mutants with higher grain phenolics to enhance anti-oxidant potential. Food Chem 2020; 303:125363. [DOI: 10.1016/j.foodchem.2019.125363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 12/17/2022]
|
22
|
UHPLC-HR-MS/MS-Guided Recovery of Bioactive Flavonol Compounds from Greco di Tufo Vine Leaves. Molecules 2019; 24:molecules24193630. [PMID: 31597396 PMCID: PMC6804278 DOI: 10.3390/molecules24193630] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/02/2019] [Accepted: 10/06/2019] [Indexed: 12/15/2022] Open
Abstract
Leaves of Vitis vinifera cv. Greco di Tufo, a precious waste made in the Campania Region (Italy), after vintage harvest, underwent reduction, lyophilization, and ultrasound-assisted maceration in ethanol. The alcoholic extract, as evidenced by a preliminary UHPLC-HR-MS analysis, showed a high metabolic complexity. Thus, the extract was fractionated, obtaining, among others, a fraction enriched in flavonol glycosides and glycuronides. Myricetin, quercetin, kaempferol, and isorhamnetin derivatives were tentatively identified based on their relative retention time and TOF-MS2 data. As the localization of saccharidic moiety in glycuronide compounds proved to be difficult due to the lack of well-established fragmentation pattern and/or the absence of characteristic key fragments, to obtain useful MS information and to eliminate matrix effect redundancies, the isolation of the most abundant extract's compound was achieved. HR-MS/MS spectra of the compound, quercetin-3-O-glucuronide, allowed us to thoroughly rationalize its fragmentation pattern, and to unravel the main differences between MS/MS behavior of flavonol glycosides and glycuronides. Furthermore, cytotoxicity assessment on the (poly)phenol rich fraction and the pure isolated compound was carried out using central nervous system cell lines. The chemoprotective effect of both the (poly)phenol fraction and quercetin-3-O-glucuronide was evaluated.
Collapse
|
23
|
Nocardamin glucuronide, a new member of the ferrioxamine siderophores isolated from the ascamycin-producing strain Streptomyces sp. 80H647. J Antibiot (Tokyo) 2019; 72:991-995. [DOI: 10.1038/s41429-019-0217-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/04/2019] [Accepted: 07/10/2019] [Indexed: 11/09/2022]
|
24
|
De Silva SF, Alcorn J. Flaxseed Lignans as Important Dietary Polyphenols for Cancer Prevention and Treatment: Chemistry, Pharmacokinetics, and Molecular Targets. Pharmaceuticals (Basel) 2019; 12:E68. [PMID: 31060335 PMCID: PMC6630319 DOI: 10.3390/ph12020068] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer causes considerable morbidity and mortality across the world. Socioeconomic, environmental, and lifestyle factors contribute to the increasing cancer prevalence, bespeaking a need for effective prevention and treatment strategies. Phytochemicals like plant polyphenols are generally considered to have anticancer, anti-inflammatory, antiviral, antimicrobial, and immunomodulatory effects, which explain their promotion for human health. The past several decades have contributed to a growing evidence base in the literature that demonstrate ability of polyphenols to modulate multiple targets of carcinogenesis linking models of cancer characteristics (i.e., hallmarks and nutraceutical-based targeting of cancer) via direct or indirect interaction or modulation of cellular and molecular targets. This evidence is particularly relevant for the lignans, an ubiquitous, important class of dietary polyphenols present in high levels in food sources such as flaxseed. Literature evidence on lignans suggests potential benefit in cancer prevention and treatment. This review summarizes the relevant chemical and pharmacokinetic properties of dietary polyphenols and specifically focuses on the biological targets of flaxseed lignans. The consolidation of the considerable body of data on the diverse targets of the lignans will aid continued research into their potential for use in combination with other cancer chemotherapies, utilizing flaxseed lignan-enriched natural products.
Collapse
Affiliation(s)
- S Franklyn De Silva
- Drug Discovery & Development Research Group, College of Pharmacy and Nutrition, 104 Clinic Place, Health Sciences Building, University of Saskatchewan, Saskatoon, Saskatchewan (SK), S7N 2Z4, Canada.
| | - Jane Alcorn
- Drug Discovery & Development Research Group, College of Pharmacy and Nutrition, 104 Clinic Place, Health Sciences Building, University of Saskatchewan, Saskatoon, Saskatchewan (SK), S7N 2Z4, Canada.
| |
Collapse
|
25
|
Characterization of CYPs and UGTs Involved in Human Liver Microsomal Metabolism of Osthenol. Pharmaceutics 2018; 10:pharmaceutics10030141. [PMID: 30200214 PMCID: PMC6161247 DOI: 10.3390/pharmaceutics10030141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 11/25/2022] Open
Abstract
Osthenol is a prenylated coumarin isolated from the root of Angelica koreana and Angelica dahurica, and is an O-demethylated metabolite of osthole in vivo. Its various pharmacological effects have been reported previously. The metabolic pathway of osthenol was partially confirmed in rat osthole studies, and 11 metabolic products were identified in rat urine. However, the metabolic pathway of osthenol in human liver microsomes (HLM) has not been reported. In this study, we elucidated the structure of generated metabolites using a high-resolution quadrupole-orbitrap mass spectrometer (HR-MS/MS) and characterized the major human cytochrome P450 (CYP) and uridine 5′-diphospho-glucuronosyltransferase (UGT) isozymes involved in osthenol metabolism in human liver microsomes (HLMs). We identified seven metabolites (M1-M7) in HLMs after incubation in the presence of nicotinamide adenine dinucleotide phosphate (NADPH) and uridine 5′-diphosphoglucuronic acid (UDPGA). As a result, we demonstrated that osthenol is metabolized to five mono-hydroxyl metabolites (M1-M5) by CYP2D6, 1A2, and 3A4, respectively, a 7-O-glucuronide conjugate (M6) by UGT1A9, and a hydroxyl-glucuronide (M7) from M5 by UGT1A3 in HLMs. We also found that glucuronidation is the dominant metabolic pathway of osthenol in HLMs.
Collapse
|
26
|
Ottaviani JI, Fong RY, Borges G, Schroeter H, Crozier A. Use of LC-MS for the quantitative analysis of (poly)phenol metabolites does not necessarily yield accurate results: Implications for assessing existing data and conducting future research. Free Radic Biol Med 2018; 124:97-103. [PMID: 29870748 DOI: 10.1016/j.freeradbiomed.2018.05.092] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/31/2018] [Indexed: 11/22/2022]
Abstract
Plant-derived, dietary (poly)phenols have potential effects on disease-risk reduction and primary disease prevention. The characterization of (poly)phenol absorption, distribution, metabolism and excretion (ADME) is recognized as crucial step to further advance nutritional and biomedical research of these compounds; and given that (poly)phenols are extensively metabolized after ingestion, accurate assessments of their in vivo metabolites is required. It has become common practice to use unmetabolized parent compounds as reference standards when quantifying (poly)phenol metabolites by LC-MS, although little is known about the accuracy of this approach. To investigate this situation with routinely used LC-MS conditions, the signal yielded by the flavan-3-ol (-)-epicatechin was compared to those of authentic standards of its phase II and microbiota-derived metabolites. The results obtained revealed underestimations up to 94% and overestimations up to 113% of individual epicatechin metabolites. Inaccurate quantitative estimates were also obtained when phase II metabolites of other (poly)phenols were quantified by reference to their unmetabolized parent compounds. This demonstrates the importance of using structurally-identical authentic metabolites as reference compounds when quantifying (poly)phenol metabolites by LC-MS. This is of importance, not just to the accuracy of ADME studies, but for the identification and validation of (poly)phenol metabolites as biomarkers of intake in epidemiological studies.
Collapse
Affiliation(s)
- Javier I Ottaviani
- Mars Inc., McLean, VA 22101, USA; Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Reedmond Y Fong
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Gina Borges
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | | | - Alan Crozier
- Department of Nutrition, University of California, Davis, CA 95616, USA.
| |
Collapse
|
27
|
Yue T, Xie KB, Tan Z, Chen RD, Chen DW, Liu JM, Dai JG. Enzymatic synthesis of glucuronidated metabolites of two neurological active agents using plant glucuronosyltransferases. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2018; 20:605-614. [PMID: 29989425 DOI: 10.1080/10286020.2018.1490276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
Glucuronidation is an important and popular metabolic reaction in vivo of drugs. The further evaluation of biological activity and toxicity of glucuronides is necessary in the course of the drug research and development. However, the synthesis of glucuronides is limited by the lack of efficient approach. Herein, we have developed a new glucuronide synthesis method using plant uridine diphosphate-dependent glucuronosyltransferases (UGTs), UGT88D4, UGT88D7, and EpGT8, enabling the convenient preparation for corresponding O-glucuronide metabolites (1a, 2a, 3a, and 3b) in milligram scale of two neurological active agents, IMM-H004 (1) and FLZ (2). Their structures were characterized by spectroscopic data analyses.
Collapse
Affiliation(s)
- Tian Yue
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Beijing 100050 , China
| | - Ke-Bo Xie
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Beijing 100050 , China
- b Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Zhen Tan
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Beijing 100050 , China
| | - Ri-Dao Chen
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Beijing 100050 , China
- b Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Da-Wei Chen
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Beijing 100050 , China
- b Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Ji-Mei Liu
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Beijing 100050 , China
- b Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Jun-Gui Dai
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines , Beijing 100050 , China
- b Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study , Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| |
Collapse
|