1
|
Mesias A, Borges S, Pintado M, Baptista-Silva S. Bioactive peptides as multipotent molecules bespoke and designed for Alzheimer's disease. Neuropeptides 2025; 111:102515. [PMID: 40056763 DOI: 10.1016/j.npep.2025.102515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/21/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
In an increasingly aging world where neurodegenerative diseases (NDs) are exponentially rising, research into more effective and innovative treatments seems paramount. Bioactive peptides (BPs) emerge as promising compounds with revolutionary potential in the treatment of NDs, particularly in well-known conditions like Alzheimer's disease (AD). The biological potential of these compounds is primarily attributed to their drug development advantages such as enhanced penetration, low toxicity, and rapid clearance, as well as, their antioxidant, and anti-inflammatory properties bio-linked to the neuroprotective effect, able to attenuate the multifactorial pathologies of AD. BPs can be sourced from common dietary origins, like animals, plants, marine, and from emerging sources like edible insects. However, to isolate an active BP with beneficial biological effects it must first be released from its parent protein, followed by a synthesis-flow. While in silico approaches can predict a BP's potential bioactivity and structural characteristics, in vitro, cell-based, and in vivo assays should be conducted to ensure these properties. The blood-brain-barrier (BBB) microenvironment and permeability in health or disease state are key factors to consider since they can limit the ability of circulating therapeutical agents, including BPs, to reach the brain. This review focuses on the bioactivity properties of BPs from different dietary protein sources and explores their beneficial effect and neuroprotective activity in AD, unraveling new paths of treatment.
Collapse
Affiliation(s)
- Ana Mesias
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Sandra Borges
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Sara Baptista-Silva
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
2
|
Peng P, Yu H, Xian M, Qu C, Guo Z, Li S, Zhu Z, Xiao J. Preparation of Acetylcholinesterase Inhibitory Peptides from Yellowfin Tuna Pancreas Using Moderate Ultrasound-Assisted Enzymatic Hydrolysis. Mar Drugs 2025; 23:75. [PMID: 39997199 PMCID: PMC11857449 DOI: 10.3390/md23020075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Bioactive peptides represent a promising therapeutic approach for Alzheimer's disease (AD) by maintaining cholinergic system homeostasis through the inhibition of acetylcholinesterase (AChE) activity. This study focused on extracting AChE inhibitory peptides from yellowfin tuna pancreas using moderate ultrasound-assisted enzymatic hydrolysis (MUE). Firstly, papain and MUE stood out from five enzymes and four enzymatic hydrolysis methods, respectively, by comparing the degree of hydrolysis and AChE inhibitory activity of different pancreatic protein hydrolysates. Subsequently, the optimal MUE conditions were obtained by single-factor, Plackett-Burman, and response surface methodologies. The pancreatic protein hydrolysate prepared under optimal MUE conditions was then purified by ultrafiltration followed by RP-HPLC, from which a novel AChE inhibitory peptide (LLDF) was identified by LC-MS/MS and virtual screening. LLDF effectively inhibited AChE activity by a competitive inhibition mechanism, with an IC50 of 18.44 ± 0.24 μM. Molecular docking and molecular dynamic simulation revealed that LLDF bound robustly to the active site of AChE via hydrogen bonds. These findings provided a theoretical basis for the valuable use of yellowfin tuna pancreas and introduced a new viewpoint on the potential therapeutic advantages of AChE inhibitory peptides for future AD treatment.
Collapse
Affiliation(s)
- Pai Peng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (P.P.); (H.Y.); (M.X.); (C.Q.)
| | - Hui Yu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (P.P.); (H.Y.); (M.X.); (C.Q.)
| | - Meiting Xian
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (P.P.); (H.Y.); (M.X.); (C.Q.)
| | - Caiye Qu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (P.P.); (H.Y.); (M.X.); (C.Q.)
| | - Zhiqiang Guo
- School of Marine Science and Engineering, Hainan University, Haikou 570228, China;
| | - Shuyi Li
- National R&D Center for Se-Rich Agricultural Products, Processing, Hubei Engineering Research Center for Deep Processing of Green, Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (S.L.); (Z.Z.)
| | - Zhenzhou Zhu
- National R&D Center for Se-Rich Agricultural Products, Processing, Hubei Engineering Research Center for Deep Processing of Green, Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (S.L.); (Z.Z.)
| | - Juan Xiao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (P.P.); (H.Y.); (M.X.); (C.Q.)
| |
Collapse
|
3
|
Zhang Y, Zhang L, Lin L, Zhang Y, Li C, Chen B, Shen Y. Effects of walnut kernel pellicle on the composition and properties of enzymatic hydrolysates of walnut meal by peptidomics and bioinformatics. J Food Sci 2025; 90:e17604. [PMID: 39828404 DOI: 10.1111/1750-3841.17604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/30/2024] [Accepted: 11/26/2024] [Indexed: 01/22/2025]
Abstract
The purpose of this article is to investigate the effects of walnut (Juglans regia L.) kernel pellicle on the composition and properties of enzymatic hydrolysis products of walnut meal using peptidomics and bioinformatics. In this study, a total of 3423 peptide sequences were identified in peeled walnut protein hydrolysates (PWPH) and unpeeled walnut protein hydrolysates (UWPH). Due to the presence of the walnut kernel pellicle, the enzyme cleavage sites of alkaline proteases on walnut precursor proteins were altered, resulting in differences in the number and length of the peptides obtained. Principal component analysis indicates significant differences between PWPH and UWPH. Combined with bioinformatics analysis, it was shown that walnut kernel peeling improved the release of peptides, formed more bioactive peptides, reduced allergenicity, and improved water solubility. Seven peptides with acetylcholinesterase (AChE) inhibitory activity were identified, and the peptide Val-Gly-Ala-Pro-Phe-Asp-Gly-Ala (VGAPFDGA) has the strongest inhibitory activity with an IC50 of 0.38 ± 0.01 mg/mL. These results confirmed that walnut kernel peeling could greatly change the composition of the walnut protein hydrolysates, and seven novel peptides were reported that showed significant AChE inhibitory activity.
Collapse
Affiliation(s)
- Yujiao Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, China
| | - Li Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, China
| | - Like Lin
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, China
| | - Yiran Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, China
| | - Bang Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, China
| |
Collapse
|
4
|
Zu X, Zhao Q, Liu W, Guo L, Liao T, Cai J, Li H. Sturgeon (Acipenser schrenckii) spinal cord peptides: Antioxidative and acetylcholinesterase inhibitory efficacy and mechanisms. Food Chem 2024; 461:140834. [PMID: 39153375 DOI: 10.1016/j.foodchem.2024.140834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Providing antioxidants and targeting acetylcholinesterase (AChE) are key strategies in treating neurocognitive dysfunction. In this study, bioactive sturgeon (Acipenser schrenckii) spinal cord peptides (SSCPs) with antioxidant and AChE inhibitory potency were extracted and separated from sturgeon spinal cord by enzymatic hydrolysis and ultrafiltration, and targeted peptide PGGW was screened via computer simulated molecular docking. Further, the molecular dynamic interactions of the PGGW with superoxide dismutase (SOD) and AChE were analyzed, and the protective effect of PGGW on glutamate-induced PC12 cells in vitro was evaluated. The <3 kDa fraction of SSCPs displays the most potent antioxidative efficacy (1 mg/mL, DPPH•: 89.07%, ABTS+: 76.35%). Molecular dynamics simulation showed that PGGW was stable within AChE and tightly bound to residues SER203, PHE295, ILE294 and TRP236. When combined with SOD, the indole group of PGGW was stuck inside SOD, but the tail chain PGG fluctuated greatly outside. Surface plasmon resonance demonstrated that PGGW has a high binding affinity for AChE (KD = 1.4 mM) and 0.01 mg/mL PGGW provided good protection against glutamate-induced apoptosis. The findings suggest a promising strategy for drug research on neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoyan Zu
- Key Laboratory of Cold Chain Logistics Technology for Agricultural Products (Ministry of Agriculture and Rural Affairs), Institute of Agricultural Products Processing and Nuclear Technology, Hubei, Academy of Agricultural Sciences, Wuhan 430064, China
| | - Qing Zhao
- Key Laboratory of Cold Chain Logistics Technology for Agricultural Products (Ministry of Agriculture and Rural Affairs), Institute of Agricultural Products Processing and Nuclear Technology, Hubei, Academy of Agricultural Sciences, Wuhan 430064, China; School of Life and Health Sciences, Hubei University of Technology, Wuhan 430000, China
| | - Wenbo Liu
- Key Laboratory of Cold Chain Logistics Technology for Agricultural Products (Ministry of Agriculture and Rural Affairs), Institute of Agricultural Products Processing and Nuclear Technology, Hubei, Academy of Agricultural Sciences, Wuhan 430064, China; School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lu Guo
- School of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China
| | - Tao Liao
- Key Laboratory of Cold Chain Logistics Technology for Agricultural Products (Ministry of Agriculture and Rural Affairs), Institute of Agricultural Products Processing and Nuclear Technology, Hubei, Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jun Cai
- School of Life and Health Sciences, Hubei University of Technology, Wuhan 430000, China.
| | - Hailan Li
- Key Laboratory of Cold Chain Logistics Technology for Agricultural Products (Ministry of Agriculture and Rural Affairs), Institute of Agricultural Products Processing and Nuclear Technology, Hubei, Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
5
|
Yao W, Zhang Y, Zhang G. Marine peptides as potential anti-aging agents: Preparation, characterization, mechanisms of action, and future perspectives. Food Chem 2024; 460:140413. [PMID: 39033641 DOI: 10.1016/j.foodchem.2024.140413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/19/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Aging is a universal biological process characterized by a decline in physiological functions, leading to increased susceptibility to diseases. With global aging trends, understanding and mitigating the aging process is paramount. Recent studies highlight marine peptides as promising bioactive substances with potential anti-aging properties. This review critically examines the potential of marine peptides as novel food ingredients in anti-aging, exploring their sources, preparation methods, physicochemical properties, and the underlying mechanisms through which they impact the aging process. Marine peptides exhibit significant potential in targeting aging, extending lifespan, and enhancing healthspan. They act through mechanisms such as reducing oxidative stress and inflammation, modulating mitochondrial dysfunction, inducing autophagy, maintaining extracellular matrix homeostasis, and regulating longevity-related pathways. Despite challenges in stability, bioavailability, and scalability, marine peptides offer significant potential in health, nutraceuticals, and pharmaceuticals, warranting further research and development in anti-aging.
Collapse
Affiliation(s)
- Wanzi Yao
- Department of Food Safety and Health, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yifeng Zhang
- Department of Food Safety and Health, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Gaiping Zhang
- Department of Food Safety and Health, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agriculture University, Zhengzhou 450046, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China.
| |
Collapse
|
6
|
Liang J, Zhang Y, Liu C, Li S, Li R, Zhang Y, Chen M, Sun R. High-Speed Countercurrent Chromatography Isolation of Active Components from Evodia Rutaecarpa and Affinity Ultrafiltration Screening for Their Acetylcholinesterase Inhibitor Activity. J Sep Sci 2024; 47:e70002. [PMID: 39466023 DOI: 10.1002/jssc.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024]
Abstract
Acetylcholinesterase inhibitors from Evodia rutaecarpa were screened, prepared, and evaluated. To screen the lipophilic alkaloid active constituents in E. rutaecarpa, we improved and optimized an ultrafiltration system. Three acetylcholinesterase (AChE) inhibitors, dehydroevodiamine, evodiamine, and rutecarpine, were screened. Addressing the limitations of the traditional response surface methodology (RSM) for multiobjective screening, we integrated RSM with the Non-dominated Sorting Genetic Algorithm III to achieve the optimal extraction of these active ingredients. High-speed countercurrent chromatography was used to isolate the active components using a two-phase solvent system: n-hexane/ethyl acetate/methanol/water (3.0:2.5:3.5:2.0, v/v/v/v) and ethyl acetate/methanol/water (3.0:1.0:4.0, v/v/v). The nuclear magnetic resonance spectroscopy confirmed the structures of the compounds, and molecular docking and dynamics simulations assessed the inhibitory effects of the chemical components on AChE, which were consistent with the findings of the ultrafiltration experiments. We also confirmed the neuroprotective properties of these compounds against glutamate-induced apoptosis in PC12 cells. Overall, we achieved the systematic optimization of multitarget compound extraction and lipophilic alkaloid ultrafiltration screening, as well as preparation and activity validation, laying the groundwork for the development of AChE inhibitors from lipophilic alkaloids.
Collapse
Affiliation(s)
- Jiaqi Liang
- Central Laboratory, Changchun Normal University, Changchun, Jilin, China
| | - Yuchi Zhang
- Central Laboratory, Changchun Normal University, Changchun, Jilin, China
| | - Chunming Liu
- Central Laboratory, Changchun Normal University, Changchun, Jilin, China
| | - Sainan Li
- Central Laboratory, Changchun Normal University, Changchun, Jilin, China
| | - Ruizhe Li
- Central Laboratory, Changchun Normal University, Changchun, Jilin, China
| | - Yutong Zhang
- Central Laboratory, Changchun Normal University, Changchun, Jilin, China
| | - Ming Chen
- Central Laboratory, Changchun Normal University, Changchun, Jilin, China
| | - Ruijun Sun
- Central Laboratory, Changchun Normal University, Changchun, Jilin, China
| |
Collapse
|
7
|
Cheng L, Shi C, Li X, Matsui T. Impact of Peptide Transport and Memory Function in the Brain. Nutrients 2024; 16:2947. [PMID: 39275263 PMCID: PMC11396983 DOI: 10.3390/nu16172947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Recent studies have reported the benefits of food-derived peptides for memory dysfunction. Beyond the physiological effects of peptides, their bioavailability to the brain still remains unclear since the blood-brain barrier (BBB) strictly controls the transportation of compounds to the brain. Here, updated transportation studies on BBB transportable peptides are introduced and evaluated using in vitro BBB models, in situ perfusion, and in vivo mouse experiments. Additionally, the mechanisms of action of brain health peptides in relation to the pathogenesis of neurodegenerative diseases, particularly Alzheimer's disease, are discussed. This discussion follows a summary of bioactive peptides with neuroprotective effects that can improve cognitive decline through various mechanisms, including anti-inflammatory, antioxidative, anti-amyloid β aggregation, and neurotransmitter regulation.
Collapse
Affiliation(s)
- Lihong Cheng
- Department of Cell Biology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Caiyue Shi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka 819-0395, Japan
| | - Xixi Li
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka 819-0395, Japan
| | - Toshiro Matsui
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
8
|
Liu Y, Lin L, Zheng H, Huang H, Qian ZJ. Microalgae Octapeptide IIAVEAGC Alleviates Oxidative Stress and Neurotoxicity in 6-OHDA-Induced SH-SY5Y Cells by Regulating the Nrf2/HO-1and Jak2/Stat3 Pathways. Chem Biodivers 2024; 21:e202301509. [PMID: 38594219 DOI: 10.1002/cbdv.202301509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
Neurodegenerative diseases are characterized by the progressive loss of selectively vulnerable populations of neurons, and many factors are involved in its causes. Neurotoxicity and oxidative stress, are the main related factors. The octapeptide Ile-Ile-Ala-Val-Glu-Ala-Gly-Cys (IEC) was identified from the microalgae Isochrysis zhanjiangensis and exhibited potential anti-oxidative stress activity. In this study, the stability of α-synaptic protein binding to IEC was modeled using molecular dynamics, and the results indicated binding stabilization within 60 ns. Oxidative stress in neurons is the major cause of α-synaptic protein congestion. Therefore, we next evaluated the protective effects of IEC against oxidative stress and neurotoxicity in 6-ohdainduced Parkinson's disease (PD) model SH-SY5Y cells in vitro. In oxidative stress, IEC appeared to increase the expression of the antioxidant enzymes HO-1 and GPX through the antioxidant pathway of Nrf2, and molecular docking of IEC with Nrf2 and GPX could generate hydrogen bonds. Regarding apoptosis, IEC protected cells by increasing the Bcl-2/Bax ratio, inhibiting the caspase cascade, acting on p53, and modulating the Jak2/Stat3 pathway. The results indicated that IEC exerted neuroprotective effects through the inhibition of α-synaptic protein aggregation and antioxidant activity. Therefore, microalgal peptides have promising applications in the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi Liu
- School of Chemistry and Environment, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Liyuan Lin
- School of Chemistry and Environment, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Haiyan Zheng
- School of Chemistry and Environment, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Huixue Huang
- School of Chemistry and Environment, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhong-Ji Qian
- School of Chemistry and Environment, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| |
Collapse
|
9
|
Su G, Chen J, Huang L, Zhao M, Huang Q, Zhang J, Zeng X, Zhang Y, Deng L, Zhao T. Effects of walnut seed coat polyphenols on walnut protein hydrolysates: Structural alterations, hydrolysis efficiency, and acetylcholinesterase inhibitory capacity. Food Chem 2024; 437:137905. [PMID: 37922803 DOI: 10.1016/j.foodchem.2023.137905] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
The walnut meal is rich in nutrients such as protein from the kernel and polyphenolic compounds from the seed coat. However, the influences of seed coat polyphenols on walnut protein (WP) hydrolysis remained unclear. In this study, our findings indicated that polyphenols induced alterations in the secondary structure and amino acid composition of WP. These changes resulted in both a hindrance of hydrolysis and an enhancement of acetylcholinesterase (AChE) inhibition. Furthermore, four peptides of 119 identified peptides (LR, SF, FQ, and FR) were synthesized based on higher predicted bioactivity and Vinascores in silico. Among them, FQ showed interaction with amino acid residues in AChE through the formation of four π-π stacking bonds and two hydrogen bonds, resulting in the highest AChE inhibitory capacity. The combination index showed that chlorogenic acid derived from the seed coat and FQ at the molar ratio of 1:4 exhibited synergistic effects of AChE inhibition.
Collapse
Affiliation(s)
- Guowan Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jieqiong Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lin Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, China
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, United States
| | - Jianan Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xi Zeng
- Guangzhou Institute for Food Control, Guangzhou 511400, China
| | - Yehui Zhang
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Liuxin Deng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tiantian Zhao
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; Department of Food Science, Rutgers University, New Brunswick, NJ 08901, United States; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, China.
| |
Collapse
|
10
|
Patel K, Mani A. Food-derived Peptides as Promising Neuroprotective Agents: Mechanism and Therapeutic Potential. Curr Top Med Chem 2024; 24:1212-1229. [PMID: 38551052 DOI: 10.2174/0115680266289248240322061723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 07/20/2024]
Abstract
Many food-derived peptides have the potential to improve brain health and slow down neurodegeneration. Peptides are produced by the enzymatic hydrolysis of proteins from different food sources. These peptides have been shown to be involved in antioxidant and anti-inflammatory activity, neuro-transmission modulation, and gene expression regulation. Although few peptides directly affect chromatin remodeling and histone alterations, others indirectly affect the neuroprotection process by interfering with epigenetic changes. Fish-derived peptides have shown neuroprotective properties that reduce oxidative stress and improve motor dysfunction in Parkinson's disease models. Peptides from milk and eggs have been found to have anti-inflammatory properties that reduce inflammation and improve cognitive function in Alzheimer's disease models. These peptides are potential therapeutics for neurodegenerative diseases, but more study is required to assess their efficacy and the underlying neuroprotective benefits. Consequently, this review concentrated on each mechanism of action used by food-derived peptides that have neuroprotective advantages and applications in treating neurodegenerative diseases. This article highlights various pathways, such as inflammatory pathways, major oxidant pathways, apoptotic pathways, neurotransmitter modulation, and gene regulation through which food-derived peptides interact at the cellular level.
Collapse
Affiliation(s)
- Kavita Patel
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| |
Collapse
|
11
|
Rafique H, Hu X, Ren T, Dong R, Aadil RM, Zou L, Sharif MK, Li L. Characterization and Exploration of the Neuroprotective Potential of Oat-Protein-Derived Peptides in PC12 Cells and Scopolamine-Treated Zebrafish. Nutrients 2023; 16:117. [PMID: 38201947 PMCID: PMC10780882 DOI: 10.3390/nu16010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Neurodegenerative disorders pose a substantial risk to human health, and oxidative stress, cholinergic dysfunction, and inflammation are the major contributors. The purpose of this study was to explore the neuroprotective effects of oat protein hydrolysate (OPH) and identify peptides with neuroprotective potential. This study is the first to isolate and identify OPH peptides with neuroprotective potential, including DFVADHPFLF (DF-10), HGQNFPIL (HL-8), and RDFPITWPW (RW-9), by screening via peptidomes and molecular-docking simulations. These peptides showed positive effects on the activity of antioxidant enzymes and thus reduced oxidative stress through regulation of Nrf2-keap1/HO-1 gene expression in vitro and in vivo. The peptides also significantly ameliorated scopolamine-induced cognitive impairment in the zebrafish model. This improvement was correlated with mitigation of MDA levels, AChE activity, and levels of inflammatory cytokines in the brains of zebrafish. Furthermore, these peptides significantly upregulated the mRNA expression of Bdnf, Nrf2, and Erg1 in the brains of zebrafish with neurodegenerative disorders. Collectively, oat peptides have potential for use as active components in nutraceutical applications for the prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hamad Rafique
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (H.R.)
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (H.R.)
| | - Tian Ren
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (H.R.)
| | - Rui Dong
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (H.R.)
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Mian Kamran Sharif
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Lu Li
- Guilin Seamild Food Co., Ltd., Guilin 541000, China
| |
Collapse
|
12
|
Zhang S, Qian C, Li H, Zhao Z, Xian J, Yang D. Structure-activity relationship of a housefly neuroprotective dodecapeptide that activates the nuclear factor erythroid 2-related factor 2 pathway. J Nat Med 2023; 77:96-108. [PMID: 36136205 DOI: 10.1007/s11418-022-01650-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/18/2022] [Indexed: 01/06/2023]
Abstract
Neuroprotective antioxidants, especially peptide-based antioxidants, are effective against oxidative stress in neurodegenerative disorders. In this study, we measured the neuroprotective effects of the antioxidant peptide DFTPVCTTELGR (DR12) from housefly Musca domestica L. pupae. Treatment of PC12 and HT22 cells with DR12 significantly reduced glutamate-induced cytotoxicity. Peptide DR12 appeared to exert its neuroprotective effects by attenuating production of reactive oxygen species and malonaldehyde, upregulating the endogenous antioxidants superoxide dismutase and glutathione, and reversing the loss of mitochondrial membrane potential. In addition, DR12 treatment activated the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 signaling pathway. Structure-activity analysis indicated that the superior neuroprotective function of DR12 was related to its cysteine residue. In summary, DR12 may be an attractive therapeutic peptide or precursor to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Sichen Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.,Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou, China
| | - Chunguo Qian
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.,Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou, China
| | - Hailing Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.,Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou, China
| | - Zhimin Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.,Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou, China
| | - Jianchun Xian
- Guangdong Museum of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Depo Yang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China. .,Guangdong Technology Research Center for Advanced Chinese Medicine, Guangzhou, China.
| |
Collapse
|
13
|
Zhang S, Zhang L, Yu M, Luo D, Chen S, Liu W, Zhang Y, Zhang L, Zhao T. Essential oils of Zingiber officinale: Chemical composition, in vivo alleviation effects on TPA induced ear swelling in mice and in vitro bioactivities. Front Nutr 2022; 9:1043175. [PMID: 36352904 PMCID: PMC9639606 DOI: 10.3389/fnut.2022.1043175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
Zingiber officinale (ZO) is a traditional food condiment. The essential oils of Z. officinale (ZOEOs) are known to have multiple bioactivities. In this study, gas chromatography mass spectrometer (GC-MS) analytical method was used to identify active ingredient present in ZOEOs. A total of 41 compounds were identified in ZOEOs. Major components in ZOEOs were zingiberene (19.71%), (+)-β-cedrene (12.85%), farnesene (12.17%), α-curcumene (10.18%) and β-elemene (3.54%). Experimental results of 12-O-tetradecanoylphorbol-13 acetate (TPA) induced ear swelling validation mice model showed that ZOEOs treatment has better anti-inflammatory effect compared with ibuprofen (positive control) at high concentrations. Histological and immunohistochemical analysis showed that ZOEOs significantly decreased COX-2, IL-6 and NF-κB expression in a dose dependent manner. The mRNA levels of COX-2 and NF-κB were also down regulated by the application of ZOEOs. This indicated that ZOEOs exhibited positive effects in ear skin protection. Antibacterial experimental results showed that EOZOs had anti-bacterial effects on Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. DPPH radical scavenging, A549 cell line and LNCaP cell line inhibition results indicated that ZOEOs exhibited potential antioxidant and anti-tumor properties. The findings of these study provide scientific basis on therapeutic use of ZO in food, cosmetic and pharmaceutical industries.
Collapse
Affiliation(s)
- Silu Zhang
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Shenzhen Precision Health Food Technology Co., Ltd., Shenzhen, China
| | - Lijun Zhang
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Mengjie Yu
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Donghui Luo
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Shuai Chen
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Weifeng Liu
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yehui Zhang
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lanyue Zhang
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
- *Correspondence: Lanyue Zhang
| | - Tiantian Zhao
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Food Science and Engineering Department, Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou, China
- Tiantian Zhao
| |
Collapse
|
14
|
The Therapeutic Potential of Naturally Occurring Peptides in Counteracting SH-SY5Y Cells Injury. Int J Mol Sci 2022; 23:ijms231911778. [PMID: 36233079 PMCID: PMC9569762 DOI: 10.3390/ijms231911778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Peptides have revealed a large range of biological activities with high selectivity and efficiency for the development of new drugs, including neuroprotective agents. Therefore, this work investigates the neuroprotective properties of naturally occurring peptides, endomorphin-1 (EM-1), endomorphin-2 (EM-2), rubiscolin-5 (R-5), and rubiscolin-6 (R-6). We aimed at answering the question of whether well-known opioid peptides can counteract cell injury in a common in vitro model of Parkinson’s disease (PD). Antioxidant activity of these four peptides was evaluated by the 2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging activity, oxygen radical absorbance capacity (ORAC), and ferric-reducing antioxidant power (FRAP) assays, while neuroprotective effects were assessed in a neurotoxic model induced by 6-hydroxydopamine (6-OHDA) in a human neuroblastoma cell line (SH-SY5Y). The mechanisms associated with neuroprotection were investigated by the determination of mitochondrial membrane potential (MMP), reactive oxygen species (ROS) production, and Caspase-3 activity. Among the tested peptides, endomorphins significantly prevented neuronal death induced by 6-OHDA treatment, decreasing MMP (EM-1) or Caspase-3 activity (EM-2). Meanwhile, R-6 showed antioxidant potential by FRAP assay and exhibited the highest capacity to recover the neurotoxicity induced by 6-OHDA via attenuation of ROS levels and mitochondrial dysfunction. Generally, we hypothesize that peptides’ ability to suppress the toxic effect induced by 6-OHDA may be mediated by different cellular mechanisms. The protective effect caused by endomorphins results in an antiapoptotic effect (mitochondrial protection and decrease in Caspase-3 activity), while R-6 potency to increase a cell’s viability seems to be mediated by reducing oxidative stress. Our results may provide new insight into neurodegeneration and support the short peptides as a potent drug candidate to treat PD. However, further studies should be conducted on the detailed mechanisms of how tested peptides could suppress neuronal injuries.
Collapse
|
15
|
Czelej M, Garbacz K, Czernecki T, Wawrzykowski J, Waśko A. Protein Hydrolysates Derived from Animals and Plants—A Review of Production Methods and Antioxidant Activity. Foods 2022; 11:foods11131953. [PMID: 35804767 PMCID: PMC9266099 DOI: 10.3390/foods11131953] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 01/27/2023] Open
Abstract
There is currently considerable interest on the use of animal, plant, and fungal sources in the production of bioactive peptides, as evidenced by the substantial body of research on the topic. Such sources provide cheap and environmentally friendly material as it often includes waste and by-products. Enzymatic hydrolysis is considered an efficient method of obtaining peptides capable of antioxidant activity. Those properties have been proven in terms of radical-scavenging capacity using the DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS (2,2-azinobis-(3-ethyl-benzothiazoline-6-sulphonic acid)), hydroxyl and superoxide radical methods. Additionally, the reducing power, ferrous ion-chelating (FIC), ferric reducing antioxidant power (FRAP), and the ability of the protein hydrolysates to inhibit lipid peroxidation have also been explored. The results collected in this review clearly indicate that the substrate properties, as well as the conditions under which the hydrolysis reaction is carried out, affect the final antioxidant potential of the obtained peptides. This is mainly due to the structural properties of the obtained compounds such as size or amino acid sequences.
Collapse
Affiliation(s)
- Michał Czelej
- Biolive Innovation Sp. z o. o., 3 Dobrzańskiego Street, 20-262 Lublin, Poland;
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland; (T.C.); (A.W.)
- Correspondence:
| | - Katarzyna Garbacz
- Biolive Innovation Sp. z o. o., 3 Dobrzańskiego Street, 20-262 Lublin, Poland;
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland; (T.C.); (A.W.)
| | - Tomasz Czernecki
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland; (T.C.); (A.W.)
| | - Jacek Wawrzykowski
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 12 Akademicka Street, 20-400 Lublin, Poland;
| | - Adam Waśko
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland; (T.C.); (A.W.)
| |
Collapse
|
16
|
Zhao T, Zhong S, Xu J, Jiao W, Liu W, Huang L, Zhang Y, Zhang Y. PAYCS Alleviates Scopolamine-Induced Memory Deficits in Mice by Reducing Oxidative and Inflammatory Stress and Modulation of Gut Microbiota-Fecal Metabolites-Brain Neurotransmitter Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2864-2875. [PMID: 35174709 DOI: 10.1021/acs.jafc.1c06726] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The bioactive peptide PAYCS (Pro-Ala-Tyr-Cys-Ser) identified from anchovy hydrolysates has been reported to be positive in memory alleviation. The gut microbiota-brain axis plays a vital role in brain functions, which could be affected by nutritional supplementation. Herein, we found that PAYCS at different concentrations (PAYCS-L and PAYCS-H) showed various improving effects in behavioral tests and alleviation effects on oxidative as well as inflammatory stress in the scopolamine-induced AD mouse model. The 16S rRNA results illustrated that PAYCS-L altered the ratio of Bacteroidetes/Firmicutes and PAYCS treatment elevated the relative abundance of Cacteroidaceae and Prevotellaceae. Notably, administration of PAYCS significantly upregulated memory-related metabolites and neurotransmitters. Overall, PAYCS-L reversed memory deficits of amnesiac mice partially via the modulation of gut microbiota-metabolites-brain neurotransmitter axis. For PAYCS-H, functions might be involved in the reversal of oxidative and inflammatory impairments in the liver and serum, which was also associated with the changed intestinal microbiota and fecal metabolites.
Collapse
Affiliation(s)
- Tiantian Zhao
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jucai Xu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Wenjuan Jiao
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Weifeng Liu
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lihua Huang
- Department of Food, Guangzhou City Polytechnic, Guangzhou 510405, China
| | - Yehui Zhang
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yousheng Zhang
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| |
Collapse
|
17
|
Zhao T, Zhang C, Zhong S, Chen Q, Liu S, Jiao W, Liu W, Huang L, Zhang Y, Zhang Y. Synergistic alleviation effects of anchovy hydrolysates-catechin on scopolamine-induced mice memory deficits: the exploration of the potential relationship among gut-brain-axis. Food Funct 2022; 13:1563-1578. [PMID: 35072201 DOI: 10.1039/d1fo02195h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Anchovy protein hydrolysates (APH) and catechin (CA) have proved to be effective in memory improvement. However, the enhancing effects of APH-CA conjugates on the memory are little investigated. The underlying mechanism and synergic effects remain unclear. Herein, relationships among memory enhancement, gut microbiota, fecal metabolites, and neurotransmitters of mice regulated by APH-CA were investigated. APH, APH-CA, and CA decreased MDA, IL-1β, and TNF-α in liver, altered levels of GPx, LDH, IL-1β, and TNF-α in serum, re-structured gut microbiota, regulated fecal metabolites, and regulated neurotransmitters in the brain. The alleviation effects of APH-CA were partially better than those of APH and CA. The 16s rRNA results illustrated that Bacteroidetes and Firmicutes were altered. Notably, memory-related metabolites and neurotransmitters were significantly up-regulated by the administration of samples. Moreover, possible connections are observed among the gut microbiota, fecal metabolites, and brain neurotransmitters. Together, the regulation of the microbiota-metabolites-brain-neurotransmitters axis may be one of the mechanisms for APH-CA against scopolamine-induced cognitive deficits. In addition, the synergic effects of APH and CA were partially confirmed.
Collapse
Affiliation(s)
- Tiantian Zhao
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China. .,College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China
| | - Chen Zhang
- Guangzhou Aibaiyi Biotechnology Co., Ltd, Guangzhou 51140, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China
| | - Qirong Chen
- Guangzhou Aibaiyi Biotechnology Co., Ltd, Guangzhou 51140, China
| | - Shuo Liu
- Guangzhou Aibaiyi Biotechnology Co., Ltd, Guangzhou 51140, China
| | - Wenjuan Jiao
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Weifeng Liu
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Lihua Huang
- Department of Food, Guangzhou City Polytechnic, Guangzhou 510405, China
| | - Yehui Zhang
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Yousheng Zhang
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| |
Collapse
|
18
|
Jamshidnejad-Tosaramandani T, Kashanian S, Babaei M, Al-Sabri MH, Schiöth HB. The Potential Effect of Insulin on AChE and Its Interactions with Rivastigmine In Vitro. Pharmaceuticals (Basel) 2021; 14:ph14111136. [PMID: 34832918 PMCID: PMC8617642 DOI: 10.3390/ph14111136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
There is no definite cure for Alzheimer’s disease (AD) due to its multifactorial origin. Drugs that inhibit acetylcholinesterase (AChE), such as rivastigmine, are promising symptomatic treatments for AD. Emerging evidence suggests that insulin therapy can hinder several aspects of AD pathology. Insulin has been shown to modify the activity of AChE, but it is still unknown how insulin and AChE interact. Combination therapy, which targets several features of the disease based on existing medications, can provide a worthy therapy option for AD management. However, to date, no studies have examined the potential interaction of insulin with AChE and/or rivastigmine in vitro. In the present study, we employed the Response Surface Methodology (RSM) as an in vitro assessment to investigate the effect of insulin on both AChE activity and rivastigmine inhibitory action using a common spectrophotometric assay for cholinesterase activity, Ellman’s method. Our results showed that insulin, even at high concentrations, has an insignificant effect on both the activity of AChE and rivastigmine’s inhibitory action. The variance of our data is near zero, which means that the dispersion is negligible. However, to improve our understanding of the possible interaction of insulin and rivastigmine, or its target AChE, more in silico modelling and in vivo studies are needed.
Collapse
Affiliation(s)
- Tahereh Jamshidnejad-Tosaramandani
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah 6714414971, Iran;
- Department of Biology, Faculty of Science, Razi University, Kermanshah 6714414971, Iran;
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, BMC, Husargatan 3, Box 593, 751 24 Uppsala, Sweden; (M.H.A.-S.); (H.B.S.)
| | - Soheila Kashanian
- Nanobiotechnology Department, Faculty of Innovative Science and Technology, Razi University, Kermanshah 6714414971, Iran;
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Science, Kermanshah 6734667149, Iran
- Faculty of Chemistry, Sensor and Biosensor Research Center (SBRC), Razi University, Kermanshah 6714414971, Iran
- Correspondence: ; Tel./Fax: +98-833-4274559
| | - Mahsa Babaei
- Department of Biology, Faculty of Science, Razi University, Kermanshah 6714414971, Iran;
| | - Mohamed H. Al-Sabri
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, BMC, Husargatan 3, Box 593, 751 24 Uppsala, Sweden; (M.H.A.-S.); (H.B.S.)
| | - Helgi B. Schiöth
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, BMC, Husargatan 3, Box 593, 751 24 Uppsala, Sweden; (M.H.A.-S.); (H.B.S.)
- Institute for Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Trubetskay Str. 8, bldg 2, 119991 Moscow, Russia
| |
Collapse
|
19
|
Hydrolase-Treated Royal Jelly Attenuates H 2O 2- and Glutamate-Induced SH-SY5Y Cell Damage and Promotes Cognitive Enhancement in a Rat Model of Vascular Dementia. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:2213814. [PMID: 34651043 PMCID: PMC8510834 DOI: 10.1155/2021/2213814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022]
Abstract
Vascular dementia (VaD) is the second most common type of dementia following Alzheimer's disease, but the therapeutic efficacy is still not effective. This makes the searching for novel neuroprotective agents important. Therefore, we hypothesized that royal jelly, a well-known traditional medicine, could attenuate memory impairment and brain damage in vascular dementia. This study determined the effects of royal jelly hydrolysate (RJH) and possible mechanism of cell damage and cognitive-enhancing effect in animal study. An in vitro study assessed the effects of RJH on acetylcholinesterase inhibitor, cell viability, and cell damage in SH-SY5Y neuroblastoma cells. Then, an in vivo study examined vascular dementia by the occlusion of the right middle cerebral artery (Rt.MCAO); adult male Wistar rats had been orally given RJH at doses ranging from 10, 50, to 100 mg/kg for 14 days before and 14 days after the occlusion of Rt.MCAO to mimic the VaD condition. Rats' spatial memory was evaluated using Morris water maze and radial arm maze every 7 days after Rt.MCAO throughout a 14-day experimental period, and then, they were sacrificed and the acetylcholinesterase (AChE) activity in the hippocampus was determined. The results showed that RJH has no cytotoxic effect with the final concentration up to 500 μg protein/ml and reduces cell death from the H2O2- and glutamate-induced cell damage in in vitro neuroblastoma cells. Importantly, RJH significantly improved memory performance in Morris water maze test and radial arm maze and decreased the level of acetyl cholinesterase activity. In conclusion, RJH is the potential neuroprotective agent and cognitive enhancer for VaD.
Collapse
|
20
|
Wang S, Sun-Waterhouse D, Neil Waterhouse GI, Zheng L, Su G, Zhao M. Effects of food-derived bioactive peptides on cognitive deficits and memory decline in neurodegenerative diseases: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Wu S, Chen M, Liao X, Huang R, Wang J, Xie Y, Hu H, Zhang J, Wu Q, Ding Y. Protein hydrolysates from Pleurotus geesteranus obtained by simulated gastrointestinal digestion exhibit neuroprotective effects in H 2 O 2 -injured PC12 cells. J Food Biochem 2021; 46:e13879. [PMID: 34309037 DOI: 10.1111/jfbc.13879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022]
Abstract
Neurodegenerative diseases are considered to be among the diseases most threatening to human beings. Increasing evidence shows that antioxidant hydrolysates/peptides with neuroprotective effects may relieve neurodegenerative diseases. However, related research in mushrooms, one of the richest sources of antioxidant hydrolysates/peptides, is in its infancy. Therefore, the in vitro neuroprotective effects of protein hydrolysates from Pleurotus geesteranus were researched in this study. Proteins were extracted from P. geesteranus and then hydrolyzed by simulated gastrointestinal digestion. The neuroprotective effects of the protein hydrolysates were evaluated by H2 O2 -injured PC12 cells. The hydrolysates showed a superior antioxidative ability and had a higher abundance of hydrophobic amino acids (e.g., leucine, alanine, and phenylalanine). Neither cytotoxicity nor the increase of ROS in PC12 cells was observed under treatment with the hydrolysates. However, pre-treatment with the hydrolysates in PC12 cells, which were then injured by H2 O2 , markedly attenuated ROS generation and enhanced the activities and mRNA expression of the endogenous antioxidant enzymes (catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD)), leading to a 26.68% increase in cell viability. The hydrolysates exhibited strong neuroprotective activity in H2 O2 -injured PC12 cells, possibly by reducing ROS generation and enhancing the activity of the antioxidant enzymatic system. PRACTICAL APPLICATIONS: Antioxidant hydrolysates with neuroprotection were obtained from Pleurotus geesteranus proteins by simulating gastrointestinal digestion, which exhibited an excellent pre-protective effect in oxidatively damaged PC12 cells. Further study showed that hydrolysates pre-protection may exert antioxidant activities not only as an exogenous antioxidant to scavenge ROS but also as a gene regulator to modulate the endogenous antioxidant enzymes gene expression. These results indicated that the potential of antioxidant peptides, derived from P. geesteranus through gastrointestinal digestion, could serve as a source of bioactive molecules in the prevention, relief or even treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Shujian Wu
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Mengfei Chen
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiyu Liao
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Rui Huang
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yizhen Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Huiping Hu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
22
|
Perlikowska R. Whether short peptides are good candidates for future neuroprotective therapeutics? Peptides 2021; 140:170528. [PMID: 33716091 DOI: 10.1016/j.peptides.2021.170528] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases are a broad group of largely debilitating, and ultimately terminal conditions resulting in progressive degeneration of different brain regions. The observed damages are associated with cell death, structural and functional deficits of neurons, or demyelination. The concept of neuroprotection concerns the administration of the agent, which should reverse some of the damage or prevent further adverse changes. A growing body of evidence suggested that among many classes of compounds considered as neuroprotective agents, peptides derived from natural materials or their synthetic analogs are good candidates. They presented a broad spectrum of activities and abilities to act through diverse mechanisms of action. Biologically active peptides have many properties, including antioxidant, antimicrobial, antiinflammatory, and immunomodulatory effects. Peptides with pro-survival and neuroprotective activities, associated with inhibition of oxidative stress, apoptosis, inflammation and are able to improve cell viability or mitochondrial functions, are also promising molecules of particular interest to the pharmaceutical industries. Peptide multiple activities open the way for broad application potential as therapeutic agents or ingredients of health-promoting functional foods. Significantly, synthetic peptides can be remodeled in numerous ways to have desired features, such as increased solubility or biological stability, as well as selectivity towards a specific receptor, and finally better membrane penetration. This review summarized the most common features of major neurodegenerative disorders, their causes, consequences, and reported new neuroprotective drug development approaches. The author focused on the unique perspectives in neuroprotection and provided a concise survey of short peptides proposed as novel therapeutic agents against various neurodegenerative diseases.
Collapse
Affiliation(s)
- Renata Perlikowska
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, 92-215, Lodz, Poland.
| |
Collapse
|
23
|
Bekhit AEDA, Holman BW, Giteru SG, Hopkins DL. Total volatile basic nitrogen (TVB-N) and its role in meat spoilage: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.006] [Citation(s) in RCA: 367] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
24
|
Zhao T, Huang L, Luo D, Xie Y, Zhang Y, Zhang Y, Jiao W, Su G, Zhao M. Fabrication and characterization of anchovy protein hydrolysates-polyphenol conjugates with stabilizing effects on fish oil emulsion. Food Chem 2021; 351:129324. [PMID: 33647694 DOI: 10.1016/j.foodchem.2021.129324] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 11/25/2022]
Abstract
Conjugation between peptides and polyphenols could improve their bioactive and functional properties. The improvement effects of anchovy protein hydrolysates (APH) -polyphenol (catechin (CA), gallic acid (GA), tannic acid (TA)) conjugates were investigated. The content of protein and polyphenols and ratio of polyphenols/peptides in conjugates increased as the number of OH group increased with TA > CA > GA. Results showed that APH-CA and APH-GA exhibited the highest ORAC and ABTS+ scavenging capacity, respectively. Mass spectrometry analysis suggested the highest number of bioactive peptides were identified in APH-CA 5:1 (APH/polyphenols). The physical stability of fish oil emulsions during storage was significantly enhanced by TA 5:1 conjugate followed by CA 5:1 conjugate. The oxidative stability was remarkably elevated by APH-GA 10:1. This was due to the antioxidant capacity and the peptides adsorbed at the interfacial. This study demonstrated that APH-polyphenol conjugates could bring the possibility of utilizing peptides-polyphenols in the nutraceutical and functional food ingredient fields.
Collapse
Affiliation(s)
- Tiantian Zhao
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lin Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Donghui Luo
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Yuxi Xie
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yehui Zhang
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yousheng Zhang
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Wenjuan Jiao
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Guowan Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Mouming Zhao
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
25
|
Sharma P, Verma PK, Sood S, Pankaj NK, Agarwal S, Raina R. Neuroprotective potential of hydroethanolic hull extract of Juglans regia L. on isoprenaline induced oxidative damage in brain of Wistar rats. Toxicol Rep 2021; 8:223-229. [PMID: 33520664 PMCID: PMC7820311 DOI: 10.1016/j.toxrep.2021.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 11/18/2022] Open
Abstract
The study was aimed at assessing isoprenaline (ISO) induced oxidative damage in brain of Wistar rats and its protection by hydroethanolic hull extract of Juglans regia. Administration of ISO significantly increases catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), malondialdehyde (MDA) and advanced oxidation protein product (AOPP) levels and significantly reduced activities of antioxidant status (TAS), total thiols (TTH), acetylcholinesterase (AChE), arylesterase (AE), and glutathione peroxidase (GPx) in rat brain. Histopathologically, neuronal degeneration, spongiosis and gliosis were seen in cerebral cortex after ISO administration. Pretreatment with hull extract restored TAS, TTH, AChE, CAT and SOD values. Additionally, significant reductions were noted in levels of MDA, AOPP, and severity of histomorphological changes in cerebral cortex following hull extract treatment. Altered antioxidant biomarkers along with histopathological changes indicate oxidative injury in rat brain following ISO administration. Repeated administration of J. regia hull extract demonstrating presence of neuroprotective properties against ISO induced oxidative damage in rat brain.
Collapse
Affiliation(s)
- Priyanka Sharma
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, R S Pura, 181102, India
| | - Pawan K. Verma
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, R S Pura, 181102, India
| | - Shilpa Sood
- Division of Veterinary Pathology, Faculty of Veterinary Science and Animal Husbandry, R S Pura, 181102, India
| | - Nrip K. Pankaj
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, R S Pura, 181102, India
| | - Sanjay Agarwal
- Division of Veterinary Gynaecology and Obstetrics, Faculty of Veterinary Science and Animal Husbandry, R S Pura, 181102, India
| | - Rajinder Raina
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, R S Pura, 181102, India
| |
Collapse
|
26
|
Xiao T, Wang S, Yan M, Huang J, Yang X. A thiamine-triggered fluormetric assay for acetylcholinesterase activity and inhibitor screening based on oxidase-like activity of MnO2 nanosheets. Talanta 2021; 221:121362. [DOI: 10.1016/j.talanta.2020.121362] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 01/12/2023]
|
27
|
Discovery of monoamine oxidase A inhibitory peptides from hairtail (Trichiurus japonicus) using in vitro simulated gastrointestinal digestion and in silico studies. Bioorg Chem 2020; 101:104032. [DOI: 10.1016/j.bioorg.2020.104032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/16/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
|
28
|
Bao Z, Zhang P, Chen J, Gao J, Lin S, Sun N. Egg yolk phospholipids reverse scopolamine–induced spatial memory deficits in mice by attenuating cholinergic damage. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
29
|
Shi D, Yang J, Jiang Y, Wen L, Wang Z, Yang B. The antioxidant activity and neuroprotective mechanism of isoliquiritigenin. Free Radic Biol Med 2020; 152:207-215. [PMID: 32220625 DOI: 10.1016/j.freeradbiomed.2020.03.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022]
Abstract
Glycyrrhizae radix has been widely accepted as a functional food in Asia. Isoliquiritigenin is a characteristic bioactive chemical in this medicinal plant. In this work, the neuroprotective effect of isoliquiritigenin and the possible mechanisms were investigated. The results revealed that isoliquiritigenin exhibited better neuroprotective and antioxidant activities than quercetin, a commercial natural antioxidant. Isoliquiritigenin significantly inhibited the release of lactate dehydrogenase, and the generation of reactive oxygen species in H2O2-treated cells. The activities of superoxide dismutase, glutathione peroxidase and catalase were improved. The mRNA expression levels related to oxidative defense and cell apoptosis were reversed by isoliquiritigenin. Moreover, isoliquiritigenin might inhibit the cell apoptosis via ameliorating the loss of mitochondrial membrane potential and the change of nucleus morphology.
Collapse
Affiliation(s)
- Dingding Shi
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiali Yang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yueming Jiang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingrong Wen
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhubin Wang
- Nuspower Greatsun (Guangdong) Biotechnology Co., Ltd., Guangzhou, 510900, China
| | - Bao Yang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
30
|
Wang S, Zheng L, Zhao T, Zhang Q, Liu Y, Sun B, Su G, Zhao M. Inhibitory Effects of Walnut ( Juglans regia) Peptides on Neuroinflammation and Oxidative Stress in Lipopolysaccharide-Induced Cognitive Impairment Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2381-2392. [PMID: 32037817 DOI: 10.1021/acs.jafc.9b07670] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Increasing level of inflammation and oxidative stress could lead to memory impairment. The purpose of this study was to determine the neuroprotective effects of walnut peptides against memory deficits induced by lipopolysaccharide (LPS) in mice and further to explore the underlying anti-inflammatory mechanisms against LPS-elicited inflammation in BV-2 cells. Results showed that walnut protein hydrolysate (WPH) and its low-molecular-weight fraction (WPHL) could ameliorate the memory deficits induced by LPS via normalizing the inflammatory response and oxidative stress in brain, especially WPHL. Furthermore, 18 peptides with anti-inflammatory activities on LPS-activated BV-2 cells were identified from WPHL and it was found that Trp, Gly, and Leu residues in peptides might contribute to the anti-inflammation. Meanwhile, the strong anti-inflammatory effects of LPF, GVYY, and APTLW might be related to their hydrophobic and aromatic amino acid residues as well. LPF, GVYY, and APTLW could reduce the content of proinflammatory mediators and cytokines by downregulating related enzyme expressions and mRNA expressions. Additionally, ROS and mitochondria homeostasis might also contribute to their anti-inflammatory effects.
Collapse
Affiliation(s)
- Shuguang Wang
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Lin Zheng
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Tiantian Zhao
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Qi Zhang
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Yang Liu
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University (BTBU) , Beijing 100048 , China
| | - Guowan Su
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
| | - Mouming Zhao
- School of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center , Guangzhou 510650 , China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health , Beijing Technology & Business University (BTBU) , Beijing 100048 , China
| |
Collapse
|
31
|
Rajabian A, Sadeghnia HR, Hosseini A, Mousavi SH, Boroushaki MT. 3-Acetyl-11-keto-β-boswellic acid attenuated oxidative glutamate toxicity in neuron-like cell lines by apoptosis inhibition. J Cell Biochem 2020; 121:1778-1789. [PMID: 31642100 DOI: 10.1002/jcb.29413] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 10/04/2019] [Indexed: 12/18/2022]
Abstract
3-Acetyl-11-keto-β-boswellic acid (AKBA), a pentacyclic triterpenic acid present in gum resin of Boswellia serrata, has been found to possess antioxidant and neuroprotective properties. In this study, we aimed to examine protective properties of AKBA against glutamate-induced neuronal injury. To investigate the effects of AKBA (2.5-10 µM) on glutamate injury in neuron-like cells PC12 and N2a, two treatment regimens (incubation for 2 or 0 hours before glutamate exposure) were used. Then, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method was used to determine viability of the cells. Cellular redox status was evaluated using fluorimetry and comet assays. Annexin V/propidium iodide double staining and Western blot analysis of relative apoptotic proteins were conducted. Based on the results, 24 hours incubation with glutamate (8 mM) increased the cell mortality of PC12 and N2a (P < .001). However, AKBA (2.5-10 µM) enhanced the cell viability in both treatment regimens (P < .001). Also co- and pretreatment with AKBA significantly attenuated lipid peroxidation, reactive oxygen species production, and DNA injury (P < .05 and P < .001). AKBA also restored the activity of cellular superoxide dismutase under glutamate toxicity; this effect was seen to be more significant during the pretreatment regimen (P < .001). Moreover, Western blot analysis indicated that AKBA inhibited glutamate-induced programmed cell death through depressing the elevation of the expression ratio of Bax/Bcl-2 and cleaved-caspase-3 proteins, concentration-dependently. Overall, the present findings suggest the neuroprotective activities of AKBA against glutamate-induced cell injury probably by inhibiting oxidative damage and reducing apoptotic cell death.
Collapse
Affiliation(s)
- Arezoo Rajabian
- Pharmacological Research Center of Medicinal Plants, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hadi Mousavi
- Pharmacological Research Center of Medicinal Plants, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Taher Boroushaki
- Pharmacological Research Center of Medicinal Plants, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
32
|
Neuroprotection of round scad (Decapterus maruadsi) hydrolysate in glutamate-damaged PC12 cells: Possible involved signaling pathways and potential bioactive peptides. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
33
|
Liu Y, Su G, Wang S, Sun B, Zheng L, Zhao M. A highly absorbable peptide GLPY derived from elastin protect fibroblasts against UV damage via suppressing Ca2+ influx and ameliorating the loss of collagen and elastin. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
34
|
Li SJ, Chen P, Peres TV, Villahoz BF, Zhang Z, Miah MR, Aschner M. Triclosan induces PC12 cells injury is accompanied by inhibition of AKT/mTOR and activation of p38 pathway. Neurotoxicology 2019; 74:221-229. [PMID: 31381933 DOI: 10.1016/j.neuro.2019.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/18/2019] [Accepted: 07/29/2019] [Indexed: 11/18/2022]
Abstract
Triclosan (TCS) has been widely used as a disinfectant and antiseptic in multiple consumer and healthcare products due to its clinical effectiveness against various bacteria, fungi and protozoa. Recently, several studies have reported the adverse effects of TCS on various nerve cells, arousing concerns about its potential neurotoxicity. The present study aimed to investigate the neurotoxicity of TCS in rat pheochromocytoma PC12 cells. After differentiation, the stabilized PC12 cells were treated with 1, 10, 50 μM TCS for 12 h. At the end of the treatment, the generation of reactive oxygen species (ROS), protein expression of apoptotic-related genes, AMPK-AKT/mTOR, as well as p38 in PC12 cells were determined. The concentrations were chosen based on the results of cell viability and lactic dehydrogenase (LDH) assays in response to TCS treatment (ranging from 0.001 to 100 μM) for varied time periods. The results showed that TCS is cytotoxic to PC12 cells, causing decreased cell viability accompanied by increased LDH release. TCS treatment at 10 and 50 μM for 12 h increased the mRNA and protein expression of the pro-apoptotic gene Bax, while Bcl-2 levels remained unchanged. Moreover, an increase in the generation of reactive oxygen species (ROS) was found in TCS-treated PC12 cells at the concentrations of 1 and 10 μM. Pretreatment with 100 μM N-acetyl cysteine (NAC- ROS scavenger) for 1 h normalized the ROS generations in TCS-treated PC12 cells. Additionally, the suppression of the phosphorylation of Akt and mTOR was observed in TCS-treated PC12 cells at 10 and 50 μM for 12 h, concomitant with the activation of p38 MAPK pathway at 50 μM TCS. However, there were no effects of TCS on the phosphorylation of AMPK in these cells. Taken together, these results suggest that TCS may cause adverse effects and oxidative stress in PC12 cells accompanied by inhibition of Akt/mTOR and activation of p38.
Collapse
Affiliation(s)
- Shao-Jun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY10461,United States
| | - Tanara Vieira Peres
- Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, SC, 88040900, Brazil
| | - Beatriz Ferrer Villahoz
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY10461,United States
| | - Ziyan Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY10461,United States
| | - Mahfuzur R Miah
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY10461,United States; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY10461,United States; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| |
Collapse
|
35
|
Lee SY, Hur SJ. Neuroprotective effects of different molecular weight peptide fractions obtained from beef by hydrolysis with commercial enzymes in SH-SY5Y cells. Food Res Int 2019; 121:176-184. [DOI: 10.1016/j.foodres.2019.03.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 10/27/2022]
|
36
|
Protective effect of a 3 kDa peptide obtained from beef myofibrillar protein using alkaline-AK on neuronal cells. Neurochem Int 2019; 129:104459. [PMID: 31077759 DOI: 10.1016/j.neuint.2019.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/29/2019] [Accepted: 05/05/2019] [Indexed: 01/02/2023]
Abstract
The protective effect of two 3 kDa peptide fractions (AK3KF1 and AK3KF2), obtained from beef myofibrillar protein using an inexpensive enzyme (alkaline-AK) on human neuronal cells (SH-SY5Y) against H2O2-induced apoptosis was investigated. These peptides were isolated and further separated by fast protein liquid chromatography (FPLC), and their protective effect against H2O2-mediated cell death was measured by determining cell viability, nitric oxide (NO) production, mitochondrial membrane potential (MMP), apoptosis, morphological changes in cell nuclei, and in vitro antioxidant assays. The results indicated that treatment with peptide fractions increased cell viability and MMP, and decreased NO production, fragmentation of cell nuclei, and apoptosis in H2O2-treated SH-SY5Y cells. This is the first study to report neuroprotective effects of a peptide obtained from beef myofibrillar protein. The peptide sequence was identified as Thr-Gln-Lys-Lys-Val-Ile-Phe-Cys (TQKKVIFC). Thus, these findings suggest that TQKKVIFC can prevent neuronal cell death and could be useful in preventing neurodegenerative diseases.
Collapse
|
37
|
Lee SY, Hur SJ. Mechanisms of Neuroprotective Effects of Peptides Derived from Natural Materials and Their Production and Assessment. Compr Rev Food Sci Food Saf 2019; 18:923-935. [DOI: 10.1111/1541-4337.12451] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Seung Yun Lee
- Dept. of Animal Science and TechnologyChung‐Ang Univ. 4726 Seodong‐daero, Daedeok‐myeon Anseong‐si Gyeonggi 17546 Republic of Korea
| | - Sun Jin Hur
- Dept. of Animal Science and TechnologyChung‐Ang Univ. 4726 Seodong‐daero, Daedeok‐myeon Anseong‐si Gyeonggi 17546 Republic of Korea
| |
Collapse
|
38
|
Chen J, Lin S, Sun N, Bao Z, Shen J, Lu X. Egg yolk phosphatidylcholine: Extraction, purification and its potential neuroprotective effect on PC12 cells. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
39
|
Zhao T, Zheng L, Zhang Q, Wang S, Zhao Q, Su G, Zhao M. Stability towards the gastrointestinal simulated digestion and bioactivity of PAYCS and its digestive product PAY with cognitive improving properties. Food Funct 2019; 10:2439-2449. [DOI: 10.1039/c8fo02314j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pro-AlaTyr-Cys-Ser (PAYCS) was susceptible to digestion and its memory improving activity was linked to the activation of Nrf2/ARE and BDNF/CREB signaling.
Collapse
Affiliation(s)
- Tiantian Zhao
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center
| | - Lin Zheng
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center
| | - Qi Zhang
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center
| | - Shuguang Wang
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center
| | - Qiangzhong Zhao
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center
| | - Guowan Su
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center
| | - Mouming Zhao
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center
| |
Collapse
|
40
|
Zhang Q, Su G, Zhao T, Wang S, Sun B, Zheng L, Zhao M. The memory improving effects of round scad (Decapterus maruadsi) hydrolysates on sleep deprivation-induced memory deficits in rats via antioxidant and neurotrophic pathways. Food Funct 2019; 10:7733-7744. [DOI: 10.1039/c9fo00855a] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Sleep deprivation negatively influences memory formation and consolidation, which leads to memory impairment associated with oxidative stress and neurotrophic pathways.
Collapse
Affiliation(s)
- Qi Zhang
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center
| | - Guowan Su
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center
| | - Tiantian Zhao
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center
| | - Shuguang Wang
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Technology & Business University
- Beijing 100048
- China
| | - Lin Zheng
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center
| | - Mouming Zhao
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center
| |
Collapse
|
41
|
Natural Peptides in Drug Discovery Targeting Acetylcholinesterase. Molecules 2018; 23:molecules23092344. [PMID: 30217053 PMCID: PMC6225273 DOI: 10.3390/molecules23092344] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/06/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022] Open
Abstract
Acetylcholinesterase-inhibitory peptide has gained much importance since it can inhibit acetylcholinesterase (AChE) and increase the availability of acetylcholine in cholinergic synapses, enhancing cholinergic transmission in pharmacological treatment of Alzheimer’s disease (AD). Natural peptides have received considerable attention as biologically important substances as a source of AChE inhibitors. These natural peptides have high potential pharmaceutical and medicinal values due to their bioactivities as neuroprotective and neurodegenerative treatment activities. These peptides have attracted great interest in the pharmaceutical industries, in order to design potential peptides for use in the prophylactic and therapy purposes. Some natural peptides and their derivatives have high commercial values and have succeeded in reaching the pharmaceutical market. A large number of peptides are already in preclinical and clinical pipelines for treatment of various diseases. This review highlights the recent researches on the various natural peptides and future prospects for AD management.
Collapse
|
42
|
Yang BY, Han W, Han H, Liu Y, Guan W, Li XM, Kuang HX. Effects of Lignans from Schisandra chinensis Rattan Stems against Aβ 1-42-Induced Memory Impairment in Rats and Neurotoxicity in Primary Neuronal Cells. Molecules 2018; 23:molecules23040870. [PMID: 29642617 PMCID: PMC6017482 DOI: 10.3390/molecules23040870] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/05/2018] [Accepted: 04/07/2018] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress, which is caused by Amyloid-β deposition in brain, plays an important role in Alzheimer’s disease. In this study, we found that lignans from Schisandra chinensis rattan stems (rsSCH-L) could reduce the escape latency and the distance travelled by the Aβ1–42 injected rats while the crossing platform time was enhanced in the Morris water maze test. Further research demonstrated that lignans from rsSCH-L attenuated Aβ1-42-induced neuronal cell injury by increasing the content of SOD and GSH-Px and decreasing the levels of LDH, ROS, and MDA. Moreover, rsSCH-L also inhibited the apoptosis of primary neuronal cells. The mechanisms of the apoptosis were related with the downregulation of caspase-3, caspase-8, Bax, and upregulation of Bcl-2. Taken together, the results show that rsSCH-L can improve cognitive ability in vivo. Meanwhile rsSCH-L exhibit a neuroprotective environment against oxidative stress and apoptosis in vitro. Therefore, rsSCH-L may be a potential therapeutic agent for this neurodegenerative disease.
Collapse
Affiliation(s)
- Bing-You Yang
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Wei Han
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Hua Han
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Yan Liu
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Wei Guan
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Xiao-Mao Li
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| | - Hai-Xue Kuang
- Key Laboratory of Chinese Materia Medica, Ministry of Education of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|