1
|
Sun ZR, Peng HZ, Fan MS, Chang D, Wang MY, An MF, Zhang LJ, Zan R, Sheng J, Zhao YL, Wang XJ. Dihydromyricetin ameliorates hyperuricemia through inhibiting uric acid reabsorption. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:4178-4190. [PMID: 40202030 DOI: 10.1002/jsfa.14126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/27/2024] [Accepted: 12/12/2024] [Indexed: 04/10/2025]
Abstract
BACKGROUND Hyperuricemia (HUA) is a chronic disease caused by abnormal purine metabolism with high prevalence. Dihydromyricetin (DMY) is a natural flavonoid that is abundant in plants, such as vine tea, grapes and bayberry. DMY has been shown to possess multiple biological properties, but its anti-HUA effect remains underexplored. In the present study, the regulatory effects of DMY on HUA and its complications and mechanism were investigated. RESULTS DMY (10 and 20 μmol L-1) treatment significantly reduced xanthine oxidase (XOD) expression and uric acid (UA) synthesis in normal human liver cell strain cells, and intraperitoneal administration of DMY (100 mg kg-1) also significantly reduced serum UA and the expression of hepatic XOD in HUA mice. After DMY treatment for 12 consecutive days, the uricosuric protein, ATP-binding cassette subfamily G member 2, was upregulated, and reabsorption proteins, including urate transporter 1 and glucose transporter 9, were downregulated, which was consistent with the results of monosodium urate-induced HUA in human renal tubular epithelial cell line and human colon adenocarcinoma cell line cell models. In addition, DMY significantly ameliorated HUA-induced renal injury, and foot edema induced by monosodium urate. The nucleotide-binding oligomerization domain-like receptor family containing pyrin domain 3 (NLRP3) inflammasome was activated in HUA mice as evidenced by upregulation of NLRP3, caspase-1, ACS, TNF-α and IL-1β in the kidney and foot, which was significantly suppressed by DMY treatment. CONCLUSION Collectively, these findings suggested that DMY may play important roles in experimental HUA. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ze-Rui Sun
- College of Resources, Environment and Chemistry, Chuxiong Normal University, Chuxiong, China
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Science, College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hui-Zhen Peng
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, School of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Mao-Si Fan
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Science, College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Dong Chang
- Yunnan Academy of Scientific & Technical Information, Kunming, China
| | - Ming-Yue Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Science, College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Meng-Fei An
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Science, College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Li-Juan Zhang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, School of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Rui Zan
- College of Resources, Environment and Chemistry, Chuxiong Normal University, Chuxiong, China
| | - Jun Sheng
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, College of Science, College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yun-Li Zhao
- Yunnan Characteristic Plant Extraction Laboratory Co., Ltd; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Key Laboratory of Research and Development for Natural Products; School of Pharmacy; School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Xuan-Jun Wang
- College of Resources, Environment and Chemistry, Chuxiong Normal University, Chuxiong, China
| |
Collapse
|
2
|
Ma Z, Zeng P, Feng H, Ni L. Network pharmacology and molecular docking to explore the treatment potential and molecular mechanism of Si-Miao decoction against gouty arthritis. Medicine (Baltimore) 2024; 103:e38221. [PMID: 39259129 PMCID: PMC11142817 DOI: 10.1097/md.0000000000038221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 09/12/2024] Open
Abstract
Gouty arthritis (GA) is a common metabolic rheumatological disease. Si-Miao decoction has therapeutic effects on GA. In our study, we investigated the mechanism of Si-Miao decoction against GA using network pharmacology and molecular docking analytical methods. The Traditional Chinese Medicine Systems Pharmacology Database was used as the basis for screening the main targets and agents of the Si-Miao decoction, and the Genecards, OMIM, and Drugbank databases were used to screen GA-related targets. They were analyzed using Venn with the drug targets to obtain the intersection targets. We used Cytoscape 3.9.1 to draw the "Drugs-Compounds-Targets" network and the String database for creative protein-protein interaction networks of target genes and filtered core targets. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were used to analyze the core targets. Molecular docking was performed using AutoDockTools to predict the binding capacity between nuclear targets and active components in the Si-Miao decoction. A total of 50 chemically active components containing 53 common targets of Si-Miao decoction anti-GA and 53 potential drug target proteins were identified. Core targets, namely, TNF, STAT3, SRC, PPARG, TLR4, PTGS2, MMP9, RELA, TGFB1, and SIRT1, were obtained through PPI network analysis. GO and KEGG analyses showed that the mechanism of anti-GA in Si-Miao decoction may proceed by regulating biological processes such as inflammatory factor levels, cell proliferation, apoptosis, and lipid and glucose metabolism, and modulating the NOD-like receptor signaling pathway, IL-17 signaling pathway, TNF signaling pathway, NF-kappa B signaling pathway, and Toll-like receptor signaling pathway. We further screened the core targets, including PTGS2, MMP9, and PPAGR, as receptor proteins based on their degree value and molecular docking with the main active compounds in Si-Miao decoction, and found that baicalein had high affinity. In conclusion, Si-Miao decoction, through anti-inflammatory, apoptosis-regulating, and anti-oxidative stress action mechanisms in the treatment of GA.
Collapse
Affiliation(s)
- Zebing Ma
- Orthopedics (Orthopedic Group), The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
- Hunan University of Chinese Medicine, Changsha, China
| | - Peng Zeng
- Orthopedics (Orthopedic Group), The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Haibo Feng
- Orthopedics (Orthopedic Group), The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Lili Ni
- Orthopedics (Orthopedic Group), The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
3
|
Liu P, Liu Z, Wang J, Wang J, Gao M, Zhang Y, Yang C, Zhang A, Li G, Li X, Liu S, Liu L, Sun N, Zhang K. Immunoregulatory role of the gut microbiota in inflammatory depression. Nat Commun 2024; 15:3003. [PMID: 38589368 PMCID: PMC11001948 DOI: 10.1038/s41467-024-47273-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Inflammatory depression is a treatment-resistant subtype of depression. A causal role of the gut microbiota as a source of low-grade inflammation remains unclear. Here, as part of an observational trial, we first analyze the gut microbiota composition in the stool, inflammatory factors and short-chain fatty acids (SCFAs) in plasma, and inflammatory and permeability markers in the intestinal mucosa of patients with inflammatory depression (ChiCTR1900025175). Gut microbiota of patients with inflammatory depression exhibits higher Bacteroides and lower Clostridium, with an increase in SCFA-producing species with abnormal butanoate metabolism. We then perform fecal microbiota transplantation (FMT) and probiotic supplementation in animal experiments to determine the causal role of the gut microbiota in inflammatory depression. After FMT, the gut microbiota of the inflammatory depression group shows increased peripheral and central inflammatory factors and intestinal mucosal permeability in recipient mice with depressive and anxiety-like behaviors. Clostridium butyricum administration normalizes the gut microbiota, decreases inflammatory factors, and displays antidepressant-like effects in a mouse model of inflammatory depression. These findings suggest that inflammatory processes derived from the gut microbiota can be involved in neuroinflammation of inflammatory depression.
Collapse
Affiliation(s)
- Penghong Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
- Shanxi Medical University, Taiyuan, 030001, PR China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
| | - Zhifen Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, 030001, PR China
| | - Jizhi Wang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
- Shanxi Medical University, Taiyuan, 030001, PR China
| | - Junyan Wang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
- Shanxi Medical University, Taiyuan, 030001, PR China
| | - Mingxue Gao
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
- Shanxi Medical University, Taiyuan, 030001, PR China
| | - Yanyan Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
- Shanxi Medical University, Taiyuan, 030001, PR China
| | - Chunxia Yang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
| | - Aixia Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
| | - Gaizhi Li
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
- Shanxi Medical University, Taiyuan, 030001, PR China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
| | - Xinrong Li
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
| | - Sha Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
- Shanxi Medical University, Taiyuan, 030001, PR China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
| | - Lixin Liu
- Experimental Center of Science and Research, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China.
- Shanxi Medical University, Taiyuan, 030001, PR China.
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China.
| | - Kerang Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China.
- Shanxi Medical University, Taiyuan, 030001, PR China.
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, 030001, PR China.
| |
Collapse
|
4
|
Bhoi A, Dwivedi SD, Singh D, Keshavkant S, Singh MR. Mechanistic prospective and pharmacological attributes of quercetin in attenuation of different types of arthritis. 3 Biotech 2023; 13:362. [PMID: 37840879 PMCID: PMC10570262 DOI: 10.1007/s13205-023-03787-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Arthritis is a frequent autoimmune disease with undefined etiology and pathogenesis. Scientific community constantly fascinating quercetin (QUR), as it is the best-known flavonoid among others for curative and preventive properties against a wide range of diseases. Due to its multifaceted activities, the implementation of QUR against various types of arthritis namely, rheumatoid arthritis (RA), osteoarthritis (OA), gouty arthritis (GA) and psoriotic arthritis (PsA) has greatly increased in recent years. Many research evidenced that QUR regulates a wide range of pathways for instance NF-κB, MAK, Wnt/β-catenine, Notch, etc., that are majorly associated with the inflammatory mechanisms. Besides, the bioavailability of QUR is a major constrain to its therapeutic potential, and drug delivery techniques have experienced significant development to overcome the problem of its limited application. Hence, this review compiled the cutting-edge experiments on versatile effects of QUR on inflammatory diseases like RA, OA, GA and PsA, sources and bioavailability, therapeutic challenges, pharmacokinetics, clinical studies as well as toxicological impacts. The use of QUR in a health context would offer a tearing and potential therapeutic method, supporting the advancement of public health, particularly, of arthritic patients worldwide.
Collapse
Affiliation(s)
- Anita Bhoi
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, 492 010 India
| | - Shradha Devi Dwivedi
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492 010 India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492 010 India
| | - S. Keshavkant
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, 492 010 India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, 492 010 India
| |
Collapse
|
5
|
Povero D, Lazic M, McBride C, Ambrus-Aikelin G, Stansfield R, Johnson CD, Santini AM, Pranadinata RF, McGeough MD, Stafford JA, Hoffman HM, Feldstein AE, Veal JM, Bain G. Pharmacology of a Potent and Novel Inhibitor of the NOD-Like Receptor Pyrin Domain-Containing Protein 3 (NLRP3) Inflammasome that Attenuates Development of Nonalcoholic Steatohepatitis and Liver Fibrosis. J Pharmacol Exp Ther 2023; 386:242-258. [PMID: 37308266 DOI: 10.1124/jpet.123.001639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/14/2023] Open
Abstract
The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome is a multiprotein complex and component of the innate immune system that is activated by exogenous and endogenous danger signals to promote activation of caspase-1 and the maturation and release of the proinflammatory cytokines interleukin (IL)-1β and IL-18. Inappropriate activation of NLRP3 has been implicated in the pathophysiology of multiple inflammatory and autoimmune diseases, including cardiovascular disease, neurodegenerative diseases, and nonalcoholic steatohepatitis (NASH), thus increasing the clinical interest of this target. We describe in this study the preclinical pharmacologic, pharmacokinetic, and pharmacodynamic properties of a novel and highly specific NLRP3 inhibitor, JT001 (6,7-dihydro-5H-pyrazolo[5,1-b][1,3]oxazine-3-sulfonylurea). In cell-based assays, JT001 potently and selectively inhibited NLRP3 inflammasome assembly, resulting in the inhibition of cytokine release and the prevention of pyroptosis, a form of inflammatory cell death triggered by active caspase-1. Oral administration of JT001 to mice inhibited IL-1β production in peritoneal lavage fluid at plasma concentrations that correlated with mouse in vitro whole blood potency. Orally administered JT001 was effective in reducing hepatic inflammation in three different murine models, including the Nlrp3A350V /+CreT model of Muckle-Wells syndrome (MWS), a diet-induced obesity NASH model, and a choline-deficient diet-induced NASH model. Significant reductions in hepatic fibrosis and cell damage were also observed in the MWS and choline-deficient models. Our findings demonstrate that blockade of NLRP3 attenuates hepatic inflammation and fibrosis and support the use of JT001 to investigate the role of NLRP3 in other inflammatory disease models. SIGNIFICANCE STATEMENT: Persistent inflammasome activation is the consequence of inherited mutations of NLRP3 and results in the development of cryopyrin-associated periodic syndromes associated with severe systemic inflammation. NLRP3 is also upregulated in nonalcoholic steatohepatitis, a metabolic chronic liver disease currently missing a cure. Selective and potent inhibitors of NLRP3 hold great promise and have the potential to overcome an urgent unmet need.
Collapse
Affiliation(s)
- Davide Povero
- Jecure Therapeutics, San Diego, California (D.P., M.L., C.M., G.A.-A., R.S., A.M.S., R.F.P., J.A.S., J.M.V., G.B.) and Department of Pediatrics, University of California San Diego (UCSD), La Jolla, California (C.D.J., M.D.M., H.M.H., A.E.F.)
| | - Milos Lazic
- Jecure Therapeutics, San Diego, California (D.P., M.L., C.M., G.A.-A., R.S., A.M.S., R.F.P., J.A.S., J.M.V., G.B.) and Department of Pediatrics, University of California San Diego (UCSD), La Jolla, California (C.D.J., M.D.M., H.M.H., A.E.F.)
| | - Christopher McBride
- Jecure Therapeutics, San Diego, California (D.P., M.L., C.M., G.A.-A., R.S., A.M.S., R.F.P., J.A.S., J.M.V., G.B.) and Department of Pediatrics, University of California San Diego (UCSD), La Jolla, California (C.D.J., M.D.M., H.M.H., A.E.F.)
| | - Geza Ambrus-Aikelin
- Jecure Therapeutics, San Diego, California (D.P., M.L., C.M., G.A.-A., R.S., A.M.S., R.F.P., J.A.S., J.M.V., G.B.) and Department of Pediatrics, University of California San Diego (UCSD), La Jolla, California (C.D.J., M.D.M., H.M.H., A.E.F.)
| | - Ryan Stansfield
- Jecure Therapeutics, San Diego, California (D.P., M.L., C.M., G.A.-A., R.S., A.M.S., R.F.P., J.A.S., J.M.V., G.B.) and Department of Pediatrics, University of California San Diego (UCSD), La Jolla, California (C.D.J., M.D.M., H.M.H., A.E.F.)
| | - Casey D Johnson
- Jecure Therapeutics, San Diego, California (D.P., M.L., C.M., G.A.-A., R.S., A.M.S., R.F.P., J.A.S., J.M.V., G.B.) and Department of Pediatrics, University of California San Diego (UCSD), La Jolla, California (C.D.J., M.D.M., H.M.H., A.E.F.)
| | - Angelina M Santini
- Jecure Therapeutics, San Diego, California (D.P., M.L., C.M., G.A.-A., R.S., A.M.S., R.F.P., J.A.S., J.M.V., G.B.) and Department of Pediatrics, University of California San Diego (UCSD), La Jolla, California (C.D.J., M.D.M., H.M.H., A.E.F.)
| | - Rama F Pranadinata
- Jecure Therapeutics, San Diego, California (D.P., M.L., C.M., G.A.-A., R.S., A.M.S., R.F.P., J.A.S., J.M.V., G.B.) and Department of Pediatrics, University of California San Diego (UCSD), La Jolla, California (C.D.J., M.D.M., H.M.H., A.E.F.)
| | - Matthew D McGeough
- Jecure Therapeutics, San Diego, California (D.P., M.L., C.M., G.A.-A., R.S., A.M.S., R.F.P., J.A.S., J.M.V., G.B.) and Department of Pediatrics, University of California San Diego (UCSD), La Jolla, California (C.D.J., M.D.M., H.M.H., A.E.F.)
| | - Jeffrey A Stafford
- Jecure Therapeutics, San Diego, California (D.P., M.L., C.M., G.A.-A., R.S., A.M.S., R.F.P., J.A.S., J.M.V., G.B.) and Department of Pediatrics, University of California San Diego (UCSD), La Jolla, California (C.D.J., M.D.M., H.M.H., A.E.F.)
| | - Hal M Hoffman
- Jecure Therapeutics, San Diego, California (D.P., M.L., C.M., G.A.-A., R.S., A.M.S., R.F.P., J.A.S., J.M.V., G.B.) and Department of Pediatrics, University of California San Diego (UCSD), La Jolla, California (C.D.J., M.D.M., H.M.H., A.E.F.)
| | - Ariel E Feldstein
- Jecure Therapeutics, San Diego, California (D.P., M.L., C.M., G.A.-A., R.S., A.M.S., R.F.P., J.A.S., J.M.V., G.B.) and Department of Pediatrics, University of California San Diego (UCSD), La Jolla, California (C.D.J., M.D.M., H.M.H., A.E.F.)
| | - James M Veal
- Jecure Therapeutics, San Diego, California (D.P., M.L., C.M., G.A.-A., R.S., A.M.S., R.F.P., J.A.S., J.M.V., G.B.) and Department of Pediatrics, University of California San Diego (UCSD), La Jolla, California (C.D.J., M.D.M., H.M.H., A.E.F.)
| | - Gretchen Bain
- Jecure Therapeutics, San Diego, California (D.P., M.L., C.M., G.A.-A., R.S., A.M.S., R.F.P., J.A.S., J.M.V., G.B.) and Department of Pediatrics, University of California San Diego (UCSD), La Jolla, California (C.D.J., M.D.M., H.M.H., A.E.F.)
| |
Collapse
|
6
|
Wang T, Xu H, Dong R, Wu S, Guo Y, Wang D. Effectiveness of targeting the NLRP3 inflammasome by using natural polyphenols: A systematic review of implications on health effects. Food Res Int 2023; 165:112567. [PMID: 36869555 DOI: 10.1016/j.foodres.2023.112567] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/13/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Globally, inflammation and metabolic disorders pose serious public health problems and are major health concerns. It has been shown that natural polyphenols are effective in the treatment of metabolic diseases, including anti-inflammation, anti-diabetes, anti-obesity, neuron-protection, and cardio-protection. NLRP3 inflammasome, which are multiprotein complexes located within the cytosol, play an important role in the innate immune system. However, aberrant activation of the NLRP3 inflammasome were discovered as essential molecular mechanisms in triggering inflammatory processes as well as implicating it in several major metabolic diseases, such as type 2 diabetes mellitus, obesity, atherosclerosis or cardiovascular disease. Recent studies indicate that natural polyphenols can inhibit NLRP3 inflammasome activation. In this review, the progress of natural polyphenols preventing inflammation and metabolic disorders via targeting NLRP3 inflammasome is systemically summarized. From the viewpoint of interfering NLRP3 inflammasome activation, the health effects of natural polyphenols are explained. Recent advances in other beneficial effects, clinical trials, and nano-delivery systems for targeting NLRP3 inflammasome are also reviewed. NLRP3 inflammasome is targeted by natural polyphenols to exert multiple health effects, which broadens the understanding of polyphenol mechanisms and provides valuable guidance to new researchers in this field.
Collapse
Affiliation(s)
- Taotao Wang
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, 212000 Zhenjiang, China
| | - Hong Xu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Ruixia Dong
- College of Horticulture, Jinling Institute of Technology, 211169 Nanjing, China
| | - Shanshan Wu
- College of Agriculture & Biotechnology, Zhejiang University, 310058 Hanzhou, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China.
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China.
| |
Collapse
|
7
|
Amatjan M, Li N, He P, Zhang B, Mai X, Jiang Q, Xie H, Shao X. A Novel Approach Based on Gut Microbiota Analysis and Network Pharmacology to Explain the Mechanisms of Action of Cichorium intybus L. Formula in the Improvement of Hyperuricemic Nephropathy in Rats. Drug Des Devel Ther 2023; 17:107-128. [PMID: 36712944 PMCID: PMC9880016 DOI: 10.2147/dddt.s389811] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Background Cichorium intybus L. formula (CILF) is a traditional Chinese medicine (TCM) widely used in the treatment of gout and hyperuricemic nephropathy (HN). The aim of this research was to investigate the potential protective effect of CILF against HN and elucidated the underlying mechanism. Methods CILF water extract was administered to an HN rat model established by adenine combined with ethambutol. The levels of uric acid (UA), serum urea nitrogen (UREA), and creatinine (CREA) were detected. Changes in the pathology and histology of the kidney were observed by hematoxylin-eosin staining. The 16S rRNA of the gut microbiota was sequenced. The binding ability of the main ingredients of CILF to key targets was analyzed by network pharmacology and molecular docking. The expression levels of the related mRNAs and proteins in the kidney were evaluated by RT-qPCR and immunohistochemistry analysis. Results CILF administration significantly alleviated increases in UA, UREA, and CREA, structural damage, and kidney dysfunction. Gut microbiota analysis was applied to explore the pharmacological mechanism of the effects of CILF on bacterial diversity and microbiota structure in HN. CILF decreased the abundance of Bacteroides. In addition, it increased the abundance of Lactobacillaceae, Erysipelotrichaceae, Lachnospiraceae, Ruminococcaceae, and Bifidobacterium. Based on network pharmacology and molecular docking analysis, CILF profoundly influenced the IL17, TNF and AGE-RAGE signaling pathway. Additionally, CILF inhibited the expression of STAT3, VEGFA and SIRT1 to improve the symptoms of nephropathy. Our research suggested that CILF protects against kidney dysfunction in rats with HN induced by adenine combined with ethambutol. Conclusion Our findings on the anti-HN effects of CILF and its mechanism of action, from the viewpoint of systems biology, and elaborated that CILF can alter the diversity and community structure of the gut microbiota in HN, providing new approaches for the prevention and treatment of HN.
Collapse
Affiliation(s)
- Mukaram Amatjan
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Na Li
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Pengke He
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Boheng Zhang
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Xianyan Mai
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Qianle Jiang
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Haochen Xie
- Qinghai Tibet Plateau Research Institute, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| | - Xiaoni Shao
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, 610225, People’s Republic of China
| |
Collapse
|
8
|
Allergic Inflammation: Effect of Propolis and Its Flavonoids. Molecules 2022; 27:molecules27196694. [PMID: 36235230 PMCID: PMC9570745 DOI: 10.3390/molecules27196694] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
The incidence of allergic diseases and their complications are increasing worldwide. Today, people increasingly use natural products, which has been termed a "return to nature". Natural products with healing properties, especially those obtained from plants and bees, have been used in the prevention and treatment of numerous chronic diseases, including allergy and/or inflammation. Propolis is a multi-component resin rich in flavonoids, collected and transformed by honeybees from buds and plant wounds for the construction and adaptation of their nests. This article describes the current views regarding the possible mechanisms and multiple benefits of flavonoids in combating allergy and allergy-related complications. These benefits arise from flavonoid anti-allergic, anti-inflammatory, antioxidative, and wound healing activities and their effects on microbe-immune system interactions in developing host responses to different allergens. Finally, this article presents various aspects of allergy pathobiology and possible molecular approaches in their treatment. Possible mechanisms regarding the antiallergic action of propolis on the microbiota of the digestive and respiratory tracts and skin diseases as a method to selectively remove allergenic molecules by the process of bacterial biotransformation are also reported.
Collapse
|
9
|
Wang Z, Li Y, Liao W, Huang J, Liu Y, Li Z, Tang J. Gut microbiota remodeling: A promising therapeutic strategy to confront hyperuricemia and gout. Front Cell Infect Microbiol 2022; 12:935723. [PMID: 36034697 PMCID: PMC9399429 DOI: 10.3389/fcimb.2022.935723] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
The incidence of hyperuricemia (HUA) and gout continuously increases and has become a major public health problem. The gut microbiota, which colonizes the human intestine, has a mutually beneficial and symbiotic relationship with the host and plays a vital role in the host's metabolism and immune regulation. Structural changes or imbalance in the gut microbiota could cause metabolic disorders and participate in the synthesis of purine-metabolizing enzymes and the release of inflammatory cytokines, which is closely related to the occurrence and development of the metabolic immune disease HUA and gout. The gut microbiota as an entry point to explore the pathogenesis of HUA and gout has become a new research hotspot. This review summarizes the characteristics of the gut microbiota in patients with HUA and gout. Meanwhile, the influence of different dietary structures on the gut microbiota, the effect of the gut microbiota on purine and uric acid metabolism, and the internal relationship between the gut microbiota and metabolic endotoxemia/inflammatory factors are explored. Moreover, the intervention effects of probiotics, prebiotics, and fecal microbial transplantation on HUA and gout are also systematically reviewed to provide a gut flora solution for the prevention and treatment of related diseases.
Collapse
Affiliation(s)
- Zhilei Wang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuchen Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenhao Liao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ju Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanping Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhiyong Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
MCC950 in the treatment of NLRP3-mediated inflammatory diseases: Latest evidence and therapeutic outcomes. Int Immunopharmacol 2022; 106:108595. [DOI: 10.1016/j.intimp.2022.108595] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/22/2022] [Accepted: 01/27/2022] [Indexed: 12/13/2022]
|
11
|
Zhang R, Hong F, Zhao M, Cai X, Jiang X, Ye N, Su K, Li N, Tang M, Ma X, Ni H, Wang L, Wan L, Chen L, Wu W, Ye H. New Highly Potent NLRP3 Inhibitors: Furanochalcone Velutone F Analogues. ACS Med Chem Lett 2022; 13:560-569. [PMID: 35450356 PMCID: PMC9014504 DOI: 10.1021/acsmedchemlett.1c00597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/03/2022] [Indexed: 02/08/2023] Open
Abstract
The NLRP3 inflammasome has now emerged as one of the most appealing drug targets for many inflammation-related diseases. Velutone F, a natural NLPR3 inhibitor, identified in our previous study has been limited in application by its low in planta abundance, weak activity, and complicated synthetic routes. To address these needs, structural optimization of velutone F led to a series of novel NLRP3 inhibitors. Among them, compound 14c exerted remarkable inhibitory activity with an IC50 value in the nanomolar range (251.1 nM) and was approximately 5-fold more potent than velutone F. Moreover, the synthesis method of 14c was simple, easy to handle, and scalable. Compound 14c could suppress NLRP3 inflammasome activation by attenuating ASC speck formation. Most importantly, compound 14c reduced peritoneal neutrophil influx in mice and IL-1β in the spleen in the MSU-induced peritonitis in LPS-primed mouse model. Taken together, compound 14c is a prospective lead compound in the discovery of NLRP3 inflammasome inhibitors.
Collapse
Affiliation(s)
- Ruijia Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Feng Hong
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Min Zhao
- Laboratory of Metabolomics and Drug-induced Liver Injury, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoying Cai
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xueqin Jiang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Neng Ye
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Kaiyue Su
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Na Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Minghai Tang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xu Ma
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hengfan Ni
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of TCM, Chengdu 610041, China
| | - Lun Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Li Wan
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of TCM, Chengdu 610041, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Wenshuang Wu
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
- Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haoyu Ye
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Modulatory Properties of Food and Nutraceutical Components Targeting NLRP3 Inflammasome Activation. Nutrients 2022; 14:nu14030490. [PMID: 35276849 PMCID: PMC8840562 DOI: 10.3390/nu14030490] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 12/27/2022] Open
Abstract
Inflammasomes are key intracellular multimeric proteins able to initiate the cellular inflammatory signaling pathway. NLRP3 inflammasome represents one of the main protein complexes involved in the development of inflammatory events, and its activity has been largely demonstrated to be connected with inflammatory or autoinflammatory disorders, including diabetes, gouty arthritis, liver fibrosis, Alzheimer’s disease, respiratory syndromes, atherosclerosis, and cancer initiation. In recent years, it has been demonstrated how dietary intake and nutritional status represent important environmental elements that can modulate metabolic inflammation, since food matrices are an important source of several bioactive compounds. In this review, an updated status of knowledge regarding food bioactive compounds as NLRP3 inflammasome modulators is discussed. Several chemical classes, namely polyphenols, organosulfurs, terpenes, fatty acids, proteins, amino acids, saponins, sterols, polysaccharides, carotenoids, vitamins, and probiotics, have been shown to possess NLRP3 inflammasome-modulating activity through in vitro and in vivo assays, mainly demonstrating an anti-NLRP3 inflammasome activity. Plant foods are particularly rich in important bioactive compounds, each of them can have different effects on the pathway of inflammatory response, confirming the importance of the nutritional pattern (food model) as a whole rather than any single nutrient or functional compound.
Collapse
|
13
|
3 β,23-Dihydroxy-12-ene-28-ursolic Acid Isolated from Cyclocarya paliurus Alleviates NLRP3 Inflammasome-Mediated Gout via PI3K-AKT-mTOR-Dependent Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5541232. [PMID: 35047046 PMCID: PMC8763513 DOI: 10.1155/2022/5541232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 11/01/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
Gout is regarded as a painful inflammatory arthritis induced by the deposition of monosodium urate crystals in joints and soft tissues. Nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome-mediated IL-1β production plays a crucial role in the pathological process of gout. Cyclocarya paliurus (CP) tea was found to have an effect on reducing the blood uric acid level of people with hyperuricemia and gout. However, its medicinal ingredients and mechanism for the treatment of gout are still unclear. Thus, this study was designed to investigate the effects of the active triterpenoids isolated from C. paliurus on gout and explore the underlying mechanism. The results showed that compound 2 (3β,23-dihydroxy-12-ene-28-ursolic acid) from C. paliurus significantly decreased the protein expression of IL-1β, caspase-1, pro-IL-1β, pro-caspase-1, and NLRP3. Furthermore, the production of ROS in the intracellular was reduced after compound 2 treatment. However, ROS agonist rotenone remarkably reversed the inhibitory effect of compound 2 on the protein expression of NLRP3 inflammasome. Additionally, the expression level of LC3 and the ratio of LC3II/LC3I were increased, but the expression level of p62 was suppressed by compound 2 whereas an autophagy inhibitor 3-methyladenine (3-MA) significantly abolished the inhibitory effects of compound 2 on the generation of ROS and the protein expression of NLRP3 inflammasome. Moreover, compound 2 could ameliorate the expression ratio of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR. Interestingly, mTOR activator MHY-1485 could block the promotion effect of compound 2 on autophagy regulation and inhibitory effect of compound 2 on induction of ROS and IL-1β. In conclusion, these findings suggested that compound 2 may effectively improve NLRP3 inflammasome-mediated gout via PI3K-AKT-mTOR-dependent autophagy and could be further investigated as a potential agent against gout.
Collapse
|
14
|
Zou F, Li X, Yang R, Zhang R, Zhao X. Effects and underlying mechanisms of food polyphenols in treating gouty arthritis: A review on nutritional intake and joint health. J Food Biochem 2022; 46:e14072. [PMID: 34997623 DOI: 10.1111/jfbc.14072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/06/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
Gouty arthritis, one of the most severe and common forms of arthritis, is characterized by monosodium urate crystal deposition in joints and surrounding tissues. Epidemiological evidence indicates that gouty arthritis incidence is sharply rising globally. Polyphenols are found in many foods and are secondary metabolites in plant foods. The anti-inflammatory and antioxidant effects of food polyphenols have been extensively studied in many inflammatory chronic diseases. Research has suggested that many food polyphenols have excellent anti-gouty arthritis effects. The mechanisms mainly include (a) inhibiting xanthine oxidase activity; (b) reducing the levels of inflammatory cytokines and chemokines; (c) inhibiting the activation of signaling pathways and the NLRP3 inflammasome; and (d) reducing oxidative stress. This paper reviews the research progress and pathogenesis of gouty arthritis and introduces the mechanisms of food polyphenols in treating gouty arthritis, which aims to explore the potential of functional foods in the treatment of gouty arthritis. PRACTICAL APPLICATIONS: The incidence rate of gouty arthritis has increased sharply worldwide, which has seriously affected people's quality of life. According to the current research progress, food polyphenols alleviate gouty arthritis through anti-inflammatory and antioxidant effects. This paper reviews the research progress and molecular pathogenesis of gouty arthritis and introduces the mechanisms of food-derived polyphenols in the treatment of gouty arthritis, which is helpful to the prevention and treatment of gouty arthritis.
Collapse
Affiliation(s)
- Fengmao Zou
- School of Traditional Chinese Material Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaofang Li
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Rong Yang
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Ruowen Zhang
- Department of Research and Development, Jiahehongsheng (Shenzhen) Health Industry Group, Shenzhen, China
| | - Xu Zhao
- Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
15
|
Chaturvedi S, Tiwari V, Gangadhar NM, Rashid M, Sultana N, Singh SK, Shukla S, Wahajuddin M. Isoformononetin, a dietary isoflavone protects against streptozotocin induced rat model of neuroinflammation through inhibition of NLRP3/ASC/IL-1 axis activation. Life Sci 2021; 286:119989. [PMID: 34597609 DOI: 10.1016/j.lfs.2021.119989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022]
Abstract
AIMS Isoformononetin (IFN), a methoxyl isoflavone present in most of human dietary supplements. However, being a highly potent antioxidant and anti-inflammatory molecule, its activity against neuronal oxidative stress and neuroinflammation has not been explored till now. The present study was inquested to assess the antioxidant, anti-apoptotic and anti-inflammatory activity of IFN against streptozotocin induced neuroinflammation in different brain regions of rat. MAIN METHODS Four groups of animals were subjected to treatment as control, toxic control (STZ; single intracerebrovascular injection), third group (STZ + IFN; 20 mg/kg p.o.), fourth group (IFN) for 14 days. The different brain regions of rats were evaluated for inflammatory, apoptotic and biochemical antioxidant markers. The brain tissues were further assessed for gene expression, immunohistochemical and western blotting examination for localization of inflammasome cascade expression that plays a pivotal role in neuroinflammation. KEY FINDINGS The modulation in oxidant/antioxidant status after exposure of STZ was significantly balanced after administration of IFN to rats. Further, IFN was also found to be an apoptotic agent as it modulates the apoptotic gene (Bax) and anti-apoptotic gene (BcL2) expression. IFN significantly curtailed the augmented protein expression of NLRP3, NLRP2, ASC, NFκBP65, IL-1β and caspase-1 due to STZ administration in cortex and hippocampus rat brain regions. SIGNIFICANCE The aforementioned results proclaim the neuroprotective functioning of IFN against STZ induced inflammation. IFN significantly prevents the neuroinflammation by decreasing the generation of ROS that reduces the activation of NLRP3/ASC/IL-1 axis thereby exerting neuroprotection as evidenced in rat model of STZ induced neuroninflammation.
Collapse
Affiliation(s)
- Swati Chaturvedi
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Virendra Tiwari
- Division of Neuroscience and Ageing Biology, Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Narwade Mahaveer Gangadhar
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Mamunur Rashid
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Nazneen Sultana
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sandeep Kumar Singh
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shubha Shukla
- Division of Neuroscience and Ageing Biology, Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muhammad Wahajuddin
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
16
|
Ouyang X, Li NZ, Guo MX, Zhang MM, Cheng J, Yi LT, Zhu JX. Active Flavonoids From Lagotis brachystachya Attenuate Monosodium Urate-Induced Gouty Arthritis via Inhibiting TLR4/MyD88/NF-κB Pathway and NLRP3 Expression. Front Pharmacol 2021; 12:760331. [PMID: 34803702 PMCID: PMC8602055 DOI: 10.3389/fphar.2021.760331] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/11/2021] [Indexed: 01/05/2023] Open
Abstract
Lagotis brachystachya Maxim is a characteristic herb commonly used in Tibetan medicine. Tibetan medicine records it as an important medicine for the clinical treatment of "Yellow Water Disease," the symptoms of which are similar to that of arthritis. Our previous study showed that the flavonoid fraction extracted from L. brachystachya could attenuate hyperuricemia. However, the effects of the active flavonoids on gouty arthritis remain elusive, and the underlying mechanism is not understood. In the present study, the effects of the active flavonoids were evaluated in rats or Raw264.7 cells with gouty arthritis induced by monosodium urate (MSU) crystal, followed by the detection of TLR4, MyD88, pNF-κB, and NLR family pyrin domain-containing 3 (NLRP3) expression. The swelling of the ankle joint induced by MSU crystal began to be relieved 6 h post the administration with the active flavonoids. In addition, the active flavonoids not only alleviated MSU crystal-induced inflammation in synovial tissues by histopathological examination but also reduced tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) levels in the joint tissue fluid of MSU crystal-induced rats. Furthermore, Western blot analysis indicated that the active flavonoids reduced the production of these cytokines by inhibiting the TLR4/MyD88/NF-κB pathway and decreasing NLRP3 expression in synovial tissues of rats. More importantly, the inhibition of TLR4/MyD88/NF-κB pathway and NLRP3 expression was also confirmed in MSU-induced Raw264.7 cells. In conclusion, these results indicated that the active flavonoids from L. brachystachya could effectively attenuate gouty arthritis induced by MSU crystal through the TLR4/MyD88/NF-κB pathway and NLRP3 expression in vivo and in vitro, suggesting several potential candidates for the treatment of gouty arthritis.
Collapse
Affiliation(s)
- Xiang Ouyang
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Na-Zhi Li
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Min-Xia Guo
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Man-Man Zhang
- Department of Chemical and Pharmaceutical Engineering, Huaqiao University, Xiamen, China
| | - Jie Cheng
- Department of Chemical and Pharmaceutical Engineering, Huaqiao University, Xiamen, China
| | - Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, Huaqiao University, Xiamen, China
| | - Ji-Xiao Zhu
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
17
|
Sun ZR, Liu HR, Hu D, Fan MS, Wang MY, An MF, Zhao YL, Xiang ZM, Sheng J. Ellagic Acid Exerts Beneficial Effects on Hyperuricemia by Inhibiting Xanthine Oxidase and NLRP3 Inflammasome Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12741-12752. [PMID: 34672194 DOI: 10.1021/acs.jafc.1c05239] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hyperuricemia is a metabolic disease caused by impaired uric acid (UA) metabolism. Ellagic acid (EA) is a natural small-molecule polyphenolic compound with known antioxidative and anti-inflammatory properties. Here, we evaluated the regulatory effects of EA on hyperuricemia and explored the underlying mechanisms. We found that EA is an effective xanthine oxidase (XOD) inhibitor (IC50 = 165.6 μmol/L) and superoxide anion scavenger (IC50 = 27.66 μmol/L). EA (5 and 10 μmol/L) treatment significantly and dose-dependently reduced UA levels in L-O2 cells; meanwhile, intraperitoneal EA administration (50 and 100 mg/kg) also significantly reduced serum XOD activity and UA levels in hyperuricemic mice and markedly improved their liver and kidney histopathology. EA treatment significantly reduced the degree of foot edema and inhibited the expression of NLPR3 pathway-related proteins in foot tissue of monosodium urate (MSU)-treated mice. The anti-inflammatory effect was also observed in lipopolysaccharide-stimulated RAW-264.7 cells. Furthermore, EA significantly inhibited the expressions of XOD and NLRP3 pathway-related proteins (TLR4, p-p65, caspase-1, TNF-α, and IL-18) in vitro and in vivo. Our results indicated that EA exerts ameliorative effects in experimental hyperuricemia and foot edema via regulating the NLRP3 signaling pathway and represents a promising therapeutic option for the management of hyperuricemia.
Collapse
Affiliation(s)
- Ze-Rui Sun
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650224, P. R. China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650224, P. R. China
| | - Hua-Rong Liu
- College of Health Nursing Sciences, Yunnan Open University, Kunming 650223, P. R. China
| | - Di Hu
- Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, P. R. China
| | - Mao-Si Fan
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650224, P. R. China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650224, P. R. China
| | - Ming-Yue Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650224, P. R. China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650224, P. R. China
| | - Meng-Fei An
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650224, P. R. China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650224, P. R. China
| | - Yun-Li Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research & Development of Natural Products; School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Ze-Min Xiang
- College of Science, Yunnan Agricultural University, Kunming 650224, P. R. China
| | - Jun Sheng
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650224, P. R. China
- College of Science, Yunnan Agricultural University, Kunming 650224, P. R. China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming 650224, P. R. China
| |
Collapse
|
18
|
Xu Y, Cao X, Zhao H, Yang E, Wang Y, Cheng N, Cao W. Impact of Camellia japonica Bee Pollen Polyphenols on Hyperuricemia and Gut Microbiota in Potassium Oxonate-Induced Mice. Nutrients 2021; 13:nu13082665. [PMID: 34444825 PMCID: PMC8401623 DOI: 10.3390/nu13082665] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Camellia japonica bee pollen is one of the major types of bee pollen in China and exhibits antioxidant and anti-inflammatory activities. The aims of our study were to evaluate the effects and the possible mechanism of Camellia japonica bee pollen polyphenols on the treatment of hyperuricemia induced by potassium oxonate (PO). The results showed that Camellia japonica bee pollen ethyl acetate extract (CPE-E) owned abundant phenolic compounds and strong antioxidant capabilities. Administration with CPE-E for two weeks greatly reduced serum uric acid and improved renal function. It inhibited liver xanthine oxidase (XOD) activity and regulated the expression of urate transporter 1 (URAT1), glucose transporter 9 (GLUT9), organic anion transporter 1 (OAT1), organic cation transporter 1 (OCT1) and ATP-binding cassette superfamily gmember 2 (ABCG2) in kidneys. Moreover, CPE-E suppressed the activation of the toll-like receptor 4/myeloid differentiation factor 88/nuclear factor-κB (TLR4/MyD88/NF-κB) signaling pathway and nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome in PO-treated mice, and related inflammatory cytokines were reduced. CPE-E also modulated gut microbiota structure, showing that the abundance of Lactobacillus and Clostridiaceae increased in hyperuicemic mice. This study was conducted to explore the protective effect of CPE-E on hyperuricemia and provide new thoughts for the exploitation of Camellia japonica bee pollen.
Collapse
Affiliation(s)
- Yuanyuan Xu
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi’an 710069, China; (Y.X.); (H.Z.); (E.Y.); (Y.W.); (W.C.)
| | - Xirong Cao
- College of Clinical Medicine, Jilin University, 828 XinMin Street, Changchun 130021, China;
| | - Haoan Zhao
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi’an 710069, China; (Y.X.); (H.Z.); (E.Y.); (Y.W.); (W.C.)
| | - Erlin Yang
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi’an 710069, China; (Y.X.); (H.Z.); (E.Y.); (Y.W.); (W.C.)
| | - Yue Wang
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi’an 710069, China; (Y.X.); (H.Z.); (E.Y.); (Y.W.); (W.C.)
| | - Ni Cheng
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi’an 710069, China; (Y.X.); (H.Z.); (E.Y.); (Y.W.); (W.C.)
- Bee Product Research Center of Shaanxi Province, Xi’an 710065, China
- Correspondence:
| | - Wei Cao
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi’an 710069, China; (Y.X.); (H.Z.); (E.Y.); (Y.W.); (W.C.)
- Bee Product Research Center of Shaanxi Province, Xi’an 710065, China
| |
Collapse
|
19
|
Özenver N, Efferth T. Phytochemical inhibitors of the NLRP3 inflammasome for the treatment of inflammatory diseases. Pharmacol Res 2021; 170:105710. [PMID: 34089866 DOI: 10.1016/j.phrs.2021.105710] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/15/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023]
Abstract
The NLRP3 inflammasome holds a crucial role in innate immune responses. Pathogen- and danger-associated molecular patterns may initiate inflammasome activation and following inflammatory cytokine release. The inflammasome formation and its-associated activity are involved in various pathological conditions such as cardiovascular, central nervous system, metabolic, renal, inflammatory and autoimmune diseases. Although the mechanism behind NLRP3-mediated disorders have not been entirely illuminated, many phytochemicals and medicinal plants have been described to prevent inflammatory disorders. In the present review, we mainly introduced phytochemicals inhibiting NLRP3 inflammasome in addition to NLRP3-mediated diseases. For this purpose, we performed a systematic literature search by screening PubMed, Scopus, and Google Scholar databases. By compiling the data of phytochemical inhibitors targeting NLRP3 inflammasome activation, a complex balance between inflammasome activation or inhibition with NLRP3 as central player was pointed out in NLRP3-driven pathological conditions. Phytochemicals represent potential therapeutic leads, enabling the generation of chemical derivatives with improved pharmacological features to treat NLRP3-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Nadire Özenver
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey; Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
20
|
Li WY, Yang F, Chen JH, Ren GF. β-Caryophyllene Ameliorates MSU-Induced Gouty Arthritis and Inflammation Through Inhibiting NLRP3 and NF-κB Signal Pathway: In Silico and In Vivo. Front Pharmacol 2021; 12:651305. [PMID: 33967792 PMCID: PMC8103215 DOI: 10.3389/fphar.2021.651305] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/12/2021] [Indexed: 01/17/2023] Open
Abstract
Gouty arthritis serves as an acute reaction initiated by the deposition of monosodium urate (MSU) crystals around the joints. In this study, the anti-inflammatory effects of phytochemical β-caryophyllene on MSU crystal-induced acute gouty arthritis in vivo and in silico were explored. Through bioinformatics methods and molecular docking, it screened the specific influence pathway of β-caryophyllene on gout. Certain methods including enzyme-linked immunosorbent assay, western blotting, and immunohistochemical staining were adopted to quantify. β-caryophyllene significantly reduced inflammation and function of ankle joints in MSU Crystals-induced gouty arthritis rats, while decreasing serum cytokine levels. Furthermore, it inhibited the expressions of NLRP3, Caspase-1, ASC, TLR4, MyD88, p65, and IL-1β in the synovial tissue so as to reduce inflammation and protect ankle joints’ function. A new research approach in which β-caryophyllene treatment to acute attacks of gout is provided through the research results.
Collapse
Affiliation(s)
- Wan-Yang Li
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Fan Yang
- School of Chinese Traditional Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ji-Hua Chen
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Guo-Feng Ren
- Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
21
|
James A, Ke H, Yao T, Wang Y. The Role of Probiotics in Purine Metabolism, Hyperuricemia and Gout: Mechanisms and Interventions. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1904412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Armachius James
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
- Rizhao HUAWEI Institute of Comprehensive Health Industries, Rizhao, China
| | - Hengming Ke
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Centre, The University of North Carolina, Chapel Hill, USA
| | - Ting Yao
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
- Rizhao HUAWEI Institute of Comprehensive Health Industries, Rizhao, China
| | - Yousheng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
- Rizhao HUAWEI Institute of Comprehensive Health Industries, Rizhao, China
| |
Collapse
|
22
|
Nieman DC, Ferrara F, Pecorelli A, Woodby B, Hoyle AT, Simonson A, Valacchi G. Postexercise Inflammasome Activation and IL-1β Production Mitigated by Flavonoid Supplementation in Cyclists. Int J Sport Nutr Exerc Metab 2020; 30:396-404. [PMID: 32932235 DOI: 10.1123/ijsnem.2020-0084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/21/2020] [Accepted: 07/19/2020] [Indexed: 11/18/2022]
Abstract
Inflammasomes are multiprotein signaling platforms of the innate immune system that detect markers of physiological stress and promote the maturation of caspase-1 and interleukin 1 beta (IL-1β), IL-18, and gasdermin D. This randomized, cross-over trial investigated the influence of 2-week mixed flavonoid (FLAV) versus placebo (PL) supplementation on inflammasome activation and IL-1β and IL-18 production after 75-km cycling in 22 cyclists (42 ± 1.7 years). Blood samples were collected before and after the 2-week supplementation, and then 0 hr, 1.5 hr, and 21 hr postexercise (176 ± 5.4 min, 73.4 ± 2.0 %VO2max). The supplement (678 mg FLAVs) included quercetin, green tea catechins, and bilberry anthocyanins. The pattern of change in the plasma levels of the inflammasome adaptor oligomer ASC (apoptosis-associated speck-like protein containing caspase recruitment domain) was different between the FLAV and PL trials, with the FLAV ASC levels 52% lower (Cohen's d = 1.06) than PL immediately following 75-km cycling (interaction effect, p = .012). The plasma IL-1β levels in FLAV were significantly lower than PL (23-42%; Cohen's d = 0.293-0.644) throughout 21 hr of recovery (interaction effect, p = .004). The change in plasma gasdermin D levels were lower immediately postexercise in FLAV versus PL (15% contrast, p = .023; Cohen's d = 0.450). The patterns of change in plasma IL-18 and IL-37 did not differ between the FLAV and PL trials (interaction effects, p = .388, .716, respectively). These data indicate that 2-week FLAV ingestion mitigated inflammasome activation, with a corresponding decrease in IL-1β release in cyclists after a 75-km cycling time trial. The data from this study support the strategy of ingesting high amounts of FLAV to mitigate postexercise inflammation.
Collapse
|
23
|
Vírgen Gen JJ, Guzmán-Gerónimo RI, Martínez-Flores K, Martínez-Nava GA, Fernández-Torres J, Zamudio-Cuevas Y. Cherry extracts attenuate inflammation and oxidative stress triggered by monosodium urate crystals in THP-1 cells. J Food Biochem 2020; 44:e13403. [PMID: 32729157 DOI: 10.1111/jfbc.13403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/22/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023]
Abstract
The microwaves-assisted extraction (MAE) for concentration of cherry phytochemicals has seen explored. Polyphenols from cherries, Prunus avium (L.) L., were extracted using a microwave oven at 2,450 MHz, 453 W for a period of 60 s (T60), and was compared versus an unprocessed MAE extract (T0). The extracts were analyzed for total polyphenols, total anthocyanins, and antioxidant capacity. THP-1 cells were stimulated with monosodium urate (MSU) crystals at 150 µg/ml for 24 hr. Cherry extracts were added to cultures concurrently with MSU or 3 hr before MSU addition as pretreatments. Reactive oxygen species (ROS), IL-1β levels, and MSU crystal phagocytosis were evaluated. T60 extract showed a higher concentration of polyphenols, anthocyanins, and antioxidant activity than T0 extract. ROS were inhibited using the 1:800 and 1:1,600 (v:v) dilutions from both extracts, even used as pretreatments. IL-1β levels and MSU crystal phagocytosis were reduced. Cherry is a source of polyphenolic compounds with antioxidant and anti-inflammatory activity. PRACTICAL APPLICATIONS: The cherries and a cherry extract obtained via MAE has benefits as a possible coadjuvant to conventional gout therapy due to attenuate the inflammation and the oxidative stress triggered by monosodium urate crystals in THP-1 cells, which mimic an acute episode of gout.
Collapse
Affiliation(s)
| | | | - Karina Martínez-Flores
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra-Ibarra (INR-LGII), México City, México
| | - Gabriela Angélica Martínez-Nava
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra-Ibarra (INR-LGII), México City, México
| | - Javier Fernández-Torres
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra-Ibarra (INR-LGII), México City, México
| | - Yessica Zamudio-Cuevas
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra-Ibarra (INR-LGII), México City, México
| |
Collapse
|
24
|
Pan H, Lin Y, Dou J, Fu Z, Yao Y, Ye S, Zhang S, Wang N, Liu A, Li X, Zhang F, Chen D. Wedelolactone facilitates Ser/Thr phosphorylation of NLRP3 dependent on PKA signalling to block inflammasome activation and pyroptosis. Cell Prolif 2020; 53:e12868. [PMID: 32656909 PMCID: PMC7507381 DOI: 10.1111/cpr.12868] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives Wedelolactone exhibits regulatory effects on some inflammatory diseases. However, the anti‐inflammatory mechanism of wedelolactone has not been entirely unravelled. Therefore, the present study focuses on investigating the mechanism of wedelolactone on NLRP3 inflammasome in macrophages and its influence on MSU‐induced inflammation. Materials and Methods BMDM, J774A.1 and PMA‐differentiated THP‐1 macrophages were primed with LPS and then stimulated with ATP or nigericin or MSU crystal in the presence or absence of wedelolactone. The cell lysates and supernatants were collected to detect NLRP3 inflammasome components such as NLRP3, ASC and caspase 1, as well as pyroptosis and IL‐1β production. In addition, the anti‐inflammatory effects of wedelolactone on MSU‐induced peritonitis and arthritis mice were also evaluated. Results We found that wedelolactone broadly inhibited NLRP3 inflammasome activation and pyroptosis and IL‐1β secretion. Wedelolactone also block ASC oligomerization and speck formation. The inhibitory effects of wedelolactone were abrogated by PKA inhibitor H89, which also attenuated wedelolactone‐enhanced Ser/Thr phosphorylation of NLRP3 at PKA‐specific sites. Importantly, wedelolactone could abate MSU‐induced IL‐1β production and neutrophils migration into peritoneal cavity, and reduced caspase 1 (p20) and IL‐1β expression in the joint tissue of MSU‐induced arthritis. Conclusion Our results indicate that wedelolactone promotes the Ser/Thr phosphorylation of NLRP3 to inhibit inflammasome activation and pyroptosis partly through potentiating PKA signalling, thus identifying its potential use for treating MSU‐induced peritonitis and gouty arthritis.
Collapse
Affiliation(s)
- Hao Pan
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R China.,Dongguan & Guangzhou University of Chinese Medicine Cooperative Academy of Mathematical Engineering for Chinese Medicine, Dongguan, P.R China
| | - Yuqing Lin
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R China
| | - Jianping Dou
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R China
| | - Zhen Fu
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R China
| | - Yanqing Yao
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R China
| | - Shanyu Ye
- Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R China
| | - Saixia Zhang
- Center for Experimental Teaching, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R China
| | - Neng Wang
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R China
| | - Aijun Liu
- Center for Experimental Teaching, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R China
| | - Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P.R China
| | - Fengxue Zhang
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R China
| | - Dongfeng Chen
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R China.,Department of Human Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R China
| |
Collapse
|
25
|
Peng Y, Lu J, Liu F, Lee C, Lee H, Ho Y, Hsieh T, Wu C, Wang C. Astaxanthin attenuates joint inflammation induced by monosodium urate crystals. FASEB J 2020; 34:11215-11226. [DOI: 10.1096/fj.202000558rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Yi‐Jen Peng
- Department of Pathology Tri‐Service General Hospital, National Defense Medical Center Taipei Taiwan
| | - Jeng‐Wei Lu
- Department of Biological Sciences National University of Singapore Singapore Singapore
| | - Feng‐Cheng Liu
- Rheumatology/Immunology and Allergy, Department of Medicine Tri‐Service General Hospital, National Defense Medical Center Taipei Taiwan
| | - Chian‐Her Lee
- Department of Orthopedics, School of Medicine, College of Medicine Taipei Medical University Hospital, Taipei Medical University Taipei Taiwan
| | - Herng‐Sheng Lee
- Department of Pathology and Laboratory Medicine Kaohsiung Veterans General Hospital Kaohsiung Taiwan
| | - Yi‐Jung Ho
- School of Pharmacy, Graduate Institute of Life Sciences National Defense Medical Center Taipei Taiwan
| | - Tsung‐Hsun Hsieh
- Department of Pathology Tri‐Service General Hospital, National Defense Medical Center Taipei Taiwan
| | - Chia‐Chun Wu
- Department of Orthopedics Tri‐Service General Hospital, National Defense Medical Center Taipei Taiwan
| | - Chih‐Chien Wang
- Department of Orthopedics Tri‐Service General Hospital, National Defense Medical Center Taipei Taiwan
| |
Collapse
|
26
|
Castejón-Vega B, Giampieri F, Alvarez-Suarez JM. Nutraceutical Compounds Targeting Inflammasomes in Human Diseases. Int J Mol Sci 2020; 21:E4829. [PMID: 32650482 PMCID: PMC7402342 DOI: 10.3390/ijms21144829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/19/2022] Open
Abstract
The macromolecular complex known as "inflammasome" is defined as an intracellular multi-protein complex composed of a sensor receptor (PRR), an adaptor protein and an effector enzyme (caspase-1), which oligomerize when they sense danger, such as how the NLR family, AIM-2 and RIG-1 receptors protect the body against danger via cytokine secretion. Within the NLR members, NLRP3 is the most widely known and studied inflammasome and has been linked to many diseases. Nowadays, people's interest in their lifestyles and nutritional habits is increasing, mainly due to the large number of diseases that seem to be related to both. The term "nutraceutical" has recently emerged as a hybrid term between "nutrition" and "pharmacological" and it refers to a wide range of bioactive compounds contained in food with relevant effects on human health. The relationship between these compounds and diseases based on inflammatory processes has been widely exposed and the compounds stand out as an alternative to the pathological consequences that inflammatory processes may have, beyond their defense and repair action. Against this backdrop, here we review the results of studies using several nutraceutical compounds in common diseases associated with the inflammation and activation of the NLRP3 inflammasomes complex. In general, it was found that there is a wide range of nutraceuticals with effects through different molecular pathways that affect the activation of the inflammasome complex, with positive effects mainly in cardiovascular, neurological diseases, cancer and type 2 diabetes.
Collapse
Affiliation(s)
- Beatriz Castejón-Vega
- Research Laboratory, Oral Medicine Department, University of Sevilla, 41009 Sevilla, Spain;
| | - Francesca Giampieri
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain;
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez, Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy
- College of Food Science and Technology, Northwest University, Xi’an 710069, China
| | - José M. Alvarez-Suarez
- Facultad de Ingeniería y Ciencias Aplicadas (FICA), AgroScience & Food Research Group, Universidad de Las Américas, 170125 Quito, Ecuador
- King Fahd Medical Research Center, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
27
|
Dos Santos M, Veronese FV, Moresco RN. Uric acid and kidney damage in systemic lupus erythematosus. Clin Chim Acta 2020; 508:197-205. [PMID: 32428504 DOI: 10.1016/j.cca.2020.05.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that affects multiple organs; lupus nephritis (LN) is one of the most severe complications of SLE. In the kidneys, an intense inflammatory reaction affects the glomeruli and tubular interstitium. Uric acid has been considered a key molecule in the pathogenesis of some conditions such as metabolic syndrome, hypertension, and kidney disease as it is produced by injured cells and promotes immune-inflammatory responses. In this regard, high serum uric acid concentrations may be involved in the activation of some inflammatory pathways, associated with kidney damage in SLE. Therefore, the purpose of this article was to review the main physiological mechanisms and clinical data on the association between serum uric acid and kidney damage in SLE. Scientific evidence indicates that hyperuricemia has the potential to be an adjuvant in the development and progression of kidney manifestations in SLE. Uric acid may promote the activation of inflammatory pathways and the formation and deposition of autoantibodies in kidneys, leading to a reduction of glomerular filtration rate. Other potential mechanisms of this association include the presence of polymorphisms in the urate transporters, metabolic syndrome, use of some medications, and other situations associated with a reduced renal excretion of uric acid.
Collapse
Affiliation(s)
- Mariane Dos Santos
- Laboratory of Clinical Biochemistry, Department of Clinical and Toxicological Analysis, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Graduate Program in Pharmaceutical Sciences, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | - Rafael Noal Moresco
- Laboratory of Clinical Biochemistry, Department of Clinical and Toxicological Analysis, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Graduate Program in Pharmaceutical Sciences, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
28
|
Li D, Li LF, Zhang ZF, Yan J, Li SZ. Coordination Polymers Constructed from the 3,3′,5,5′-Biphenyltetracarboxylic Acid Ligand and Their Application for Anti-Lung Cancer Reagents. J STRUCT CHEM+ 2020. [DOI: 10.1134/s0022476620050157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Han J, Wang X, Tang S, Lu C, Wan H, Zhou J, Li Y, Ming T, Wang ZJ, Su X. Protective effects of tuna meat oligopeptides (TMOP) supplementation on hyperuricemia and associated renal inflammation mediated by gut microbiota. FASEB J 2020; 34:5061-5076. [PMID: 32043638 DOI: 10.1096/fj.201902597rr] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/17/2022]
Abstract
Recently, interest in using whole food-derived mixtures to alleviate chronic metabolic syndrome through potential synergistic interactions among different components is increasing. In this study, the effects and mechanisms of tuna meat oligopeptides (TMOP) on hyperuricemia and associated renal inflammation were investigated in mice. Dietary administration of TMOP alleviated hyperuricemia and renal inflammation phenotypes, reprogramed uric acid metabolism pathways, inhibited the activation of NLRP3 inflammasome and TLR4/MyD88/NF-κB signaling pathways, and suppressed the phosphorylation of p65-NF-κB. In addition, TMOP treatments repaired the intestinal epithelial barrier, reversed the gut microbiota dysbiosis and increased the production of short-chain fatty acids. Moreover, the antihyperuricemia effects of TMOP were transmissible by transplanting the fecal microbiota from TMOP-treated mice, indicating that the protective effects were at least partially mediated by the gut microbiota. Thus, for the first time, we clarify the potential effects of TMOP as a whole food derived ingredient on alleviating hyperuricemia and renal inflammation in mice, and additional efforts are needed to confirm the beneficial effects of TMOP on humans.
Collapse
Affiliation(s)
- Jiaojiao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,School of Marine Science, Ningbo University, Ningbo, China
| | - Xiaofeng Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,School of Marine Science, Ningbo University, Ningbo, China
| | - Shasha Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,School of Marine Science, Ningbo University, Ningbo, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,School of Marine Science, Ningbo University, Ningbo, China
| | - Haitao Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,School of Marine Science, Ningbo University, Ningbo, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,School of Marine Science, Ningbo University, Ningbo, China
| | - Ye Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,School of Marine Science, Ningbo University, Ningbo, China
| | - Tinghong Ming
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,School of Marine Science, Ningbo University, Ningbo, China
| | - Zaijie Jim Wang
- Department of Biopharmaceutical Sciences, University of Illinois, Chicago, USA
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,School of Marine Science, Ningbo University, Ningbo, China
| |
Collapse
|
30
|
Xiao N, Qu J, He S, Huang P, Qiao Y, Li G, Pan T, Sui H, Zhang L. Exploring the Therapeutic Composition and Mechanism of Jiang-Suan-Chu-Bi Recipe on Gouty Arthritis Using an Integrated Approach Based on Chemical Profile, Network Pharmacology and Experimental Support Using Molecular Cell Biology. Front Pharmacol 2020; 10:1626. [PMID: 32082152 PMCID: PMC7005212 DOI: 10.3389/fphar.2019.01626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 12/13/2019] [Indexed: 01/27/2023] Open
Abstract
Background Gouty arthritis is a common metabolic disease caused by long-term purine metabolic disorder and elevated serum uric acid. Jiang-Suan-Chu-Bi recipe (JSCBR), a traditional Chinese herbal formula prescribed according to utilization frequency and cluster analysis, has been clinically validated remedy for gouty arthritis. However, its therapeutic composition and mechanism remains unclear. Methods In the present study, a simple, rapid, and sensitive ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS)-based chemical profiling was firstly established for comprehensively identifying the major constituents in JSCBR. A phytochemistry-based network pharmacology analysis was further performed to explore the potential therapeutic targets and pathways involved in JSCBR bioactivity. Finally, THP-1 cell model was used to verify the prediction results of network pharmacology by western blot analysis. Results A total of 139 compounds containing phenolic acids, flavonoids, triterpenoid saponins, alkaloids, amino acids, fatty acids, anthraquinones, terpenes, coumarins, and other miscellaneous compounds were identified, respectively. 175 disease genes, 51 potential target nodes, 80 compounds, and 11 related pathways based on network pharmacology analysis were achieved. Among these pathways and genes, NOD-like receptor signaling pathway may play an important role in the curative effect of JSCBR on gouty arthritis by regulation of NRLP3/ASC/CASP1/IL1B. The results of cellular and molecular experiments showed that JSCBR can effectively reduce the protein expression of ASC, caspase-1, IL-1β, and NRLP3 in monosodium urate-induced THP-1 cells, which indicated that JSCBR mediated inflammation in gouty arthritis by inhibiting the activation of NOD-like receptor signaling pathway. Conclusion Thus, the integrated approaches adopted in the present study could contribute to simplifying the complex system and providing directions for further research of JSCBR.
Collapse
Affiliation(s)
- Nan Xiao
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jialin Qu
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shiyong He
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Peng Huang
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China.,Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanling Qiao
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Guangxing Li
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Taowen Pan
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Hua Sui
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Lin Zhang
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
31
|
Jiang F, Hu Q, Zhang Z, Li H, Li H, Zhang D, Li H, Ma Y, Xu J, Chen H, Cui Y, Zhi Y, Zhang Y, Xu J, Zhu J, Lu T, Chen Y. Discovery of Benzo[cd]indol-2(1H)-ones and Pyrrolo[4,3,2-de]quinolin-2(1H)-ones as Bromodomain and Extra-Terminal Domain (BET) Inhibitors with Selectivity for the First Bromodomain with Potential High Efficiency against Acute Gouty Arthritis. J Med Chem 2019; 62:11080-11107. [DOI: 10.1021/acs.jmedchem.9b01010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fei Jiang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Qinghua Hu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Zhimin Zhang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Hongmei Li
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Huili Li
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Dewei Zhang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Hanwen Li
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Yu Ma
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Jingjing Xu
- School of Medicine and Life Sciences, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haifang Chen
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Yong Cui
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Yanle Zhi
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Yanmin Zhang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Junyu Xu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Jiapeng Zhu
- School of Medicine and Life Sciences, State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tao Lu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Yadong Chen
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| |
Collapse
|
32
|
Hung W, Ho C, Pan M. Targeting the NLRP3 Inflammasome in Neuroinflammation: Health Promoting Effects of Dietary Phytochemicals in Neurological Disorders. Mol Nutr Food Res 2019; 64:e1900550. [DOI: 10.1002/mnfr.201900550] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/15/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Wei‐Lun Hung
- School of Food SafetyTaipei Medical University Taipei 11031 Taiwan
| | - Chi‐Tang Ho
- Department of Food ScienceRutgers University New Brunswick NJ 08901 USA
| | - Min‐Hsiung Pan
- Institute of Food Science and TechnologyNational Taiwan University Taipei 10617 Taiwan
- Department of Medical ResearchChina Medical University HospitalChina Medical University Taichung 40402 Taiwan
- Department of Health and Nutrition BiotechnologyAsia University Taichung 41354 Taiwan
| |
Collapse
|
33
|
Hsiao YH, Chen NC, Koh YC, Nagabhushanam K, Ho CT, Pan MH. Pterostilbene Inhibits Adipocyte Conditioned-Medium-Induced Colorectal Cancer Cell Migration through Targeting FABP5-Related Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10321-10329. [PMID: 31419115 DOI: 10.1021/acs.jafc.9b03997] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pterostilbene (PTS) is a phenolic compound with diverse pharmacologic activities. However, its potential for inhibiting obesity-related colorectal cancer (CRC) remains unclear. Our study evaluated the mechanism of inhibitory effects of PTS on adipocyte conditioned-medium (aCM)-induced malignant transformation in HT-29 colorectal adenocarcinoma cells. The results demonstrated that PTS could downregulate the expression of aCM-induced fatty acid-binding protein 5 (FABP5) and prometastatic factors such as vascular endothelial growth factor, matrix metalloproteinase-2 (MMP2), MMP9, and extracellular tumor necrosis factor α via inhibiting aCM-induced nuclear factor-kappa B (NF-κB), β-catenin, and peroxisome proliferator-activated receptor γ (PPAR-γ). Moreover, PTS can suppress aCM-stimulated phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinases 1/2 (JNK 1/2) signaling pathways activation that are upstream of NF-κB, β-catenin, and PPAR-γ. Therefore, we suggest that PTS could alleviate adiposity-induced metastasis in CRC via inhibiting cell migration through downregulating FABP5 gene expression.
Collapse
Affiliation(s)
- Yu-Hsuan Hsiao
- Institute of Food Sciences and Technology , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 106 , Taiwan
| | - Nien-Chi Chen
- Institute of Food Sciences and Technology , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 106 , Taiwan
| | - Yen-Chun Koh
- Institute of Food Sciences and Technology , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 106 , Taiwan
| | | | - Chi-Tang Ho
- Department of Food Science , Rutgers University , New Brunswick , New Jersey 08901 , United States
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology , National Taiwan University , No. 1, Sec. 4, Roosevelt Road , Taipei 106 , Taiwan
- Department of Medical Research , China Medical University Hospital, China Medical University , Taichung 404 , Taiwan
- Department of Health and Nutrition Biotechnology , Asia University , Taichung 41354 , Taiwan
| |
Collapse
|
34
|
Zhao D, Jiang Y, Sun J, Li H, Huang M, Sun X, Zhao M. Elucidation of The Anti-Inflammatory Effect of Vanillin In Lps-Activated THP-1 Cells. J Food Sci 2019; 84:1920-1928. [PMID: 31264720 DOI: 10.1111/1750-3841.14693] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/07/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022]
Abstract
Vanillin, a kind of phenolic compound, is naturally found in food and beverage and widely used as a flavoring agent. In view of the safety and universality of vanillin, exploring the functions of vanillin on human is of great value. Thus, lipopolysaccharide (LPS)-activated THP-1 cells were selected as the cell model to evaluate the anti-inflammatory effect of vanillin in this study. On the basis of the results, vanillin markedly suppressed the expression of inflammatory cytokines (that is, TNF-α, IL-1β, IL-6, and IL-8), mediators (NO, iNOS, PGE2, and COX-2), and NLRP3 inflammasome (that is, NLRP3, ASC, and caspase-1), blocked the LPS-induced activation of the NF-κB/IκBα/AP-1 signaling pathway, and activated the gene expression of the Nrf2/HO-1 signaling pathway. In addition, it was confirmed that vanillin was unable to react with LPS due to the results of quantification by HS-SPME-GC-MS. Hence, vanillin could effectively attenuate LPS-induced inflammatory response by regulating the expression of intracellular signaling pathways in THP-1 cells. It is a potent anti-inflammatory component found in food and beverage. These findings might contribute to the overall understanding of the potential health benefits of vanillin for food application. PRACTICAL APPLICATION: In this study, the anti-inflammatory effect of vanillin (VA) was evaluated by ELISA, real-time PCR, and western blot in LPS-induced THP-1 cells. The hypothesis that VA could react with LPS was excluded due to the results of quantification by HS-SPME-GC-MS. On the basis of the result, vanillin could effectively attenuate LPS-induced inflammatory response in THP-1 cells and was a potent anti-inflammatory component natural in food and beverage. These findings might contribute to the overall understanding of the potential health benefits of vanillin for food application.
Collapse
Affiliation(s)
- Dongrui Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business Univ., 100048, Beijing, China.,School of Food Science and Engineering, South China Univ. of Technology, 510640, Guangzhou, China.,Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business Univ., 100048, Beijing, China
| | - Yunsong Jiang
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business Univ., 100048, Beijing, China
| | - Jinyuan Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business Univ., 100048, Beijing, China.,Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business Univ., 100048, Beijing, China
| | - Hehe Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business Univ., 100048, Beijing, China.,Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business Univ., 100048, Beijing, China
| | - Mingquan Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business Univ., 100048, Beijing, China.,Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business Univ., 100048, Beijing, China
| | - Xiaotao Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business Univ., 100048, Beijing, China.,Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business Univ., 100048, Beijing, China
| | - Mouming Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business Univ., 100048, Beijing, China.,School of Food Science and Engineering, South China Univ. of Technology, 510640, Guangzhou, China
| |
Collapse
|
35
|
Saqib U, Faisal SM, Saluja R, Baig MS. Structural insights of resveratrol with its binding partners in the toll‐like receptor 4 pathway. J Cell Biochem 2018; 120:452-460. [DOI: 10.1002/jcb.27401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/10/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Uzma Saqib
- Discipline of Chemistry School of Basic Sciences, Indian Institute of Technology (IIT) Indore India
| | - Syed M. Faisal
- National Institute of Animal Biotechnology (NIAB) Hyderabad India
| | - Rohit Saluja
- Department of Biochemistry All India Institute of Medical Sciences (AIIMS) Bhopal India
| | - Mirza S. Baig
- Centre for Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology (IIT) Indore India
| |
Collapse
|
36
|
Fang YF, Li N. [Change in the expression of the NLRP3 inflammasome signaling pathway in peripheral blood and its significance in children with Mycoplasma pneumoniae pneumonia]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:742-745. [PMID: 30210027 PMCID: PMC7389171 DOI: 10.7499/j.issn.1008-8830.2018.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To investigate the expression of the NLRP3 inflammasome signaling pathway in peripheral blood and its significance in children with Mycoplasma pneumoniae pneumonia (MPP). METHODS According to the severity, 147 children with MPP were divided into mild group with 83 children and severe group with 64 children. According to the stage of disease, the children were divided into acute group with 77 children and recovery stage with 70 children. A total of 50 healthy children were enrolled as the control group. Quantitative real-time PCR was used to measure the mRNA expression of NLRP3, ASC, and caspase-1. ELISA was used to measure the serum levels of interleukin-1β (IL-1β) and interleukin-18 (IL-18). RESULTS Compared with the control group, the children with MMP had significantly higher relative mRNA expression levels of NLRP3, ASC, and caspase-1 in peripheral blood and serum levels of IL-1β and IL-18 (P<0.05). Compared with the control group, both mild and severe groups had significantly higher relative mRNA expression levels of NLRP3, ASC, and caspase-1 in peripheral blood and serum levels of IL-1β and IL-18 (P<0.05). The severe group had significantly higher levels of above mentioned parameters than the mild group (P<0.05). Both acute group and recovery group had significantly higher relative mRNA expression levels of NLRP3, ASC, and caspase-1 in peripheral blood and serum levels of IL-1β and IL-18 than the control group (P<0.05). The acute group had significantly higher levels of above mentioned parameters than the recovery group (P<0.05). The relative expression level of NLRP3 was positively correlated with the relative mRNA expression levels of ASC and caspase-1 and the serum levels of IL-1β and IL-18 (r=0.701, 0.717, 0.676, and 0.645 respectively; P<0.05). CONCLUSIONS The NLRP3 inflammasome signaling pathway might be involved in the pathogenesis of MPP in children and is closely associated with the severity and course of the disease.
Collapse
Affiliation(s)
- You-Fu Fang
- Second Department of Internal Medicine, Yidu Central Hospital, Weifang Medical College, Qingzhou, Shandong 262500, China.
| | | |
Collapse
|