1
|
Spagnolo S, Davoudian K, Franier BDL, Kocsis R, Hianik T, Thompson M. Nanoparticle-Enhanced Acoustic Wave Biosensor Detection of Pseudomonas aeruginosa in Food. BIOSENSORS 2025; 15:146. [PMID: 40136943 PMCID: PMC11940165 DOI: 10.3390/bios15030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025]
Abstract
A biosensor was designed for detecting Pseudomonas aeruginosa (P. aeruginosa) bacteria in whole milk samples. The sensing layer involved the antifouling linking molecule 3-(2-mercaptoethanoxy)propanoic acid (HS-MEG-COOH), which was covalently linked to an aptamer for binding P. aeruginosa. The aptasensor uses the thickness shear mode (TSM) system for mass-sensitive acoustic sensing of the bacterium. High concentrations (105 CFU mL-1) of nonspecific bacteria, E. coli, S. aureus, and L. acidophilus, were tested with the aptasensor and caused negligible frequency shifts compared to P. aeruginosa. The aptasensor has high selectivity for P. aeruginosa, with an extrapolated limit of detection (LOD) of 86 CFU mL-1 in phosphate-buffered saline (PBS) and 157 CFU mL-1 in milk. To improve the sensitivity of the sensor, gold nanoparticles (AuNPs) were functionalized with the same aptamer for P. aeruginosa and flowed through the sensor following bacteria, reducing the extrapolated LOD to 68 CFU mL-1 in PBS and 46 CFU mL-1 in milk. The frequency variations in the aptasensor are proportional to various concentrations of P. aeruginosa (102-105 CFU mL-1) with and without AuNPs, respectively. The low and rapid mass-sensitive detection demonstrates the ability of the aptasensor to quantitatively identify bacterial contamination in buffer and milk.
Collapse
Affiliation(s)
- Sandro Spagnolo
- Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F1, 84248 Bratislava, Slovakia; (S.S.); (T.H.)
| | - Katharina Davoudian
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada; (K.D.); (B.D.L.F.)
| | - Brian De La Franier
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada; (K.D.); (B.D.L.F.)
| | - Robert Kocsis
- Hungarian Dairy Research Institute Ltd., 1 József Csiszár Street, 9200 Mosonmagyaróvár, Hungary;
| | - Tibor Hianik
- Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F1, 84248 Bratislava, Slovakia; (S.S.); (T.H.)
| | - Michael Thompson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada; (K.D.); (B.D.L.F.)
| |
Collapse
|
2
|
Mirza A, Marino J, Aguren J, Bruno JG. Antibody and Aptamer-Based Magnetic-Graphene Oxide Desorption (M-GOD) Quantum Dot Assays for Rapid and Sensitive Detection of SAR-CoV-2. J Fluoresc 2025:10.1007/s10895-025-04163-8. [PMID: 39928060 DOI: 10.1007/s10895-025-04163-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/28/2025] [Indexed: 02/11/2025]
Abstract
Rapid detection of respiratory diseases using a noninvasive bind-and-detect breath test could shift the future of rapid diagnostics. Commercially available biotinylated anti-SARS-CoV-2 spike (S) protein antibody was conjugated to streptavidin-coated quantum dots, purified, and adsorbed onto magnetic-graphene oxide (M-GO) flakes to quench the conjugate. When inactivated SARS-CoV-2 was added at increasing levels, the antibody-quantum dot conjugates desorbed from the M-GO as a function of virus concentration with an apparent limit of detection ~ 9,600 inactivated virus particles within 2-5 min in phosphate-buffered saline (PBS) plus 10 mM Mg2+ assessed by a spectrofluorometer. A similar fluorescence response was obtained using a published biotinylated DNA aptamer sequence designated MSA52 and inactivated SARS-CoV-2 in PBS plus 5 mM Mg2+. Concentrations of Mg2+ greater than 5 mM diminished the aptamer magnetic-graphene oxide desorption (M-GOD) assay performance, perhaps by altering the aptamer's 3-dimensional conformation and ability to bind the virus. As reported previously, the MSA52 aptamer assay demonstrated reasonable specificity for variants of SARS-CoV-2 and significantly less intense detection of inactivated Influenza A and Respiratory Syncytial Virus (RSV) in the M-GOD assay format. This rapid and sensitive detection of inactivated SARS-CoV-2 in clear PBS buffer bodes well for the ultimate goal of rapid homogeneous bind-and-detect detection of COVID and other viral respiratory pathogens in human breath condensates and other easily accessible body fluids.
Collapse
Affiliation(s)
- Asma Mirza
- Steradian Technologies, Inc., 2450 Holcombe Street. Suite J, Houston, TX, 77021, USA
| | - John Marino
- Steradian Technologies, Inc., 2450 Holcombe Street. Suite J, Houston, TX, 77021, USA
| | - Jerry Aguren
- Steradian Technologies, Inc., 2450 Holcombe Street. Suite J, Houston, TX, 77021, USA
| | - John G Bruno
- Nanohmics, Inc., 6201 E. Oltorf Street. Suite 400, Austin, TX, 78741, USA.
| |
Collapse
|
3
|
Liu S, Lu F, Chen S, Ning Y. Graphene oxide-based fluorescent biosensors for pathogenic bacteria detection: A review. Anal Chim Acta 2025; 1337:343428. [PMID: 39800527 DOI: 10.1016/j.aca.2024.343428] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 05/02/2025]
Abstract
BACKGROUND Pathogenic bacteria are widespread in nature and can cause infections and various complications, thereby posing a severe risk to public health. Therefore, simple, rapid, sensitive, and cost-effective methods must be developed to detect pathogenic bacteria. Biosensors are prominent platforms for detecting pathogenic bacteria owing to their high sensitivity, specificity, repeatability, and stability. With the development of nanotechnology, graphene oxide (GO) has been increasingly introduced into the construction of fluorescent biosensors to enhance their performance owing to its unique physicochemical properties. RESULTS This review systematically summarizes the development of GO-based fluorescent biosensors for the detection of pathogenic bacteria. First, we introduce the functionalization and modification of GO. The design and signal amplification strategies for GO-based fluorescent biosensors are also discussed. Finally, we explore the challenges and new perspectives associated with this field, with the aim of facilitating the development of GO-based fluorescent sensing technologies to prevent the spread of multidrug-resistant bacteria. SIGNIFICANCE This review will aid in the development of high-performance biosensors for pathogenic bacterial assays.
Collapse
Affiliation(s)
- Shiwu Liu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Fangguo Lu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Shanquan Chen
- Department of General Education, The School of Humanities and Social Science of the Chinese University of Hong Kong (Shenzhen Campus), Shenzhen, Guangdong, 518172, People's Republic of China.
| | - Yi Ning
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China.
| |
Collapse
|
4
|
Zhang H, Zhang Q, Li N, Yang G, Cheng Z, Du X, Sun L, Wang W, Li B. Advances in the application of carbon dots-based fluorescent probes in disease biomarker detection. Colloids Surf B Biointerfaces 2025; 245:114360. [PMID: 39520938 DOI: 10.1016/j.colsurfb.2024.114360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Carbon dots (CDs), as an emerging nanomaterial, have shown tremendous potential in disease biomarker detection. CDs can selectively interact with different target molecules, enabling highly sensitive and specific detection of these biomolecules. Compared to traditional detection methods, CDs sensors offer advantages such as rapid response, high detection sensitivity, and low cost. In this review, we summarize the latest advances in the application of CDs fluorescence probes for the detection of disease biomarkers, including sensing mechanisms, and their applications in the selective detection of metal ions, amino acids, enzymes, proteins, other biomolecules, as well as bacteria and viruses. We discuss the current challenges and issues associated with the practical application of CDs-based fluorescent probes. Furthermore, we propose future directions for the development of CDs. We hope that this review will provide new insights for researchers in the field of disease biomarker detection.
Collapse
Affiliation(s)
- Haoqi Zhang
- School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Qingmei Zhang
- School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China.
| | - Naihui Li
- School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Guoqing Yang
- School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Zewei Cheng
- School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Xiujuan Du
- School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024, China.
| | - Lingxiang Sun
- Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, China
| | - Wei Wang
- Departments of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Bing Li
- Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
5
|
Fatemi K, Lau SY, Obayomi KS, Kiew SF, Coorey R, Chung LY, Fatemi R, Heshmatipour Z, Premarathna KSD. Carbon nanomaterial-based aptasensors for rapid detection of foodborne pathogenic bacteria. Anal Biochem 2024; 695:115639. [PMID: 39127327 DOI: 10.1016/j.ab.2024.115639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Each year, millions of people suffer from foodborne illness due to the consumption of food contaminated with pathogenic bacteria, which severely challenges global health. Therefore, it is essential to recognize foodborne pathogens swiftly and correctly. However, conventional detection techniques for bacterial pathogens are labor-intensive, low selectivity, and time-consuming, highlighting a notable knowledge gap. A novel approach, aptamer-based biosensors (aptasensors) linked to carbon nanomaterials (CNs), has shown the potential to overcome these limitations and provide a more reliable method for detecting bacterial pathogens. Aptamers, short single-stranded DNA (ssDNA)/RNA molecules, serve as bio-recognition elements (BRE) due to their exceptionally high affinity and specificity in identifying foodborne pathogens such as Salmonella spp., Escherichia coli (E. coli), Listeria monocytogenes, Campylobacter jejuni, and other relevant pathogens commonly associated with foodborne illnesses. Carbon nanomaterials' high surface area-to-volume ratio contributes unique characteristics crucial for bacterial sensing, as it improves the binding capacity and signal amplification in the design of aptasensors. Furthermore, aptamers can bind to CNs and create aptasensors with improved signal specificity and sensitivity. Hence, this review intends to critically review the current literature on developing aptamer functionalized CN-based biosensors by transducer optical and electrochemical for detecting foodborne pathogens and explore the advantages and challenges associated with these biosensors. Aptasensors conjugated with CNs offers an efficient tool for identifying foodborne pathogenic bacteria that is both precise and sensitive to potentially replacing complex current techniques that are time-consuming.
Collapse
Affiliation(s)
- Kiyana Fatemi
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| | - Sie Yon Lau
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia.
| | - Kehinde Shola Obayomi
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia; Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990, Israel
| | - Siaw Fui Kiew
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia; Sarawak Biovalley Pilot Plant, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Ranil Coorey
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Lip Yong Chung
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Reza Fatemi
- Department of Electrical Engineering, College of Technical and Engineering, West Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Zoheir Heshmatipour
- Department of Microbiology, Faculty of Science, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - K S D Premarathna
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University Malaysia, Miri, Sarawak, Malaysia
| |
Collapse
|
6
|
Lee H, Kwon JS, Kim MH, Choi HJ, Kim TW, Lee SH. Swift and precise detection of unlabeled pathogens using a nanogap electrode impedimetric sensor facilitated by electrokinetics. Talanta 2024; 280:126670. [PMID: 39126965 DOI: 10.1016/j.talanta.2024.126670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
For the protection of human health and environment, there is a growing demand for high-performance, user-friendly biosensors for the prompt detection of pathogenic bacteria in samples containing various substances. We present a nanogap electrode-based purely electrical impedimetric sensor that utilizes the dielectrophoresis (DEP) mechanism. Our nanogap sensor can directly and sensitively detect pathogens present at concentrations as low as 1-10 cells/assay in buffers and drinking milk without the need for separation, purification, or specific ligand binding. This is achieved by minimizing the electrical double-layer effect and electrode polarization in nanogap impedance sensors, reducing signal loss. In addition, even at low DEP voltages, nanogap sensors can quickly establish strong DEP forces between the nanogap electrodes to control the spatial concentration of pathogens around the electrodes. This activates and stabilizes inter-electrode signal transmission along the nanogap-aligned pathogens, increasing sensitivity and reducing errors during repeated measurements. The DEP-enabled nanogap impedance sensor developed in this study is valuable for a variety of pathogen detection and monitoring systems including point-of-care testing (POCT) as it can detect pathogens in diverse samples containing multiple substances quickly and with high sensitivity, is compatible with complex solutions such as food and beverages, and provides highly reproducible results without the need for separate binding and separation processes.
Collapse
Affiliation(s)
- Hyunjung Lee
- Graduate School of Flexible and Printable Electronics, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Jung Sun Kwon
- BioNano Health Guard Research Center (H-GUARD), Daejeon, 34141, Republic of Korea
| | - Min Hyeok Kim
- National Creative Research Initiative Center for Multi-dimensional Directed Nanoscale Assembly, Department of Material Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Hak-Jong Choi
- Nano-Convergence Manufacturing Systems Research Division, Department of Nano Manufacturing Technology, Korea Institute of Machinery & Materials (KIMM), Daejeon, 34103, Republic of Korea
| | - Tae-Wook Kim
- Graduate School of Flexible and Printable Electronics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sang Hyun Lee
- School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
7
|
Sujith S, Naresh R, Srivisanth BU, Sajeevan A, Rajaramon S, David H, Solomon AP. Aptamers: precision tools for diagnosing and treating infectious diseases. Front Cell Infect Microbiol 2024; 14:1402932. [PMID: 39386170 PMCID: PMC11461471 DOI: 10.3389/fcimb.2024.1402932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Infectious diseases represent a significant global health challenge, with bacteria, fungi, viruses, and parasitic protozoa being significant causative agents. The shared symptoms among diseases and the emergence of new pathogen variations make diagnosis and treatment complex. Conventional diagnostic methods are laborious and intricate, underscoring the need for rapid, accurate techniques. Aptamer-based technologies offer a promising solution, as they are cost-effective, sensitive, specific, and convenient for molecular disease diagnosis. Aptamers, which are single-stranded RNA or DNA sequences, serve as nucleotide equivalents of monoclonal antibodies, displaying high specificity and affinity for target molecules. They are structurally robust, allowing for long-term storage without substantial activity loss. Aptamers find applications in diverse fields such as drug screening, material science, and environmental monitoring. In biomedicine, they are extensively studied for biomarker detection, diagnostics, imaging, and targeted therapy. This comprehensive review focuses on the utility of aptamers in managing infectious diseases, particularly in the realms of diagnostics and therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
8
|
Lapitan LD, Felisilda BMB, Tiangco CE, Rosin Jose A. Advances in Bioreceptor Layer Engineering in Nanomaterial-based Sensing of Pseudomonas Aeruginosa and its Metabolites. Chem Asian J 2024; 19:e202400090. [PMID: 38781439 DOI: 10.1002/asia.202400090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Pseudomonas aeruginosa is a pathogen that infects wounds and burns and causes severe infections in immunocompromised humans. The high virulence, the rise of antibiotic-resistant strains, and the easy transmissibility of P. aeruginosa necessitate its fast detection and control. The gold standard for detecting P. aeruginosa, the plate culture method, though reliable, takes several days to complete. Therefore, developing accurate, rapid, and easy-to-use diagnostic tools for P. aeruginosa is highly desirable. Nanomaterial-based biosensors are at the forefront of detecting P. aeruginosa and its secondary metabolites. This review summarises the biorecognition elements, biomarkers, immobilisation strategies, and current state-of-the-art biosensors for P. aeruginosa. The review highlights the underlying principles of bioreceptor layer engineering and the design of optical, electrochemical, mass-based, and thermal biosensors based on nanomaterials. The advantages and disadvantages of these biosensors and their future point-of-care applications are also discussed. This review outlines significant advancements in biosensors and sensors for detecting P. aeruginosa and its metabolites. Research efforts have identified biorecognition elements specific and selective towards P. aeruginosa. The stability, ease of preparation, cost-effectiveness, and integration of these biorecognition elements onto transducers are pivotal for their application in biosensors and sensors. At the same time, when developing sensors for clinically significant analytes such as P. aeruginosa, virulence factors need to be addressed, such as the sensor's sensitivity, reliability, and response time in samples obtained from patients. The point-of-care applicability of the developed sensor may be an added advantage since it enables onsite determination. In this context, optical methods developed for P. aeruginosa offer promising potential.
Collapse
Affiliation(s)
- Lorico Ds Lapitan
- Department of Chemical Engineering, Faculty of Engineering, University of Santo Tomas, España Boulevard, Manila, Philippines, Center for Advanced Materials and Technologies-CEZAMAT, Warsaw University of Technology, 02-822, Warsaw, Poland
| | - Bren Mark B Felisilda
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland, Department of Chemistry, College of Arts & Sciences, Xavier University-Ateneo de Cagayan, Corrales Street, Cagayan de Oro, Philippines
| | - Cristina E Tiangco
- Research Center for the Natural and Applied Sciences and, Department of Chemical Engineering, Faculty of Engineering, University of Santo Tomas, España Boulevard, Manila, Philippines
| | - Ammu Rosin Jose
- Department of Chemistry, Sacred Heart College (Autonomous), Pandit Karuppan Rd, Thevara, Ernakulam, Kerala, India
| |
Collapse
|
9
|
Anand A, Huang CC, Lai JY, Bano D, Pardede HI, Hussain A, Saleem S, Unnikrishnan B. Fluorescent carbon dots for labeling of bacteria: mechanism and prospects-a review. Anal Bioanal Chem 2024; 416:3907-3921. [PMID: 38656364 DOI: 10.1007/s00216-024-05300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
The search for bacteria-labeling agents that are more efficient and less toxic compared to existing staining dyes is ongoing. Fluorescent quantum dots and carbon dots (CDs) have been extensively researched for various bioimaging applications. Priority is given to CDs due to several advantages, including lower toxicity, versatility in tuning their properties, and better photostability compared to metal-based quantum dots. Although significant progress is still needed to replace existing dyes with CDs for bacteria labeling, they offer promising potential for further improvement in efficiency. Surface charges and functional groups have been reported as decisive factors for bacterial discrimination and live/dead assays; however, a complete guideline for preparing CDs with optimum properties for efficient staining and predicting their labeling performance is lacking. In this review, we discuss the application of fluorescent CDs for bacterial labeling and the underlying mechanisms and principles. We primarily focus on the application and mechanism of CDs for Gram differentiation, live imaging, live/dead bacteria differentiation, bacterial viability testing, biofilm imaging, and the challenges associated with application of CDs. Based on proposed mechanisms of bacterial labeling and ambiguous results reported, we provide our view and guidelines for the researchers in this field to overcome the challenges associated with bacteria labeling using fluorescent CDs.
Collapse
Affiliation(s)
- Anisha Anand
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 202301, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Jui-Yang Lai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan.
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan.
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan.
| | - Darakhshan Bano
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Helen Indah Pardede
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Amina Hussain
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Sehresh Saleem
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Binesh Unnikrishnan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 202301, Taiwan.
| |
Collapse
|
10
|
Mansouri S. Recent developments of (bio)-sensors for detection of main microbiological and non-biological pollutants in plastic bottled water samples: A critical review. Talanta 2024; 274:125962. [PMID: 38537355 DOI: 10.1016/j.talanta.2024.125962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 05/04/2024]
Abstract
The importance of water in all biological processes is undeniable. Ensuring access to clean and safe drinking water is crucial for maintaining sustainable water resources. To elaborate, the consumption of water of inadequate quality can have a repercussion on human health. Furthermore, according to the instability of tap water quality, the consumption rate of bottled water is increasing every day at the global level. Although most people believe bottled water is safe, it can also be contaminated by microbiological or chemical pollution, which can increase the risk of disease. Over the last decades, several conventional analytical tools applied to analyze the contamination of bottled water. On the other hand, some limitations restrict their application in this field. Therefore, biosensors, as emerging analytical method, attract tremendous attention for detection both microbial and chemical contamination of bottled water. Biosensors enjoy several facilities including selectivity, affordability, and sensitivity. In this review, the developed biosensors for analyzing contamination of bottled water were highlighted, as along with working strategies, pros and cons of studies. Challenges and prospects were also examined.
Collapse
Affiliation(s)
- Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia; University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis, Laboratory of Biophysics and Medical Technologies, Tunis, Tunisia.
| |
Collapse
|
11
|
Gutiérrez-Santana JC, Coria-Jiménez VR. Diagnosis and Therapeutic Strategies Based on Nucleic Acid Aptamers Selected against Pseudomonas aeruginosa: The Challenge of Cystic Fibrosis. ChemMedChem 2024; 19:e202300544. [PMID: 38016927 DOI: 10.1002/cmdc.202300544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
Antimicrobial resistance (AMR) is a rapidly spreading global health problem, and approximately five million deaths associated with AMR pathogens were identified prior to the COVID-19 pandemic. Pseudomonas aeruginosa has developed increasing AMR, and in patients with cystic fibrosis (CF) colonized by this bacterium, rare phenotypes have emerged that complicate the diagnosis and treatment of the hosts, in addition to multiple associated "epidemic strains" with high morbidities and mortalities. The conjugation of aptamers with fluorochromes or nanostructures has allowed the design of new identification strategies for Pseudomonas aeruginosa with detection limits of up to 1 cell ⋅ mL-1 , and the synergy of aptamers with antibiotics, antimicrobial peptides and nanostructures has exhibited promising therapeutic qualities. Some selected aptamers against this bacterium have shown intrinsic antimicrobial activity. However, these aptamers have been poorly evaluated in clinical isolates and have shown decreased interactions for CF isolates, demonstrating, in these cases, uncommon phenotypes resulting from the selective qualities of this disease as well as the great adaptive capacity of the pathogen. Therefore, finding an aptamer or set of aptamers that have the ability to recognize strange phenotypes of this bacillus is crucial in the battle against AMR.
Collapse
Affiliation(s)
- Juan Carlos Gutiérrez-Santana
- Laboratorio de Bacteriología Experimental, Instituto Nacional de Pediatría, Insurgentes sur 3700-C, Col. Insurgentes Cuicuilco Coyoacán, 04530, Ciudad de México, México
| | - Victor Rafael Coria-Jiménez
- Laboratorio de Bacteriología Experimental, Instituto Nacional de Pediatría, Insurgentes sur 3700-C, Col. Insurgentes Cuicuilco Coyoacán, 04530, Ciudad de México, México
| |
Collapse
|
12
|
Che D, Cao X, Chen C, Yan H. A point-of-care aptasensor based on the upconversion nanoparticles/MoS 2 FRET system for the detection of Pseudomonas aeruginosa infection. Mikrochim Acta 2023; 191:61. [PMID: 38157041 DOI: 10.1007/s00604-023-06155-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
The rapid detection of Pseudomonas aeruginosa (P. aeruginosa) is of great significance for the diagnosis of medical infection. In view of the above, a novel aptasensor based on fluorescence resonance energy transfer (FRET) was developed. It contained aptamer-coupled upconversion nanoparticles (UCNPs-apt) as a donor (excitation 980 nm) and molybdenum disulfide (MoS2) nanosheets as an acceptor. The upconversion fluorescence aptamer system was investigated to obtain the optimal parameters of MoS2 concentration, the incubation time of UCNPs-apt/MoS2 and P. aeruginosa, and pH. Based on the optimal parameters, a linear calibration equation (emission 654 nm) with a wide detection range 8.7 × 10 ~ 8.7 × 107 cfu/mL, a high coefficient of determination R2 0.9941, and a low limit of determination (LOD) 15.5 cfu/mL were established. The method was validated with P. aeruginosa infected foci of mouse wound. The advantage of this aptasensor is that analysis results can be obtained within 1.5 h, which was much faster than that of the standard method (18-24 h). Furthermore, combined with a portable instrument, it can be used as a point-of-care testing for the early detection of P. aeruginosa infection, which is useful for selecting the correct antibiotics to achieve good therapeutic effects. Additionally, it also has a broad application prospect in food and environmental areas.
Collapse
Affiliation(s)
- Dou Che
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Xitao Cao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Chong Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Hui Yan
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| |
Collapse
|
13
|
Sharma C, Verma M, Abidi SMS, Shukla AK, Acharya A. Functional fluorescent nanomaterials for the detection, diagnosis and control of bacterial infection and biofilm formation: Insight towards mechanistic aspects and advanced applications. Colloids Surf B Biointerfaces 2023; 232:113583. [PMID: 37844474 DOI: 10.1016/j.colsurfb.2023.113583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Infectious diseases resulting from the high pathogenic potential of several bacteria possesses a major threat to human health and safety. Traditional methods used for screening of these microorganisms face major issues with respect to detection time, selectivity and specificity which may delay treatment for critically ill patients past the optimal time. Thus, a convincing and essential need exists to upgrade the existing methodologies for the fast detection of bacteria. In this context, increasing number of newly emerging nanomaterials (NMs) have been discovered for their effective use and applications in the area of diagnosis in bacterial infections. Recently, functional fluorescent nanomaterials (FNMs) are extensively explored in the field of biomedical research, particularly in developing new diagnostic tools, nanosensors, specific imaging modalities and targeted drug delivery systems for bacterial infection. It is interesting to note that organic fluorophores and fluorescent proteins have played vital role for imaging and sensing technologies for long, however, off lately fluorescent nanomaterials are increasingly replacing these due to the latter's unprecedented fluorescence brightness, stability in the biological environment, high quantum yield along with high sensitivity due to enhanced surface property etc. Again, taking advantage of their photo-excitation property, these can also be used for either photothermal and photodynamic therapy to eradicate bacterial infection and biofilm formation. Here, in this review, we have paid particular attention on summarizing literature reports on FNMs which includes studies detailing fluorescence-based bacterial detection methodologies, antibacterial and antibiofilm applications of the same. It is expected that the present review will attract the attention of the researchers working in this field to develop new engineered FNMs for the comprehensive diagnosis and treatment of bacterial infection and biofilm formation.
Collapse
Affiliation(s)
- Chandni Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Mohini Verma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Syed M S Abidi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Ashish K Shukla
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
14
|
Abedi R, Raoof JB, Mohseni M, Bagheri Hashkavayi A. Development of a label-free impedimetric aptasensor for the detection of Acinetobacter baumannii bacteria. Anal Biochem 2023; 679:115288. [PMID: 37619902 DOI: 10.1016/j.ab.2023.115288] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Acinetobacter baumannii (A. baumannii) is responsible for various nosocomial infections, which is known as a clinically crucial opportunistic pathogen. Therefore, rapid detection of this pathogen is critical to prevent the spread of infection and appropriate treatment. Biological detection probes, such as aptamers and synthetic receptors can be used as diagnostic layers to detect bacteria. In this work, an electrochemical aptasensor was developed for the ultrasensitive detection of A. baumannii by electrochemical impedance spectroscopy (EIS). The aptamer was immobilized on the surface of a CSPE modified with the nanocomposite Fe3O4@SiO2@Glyoxal (Gly) for selective and label-free detection of A. baumannii. The charge transfers resistance (Rct) between redox couple [Fe(CN)63-/4-] and the surface of aptasensor in the Nyquist plot of EIS study was used as electroanalytical signal for detection and determination of A. baumannii. The obtained results showed that the constructed aptasensor could specifically detect A. baumannii in the concentration range from 1.0 × 103-1.0 × 108 Colony-forming unit (CFU)/mL and with a detection limit of 150 CFU/mL (S/N = 3). In addition to its sensitivity, the biosensor exhibits high selectivity over some other pathogens. Therefore, a simple, inexpensive, rapid, label-free, selective, and sensitive electrochemical aptasensor was developed to detect A. baumannii.
Collapse
Affiliation(s)
- Rokhsareh Abedi
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| | - Mojtaba Mohseni
- Department of Microbiology, Faculty of Science, University of Mazandaran, Iran
| | - Ayemeh Bagheri Hashkavayi
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, United States
| |
Collapse
|
15
|
Hu J, Liang L, He M, Lu Y. Sensitive and Direct Analysis of Pseudomonas aeruginosa through Self-Primer-Assisted Chain Extension and CRISPR-Cas12a-Based Color Reaction. ACS OMEGA 2023; 8:34852-34858. [PMID: 37779973 PMCID: PMC10536833 DOI: 10.1021/acsomega.3c04180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a common opportunistic Gram-negative pathogen that may cause infections to immunocompromised patients. However, sensitive and reliable analysis of P. aeruginosa remains a huge challenge. In this method, target recognition assists the formation of a self-primer and initiates single-stranded chain production. The produced single-stranded DNA chain is identified by CRISPR-Cas12a, and consequently, the trans-cleavage activity of the Cas12a enzyme is activated to parallelly digest Ag+ aptamer sequences that are chelated with silver ions (Ag+). The released Ag+ reacted with 3,3',5,5'-tetramethylbenzidine (TMB) for coloring. Compared with the traditional color developing strategies, which mainly rely on the DNA hybridization, the color developing strategy in this approach exhibits a higher efficiency due to the robust trans-cleavage activity of the Cas12a enzyme. Consequently, the method shows a low limit of detection of a wide detection of 5 orders of magnitudes and a low limit of detection of 21 cfu/mL, holding a promising prospect in early diagnosis of infections. Herein, we develop a sensitive and reliable method for direct and colorimetric detection of P. aeruginosa by integrating self-primer-assisted chain production and CRISPR-Cas12a-based color reaction and believe that the established approach will facilitate the development of bacteria-analyzing sensors.
Collapse
Affiliation(s)
- Jiangchun Hu
- Science
and Technology Innovation Center, Guangyuan
Central Hospital, Guangyuan
City 628000, Sichuan
Province, China
| | - Ling Liang
- Science
and Technology Innovation Center, Guangyuan
Central Hospital, Guangyuan
City 628000, Sichuan
Province, China
| | - Mingfang He
- Science
and Technology Innovation Center, Guangyuan
Central Hospital, Guangyuan
City 628000, Sichuan
Province, China
| | - Yongping Lu
- Science
and Technology Innovation Center, Guangyuan
Central Hospital, Guangyuan
City 628000, Sichuan
Province, China
| |
Collapse
|
16
|
Davodabadi F, Mirinejad S, Fathi-Karkan S, Majidpour M, Ajalli N, Sheervalilou R, Sargazi S, Rozmus D, Rahdar A, Diez-Pascual AM. Aptamer-functionalized quantum dots as theranostic nanotools against cancer and bacterial infections: A comprehensive overview of recent trends. Biotechnol Prog 2023; 39:e3366. [PMID: 37222166 DOI: 10.1002/btpr.3366] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023]
Abstract
Aptamers (Apts) are synthetic nucleic acid ligands that can be engineered to target various molecules, including amino acids, proteins, and pharmaceuticals. Through a series of adsorption, recovery, and amplification steps, Apts are extracted from combinatorial libraries of synthesized nucleic acids. Using aptasensors in bioanalysis and biomedicine can be improved by combining them with nanomaterials. Moreover, Apt-associated nanomaterials, including liposomes, polymeric, dendrimers, carbon nanomaterials, silica, nanorods, magnetic NPs, and quantum dots (QDs), have been widely used as promising nanotools in biomedicine. Following surface modifications and conjugation with appropriate functional groups, these nanomaterials can be successfully used in aptasensing. Advanced biological assays can use Apts immobilized on QD surfaces through physical interaction and chemical bonding. Accordingly, modern QD aptasensing platforms rely on interactions between QDs, Apts, and targets to detect them. QD-Apt conjugates can be used to directly detect prostate, ovarian, colorectal, and lung cancers or simultaneously detect biomarkers associated with these malignancies. Tenascin-C, mucin 1, prostate-specific antigen, prostate-specific membrane antigen, nucleolin, growth factors, and exosomes are among the cancer biomarkers that can be sensitively detected using such bioconjugates. Furthermore, Apt-conjugated QDs have shown great potential for controlling bacterial infections such as Bacillus thuringiensis, Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Campylobacter jejuni, Staphylococcus aureus, and Salmonella typhimurium. This comprehensive review discusses recent advancements in the design of QD-Apt bioconjugates and their applications in cancer and bacterial theranostics.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sonia Fathi-Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mahdi Majidpour
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | | | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Dominika Rozmus
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran
| | - Ana M Diez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Quimica Analitica, Quimica Fisica e Ingenieria Quimica, Madrid, Spain
| |
Collapse
|
17
|
Lin L, Fang M, Liu W, Zheng M, Lin R. Recent advances and perspectives of functionalized carbon dots in bacteria sensing. Mikrochim Acta 2023; 190:363. [PMID: 37610450 DOI: 10.1007/s00604-023-05938-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023]
Abstract
Bacterial infectious diseases are severe threats to human health and increase substantial financial burdens. Nanomaterials have shown great potential in timely and accurate bacterial identification, detection, and monitoring to improve the cure rate and reduce mortality. Recently, carbon dots have been evidenced to be ideal candidates for bacterial identification and detection due to their superior physicochemical properties and biocompatibility. This review outlines the detailed recognition elements and recognition strategies with functionalized carbon dots (FCDs) for bacterial identification and detection. The advantages and limitations of different kinds of FCDs-based sensors will be critically discussed. Meanwhile, the ongoing challenges and perspectives of FCDs-based sensors for bacteria sensing are put forward.
Collapse
Affiliation(s)
- Liping Lin
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Meng Fang
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Liu
- Department of Bioinformatics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meixia Zheng
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Rongguang Lin
- Department of Applied Chemistry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
18
|
Tavassoli M, Khezerlou A, Hamishehkar H, Ehsani A, Khalilzadeh B. An ultrasensitive aptamer-based fluorescent on/off system for trace amount evaluation of Yersinia enterocolitica in food samples. Mikrochim Acta 2023; 190:253. [PMID: 37286753 DOI: 10.1007/s00604-023-05820-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023]
Abstract
An innovative aptamer labeled with 5-FAM has been developed with a high affinity for Yersinia enterocolitica (Y. enterocolitica) using graphene oxide (GO) as a quenching platform. The selectivity of the prepared system was evaluated in the presence of common coexisted bacteria like Yersinia pseudotuberculosis, Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, and Salmonella typhimurium. Some experimental factors like pH and stability were investigated. The results showed that in the absence of Y. enterocolitica, aptamer labeled with 5-FAM was bonded with GO, causing fluorescence to be relatively weak. After the addition of Y. enterocolitica, the aptamer is released from the GO surface and binds to the target bacteria, and significantly increases the fluorescence intensity with an excitation wavelength of 410 nm and an emission wavelength of 530 nm. After optimizing all conditions, the system exhibited a wide linear response for Y. enterocolitica in the concentration range 10 to 1.0 × 109 CFU•mL-1 and the limit of detection (LOD) was 3 CFU•mL-1. This system demonstrated that GO-designed aptamers can be successful in detecting Y. enterocolitica in whole-cell forms, making them potentially useful for screening and rapid detection.
Collapse
Affiliation(s)
- Milad Tavassoli
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezou Khezerlou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Ehsani
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Balal Khalilzadeh
- Stem Cell Research Center (SCRC), Tabriz University of Medical Sciences, Tabriz, 51666-14711, Iran
| |
Collapse
|
19
|
Xu X, Wang J, He Y, Wu X. Low-speed centrifugation based isolation and Personal Glucose Meter assisted synchronous quantification of Pseudomonas aeruginosa in nursing home-acquired pneumonia. Anal Biochem 2023; 665:115051. [PMID: 36681139 DOI: 10.1016/j.ab.2023.115051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023]
Abstract
Home-acquired pneumonia is a common infection and the incidence has increased in recent years as the population ages. Pseudomonas aeruginosa (P. aeruginosa) is common in nursing home residents and in hospital infections, providing a huge threat to human health. Therefore, it is essential to develop a novel and portable P. aeruginosa analysis method for the early diagnosis of home-acquired pneumonia. Few of the established approaches enable isolation and synchronous quantification of P. aeruginosa. Herein, we propose a novel platform by integrating aptamer recognition-based aggregation of target bacteria and personal glucose meters (PGMs) based readout of results. Based on this, the method enables low-speed centrifugation (4193 g) based isolation and personal glucose meter assisted synchronous quantification of P. aeruginosa. In addition, the chain displacement process is included for signal amplification that endows the method with a wide detection range of six orders of magnitudes and a low limit of detection of 36 cfu/mL. Besides the excellent sensitivity, the approach also shows a good selectivity to P. aeruginosa detection, making it a promising tool to report P. aeruginosa based home-acquired pneumonia and guiding the early-nursing of P. aeruginosa infections at the emergency department.
Collapse
Affiliation(s)
- Xiao Xu
- Sichuan College of Traditional Chinese Medicine, Mianyang City, Sichuan province, 621000, China
| | - Jinyu Wang
- Sichuan College of Traditional Chinese Medicine, Mianyang City, Sichuan province, 621000, China
| | - Yan He
- Sichuan College of Traditional Chinese Medicine, Mianyang City, Sichuan province, 621000, China
| | - Xuehua Wu
- Sichuan College of Traditional Chinese Medicine, Mianyang City, Sichuan province, 621000, China.
| |
Collapse
|
20
|
Wang X, Yuan W, Sun Z, Liu F, Wang D. Ultrasensitive multicolor electrochromic sensor built on closed bipolar electrode: Application in the visual detection of Pseudomonas aeruginosa. Food Chem 2023; 403:134240. [DOI: 10.1016/j.foodchem.2022.134240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/20/2022] [Accepted: 09/11/2022] [Indexed: 11/15/2022]
|
21
|
Li M, Huang R, Liao X, Zhou Z, Zou L, Liu B. An inner filter effect-based fluorescent aptasensor for sensitive detection of kanamycin in complex samples using gold nanoparticles and graphene oxide quantum dots. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:843-848. [PMID: 36722858 DOI: 10.1039/d2ay01794f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In this work, a label-free fluorescent aptasensor based on the inner filter effect (IFE) between gold nanoparticles (AuNPs) and graphene oxide quantum dots (GOQDs) was developed for the detection of kanamycin in complex samples. AuNPs are capable of functioning as the fluorescence absorber of GOQDs because of the complementary overlap between their absorption spectra and the emission spectra of GOQDs. AuNPs can effectively quench the fluorescence of GOQDs via the IFE and modulate it with their aggregation state. In the presence of kanamycin, the aptamer is released from the surface of AuNPs, leading to their salt-induced aggregation and the fluorescence recovery of GOQDs. Under the optimum conditions, the fluorescence intensity of GOQDs was linearly proportional to the concentration of kanamycin over the range from 5 to 600 nM, with a detection limit of 3.6 nM. Moreover, the fluorescent aptasensor was successfully applied for kanamycin detection in complex samples (milk, honey and serum), which might hold great promise for kanamycin detection in food safety control and clinical research.
Collapse
Affiliation(s)
- Mengyan Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Ruoying Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Xiaofei Liao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Zidan Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Li Zou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510699, PR China
| | - Bing Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510699, PR China
| |
Collapse
|
22
|
Brosseau NE, Vallée I, Mayer-Scholl A, Ndao M, Karadjian G. Aptamer-Based Technologies for Parasite Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23020562. [PMID: 36679358 PMCID: PMC9867382 DOI: 10.3390/s23020562] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 05/30/2023]
Abstract
Centuries of scientific breakthroughs have brought us closer to understanding and managing the spread of parasitic diseases. Despite ongoing technological advancements in the detection, treatment, and control of parasitic illnesses, their effects on animal and human health remain a major concern worldwide. Aptamers are single-stranded oligonucleotides whose unique three-dimensional structures enable them to interact with high specificity and affinity to a wide range of targets. In recent decades, aptamers have emerged as attractive alternatives to antibodies as therapeutic and diagnostic agents. Due to their superior stability, reusability, and modifiability, aptamers have proven to be effective bioreceptors for the detection of toxins, contaminants, biomarkers, whole cells, pathogens, and others. As such, they have been integrated into a variety of electrochemical, fluorescence, and optical biosensors to effectively detect whole parasites and their proteins. This review offers a summary of the various types of parasite-specific aptamer-based biosensors, their general mechanisms and their performance.
Collapse
Affiliation(s)
- Noah Emerson Brosseau
- UMR BIPAR, Anses, Laboratoire de Santé Animale, INRAE, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
- Infectious Diseases and Immunity in Global Health (IDIGH) Program, Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Isabelle Vallée
- UMR BIPAR, Anses, Laboratoire de Santé Animale, INRAE, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| | - Anne Mayer-Scholl
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Momar Ndao
- Infectious Diseases and Immunity in Global Health (IDIGH) Program, Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Grégory Karadjian
- UMR BIPAR, Anses, Laboratoire de Santé Animale, INRAE, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| |
Collapse
|
23
|
Yuan W, Wang X, Sun Z, Liu F, Wang D. A Synergistic Dual-Channel Sensor for Ultrasensitive Detection of Pseudomonas aeruginosa by DNA Nanostructure and G-Quadruplex. BIOSENSORS 2022; 13:24. [PMID: 36671859 PMCID: PMC9856186 DOI: 10.3390/bios13010024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Pseudomonas aeruginosa is one of the foodborne pathogenic bacteria that greatly threatens human health. An ultrasensitive technology for P. aeruginosa detection is urgently demanded. Herein, based on the mechanism of aptamer-specific recognition, an electrochemical-colorimetric dual-mode ultrasensitive sensing strategy for P. aeruginosa is proposed. The vertices of DNA tetrahedral nanoprobes (DTNPs), that immobilized on the gold electrode were modified with P. aeruginosa aptamers. Furthermore, the G-quadruplex, which was conjugated with a P. aeruginosa aptamer, was synthesized via rolling circle amplification (RCA). Once P. aeruginosa is captured, a hemin/G-quadruplex, which possesses peroxidase-mimicking activity, will separate from the P. aeruginosa aptamer. Then, the exfoliated hemin/G-quadruplexes are collected for oxidation of the 3,3',5',5'-tetramethylbenzidine for colorimetric sensing. In the electrochemical mode, the hemin/G-quadruplex that is still bound to the aptamer catalyzes polyaniline (PANI) deposition and leads to a measurable electrochemical signal. The colorimetric and electrochemical channels demonstrated a good forward and reverse linear response for P. aeruginosa within the range of 1-108 CFU mL-1, respectively. Overall, compared with a traditional single-mode sensor for P. aeruginosa, the proposed dual-mode sensor featuring self-calibration not only avoids false positive results but also improves accuracy and sensitivity. Furthermore, the consistency of the electrochemical/colorimetric assay was verified in practical meat samples and showed great potential for applications in bioanalysis.
Collapse
Affiliation(s)
- Wei Yuan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xinxia Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhilan Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Fang Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Daoying Wang
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| |
Collapse
|
24
|
Wang X, Wang Z, Sun Z, Wang D, Liu F, Lin L. In Vitro and In Situ Characterization of Psychrotrophic Spoilage Bacteria Recovered from Chilled Chicken. Foods 2022; 12:foods12010095. [PMID: 36613311 PMCID: PMC9818852 DOI: 10.3390/foods12010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
Spoilage bacteria play a remarkable role in the spoilage of chilled chicken. In this paper, a total of 42 isolates belonging to 16 species of four genera were isolated from chilled chicken and displayed different characterizations of psychrotrophic spoilage. Six isolates of J7, J8, Q20, Q23, R1, and R9 with differences in proteolytic capabilities were further characterized for in situ spoilage potential evaluation. Pseudomonas lundensis J8 exhibited the strongest spoilage potential in situ, displaying a fast growth rate, increased pH velocity, high total volatile basic nitrogen, and high peptide content in the chicken samples. The volatile flavor analysis of chicken samples via electronic nose indicated that the content of characteristic odors representing spoilage, including sulfides, organic sulfide, and hydride, increased during storage. Additionally, the principle component and correlation analyses revealed that the spoilage odors produced by different species of bacteria were significantly different and positively correlated with the results of protease activity in vitro. The characteristics of spoilage bacteria in chilled chicken provided a comprehensive insight into microbial assessment during storage.
Collapse
Affiliation(s)
- Xinxia Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Zaitian Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Zhilan Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Daoying Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Fang Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
- Correspondence: (F.L.); (L.L.)
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Correspondence: (F.L.); (L.L.)
| |
Collapse
|
25
|
Liu L, Hong J, Wang W, Xiao S, Xie H, Wang Q, Gan N. Fluorescent aptasensor for detection of live foodborne pathogens based on multicolor perovskite-quantum-dot-encoded DNA probes and dual-stirring-bar-assisted signal amplification. J Pharm Anal 2022; 12:913-922. [PMID: 36605572 PMCID: PMC9805940 DOI: 10.1016/j.jpha.2022.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 01/09/2023] Open
Abstract
In this study, a fluorescent (FL) aptasensor was developed for on-site detection of live Salmonella typhimurium (S.T.) and Vibrio parahaemolyticus (V.P.). Complementary DNA (cDNA) of aptamer (Apt)-functionalized multicolor polyhedral oligomeric silsesquioxane-perovskite quantum dots (cDNA-POSS-PQDs) were used as encoded probes and combined with dual-stirring-bar-assisted signal amplification for pathogen quantification. In this system, bar 1 was labeled with the S.T. and V.P. Apts, and then bar 2 was functionalized with cDNA-POSS-PQDs. When S.T. and V.P. were introduced, pathogen-Apt complexes would form and be released into the supernatant from bar 1. Under agitation, the two complexes reached bar 2 and subsequently reacted with cDNA-POSS-PQDs, which were immobilized on MXene. Then, the encoded probes would be detached from bar 2 to generate FL signals in the supernatant. Notably, the pathogens can resume their free state and initiate next cycle. They swim between the two bars, and the FL signals can be gradually enhanced to maximum after several cycles. The FL signals from released encoded probes can be used to detect the analytes. In particular, live pathogens can be distinguished from dead ones by using an assay. The detection limits and linear range for S.T. and V.P. were 30 and 10 CFU/mL and 102-106 CFU/mL, respectively. Therefore, this assay has broad application potential for simultaneous on-site detection of various live pathogenic bacteria in water.
Collapse
Affiliation(s)
- Liu Liu
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Juncheng Hong
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Wenhai Wang
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Shu Xiao
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Hongzhen Xie
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, 510632, China,Corresponding author.
| | - Ning Gan
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China,Corresponding author.
| |
Collapse
|
26
|
Khatami SH, Karami S, Siahkouhi HR, Taheri-Anganeh M, Fathi J, Aghazadeh Ghadim MB, Taghvimi S, Shabaninejad Z, Tondro G, Karami N, Dolatshah L, Soltani Fard E, Movahedpour A, Darvishi MH. Aptamer-based biosensors for Pseudomonas aeruginosa detection. Mol Cell Probes 2022; 66:101865. [PMID: 36162597 DOI: 10.1016/j.mcp.2022.101865] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 12/30/2022]
Abstract
Pseudomonas aeruginosa possesses innate antibiotic resistance mechanisms, and carbapenem-resistant Pseudomonas aeruginosa has been considered the number one priority in the 2017 WHO list of antimicrobial-resistant crucial hazards. Early detection of Pseudomonas aeruginosa can circumvent treatment challenges. Various techniques have been developed for the detection of P. aeruginosa detection. Biosensors have recently attracted unprecedented attention in the field of point-of-care diagnostics due to their easy operation, rapid, low cost, high sensitivity, and selectivity. Biosensors can convert the specific interaction between bioreceptors (antibodies, aptamers) and pathogens into optical, electrical, and other signal outputs. Aptamers are novel and promising alternatives to antibodies as biorecognition elements mainly synthesized by systematic evolution of ligands by exponential enrichment and have predictable secondary structures. They have comparable affinity and specificity for binding to their target to antibody recognition. Since 2015, there have been about 2000 journal articles published in the field of aptamer biosensors, of which 30 articles were on the detection of P. aeruginosa. Here, we have focused on outlining the recent progress in the field of aptamer-based biosensors for P. aeruginosa detection based on optical, electrochemical, and piezoelectric signal transduction methods.
Collapse
Affiliation(s)
- Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajedeh Karami
- Department of Chemistry, Shiraz University, Shiraz, Iran
| | - Hamid Reza Siahkouhi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Javad Fathi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sina Taghvimi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Gholamhossein Tondro
- Department of Biotechnology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Neda Karami
- TU Wien, Institute of Solid-State Electronics, Vienna A, 1040, Austria
| | - Leila Dolatshah
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Elahe Soltani Fard
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Mohammad Hasan Darvishi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Gan Z, Roslan MAM, Abd Shukor MY, Halim M, Yasid NA, Abdullah J, Md Yasin IS, Wasoh H. Advances in Aptamer-Based Biosensors and Cell-Internalizing SELEX Technology for Diagnostic and Therapeutic Application. BIOSENSORS 2022; 12:bios12110922. [PMID: 36354431 PMCID: PMC9687594 DOI: 10.3390/bios12110922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 05/28/2023]
Abstract
Aptamers are a group of synthetic single-stranded nucleic acids. They are generated from a random library of single-stranded DNA or RNA by a technology named systematic evolution of ligands by exponential enrichment (SELEX). SELEX is a repetitive process to select and identify suitable aptamers that show high affinity and specificity towards target cells. Great strides have been achieved in the design, construction, and use of aptamers up to this point. However, only a small number of aptamer-based applications have achieved widespread commercial and clinical acceptance. Additionally, finding more effective ways to acquire aptamers with high affinity remains a challenge. Therefore, it is crucial to thoroughly examine the existing dearth and advancement in aptamer-related technologies. This review focuses on aptamers that are generated by SELEX to detect pathogenic microorganisms and mammalian cells, as well as in cell-internalizing SELEX for diagnostic and therapeutic purposes. The development of novel aptamer-based biosensors using optical and electrical methods for microbial detection is reported. The applications and limitations of aptamers are also discussed.
Collapse
Affiliation(s)
- Zixuen Gan
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | | | - Mohd Yunus Abd Shukor
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | - Murni Halim
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | - Nur Adeela Yasid
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | - Jaafar Abdullah
- Faculty of Science, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | - Ina Salwany Md Yasin
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | - Helmi Wasoh
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| |
Collapse
|
28
|
Barrientos K, Arango JP, Moncada MS, Placido J, Patiño J, Macías SL, Maldonado C, Torijano S, Bustamante S, Londoño ME, Jaramillo M. Carbon dot-based biosensors for the detection of communicable and non -communicable diseases. Talanta 2022; 251:123791. [DOI: 10.1016/j.talanta.2022.123791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
|
29
|
Nnachi RC, Sui N, Ke B, Luo Z, Bhalla N, He D, Yang Z. Biosensors for rapid detection of bacterial pathogens in water, food and environment. ENVIRONMENT INTERNATIONAL 2022; 166:107357. [PMID: 35777116 DOI: 10.1016/j.envint.2022.107357] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/10/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Conventional techniques (e.g., culture-based method) for bacterial detection typically require a central laboratory and well-trained technicians, which may take several hours or days. However, recent developments within various disciplines of science and engineering have led to a major paradigm shift in how microorganisms can be detected. The analytical sensors which are widely used for medical applications in the literature are being extended for rapid and on-site monitoring of the bacterial pathogens in food, water and the environment. Especially, within the low-resource settings such as low and middle-income countries, due to the advantages of low cost, rapidness and potential for field-testing, their use is indispensable for sustainable development of the regions. Within this context, this paper discusses analytical methods and biosensors which can be used to ensure food safety, water quality and environmental monitoring. In brief, most of our discussion is focused on various rapid sensors including biosensors and microfluidic chips. The analytical performances such as the sensitivity, specificity and usability of these sensors, as well as a brief comparison with the conventional techniques for bacteria detection, form the core part of the discussion. Furthermore, we provide a holistic viewpoint on how future research should focus on exploring the synergy of different sensing technologies by developing an integrated multiplexed, sensitive and accurate sensors that will enable rapid detection for food safety, water and environmental monitoring.
Collapse
Affiliation(s)
- Raphael Chukwuka Nnachi
- School of Water, Energy and Environment, Cranfield University, Milton Keynes MK43, 0AL, United Kingdom
| | - Ning Sui
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Bowen Ke
- Laboratory of Anesthesiology & Critical Care Medicine, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan 61004, PR China
| | - Zhenhua Luo
- School of Water, Energy and Environment, Cranfield University, Milton Keynes MK43, 0AL, United Kingdom
| | - Nikhil Bhalla
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Shore Road, BT37 0QB Jordanstown, Northern Ireland, United Kingdom; Healthcare Technology Hub, Ulster University, Jordanstown Shore Road, BT37 0QB, Northern Ireland, United Kingdom
| | - Daping He
- School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Milton Keynes MK43, 0AL, United Kingdom.
| |
Collapse
|
30
|
Suresh RR, Kulandaisamy AJ, Nesakumar N, Nagarajan S, Lee JH, Rayappan JBB. Graphene Quantum Dots – Hydrothermal Green Synthesis, Material Characterization and Prospects for Cervical Cancer Diagnosis Applications: A Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202200655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Raghavv Raghavender Suresh
- Department of Bioengineering School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Arockia Jayalatha Kulandaisamy
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- School of Electrical & Electronics Engineering SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Noel Nesakumar
- Department of Bioengineering School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Saisubramanian Nagarajan
- Center for Research in Infectious Diseases (CRID) School of Chemical and Biotechnology SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Jung Heon Lee
- Research Center for Advanced Materials Technology School of Advanced Materials Science & Engineering Biomedical Institute for Convergence at SKKU (BICS) Sungkyunkwan University (SKKU) Suwon 16419 South Korea
| | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- School of Electrical & Electronics Engineering SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| |
Collapse
|
31
|
Milosavljevic V, Mitrevska K, Gagic M, Adam V. Nanoarchitectonics of graphene based sensors for food safety monitoring. Crit Rev Food Sci Nutr 2022; 63:9605-9633. [PMID: 35729848 DOI: 10.1080/10408398.2022.2076650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Since the desire for the real-time food quality monitoring, plenty of research effort has been made to develop novel tools and to offer extremely efficient detection of food contaminants. Unique electrical, mechanical, and thermal properties make graphene an important material in the field of sensor research. The material can be manufactured into flakes, sheets, films and with its oxidized derivatives could be almost used for a limitless set of application. Herein, current graphene-based sensors for food quality monitoring, novel designs, sensing mechanisms and elements of sensor systems and potential challenges will be outlined and discussed.
Collapse
Affiliation(s)
- Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Katerina Mitrevska
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University, Brno, Czech Republic
| | - Milica Gagic
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
32
|
Căpățînă D, Feier B, Hosu O, Tertiș M, Cristea C. Analytical methods for the characterization and diagnosis of infection with Pseudomonas aeruginosa: A critical review. Anal Chim Acta 2022; 1204:339696. [DOI: 10.1016/j.aca.2022.339696] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/05/2022] [Accepted: 03/06/2022] [Indexed: 12/11/2022]
|
33
|
Li Y, Hu Y, Chen T, Chen Y, Li Y, Zhou H, Yang D. Advanced detection and sensing strategies of Pseudomonas aeruginosa and quorum sensing biomarkers: A review. Talanta 2022; 240:123210. [PMID: 35026633 DOI: 10.1016/j.talanta.2022.123210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022]
Abstract
Pseudomonas aeruginosa (P. aeruginosa), a ubiquitous opportunistic pathogen, can frequently cause chronic obstructive pulmonary disease, cystic fibrosis and chronic wounds, and potentially lead to severe morbidity and mortality. Timely and adequate treatment of nosocomial infection in clinic depends on rapid detection and accurate identification of P. aeruginosa and its early-stage antibiotic susceptibility test. Traditional methods like plating culture, polymerase chain reaction, and enzyme-linked immune sorbent assays are time-consuming and require expensive equipment, limiting the rapid diagnostic application. Advanced sensing strategy capable of fast, sensitive and simple detection with low cost has therefore become highly desired in point of care testing (POCT) of nosocomial pathogens. Within this review, advanced detection and sensing strategies for P. aeruginosa cells along with associated quorum sensing (QS) molecules over the last ten years are discussed and summarized. Firstly, the principles of four commonly used sensing strategies including localized surface plasmon resonance (LSPR), surface-enhanced Raman spectroscopy (SERS), electrochemistry, and fluorescence are briefly overviewed. Then, the advancement of the above sensing techniques for P. aeruginosa cells and its QS biomarkers detection are introduced, respectively. In addition, the integration with novel compatible platforms towards clinical application is highlighted in each section. Finally, the current achievements are summarized along with proposed challenges and prospects.
Collapse
Affiliation(s)
- Yingying Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang Province, 315211, People's Republic of China; Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Yang Hu
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Tao Chen
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Yan Chen
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Yi Li
- Graduate School of Biomedical Engineering and ARC Centre of Excellence in Nanoscale Biophotonics, University of New South Wales, Sydney, 2052, Australia
| | - Haibo Zhou
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Danting Yang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang Province, 315211, People's Republic of China; Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China.
| |
Collapse
|
34
|
Chen XF, Zhao X, Yang Z. Aptasensors for the detection of infectious pathogens: design strategies and point-of-care testing. Mikrochim Acta 2022; 189:443. [PMID: 36350388 PMCID: PMC9643942 DOI: 10.1007/s00604-022-05533-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022]
Abstract
The epidemic of infectious diseases caused by contagious pathogens is a life-threatening hazard to the entire human population worldwide. A timely and accurate diagnosis is the critical link in the fight against infectious diseases. Aptamer-based biosensors, the so-called aptasensors, employ nucleic acid aptamers as bio-receptors for the recognition of target pathogens of interest. This review focuses on the design strategies as well as state-of-the-art technologies of aptasensor-based diagnostics for infectious pathogens (mainly bacteria and viruses), covering the utilization of three major signal transducers, the employment of aptamers as recognition moieties, the construction of versatile biosensing platforms (mostly micro and nanomaterial-based), innovated reporting mechanisms, and signal enhancement approaches. Advanced point-of-care testing (POCT) for infectious disease diagnostics are also discussed highlighting some representative ready-to-use devices to address the urgent needs of currently prevalent coronavirus disease 2019 (COVID-19). Pressing issues in aptamer-based technology and some future perspectives of aptasensors are provided for the implementation of aptasensor-based diagnostics into practical application.
Collapse
Affiliation(s)
- Xiao-Fei Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, People's Republic of China
| | - Xin Zhao
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510070, People's Republic of China.
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People's Republic of China.
- Guangzhou Laboratory, Guangzhou, 510320, People's Republic of China.
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Guangzhou, 510005, People's Republic of China.
| |
Collapse
|
35
|
He H, Sun DW, Wu Z, Pu H, Wei Q. On-off-on fluorescent nanosensing: Materials, detection strategies and recent food applications. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Xiao D, Qi H, Teng Y, Pierre D, Kutoka PT, Liu D. Advances and Challenges of Fluorescent Nanomaterials for Synthesis and Biomedical Applications. NANOSCALE RESEARCH LETTERS 2021; 16:167. [PMID: 34837561 PMCID: PMC8626755 DOI: 10.1186/s11671-021-03613-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/28/2021] [Indexed: 05/18/2023]
Abstract
With the rapid development of nanotechnology, new types of fluorescent nanomaterials (FNMs) have been springing up in the past two decades. The nanometer scale endows FNMs with unique optical properties which play a critical role in their applications in bioimaging and fluorescence-dependent detections. However, since low selectivity as well as low photoluminescence efficiency of fluorescent nanomaterials hinders their applications in imaging and detection to some extent, scientists are still in search of synthesizing new FNMs with better properties. In this review, a variety of fluorescent nanoparticles are summarized including semiconductor quantum dots, carbon dots, carbon nanoparticles, carbon nanotubes, graphene-based nanomaterials, noble metal nanoparticles, silica nanoparticles, phosphors and organic frameworks. We highlight the recent advances of the latest developments in the synthesis of FNMs and their applications in the biomedical field in recent years. Furthermore, the main theories, methods, and limitations of the synthesis and applications of FNMs have been reviewed and discussed. In addition, challenges in synthesis and biomedical applications are systematically summarized as well. The future directions and perspectives of FNMs in clinical applications are also presented.
Collapse
Affiliation(s)
- Deli Xiao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 210009, China
| | - Haixiang Qi
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Teng
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Dramou Pierre
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Dong Liu
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, School of Biological and Pharmaceutical Engineering, West Anhui University, West of Yunlu Bridge, Moon Island, Lu'an, 237012, Anhui, China.
| |
Collapse
|
37
|
Joshi DJ, Koduru JR, Malek NI, Hussain CM, Kailasa SK. Surface modifications and analytical applications of graphene oxide: A review. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116448] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
He Q, Ma S, Wang J, Chen K, Dong J, Zhou J, Chen D, Ning Y. Graphene Oxide-Based Fluorometric Determination of the eta Gene in Pseudomonas aeruginosa Using Nicking Enzyme-Mediated Cyclic Signal Amplification. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1980885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Qizhi He
- Academician Workstation, Changsha Medical University, Changsha, Hunan, People’s Republic of China
- School of Basic Medical Science, Changsha Medical University, Changsha, Hunan, People’s Republic of China
- Discipline of Basic Medical Application, Changsha Medical University, Changsha, Hunan, People’s Republic of China
| | - Shuheng Ma
- Academician Workstation, Changsha Medical University, Changsha, Hunan, People’s Republic of China
- Discipline of Basic Medical Application, Changsha Medical University, Changsha, Hunan, People’s Republic of China
| | - Jingya Wang
- Academician Workstation, Changsha Medical University, Changsha, Hunan, People’s Republic of China
| | - Keke Chen
- Academician Workstation, Changsha Medical University, Changsha, Hunan, People’s Republic of China
| | - Jun Dong
- Academician Workstation, Changsha Medical University, Changsha, Hunan, People’s Republic of China
- Discipline of Basic Medical Application, Changsha Medical University, Changsha, Hunan, People’s Republic of China
| | - Ji Zhou
- Academician Workstation, Changsha Medical University, Changsha, Hunan, People’s Republic of China
- School of Basic Medical Science, Changsha Medical University, Changsha, Hunan, People’s Republic of China
| | - Danna Chen
- Academician Workstation, Changsha Medical University, Changsha, Hunan, People’s Republic of China
- School of Basic Medical Science, Changsha Medical University, Changsha, Hunan, People’s Republic of China
| | - Yi Ning
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
39
|
Khayal A, Dawane V, Amin MA, Tirth V, Yadav VK, Algahtani A, Khan SH, Islam S, Yadav KK, Jeon BH. Advances in the Methods for the Synthesis of Carbon Dots and Their Emerging Applications. Polymers (Basel) 2021; 13:3190. [PMID: 34578091 PMCID: PMC8469539 DOI: 10.3390/polym13183190] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 01/11/2023] Open
Abstract
Cutting-edge technologies are making inroads into new areas and this remarkable progress has been successfully influenced by the tiny level engineering of carbon dots technology, their synthesis advancement and impressive applications in the field of allied sciences. The advances of science and its conjugation with interdisciplinary fields emerged in carbon dots making, their controlled characterization and applications into faster, cheaper as well as more reliable products in various scientific domains. Thus, a new era in nanotechnology has developed into carbon dots technology. The understanding of the generation process, control on making processes and selected applications of carbon dots such as energy storage, environmental monitoring, catalysis, contaminates detections and complex environmental forensics, drug delivery, drug targeting and other biomedical applications, etc., are among the most promising applications of carbon dots and thus it is a prominent area of research today. In this regard, various types of carbon dot nanomaterials such as oxides, their composites and conjugations, etc., have been garnering significant attention due to their remarkable potential in this prominent area of energy, the environment and technology. Thus, the present paper highlights the role and importance of carbon dots, recent advancements in their synthesis methods, properties and emerging applications.
Collapse
Affiliation(s)
- Areeba Khayal
- Industrial Chemistry Section, Aligarh Muslim University, Aligarh 202002, India;
| | - Vinars Dawane
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar 382030, India;
| | - Mohammed A. Amin
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Vineet Tirth
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia or (V.T.); (A.A.)
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Guraiger, Abha 61413, Saudi Arabia
| | | | - Ali Algahtani
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia or (V.T.); (A.A.)
- Research Center for Advanced Materials Science (RCAMS), King Khalid University Guraiger, Abha 61413, Saudi Arabia
| | - Samreen Heena Khan
- Centre of Research and Development, YNC ENVIS PRIVATE LIMITED, New Delhi 110059, India;
| | - Saiful Islam
- Civil Engineering Department, College of Engineering, King Khalid University, Abha 61413, Saudi Arabia;
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad 462044, India;
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
40
|
Sun F, Zhang J, Yang Q, Wu W. Quantum dot biosensor combined with antibody and aptamer for tracing food-borne pathogens. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Abstract
Due to the increasing number of food-borne diseases, more attention is being paid to food safety. Food-borne pathogens are the main cause of food-borne diseases, which seriously endanger human health, so it is necessary to detect and control them. Traditional detection methods cannot meet the requirements of rapid detection of food due to many shortcomings, such as being time-consuming, laborious or requiring expensive instrumentation. Quantum dots have become a promising nanotechnology in pathogens tracking and detection because of their excellent optical properties. New biosensor detection methods based on quantum dots are have been gradually developed due to their high sensitivity and high specificity. In this review, we summarize the different characteristics of quantum dots synthesized by carbon, heavy metals and composite materials firstly. Then, attention is paid to the principles, advantages and limitations of the quantum dots biosensor with antibodies and aptamers as recognition elements for recognition and capture of food-borne pathogens. Finally, the great potential of quantum dots in pathogen detection is summarized.
Collapse
|
41
|
Zhou C, Pan Y, Ge S, Coulon F, Yang Z. Rapid methods for antimicrobial resistance diagnosis in contaminated soils for effective remediation strategy. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Du H, Wang X, Yang Q, Wu W. Quantum dot: Lightning invisible foodborne pathogens. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Zeng L, Guo L, Wang Z, Xu X, Ding H, Song S, Xu L, Kuang H, Xu C. Gold nanoparticle-based immunochromatographic assay for detection Pseudomonas aeruginosa in water and food samples. Food Chem X 2021; 9:100117. [PMID: 33778481 PMCID: PMC7985707 DOI: 10.1016/j.fochx.2021.100117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/02/2022] Open
Abstract
An ICA was developed for P. aeruginosa detection. The ICA strip showed a limit of detection of 2.41 × 104 CFU/mL. The ICA could be applied to detect P. aeruginosa in water and food samples.
Pseudomonas aeruginosa (P. aeruginosa) is the common infection-causing bacterial pathogen. Conventional methods for the detection of P. aeruginosa are time-consuming, and therefore, a more rapid analytical method is required. Here, monoclonal antibodies (Mabs) against P. aeruginosa (CICC 10419) were prepared and based on paired Mabs, an immunochromatographic assay (ICA) was developed. The ICA strip showed a limit of detection of 2.41 × 104 CFU/mL and the linear range of detection was 3.13 × 104-1.0 × 106 CFU/mL. No cross-reactivity was observed when other common Gram-negative and Gram-positive bacteria were used. The analytical performance of the ICA strip indicated that the developed ICA had good specificity and stability. Moreover, the feasibility of the ICA strip was verified by detecting P. aeruginosa (CICC 10419) in spiked water and food samples. The ICA strip could detect samples contaminated with a low-level of P. aeruginosa (CICC 10419) after 8 h enrichment.
Collapse
Affiliation(s)
- Lu Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Lingling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Zhongxing Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hongliu Ding
- Suzhou Product Quality Supervision Inspection, 1368 Wuzhong Avenue, Suzhou 215104, China
| | - Shanshan Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.,International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
44
|
Lv J, Liu S, Miao Y. Synthesis of biological quantum dots based on single-strand DNA and its application in melamine detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119254. [PMID: 33310270 DOI: 10.1016/j.saa.2020.119254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
By taking TC base-rich single-stranded DNA (ssDNA) as the raw material, a fluorescent biological quantum dots (Bio-dots) probe was prepared in one step through hydrothermal method, where its lifetime was greatly extended in comparison with Carbon quantum dots (CQDs), reaching 10.7 ns. The fluorescent detection of melamine in milk samples was realized by using the base pairing principle. Under the optimal conditions, the linear range of Bio-dots probe fluorescence sensor for melamine detection is 5-600 μM, and the detection limit is (3σ) 1.4 μM. Bio-dots can not only emit photoluminescence, but also detect target molecules as a functional recognition group. As the raw material ssDNA was basically non-toxic and there was no toxic substances participated in its synmanuscript process, this Bio-dots probe was a kind of green and environmentally-friendly photoluminescent functional material.
Collapse
Affiliation(s)
- Jinzhi Lv
- Shanxi Normal University, Linfen 041004, PR China.
| | - Shuying Liu
- Shanxi Normal University, Linfen 041004, PR China
| | - Yanming Miao
- Shanxi Normal University, Linfen 041004, PR China
| |
Collapse
|
45
|
Saad M, Faucher SP. Aptamers and Aptamer-Coupled Biosensors to Detect Water-Borne Pathogens. Front Microbiol 2021; 12:643797. [PMID: 33679681 PMCID: PMC7933031 DOI: 10.3389/fmicb.2021.643797] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Aptamers can serve as efficient bioreceptors for the development of biosensing detection platforms. Aptamers are short DNA or RNA oligonucleotides that fold into specific structures, which enable them to selectively bind to target analytes. The method used to identify aptamers is Systematic Evolution of Ligands through Exponential Enrichment (SELEX). Target properties can have an impact on aptamer efficiencies. Therefore, characteristics of water-borne microbial targets must be carefully considered during SELEX for optimal aptamer development. Several aptamers have been described for key water-borne pathogens. Here, we provide an exhaustive overview of these aptamers and discuss important microbial aspects to consider when developing such aptamers.
Collapse
Affiliation(s)
- Mariam Saad
- Department of Natural Resources, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, Faculté de Médecine Vétérinaire, Saint-Hyacinthe, QC, Canada
| | - Sebastien P. Faucher
- Department of Natural Resources, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, Faculté de Médecine Vétérinaire, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
46
|
Pereira HS, Tagliaferri TL, Mendes TADO. Enlarging the Toolbox Against Antimicrobial Resistance: Aptamers and CRISPR-Cas. Front Microbiol 2021; 12:606360. [PMID: 33679633 PMCID: PMC7932999 DOI: 10.3389/fmicb.2021.606360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
In the post-genomic era, molecular treatments and diagnostics have been envisioned as powerful techniques to tackle the antimicrobial resistance (AMR) crisis. Among the molecular approaches, aptamers and CRISPR-Cas have gained support due to their practicality, sensibility, and flexibility to interact with a variety of extra- and intracellular targets. Those characteristics enabled the development of quick and onsite diagnostic tools as well as alternative treatments for pan-resistant bacterial infections. Even with such potential, more studies are necessary to pave the way for their successful use against AMR. In this review, we highlight those two robust techniques and encourage researchers to refine them toward AMR. Also, we describe how aptamers and CRISPR-Cas can work together with the current diagnostic and treatment toolbox.
Collapse
Affiliation(s)
| | | | - Tiago Antônio de Oliveira Mendes
- Laboratory of Synthetic Biology and Modelling of Biological Systems, Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
47
|
Cunci L, González-Colón V, Vargas-Pérez BL, Ortiz-Santiago J, Pagán M, Carrion P, Cruz J, Molina-Ontoria A, Martinez N, Silva W, Echegoyen L, Cabrera CR. Multicolor Fluorescent Graphene Oxide Quantum Dots for Sensing Cancer Cell Biomarkers. ACS APPLIED NANO MATERIALS 2021; 4:211-219. [PMID: 34142014 PMCID: PMC8205432 DOI: 10.1021/acsanm.0c02526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Onion-like carbon nanoparticles were synthesized from diamond nanoparticles to be used as the precursor for graphene oxide quantum dots. Onion-like carbon nanoparticles were exfoliated to produce two types of nanoparticles, graphene oxide quantum dots that showed size-dependent fluorescence and highly stable inner cores. Multicolor fluorescent quantum dots were obtained and characterized using different techniques. Polyacrylamide gel electrophoresis showed a range of emission wavelengths spanning from red to blue with the highest intensity shown by green fluorescence. Using high-resolution transmission electron microscopy, we calculated a unit cell size of 2.47 Å in a highly oxidized and defected structure of graphene oxide. A diameter of ca. 4 nm and radius of gyration of ca. 11 Å were calculated using small-angle X-ray scattering. Finally, the change in fluorescence of the quantum dots was studied when single-stranded DNA that is recognized by telomerase was attached to the quantum dots. Their interaction with the telomerase present in cancer cells was observed and a change was seen after six days, providing an important application of these modified graphene oxide quantum dots for cancer sensing.
Collapse
Affiliation(s)
- Lisandro Cunci
- Department of Chemistry, Universidad Ana G. Méndez, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| | - Viviana González-Colón
- Department of Physiology, University of Puerto Rico – Medical Sciences Campus, San Juan, Puerto Rico 00936, United States
| | - Brenda Lee Vargas-Pérez
- Department of Chemistry, Universidad Ana G. Méndez, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| | - Joed Ortiz-Santiago
- Department of Chemistry, Universidad Ana G. Méndez, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| | - Miraida Pagán
- Department of Chemistry, Universidad Ana G. Méndez, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| | - Paola Carrion
- Department of Chemistry, Universidad Ana G. Méndez, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| | - Jomari Cruz
- Department of Chemistry, Universidad Ana G. Méndez, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| | - Agustin Molina-Ontoria
- IMDEA-Nanociencia, C/Faraday, 9 Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| | - Namyr Martinez
- Department of Physiology, University of Puerto Rico – Medical Sciences Campus, San Juan, Puerto Rico 00936, United States
| | - Walter Silva
- Department of Physiology, University of Puerto Rico – Medical Sciences Campus, San Juan, Puerto Rico 00936, United States
| | - Luis Echegoyen
- Department of Chemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Carlos R. Cabrera
- Department of Chemistry, University of Puerto Rico – Rio Piedras Campus, 17 Ave. Universidad STE 1701, 6, San Juan, Puerto Rico 00925, United States
| |
Collapse
|
48
|
Zheng X, Gao S, Wu J, Hu X. Recent Advances in Aptamer-Based Biosensors for Detection of Pseudomonas aeruginosa. Front Microbiol 2020; 11:605229. [PMID: 33414776 PMCID: PMC7782355 DOI: 10.3389/fmicb.2020.605229] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/03/2020] [Indexed: 11/20/2022] Open
Abstract
Increasing concerns about nosocomial infection, food and environmental safety have prompted the development of rapid, accurate, specific and ultrasensitive methods for the early detection of critical pathogens. Pseudomonas aeruginosa is one of the most common pathogens that cause infection. It is ubiquitous in nature, being found in water, soil, and food, and poses a great threat to public health. The conventional detection technologies are either time consuming or readily produce false positive/negative results, which makes them unsuitable for early diagnosis and spot detection of P. aeruginosa. To circumvent these drawbacks, many efforts have been made to develop biosensors using aptamers as bio-recognition elements. Various aptamer-based biosensors for clinical diagnostics, food, and environmental monitoring of P. aeruginosa have been developed in recent years. In this review, we focus on the latest advances in aptamer-based biosensors for detection of P. aeruginosa. Representative biosensors are outlined according to their sensing mechanisms, which include optical, electrochemical and other signal transduction methods. Possible future trends in aptamer biosensors for pathogen detection are also outlined.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Clinical Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shunxiang Gao
- Department of Ophthalmology, Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jihong Wu
- Department of Ophthalmology, Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Xiaobo Hu
- Department of Clinical Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
49
|
Yu Z, Lu Z, Huang J, Zhang J, Huang Y, Wang W, Chen Y, Liu K, Wang D. Surface Functional Nanofiber Membrane for Ultrasensitive and Naked-Eye Visualization of Bacterial Concentration. ACS APPLIED BIO MATERIALS 2020; 3:6466-6477. [PMID: 35021778 DOI: 10.1021/acsabm.0c00875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bacterial contamination in water is a serious health risk to human beings, so it is very important to realize the point-of-care (POC) bacterial detection in water. However, the traditional bacterial detection methods are time-consuming, professional- and equipment-dependent, and do not meet the needs of POC detection. There is a pressing need to develop a platform for POC bacterial detection to defeat the increasing risk of bacterial infections. Herein, a surface functional nanofiber membrane (NFM) is prepared by layer-by-layer (LBL) self-assembly as a platform for POC detection of bacterial concentration; it is naked-eye visualization and ultrasensitive. The platform shows obvious bacterial responsiveness, which allows naked-eye visualization of bacterial concentration (102-106 CFU/mL) within 30 min and can quantitatively detect the bacterial concentration (101-106 CFU/mL) by fluorescence within 5 min. The platform not only exhibits high efficiency but also has a low threshold for bacterial concentration detection. Furthermore, the platform shows good consistency with traditional methods in the detection of bacteria in practical water samples, and has the potential for use in detecting bacterial concentrations in water supplies to protect human beings from health hazards. This work also provides useful reference for research on bacterial detection, taking advantage of the surface characteristics of bacteria and the high sensitivity of NFM.
Collapse
Affiliation(s)
- Zhenguo Yu
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Zhentan Lu
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Jiangxi Huang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Jiaqi Zhang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Yu Huang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Wenwen Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Yuanli Chen
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Ke Liu
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China
| | - Dong Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Wuhan Textile University, Wuhan 430200, China.,National Engineering Research Center for Dyeing and Finishing of Textiles, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
50
|
Bahari D, Babamiri B, Salimi A, Salimizand H. Ratiometric fluorescence resonance energy transfer aptasensor for highly sensitive and selective detection of Acinetobacter baumannii bacteria in urine sample using carbon dots as optical nanoprobes. Talanta 2020; 221:121619. [PMID: 33076147 DOI: 10.1016/j.talanta.2020.121619] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 11/20/2022]
Abstract
Development of sensitive and selective analytical method for accurate diagnosis of Acinetobacter baumannii (Ab) bacteria in biological samples is a challenge. Herein, we developed an ingenious ratiometric fluorescent aptasensor for sensitive and selective detection of (Ab) bacteria based on fluorescence resonance energy transfer (FRET) between ortho-phenylenediamines carbon dot (o-CD), nitrogen-doped carbon nanodots (NCND) as donor's species and graphene oxide (GO) as acceptor. NCND that assembled onto the edge of graphene oxide (GO) exhibited quenched photoluminescence emission, and with the absorption of the modified o-CD with aptamer (o-CD-ssDNA) onto the graphene oxide surface the fluorescence of o-CD was efficiently quenched. The aptamer (ssDNA) as a biorecognition element is bound with A. baumannii specifically which releases the o-CD-ssDNA from GO and the recovery of the fluorescence signal of o-CD, while the fluorescence intensity of NCND only slightly altered and acted as the reference signal in ratiometric fluorescence assay. The fluorescence intensity ratio (I550 nm/I440nm) varied from 2.0 to 10.0 with the concentration of bacteria changing from 2.0 × 103 to 4.5 × 107 cfu/mL and the low detection limit of 3.0 × 102 cfu/mL (S/N = 3). The feasibility of the developed aptasensor for selective detection of A. baumannii in urine sample with satisfactory results was also demonstrated.
Collapse
Affiliation(s)
- Delnia Bahari
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Bahareh Babamiri
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran; Research Center for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran.
| | - Himen Salimizand
- Department of Microbiology, Kurdistan University of Medical Sciences, 66177-13446, Sanandaj, Iran
| |
Collapse
|