1
|
Deng W, Zhang Y, He L, Xu L, Ye X, Xu H, Zhu L, Jia J. Optimized nanopesticide delivery of thiamethoxam to cowpeas (Vigna unguiculata) controls thrips (Megalurothrips usitatus) and reduces toxicity to non-target worker bees (Apis mellifera). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176327. [PMID: 39299328 DOI: 10.1016/j.scitotenv.2024.176327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/14/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Thrips [Megalurothrips usitatus (Bagnall)] (Thysanoptera: Thripidae) is a pest that poses a serious challenge to global crop production and food supply, especially to the cowpea industry. Nano-delivery systems have broad application prospects in the prevention and control of pests in agriculture. Herein, three types of amino acid (AA) modified polysuccinimide nano-delivery carriers (PSI-GABA, PSI-ASP and PSI-GLU) were constructed with a diameter of approximately 150 nm to load thiamethoxam (THX), which enhanced THX effective distribution and use with cowpea plants. Significantly, the PSI-GLU nanocarrier effectively delivered THX to cowpea plant tissues following 6 h of soil application. Compared with commercial THX suspension (SC), the THX content in the leaves of cowpea plants was increased by 2.3 times. Confocal laser scanning microscopy revealed that the FITC-labeled PSI-GLU nanocarrier reached the leaves through the vascular system after being absorbed by the roots of cowpea plants. The PSI-GLU nanocarrier decreased the LC50 of THX from 11.45 to 7.79 mg/L and significantly enhanced the insecticidal effect. The PSI-GLU nanocarrier also improved the safety of THX to worker bees at 48 h, and moreover showed a growth-promoting effect on cowpea seedlings. These results demonstrated that the PSI-GLU nano-delivery carrier has promising uses on improving the effective utilization of THX for the sustainable control of thrips and reducing the risk to non-target pollutions.
Collapse
Affiliation(s)
- Wenjie Deng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yanheng Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Liangheng He
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Li Xu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xulang Ye
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Li Zhu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Jinliang Jia
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Zhong X, Su G, Hao L, Chen H, Li C, Xu H, Zhou H, Zhou X. Foliar application of glycine-functionalized nanopesticides for effective prevention and control of root-knot nematodes via a targeted delivery strategy. PEST MANAGEMENT SCIENCE 2024; 80:2120-2130. [PMID: 38145906 DOI: 10.1002/ps.7948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Root-knot nematodes (RKNs) are the highly damaging pests for various crops, and the prevalence of RKNs has posed serious threats to worldwide agricultural harvest, severely affecting global food security and ecosystem health. Traditional pesticide systems on controlling RKNs generally cause environmental hazards and phytotoxicity due to the excessive use of pesticides resulted from low utilization efficiency. And effective approaches with biosafe and efficient features are highly demanded to break away from the dilemma caused by RKNs. RESULTS In this research, a nanopesticide system with root-targeted delivery function was developed to achieve effective prevention and control of RKNs. The nanocarriers (MSN-KH560-Gly) and the obtained nanopesticides (EB@MSN-KH560-Gly) were proved to be biosafe. Also, this nanopesticide system demonstrated sustained release behavior. The grafting of glycine (Gly) significantly improved the pesticide contents translocating to cucumber roots (about 304.7%). Besides, such root-targeted delivery function resulted in no root nodule in cucumber plants after the foliar application of these nanopesticides (prevention rate of 100%). In addition, the root nodule numbers of the infected cucumber plants decreased by 71.67%. CONCLUSION Foliar application of these Gly-functionalized nanopesticides achieved effective prevention and control of RKNs due to the root-targeted delivery property inherent in this nanopesticide system, and such root-targeted delivery strategy opens a novel and efficient method to protect crops from RKN invasion and thus facilitates the development of sustainable agriculture. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ximing Zhong
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Guofeng Su
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Li Hao
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Huayao Chen
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Chao Li
- Shenzhen Noposion Crop Science Co., Ltd, Shenzhen, PR China
| | - Hua Xu
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Hongjun Zhou
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Xinhua Zhou
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Green Fine Chemicals of Guangdong Higher Education Institution, Innovative Institute for Plant Health, School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| |
Collapse
|
3
|
Huang Y, Xiong Q, Li J, Gan C, Zhang Y, Mo Q, Pang L, Cui J. Enhancing Systemic Translocation of Insecticides via Nanoformulations Incorporating β-Cyclodextrin Octadecarboxylate as a Carrier. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3374-3387. [PMID: 38319593 DOI: 10.1021/acs.jafc.3c07824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The conversion of contact-killing pesticides into systemic pesticides can significantly enhance the bioavailability of pesticides, thereby reducing pesticide usage and environmental harm. A series of β-cyclodextrin fatty acid esters with varying branch chains were synthesized and employed as carriers in nanoformulation of insecticide. The investigation revealed that nanoformulations prepared using β-cyclodextrin octadecarboxylate (β-CDs) exhibited superior stability and remarkable systemic translocation within plants. Six contact-killing insecticide nanoformulations were developed utilizing β-CDs as carriers, and tests indicated that β-CDs significantly enhanced the systemic translocation of insecticides in plants compared to carrier-free nanoformulations. It was found that β-CDs increased the level of systemic translocation of insecticides by 5-12 times. Additionally, characterization results from λ-cyhalothrin-β-CDs nanoformulation demonstrated their superior ability to improve photolysis resistance, prolong release time, and extend insecticidal duration. Consequently, β-CDs can be utilized as a green additive in pesticide production to enhance the systemic translocation of pesticides in plants and increase their bioavailability.
Collapse
Affiliation(s)
- Yanmin Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China
| | - Qipeng Xiong
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China
| | - Jiansheng Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China
| | - Chunfang Gan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China
| | - Yuanfei Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China
| | - Qijin Mo
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China
| | - Liping Pang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China
| | - Jianguo Cui
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China
| |
Collapse
|
4
|
Liu M, Xu K, Zhao N, Yao C, Zheng X, Jia J, Xu H. A Pyr-loaded polymer microparticle for effectively controlling Solenopsis invicta (Hymenoptera: Formicidae) in the nest. Colloids Surf B Biointerfaces 2024; 234:113675. [PMID: 38103428 DOI: 10.1016/j.colsurfb.2023.113675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/14/2023] [Accepted: 11/25/2023] [Indexed: 12/19/2023]
Abstract
Human interference and incorrect use of pesticides are easy to induce red imported fire ant (RIFA) escape and migrate from a nest, resulting in ineffective control of RIFA. In order to avoid RIFA alert, we designed an amphiphilic PSI-mPEG-Boc-DAH loaded Pyr to make the microparticles with effective controlled release. The investigation showed that the quantity of Pyr released by Pyr@PSI-mPEG-Boc-DAH under acidic environment was only 36.40 ± 1.90% at 48 h, whereas the release rate of original Pyr was 75.23 ± 5.71%. And the RIFA mortality rate of 1 ppm Pyr in Pyr@PSI-mPEG-Boc-DAH microparticles at 48 h was only 7.78%, which was significantly lower than that of the Pyr (47.78%). Futhermore, the death rate increased sharply after 48 h, and reached 95.84% within a week after using Pyr@PSI-mPEG-Boc-DAH microparticles. Moreover, PSI-mPEG-Boc-DAH carriers could be absorbed and even transported to crop of the RIFA for subsequent trophallaxis by using fluorescence tracking. In the field experiment, the reduction rate of Pyr@PSI-mPEG-Boc-DAH treatment was achieved 99.89% after 7 d. Pyr@PSI-mPEG-Boc-DAH didn't cause RIFA to be alarmed within 48 h and could kill nearly all of ants in the nest after 7 d, which showed a very good control effect in the field experiment. This work provided a new idea and guidance for the effective control RIFA and the development of sustainable agriculture.
Collapse
Affiliation(s)
- Meichen Liu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Kaijie Xu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Ning Zhao
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Chi Yao
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Xixin Zheng
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Jinliang Jia
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China.
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
5
|
Xiao Y, Wei X, Hu C, Hsiang T, Yin J, Li J. Multiple amino acid transporters as carriers load L-valine-phenazine-1-carboxylic acid conjugate into Ricinus sieve tubes for the phloem translocation. Int J Biol Macromol 2024; 257:128730. [PMID: 38081490 DOI: 10.1016/j.ijbiomac.2023.128730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 11/03/2023] [Accepted: 12/08/2023] [Indexed: 01/27/2024]
Abstract
Some transporters play important roles in the uptake and acropetal xylem translocation of vectorized agrochemicals. However, it is poorly understood the basipetally phloem-loading functions of transporters toward vectorized agrochemicals. Here, L-Val-PCA (L-valine-phenazine-1-carboxylic acid conjugate) uptake was demonstrated carrier-mediated. RcAAP2, RcANT7, and RcLHT1 showed a similarly up-regulated expression pattern from 62 transporter coding genes in Ricinus at 1 h after L-Val or L-Val-PCA treatment. Subcellular localization revealed that fusion RcAAP2-eGFP, RcANT7-eGFP and RcLHT1-eGFP proteins were expressed in the plasma membrane of mesophyll and phloem cells. Yeast assays found that RcAAP2, RcANT7, and RcLHT1 facilitated L-Val-PCA uptake. To further demonstrate the phloem-loading functions, using vacuum infiltration strategy, an Agrobacterium-mediated RNA interference (RNAi) protocol was constructed in seedlings. HPLC detection indicated that L-Val-PCA phloem sap concentrations were significantly decreased 54.5 %, 27.6 %, and 41.6 % after silencing for 72 h and increased 48.3 %, 52.6 %, and 52.4 % after overexpression, respectively. In conclusion, the plasma membrane-located RcAAP2, RcANT7, and RcLHT1 can loaded L-Val-PCA into Ricinus sieve tubes for the phloem translocation, which may aid in the utilization of transporters and molecular design of phloem-mobile fungicides target root or vascular pathogens.
Collapse
Affiliation(s)
- Yongxin Xiao
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xuehua Wei
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Ciyin Hu
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Junliang Yin
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Junkai Li
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China.
| |
Collapse
|
6
|
Yang S, Li B, Tang J, Peng H, Pu C, Zhao C, Xu H. Structural optimization based on 4,5-dihydropyrazolo[1,5-a]quinazoline scaffold for improved insecticidal activities. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105533. [PMID: 37666607 DOI: 10.1016/j.pestbp.2023.105533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 09/06/2023]
Abstract
The long-term and irrational application of insecticides has increased the rate of development of pest resistance and caused numerous environmental issues. To address these problems, our previous work reported that 4,5-dihydropyrazolo[1,5-a]quinazoline (DPQ) is a class of gelled heterocyclic compounds that act on insect γ-aminobutyric acid receptors (GABAR). DPQ scaffold has no cross-resistance to existing insecticides, so the development of this scaffold is an interesting task for integrated pest management. In the present study, a novel series of 4,5-dihydropyrazolo[1,5-a]quinazolines (DPQs) were designed and synthesized based on pyraquinil, a highly insecticidal compound discovered in our previous work. Insecticidal activities of the target compounds against diamondback moth (Plutella xylostella), beet armyworm (Spodoptera exigua), fall armyworm (Spodoptera frugiperda), and red imported fire ant (Solenopsis invicta Buren) were evaluated. Compounds 6 and 12 showed the best insecticidal activity against Plutella xylostella (P. xylostella) (LC50 = 1.49 and 0.97 mg/L), better than pyraquinil (LC50 = 1.76 mg/L), indoxacarb and fipronil (LC50 = 1.80 mg/L). Meanwhile, compound 12 showed slow toxicity to Solenopsis invicta Buren (S. invicta), with a 5 d mortality rate of 98.89% at 0.5 mg/L that is similar to fipronil. Moreover, Electrophysiological studies against the PxRDL1 GABAR heterologously expressed in Xenopus oocytes indicated that compound 12 could act as a potent GABA receptor antagonist (2 μΜ, inhibition rate, 68.25%). Molecular docking results showed that Ser285 (chain A) and Thr289 (chain D) of P. xylostella GABAR participated in hydrogen bonding interactions with compound 12, and density functional theory (DFT) calculations suggested the importance of pyrazolo[1,5-a]quinazoline core in potency. This systematic study provides valuable clues for the development of DPQ scaffold in the field of agrochemicals, and compound 12 can be further developed as an insecticide and bait candidate.
Collapse
Affiliation(s)
- Shuai Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Benjie Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Jiahong Tang
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Hongxiang Peng
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Chunmei Pu
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Chen Zhao
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, People's Republic of China.
| |
Collapse
|
7
|
Wen Y, Jiang X, Li D, Ou Z, Yu Y, Chen R, Chen C, Xu H. Synthesis and characterization of an artificial glucosinolate bearing a chlorthalonil-based aglycon as a potent inhibitor of glucosinolate transporters. PHYTOCHEMISTRY 2023; 212:113726. [PMID: 37207992 DOI: 10.1016/j.phytochem.2023.113726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/20/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Glucosinolates (GSLs) are specialized metabolites in plants of the order Brassicales. GSL transporters (GTRs) are essential for the redistribution of GSLs and also play a role in controlling the GSL content of seeds. However, specific inhibitors of these transporters have not been reported. In the current study, we described the design and synthesis of 2,3,4,6-tetrachloro-5-cyanophenyl GSL (TCPG), an artificial GSL bearing a chlorothalonil moiety as a potent inhibitor of GTRs, and evaluated its inhibitory effect on the substrate uptake mediated through GTR1 and GTR2. Molecular docking showed that the position of the β-D-glucose group of TCPG was significantly different from that of the natural substrate in GTRs and the chlorothalonil moiety forms halogen bonds with GTRs. Functional assays and kinetic analysis of the transport activity revealed that TCPG could significantly inhibit the transport activity of GTR1 and GTR2 (IC50 values (mean ± SD) being 79 ± 16 μM and 192 ± 14 μM, respectively). Similarly, TCPG could inhibit the uptake and phloem transport of exogenous sinigrin by Arabidopsis thaliana (L.) Heynh leaf tissues, while not affecting that of esculin (a fluorescent surrogate for sucrose). TCPG could also reduce the content of endogenous GSLs in phloem exudates. Together, TCPG was discovered as an undescribed inhibitor of the uptake and phloem transport of GSLs, which brings novel insights into the ligand recognition of GTRs and provides a new strategy to control the GSL level. Further tests on the ecotoxicological and environmental safety of TCPG are needed before using it as an agricultural or horticultural chemical in the future.
Collapse
Affiliation(s)
- Yingjie Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xunyuan Jiang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences and Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou, Guangdong, 510640, China
| | - Dehong Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ziyue Ou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ye Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ronghua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Changming Chen
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
8
|
Jia T, Pan N, Song X, Gao Y, Zhang Z, Xu H, Zhao C. Preparation and Characterization of Insecticide/Calix[4]arene Complexes and Their Enhanced Insecticidal Activities against Plutella xylostella. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5576-5584. [PMID: 37014048 DOI: 10.1021/acs.jafc.3c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Applications of supramolecular materials in plant protection have attracted significant interest in recent years. To develop a feasible method to improve the efficacy and reduce the usage of chemical pesticides, the effect of calix[4]arene (C4A) inclusion on enhancing the insecticidal activity of commercial insecticides was investigated. Results showed that all three tested insecticides (chlorfenapyr, indoxacarb, and abamectin) with distinct molecular sizes and modes of action were able to form stable 1:1 host-guest complexes with C4A through simple preparation steps. The insecticidal activities of the complexes against Plutella xylostella were effectively enhanced compared to the guest molecule, with the synergism ratio being up to 3.05 (for indoxacarb). An obvious correlation was found between the enhanced insecticidal activity and the high binding affinity between insecticide and C4A, while the improvement in water solubility may not be a determining factor. The work would provide hints for the further development of functional supramolecular hosts as synergists in pesticide formulations.
Collapse
Affiliation(s)
- Tianhao Jia
- National Key Laboratory of Green Pesticide; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Nianyou Pan
- National Key Laboratory of Green Pesticide; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Xiangmin Song
- National Key Laboratory of Green Pesticide; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Yongchao Gao
- National Key Laboratory of Green Pesticide; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Chen Zhao
- National Key Laboratory of Green Pesticide; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
Fan T, Wu C, Yang W, Lv T, Zhou Y, Tian C. The LHT Gene Family in Rice: Molecular Characterization, Transport Functions and Expression Analysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:817. [PMID: 36840165 PMCID: PMC9958582 DOI: 10.3390/plants12040817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Amino acid transporters (AATs) are integral membrane proteins and play important roles in plant growth and development as well as environmental responses. In contrast to the amino acid permease (AAP) subfamily, functional studies of the lysine and histidine transporter (LHT) subfamily have not been made in rice. In the current study, six LHT genes were found in the rice genome. To further investigate the functions of these genes, analyses were performed regarding gene and protein structures, chromosomal locations, evolutionary relationships, cis-acting elements of promoters, gene expression, and yeast complementation. We found that the six OsLHT genes are distributed on 4 out of the 12 chromosomes and that the six OsLHT genes were grouped into two clusters based on the phylogenetic analysis. Protein structure analyses showed that each OsLHT protein has 11 helical transmembrane domains. Yeast complementation assays showed that these OsLHT genes have conserved transport substrates within each cluster. The four members from cluster 1 showed broad amino acid selectivity, while OsLHT5 and OsLHT6 may transport other substrates besides amino acids. Additionally, quantitative real-time PCR analysis of the six OsLHT genes revealed that they have different expression patterns at different developmental stages and in different tissues. It also revealed that some OsLHT genes were responsive to PEG, NaCl and cold treatments, indicating their critical roles in abiotic stress response. Our results will be useful for further characterizing the crucial biological functions of rice LHT genes.
Collapse
|
10
|
Tao CN, Buswell W, Zhang P, Walker H, Johnson I, Field K, Schwarzenbacher R, Ton J. A single amino acid transporter controls the uptake of priming-inducing beta-amino acids and the associated tradeoff between induced resistance and plant growth. THE PLANT CELL 2022; 34:4840-4856. [PMID: 36040205 PMCID: PMC9709968 DOI: 10.1093/plcell/koac271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Selected β-amino acids, such as β-aminobutyric acid (BABA) and R-β-homoserine (RBH), can prime plants for resistance against a broad spectrum of diseases. Here, we describe a genome-wide screen of fully annotated Arabidopsis thaliana T-DNA insertion lines for impaired in RBH-induced immunity (iri) mutants against the downy mildew pathogen Hyaloperonospora arabidopsidis, yielding 104 lines that were partially affected and four lines that were completely impaired in RBH-induced resistance (IR). We confirmed the iri1-1 mutant phenotype with an independent T-DNA insertion line in the same gene, encoding the high-affinity amino acid transporter LYSINE HISTIDINE TRANSPORTER 1 (LHT1). Uptake experiments with yeast cells expressing LHT1 and mass spectrometry-based quantification of RBH and BABA in leaves of lht1 mutant and LHT1 overexpression lines revealed that LHT1 acts as the main transporter for cellular uptake and systemic distribution of RBH and BABA. Subsequent characterization of lht1 mutant and LHT1 overexpression lines for IR and growth responses revealed that the levels of LHT1-mediated uptake determine the tradeoff between IR and plant growth by RBH and BABA.
Collapse
Affiliation(s)
- Chia-Nan Tao
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Will Buswell
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Peijun Zhang
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Heather Walker
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
- Department of Animal and Plant Sciences, biOMICS Facility, University of Sheffield, Sheffield, S10 2TN, UK
| | - Irene Johnson
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Katie Field
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Roland Schwarzenbacher
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Jurriaan Ton
- School of Biosciences, Institute for Sustainable Food, The University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
11
|
Zhang H, Zhang C, Xiang X, Zhang Q, Zhao W, Wei G, Hu A. Uptake and transport of antibiotic kasugamycin in castor bean ( Ricinus communis L.) seedlings. Front Microbiol 2022; 13:948171. [PMID: 36033898 PMCID: PMC9399671 DOI: 10.3389/fmicb.2022.948171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022] Open
Abstract
Kasugamycin (KSM), an aminoglycoside antibiotic, has been widely used for the management of plant diseases, especially for the control of rice blast in Asia. However, its uptake mechanism and transport in plants are still obscure. The castor bean (Ricinus communis L.) seeding, a model plant for phloem transport, was used to study the mechanism of uptake and transport of KSM. Results showed that cotyledon-applied KSM could transport into the phloem and distributed in root and shoot of plant. The temperature, concentration, and pH had significant effects on the uptake of KSM, indicating that the uptake of KSM was mediated by an active carrier system. Compared with the control, competitive inhibitors of sugar transporters D-glucose, D-chiro-inositol, and phloridzin inhibited 71.03%, 67.95%, and 61.73% uptake of KSM, respectively. Energy inhibitor dinitrophenol (DNP) and carbonyl cyanide chlorophenylhydrazone (CCCP) also affected the uptake of KSM, and the inhibition rates were 34.23% and 48.06%. All the results showed that the uptake of KSM was mediated by a sugar transporter, and it could transport from shoot to root in plants via the phloem. The study preliminary elucidated the plant-microbe interactions in the context of the transport of microbial secondary metabolites in plants. It has certain significance for scientific application of antibiotics and biological control of plant diseases and provides theoretical basis for the development of bidirectional transport pesticides.
Collapse
Affiliation(s)
- Hongzhen Zhang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Chenghua Zhang
- Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Xiaolong Xiang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
- Forestry Bureau of Wuchuan County, Zunyi, Guizhou, China
| | - Qilun Zhang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Wei Zhao
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Guoyu Wei
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Anlong Hu
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
12
|
Tünnermann L, Colou J, Näsholm T, Gratz R. To have or not to have: expression of amino acid transporters during pathogen infection. PLANT MOLECULAR BIOLOGY 2022; 109:413-425. [PMID: 35103913 PMCID: PMC9213295 DOI: 10.1007/s11103-022-01244-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
The interaction between plants and plant pathogens can have significant effects on ecosystem performance. For their growth and development, both bionts rely on amino acids. While amino acids are key transport forms of nitrogen and can be directly absorbed from the soil through specific root amino acid transporters, various pathogenic microbes can invade plant tissues to feed on different plant amino acid pools. In parallel, plants may initiate an immune response program to restrict this invasion, employing various amino acid transporters to modify the amino acid pool at the site of pathogen attack. The interaction between pathogens and plants is sophisticated and responses are dynamic. Both avail themselves of multiple tools to increase their chance of survival. In this review, we highlight the role of amino acid transporters during pathogen infection. Having control over the expression of those transporters can be decisive for the fate of both bionts but the underlying mechanism that regulates the expression of amino acid transporters is not understood to date. We provide an overview of the regulation of a variety of amino acid transporters, depending on interaction with biotrophic, hemibiotrophic or necrotrophic pathogens. In addition, we aim to highlight the interplay of different physiological processes on amino acid transporter regulation during pathogen attack and chose the LYSINE HISTIDINE TRANSPORTER1 (LHT1) as an example.
Collapse
Affiliation(s)
- Laura Tünnermann
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Justine Colou
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Torgny Näsholm
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Regina Gratz
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden.
| |
Collapse
|
13
|
Zhao LX, Peng JF, Liu FY, Zou YL, Gao S, Fu Y, Ye F. Design, Synthesis, and Herbicidal Activity of Diphenyl Ether Derivatives Containing a Five-Membered Heterocycle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1003-1018. [PMID: 35040327 DOI: 10.1021/acs.jafc.1c05210] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protoporphyrinogen oxidase (PPO, EC 1.3.3.4) is an important target for discovering novel herbicides, and it causes bleaching symptoms by inhibiting the synthesis of chlorophyll and heme. In this study, the active fragments of several commercial herbicides were joined by substructure splicing and bioisosterism, and a series of novel diphenyl ether derivatives containing five-membered heterocycles were synthesized. The greenhouse herbicidal activity and the PPO inhibitory activity in vitro were discussed in detail. The results showed that most compounds had good PPO inhibitory activity, and target compounds containing trifluoromethyl groups tended to have higher activity. Among them, compound G4 showed the best inhibitory activity, with a half-maximal inhibitory concentration (IC50) of 0.0468 μmol/L, which was approximately 3 times better than that of oxyfluorfen (IC50 = 0.150 μmol/L). In addition, molecular docking indicated that compound G4 formed obvious π-π stacking interactions and hydrogen bond interactions with PHE-392 and ARG-98, respectively. Remarkably, compound G4 had good safety for corn, wheat, rice, and soybean, and the cumulative concentration in crops was lower than that of oxyfluorfen. Therefore, compound G4 can be used to develop potential lead compounds for novel PPO inhibitors.
Collapse
Affiliation(s)
- Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Jian-Feng Peng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Feng-Yi Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yue-Li Zou
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
14
|
Xiao Y, Zhang J, Li Y, Hsiang T, Zhang X, Zhu Y, Du X, Yin J, Li J. An efficient overexpression method for studying genes in Ricinus that transport vectorized agrochemicals. PLANT METHODS 2022; 18:11. [PMID: 35081982 PMCID: PMC8793271 DOI: 10.1186/s13007-022-00842-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/10/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Plant plasma membrane transporters play essential roles during the translocation of vectorized agrochemicals. Therefore, transporters associated with phloem loading of vectorized agrochemicals have drawn increasing attention. As a model system, castor bean (Ricinus communis L.) has been widely used to detect the phloem mobility of agrochemicals. However, there is still a lack of an efficient protocol for the Ricinus seedling model system that can be directly used to investigate the recognition and phloem loading functions of plasmalemma transporters toward vectorized agrochemicals. RESULTS Here, using vacuum infiltration strategy, we overexpressed the coding gene for enhanced green fluorescent protein (eGFP) in R. communis seedlings by Agrobacterium tumefaciens-mediated transformation system. Strong fluorescence signals were observed in leaves, demonstrating that exogenous genes can be successfully overexpressed in seedlings. Subsequently, gene expression time and vacuum infiltration parameters were optimized. Observation of fluorescence and qRT-PCR analysis showed that eGFP strength and expression level reached a peak at 72 h after overexpression in seedlings. Parameter optimization showed Agrobacterium concentration at OD600 = 1.2, and infiltration for 20 min (0.09 MPa), return to atmospheric pressure, and then infiltration for another 20 min, were the suitable transformation conditions. To test the application of vacuum agroinfiltration in directly examining the loading functions of plasma membrane transporters to vectorized agrochemicals in seedlings, two LHT (lysine/histidine transporter) genes, RcLHT1 and RcLHT7, were overexpressed. Subcellular localization showed the strong fluorescent signals of the fusion proteins RcLHT1-eGFP and RcLHT7-eGFP were observed on the cell membrane of mesophyll cells, and their relative expression levels determined by qRT-PCR were up-regulated 47- and 52-fold, respectively. Furthermore, the concentrations of L-Val-PCA (L-valine-phenazine-1-carboxylic acid conjugate) in phloem sap collected from seedling sieve tubes were significantly increased 1.9- and 2.3-fold after overexpression of RcLHT1 and RcLHT7, respectively, implying their roles in recognition and phloem loading of L-Val-PCA. CONCLUSIONS We successfully constructed a transient expression system in Ricinus seedlings and laid the foundation for researchers to directly investigate the loading functions of plasma membrane transporters to vectorized agrochemicals in the Ricinus system.
Collapse
Affiliation(s)
- Yongxin Xiao
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/Institute of Pesticides/College of Agriculture/College of Life Science/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jinying Zhang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/Institute of Pesticides/College of Agriculture/College of Life Science/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yiting Li
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/Institute of Pesticides/College of Agriculture/College of Life Science/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Xingping Zhang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/Institute of Pesticides/College of Agriculture/College of Life Science/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yongxing Zhu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/Institute of Pesticides/College of Agriculture/College of Life Science/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xiaoying Du
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/Institute of Pesticides/College of Agriculture/College of Life Science/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Junliang Yin
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/Institute of Pesticides/College of Agriculture/College of Life Science/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Junkai Li
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland/Institute of Pesticides/College of Agriculture/College of Life Science/College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
15
|
Zhao LX, Wang ZX, Peng JF, Zou YL, Hui YZ, Chen YZ, Gao S, Fu Y, Ye F. Design, synthesis, and herbicidal activity of novel phenoxypyridine derivatives containing natural product coumarin. PEST MANAGEMENT SCIENCE 2021; 77:4785-4798. [PMID: 34161678 DOI: 10.1002/ps.6523] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/30/2021] [Accepted: 06/23/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND In recent years, protoporphyrinogen oxidase (PPO, EC 1.3.3.4) inhibitors have been widely studied as important agricultural herbicides. Our research focused on the design and synthesis of novel PPO inhibitor herbicides, through linking of a diphenylether pyridine bioisostere structure to substituted coumarins, which aims to enhance environmental and crop safety while retaining high efficacy. RESULTS A total of 21 compounds were synthesized via acylation reactions and all compounds were characterized using infrared, 1 H NMR, 13 C NMR, and high-resolution mass spectra. The respective configurations of compounds IV-6 and IV-12 were also confirmed using single crystal X-ray diffraction. The bioassay results showed that the title compounds displayed notable herbicidal activity, particularly compound IV-6 which displayed better herbicidal activity in greenhouse and field experiments, crop selectivity and safety for cotton and soybean compared with the commercial herbicide oxyfluorfen. CONCLUSION The work revealed that compound IV-6 deserves further attention as a candidate structure for a novel and safe herbicide. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Zhi-Xin Wang
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Jian-Feng Peng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Yue-Li Zou
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Yong-Zhuo Hui
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Yong-Zheng Chen
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin, China
| |
Collapse
|
16
|
Zhao C, Pratelli R, Yu S, Shelley B, Collakova E, Pilot G. Detailed characterization of the UMAMIT proteins provides insight into their evolution, amino acid transport properties, and role in the plant. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6400-6417. [PMID: 34223868 DOI: 10.1093/jxb/erab288] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/11/2021] [Indexed: 05/02/2023]
Abstract
Amino acid transporters play a critical role in distributing amino acids within the cell compartments and between plant organs. Despite this importance, relatively few amino acid transporter genes have been characterized and their role elucidated with certainty. Two main families of proteins encode amino acid transporters in plants: the amino acid-polyamine-organocation superfamily, containing mostly importers, and the UMAMIT (usually multiple acids move in and out transporter) family, apparently encoding exporters, totaling 63 and 44 genes in Arabidopsis, respectively. Knowledge of UMAMITs is scarce, based on six Arabidopsis genes and a handful of genes from other species. To gain insight into the role of the members of this family and provide data to be used for future characterization, we studied the evolution of the UMAMITs in plants, and determined the functional properties, the structure, and localization of the 47 Arabidopsis UMAMITs. Our analysis showed that the AtUMAMITs are essentially localized at the tonoplast or the plasma membrane, and that most of them are able to export amino acids from the cytosol, confirming a role in intra- and intercellular amino acid transport. As an example, this set of data was used to hypothesize the role of a few AtUMAMITs in the plant and the cell.
Collapse
Affiliation(s)
- Chengsong Zhao
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Réjane Pratelli
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Shi Yu
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Brett Shelley
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Eva Collakova
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Guillaume Pilot
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
17
|
Gratz R, Ahmad I, Svennerstam H, Jämtgård S, Love J, Holmlund M, Ivanov R, Ganeteg U. Organic nitrogen nutrition: LHT1.2 protein from hybrid aspen (Populus tremula L. x tremuloides Michx) is a functional amino acid transporter and a homolog of Arabidopsis LHT1. TREE PHYSIOLOGY 2021; 41:1479-1496. [PMID: 33631788 PMCID: PMC8359683 DOI: 10.1093/treephys/tpab029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
The contribution of amino acids (AAs) to soil nitrogen (N) fluxes is higher than previously thought. The fact that AA uptake is pivotal for N nutrition in boreal ecosystems highlights plant AA transporters as key components of the N cycle. At the same time, very little is known about AA transport and respective transporters in trees. Tree genomes may contain 13 or more genes encoding the lysine histidine transporter (LHT) family proteins, and this complicates the study of their significance for tree N-use efficiency. With the strategy of obtaining a tool to study N-use efficiency, our aim was to identify and characterize a relevant AA transporter in hybrid aspen (Populus tremula L. x tremuloides Michx.). We identified PtrLHT1.2, the closest homolog of Arabidopsis thaliana (L.) Heynh AtLHT1, which is expressed in leaves, stems and roots. Complementation of a yeast AA uptake mutant verified the function of PtrLHT1.2 as an AA transporter. Furthermore, PtrLHT1.2 was able to fully complement the phenotypes of the Arabidopsis AA uptake mutant lht1 aap5, including early leaf senescence-like phenotype, reduced growth, decreased plant N levels and reduced root AA uptake. Amino acid uptake studies finally showed that PtrLHT1.2 is a high affinity transporter for neutral and acidic AAs. Thus, we identified a functional AtLHT1 homolog in hybrid aspen, which harbors the potential to enhance overall plant N levels and hence increase biomass production. This finding provides a valuable tool for N nutrition studies in trees and opens new avenues to optimizing tree N-use efficiency.
Collapse
Affiliation(s)
- Regina Gratz
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Iftikhar Ahmad
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Henrik Svennerstam
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Sandra Jämtgård
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Jonathan Love
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Mattias Holmlund
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, 40225 Düsseldorf, Germany
| | | |
Collapse
|
18
|
Wu H, Hu P, Xu Y, Xiao C, Chen Z, Liu X, Jia J, Xu H. Phloem Delivery of Fludioxonil by Plant Amino Acid Transporter-Mediated Polysuccinimide Nanocarriers for Controlling Fusarium Wilt in Banana. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2668-2678. [PMID: 33629581 DOI: 10.1021/acs.jafc.0c07028] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fusarium wilt disease poses a serious threat to the global production of bananas. The targeted delivery of fungicides to banana phloem tissues may offer new hope for controlling this hard-to-treat vascular disease. In this study, fludioxonil (FLU)-loaded glycine methyl ester-conjugated polysuccinimide nanoparticles (PGA) were prepared with a loading efficiency (LE) of 27.9%. The obtained nanoparticles (FLU@PGA) exhibited pH-sensitive controlled release, specifically under an alkaline pH in plant phloem. In vivo experiments in potted bananas demonstrated that FLU@PGA can achieve the downward delivery of FLU to banana rhizomes and roots after foliar application, reducing disease severity by 50.4%. The phloem transport studies showed that the phloem loading of FLU@PGA was involved in an active transport mechanism at the organ level (castor bean seedlings). The observation of fluorescein-5-isothiocyanate cadaverine-labeled PGA nanocarriers showed that they could be absorbed by mesophyll cells and loaded into vascular tissues through the symplastic pathway. Furthermore, the interaction of FLU@PGA with the plant amino acid transporter AtLHT1 was observed to enhance transmembrane uptake at the cellular level (Xenopus oocytes). These results suggested that the phloem-targeted delivery of fungicide by transporter-mediated nanocarriers could be a promising new strategy for the management of Fusarium wilt in bananas.
Collapse
Affiliation(s)
- Hanxiang Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Pengtong Hu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ye Xu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Chunxia Xiao
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhibin Chen
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiaojing Liu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jinliang Jia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Guangzhou, Guangdong 510642, China
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Guangzhou, Guangdong 510642, China
| |
Collapse
|
19
|
Wu X, Zhang Y, Qin R, Li P, Wen Y, Yin Z, Zhang Z, Xu H. Discrimination of isomeric monosaccharide derivatives using collision-induced fingerprinting coupled to ion mobility mass spectrometry. Talanta 2021; 224:121901. [PMID: 33379106 DOI: 10.1016/j.talanta.2020.121901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/04/2020] [Accepted: 11/12/2020] [Indexed: 10/23/2022]
Abstract
Because of the isomeric heterogeneity that is ubiquitous in analytical science, a formidable analytical challenge is to fully discriminate multiple isomers, especially those candidate isomers with various biological functions. Ion mobility mass spectrometry (IM-MS) has gained impressive advances for gaining molecular conformations, whereas coexisting structurally similar isomers often make unambiguous discrimination impossible due to the limited IM resolution of commercially available instruments. Herein, we demonstrate an energy-resolved collision-induced fingerprint (CIF) method to fully discriminate isomeric monosaccharide derivatives that differ in terms of composition, connectivity and configuration without complex instrument modifications. By simply increasing the collisional energy in the trap cell, the full width at half maximum (FWHM) of IM peaks can be markedly narrowed by at least 2-fold. Given the excellent reproducibility of CIF measurements, the full discrimination of isomers can benefit from their unique feature values and root-mean square deviation (RMSD) in CIF spectra. Moreover, rapid discrimination of each monosaccharide derivate isomer from binary mixtures is demonstrated. This strategy will expand the horizons of IM-MS platform in the rapid differentiation of a wider range of isomers more than monosaccharide derivatives in complex systems, which facilitates the identification and evaluation of innovative isomer candidates with unexplored functions.
Collapse
Affiliation(s)
- Xinzhou Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Yue Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Run Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Ping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Yingjie Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Zhibin Yin
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Zhixiang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
20
|
Yang S, Lai Q, Lai F, Jiang X, Zhao C, Xu H. Design, synthesis, and insecticidal activities of novel 5-substituted 4,5-dihydropyrazolo[1,5-a]quinazoline derivatives. PEST MANAGEMENT SCIENCE 2021; 77:1013-1022. [PMID: 33002298 DOI: 10.1002/ps.6113] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Chemical pesticides are the main measures for pest control, but have caused growing resistance of pests and brought a series of environmental problems. Development of high-efficient insecticidal molecules with novel scaffolds is therefore particularly urgent. RESULTS Based on a [5 + 1] annulation reaction with 5-amino-1H-phenylpyrazole and dialkyl bromomalonate, 27 novel five-substituted 4,5-dihydropyrazolo[1,5-a]quinazolines were designed following the intermediate derivatization method and synthesized. Bioassay results indicated that most of the test compounds displayed good insecticidal activities against Plutella xylostella, Spodoptera frugiperda, and Solenopsis invicta. In particular, the insecticidal activities of compounds 4a, 4f, and 4m against P. xylostella [median lethal concentration (LC50 ) values ranged from 3.87 to 5.10 mg L-1 ] were comparable to that of indoxacarb (LC50 = 4.82 mg L-1 ). In addition, compounds 4a and 9e showed similar high insecticidal activities against Spodoptera frugiperda (mortality rate = 79.63% and 72.12%) at 100 mg L-1 , comparable to that of fipronil (mortality rate: 68.44%); compound 9a showed possible delayed toxicity against Solenopsis invicta (mortality rate: 95.66%) after 5 days of treatment at 1.0 mg L-1 . CONCLUSION Due to their high insecticidal activities against P. xylostella, compound 4m, 4a, and 4f could be considered as qualified candidates for novel insecticide. Several other 4,5-dihydropyrazolo[1,5-a]quinazolines with relatively high bioactivity, such as compounds 9a and 9e, are also worth further optimization as potential insecticide or anticide candidates.
Collapse
Affiliation(s)
- Shuai Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Qiuqin Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Fengwen Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Xunyuan Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Chen Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| |
Collapse
|
21
|
Jiang X, Yang S, Yan Y, Lin F, Zhang L, Zhao W, Zhao C, Xu H. Design, Synthesis, and Insecticidal Activity of 5,5-Disubstituted 4,5-Dihydropyrazolo[1,5- a]quinazolines as Novel Antagonists of GABA Receptors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15005-15014. [PMID: 33269911 DOI: 10.1021/acs.jafc.0c02462] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To control the development of resistance to conventional insecticides acting as γ-aminobutyric acid (GABA) receptor antagonists (e.g., fipronil), new GABAergic 5,5-disubstituted 4,5-dihydropyrazolo[1,5-a]quinazolines were designed via a scaffold-hopping strategy and synthesized with a facile method. Among the 50 target compounds obtained, compounds 5a, 5b, 7a, and 7g showed excellent insecticidal activities against a susceptible strain of Plutella xylostella (LC50 values ranging from 1.03 to 1.44 μg/mL), which were superior to that of fipronil (LC50 = 3.02 μg/mL). Remarkably, the insecticidal activity of compound 5a was 64-fold better than that of fipronil against the field population of fipronil-resistant P. xylostella. Electrophysiological studies against the housefly GABA receptor heterologously expressed in Xenopus oocytes indicated that compound 5a could act as a potent GABA receptor antagonist, and IC50 was calculated to be 32.5 nM. Molecular docking showed that the binding poses of compound 5a with the housefly GABA receptor can be different compared to fipronil, which explains the effectiveness of compound 5a against fipronil-resistant insects. These findings have suggested compound 5a as a lead compound for a novel GABA receptor antagonist controlling field-resistant insects and provided a basis for further design, structural modification, and development of 4,5-dihydropyrazolo[1,5-a]quinazoline motifs as new insecticidal GABA receptor antagonists.
Collapse
Affiliation(s)
- Xunyuan Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Shuai Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Ying Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Fei Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Ling Zhang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Weijing Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Chen Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
22
|
Yang S, Xu K, Lai Q, Zhao C, Xu H. Design, synthesis and insecticidal‐activity evaluation of
N
‐pyridylpyrazolo‐5‐methyl amines and its derivatives. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shuai Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South China Agricultural University Guangzhou China
| | - Kaijie Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South China Agricultural University Guangzhou China
| | - Qiuqin Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South China Agricultural University Guangzhou China
| | - Chen Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South China Agricultural University Guangzhou China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education South China Agricultural University Guangzhou China
| |
Collapse
|
23
|
Huang Z, Guo X, Huang Z, Li M, Dong S, Tang R. Selectively Oxidative Thiolysis of Nitriles into Primary Thioamides and Insecticidal Application. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhuo‐Bin Huang
- Department of Applied ChemistryCollege of Materials and EnergySouth China Agricultural University 483 Wushan, Tianhe District, Guangzhou, Guangdong China
| | - Xue‐Ying Guo
- Department of Applied ChemistryCollege of Materials and EnergySouth China Agricultural University 483 Wushan, Tianhe District, Guangzhou, Guangdong China
- Key Laboratory of Natural Pesticide & Chemical BiologyMinistry of EducationSouth China Agricultural University 483 Wushan, Tianhe District, Guangzhou, Guangdong China
| | - Zi‐Hao Huang
- Department of Applied ChemistryCollege of Materials and EnergySouth China Agricultural University 483 Wushan, Tianhe District, Guangzhou, Guangdong China
| | - Ming‐Hua Li
- Department of Applied ChemistryCollege of Materials and EnergySouth China Agricultural University 483 Wushan, Tianhe District, Guangzhou, Guangdong China
| | - Shou‐Cheng Dong
- Department of Applied ChemistryCollege of Materials and EnergySouth China Agricultural University 483 Wushan, Tianhe District, Guangzhou, Guangdong China
| | - Ri‐Yuan Tang
- Department of Applied ChemistryCollege of Materials and EnergySouth China Agricultural University 483 Wushan, Tianhe District, Guangzhou, Guangdong China
- Key Laboratory of Natural Pesticide & Chemical BiologyMinistry of EducationSouth China Agricultural University 483 Wushan, Tianhe District, Guangzhou, Guangdong China
- Lingnan Guangdong Laboratory of Modern AgricultureSouth China Agricultural University 483 Wushan, Tianhe District, Guangzhou, Guangdong China
| |
Collapse
|
24
|
Amino Acid Transporters in Plant Cells: A Brief Review. PLANTS 2020; 9:plants9080967. [PMID: 32751704 PMCID: PMC7464682 DOI: 10.3390/plants9080967] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
Amino acids are not only a nitrogen source that can be directly absorbed by plants, but also the major transport form of organic nitrogen in plants. A large number of amino acid transporters have been identified in different plant species. Despite belonging to different families, these amino acid transporters usually exhibit some general features, such as broad expression pattern and substrate selectivity. This review mainly focuses on transporters involved in amino acid uptake, phloem loading and unloading, xylem-phloem transfer, import into seed and intracellular transport in plants. We summarize the other physiological roles mediated by amino acid transporters, including development regulation, abiotic stress tolerance and defense response. Finally, we discuss the potential applications of amino acid transporters for crop genetic improvement.
Collapse
|
25
|
Zheng S, Lin X, Wu H, Zhao C, Xu H. Synthesis, bioactivities and phloem uptake of dipeptide-chlorantraniliprole derivatives. BMC Chem 2020; 14:22. [PMID: 32259134 PMCID: PMC7106865 DOI: 10.1186/s13065-020-00673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 03/09/2020] [Indexed: 11/10/2022] Open
Abstract
Phloem systemicity is a desirable property for insecticides to control sucking insects. However, the development of phloem systemic insecticides is challenging. One possible strategy is to link existed insecticides with endogenous substances so that the resulting conjugates can be transported by specific transporters into the phloem. In this study, novel dipeptide promoieties were introduced into chlorantraniliprole, which is an efficient and broad-spectrum anthranilic diamide insecticide without phloem mobility. Twenty-two new dipeptide-chlorantraniliprole conjugates have been synthesized. Systemic tests showed that all conjugates exhibited phloem mobility in Ricinus communis. In particular, compound 4g with alanyl-alanine dipeptide fragment was able to accumulate in phloem sap (114.49 ± 11.10 μM) in the form of its hydrolysis product 5g. Results of bioassay showed that conjugates 4g and 5g were able to exhibit comparable insecticidal activity against Plutella xylostella L. and Spodoptera exigua compared to its parent compound chlorantraniliprole. This work demonstrated that the dipeptide structures were able to contribute to the improvement of the uptake and phloem mobility of chlorantraniliprole, and two phloem mobile conjugates with satisfactory in vivo insecticidal effect was obtained as new candidates for high-efficient insecticides.
Collapse
Affiliation(s)
- Shijie Zheng
- 1State Key Laboratory for Conservation and Utilization of Subtropical Argo-Bioresources, South China Agricultural University, Guangzhou, Guangdong China.,2Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642 China
| | - Xiaomin Lin
- 1State Key Laboratory for Conservation and Utilization of Subtropical Argo-Bioresources, South China Agricultural University, Guangzhou, Guangdong China.,2Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642 China
| | - Hanxiang Wu
- 1State Key Laboratory for Conservation and Utilization of Subtropical Argo-Bioresources, South China Agricultural University, Guangzhou, Guangdong China.,2Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642 China
| | - Chen Zhao
- 1State Key Laboratory for Conservation and Utilization of Subtropical Argo-Bioresources, South China Agricultural University, Guangzhou, Guangdong China.,2Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642 China
| | - Hanhong Xu
- 1State Key Laboratory for Conservation and Utilization of Subtropical Argo-Bioresources, South China Agricultural University, Guangzhou, Guangdong China.,2Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
26
|
Zhao LX, Jiang MJ, Hu JJ, Zou YL, Cheng Y, Ren T, Gao S, Fu Y, Ye F. Design, Synthesis, and Herbicidal Activity of Novel Diphenyl Ether Derivatives Containing Fast Degrading Tetrahydrophthalimide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3729-3741. [PMID: 32125836 DOI: 10.1021/acs.jafc.0c00947] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
To seek new protoporphyrinogen oxidase (PPO) inhibitors with better biological activity, a series of novel diphenyl ether derivatives containing tetrahydrophthalimide were designed based on the principle of substructure splicing and bioisomerization. PPO inhibition experiments exhibited that 6c is the most potential compound, with the half-maximal inhibitory concentration (IC50) value of 0.00667 mg/L, showing 7 times higher activity than Oxyfluorfen (IC50 = 0.0426 mg/L) against maize PPO and similar herbicidal activities to Oxyfluorfen in weeding experiments in greenhouses and field weeding experiments. In view of the inspected bioactivities, the structure-activity relationship (SAR) of this series of compounds was also discussed. Crop selection experiments demonstrate that compound 6c is safe for soybeans, maize, rice, peanuts, and cotton at a dose of 300 g ai/ha. Accumulation analysis experiments showed that the accumulation of 6c in some crops (soybeans, peanuts, and cotton) was significantly lower than Oxyfluorfen. Current work suggests that compound 6c may be developed as a new herbicide candidate in fields.
Collapse
Affiliation(s)
- Li-Xia Zhao
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, China
| | - Mao-Jun Jiang
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, China
| | - Jia-Jun Hu
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue-Li Zou
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, China
| | - Yuan Cheng
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, China
| | - Tao Ren
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
27
|
Ren Z, Chen Z, Luo X, Su J, Yao G, Xu H, Lin F. Overexpression of AtAAP1 increased the uptake of an alanine-chlorantraniliprole conjugate in Arabidopsis thaliana. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:36680-36687. [PMID: 31741272 DOI: 10.1007/s11356-019-06671-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Transporters play an important role in the uptake and redistribution of agrochemicals to the site of insect feeding. The product of the Arabidopsis thaliana gene AtAAP1 substantially contributes to inorganic nitrogen acquisition under ecologically relevant amino acid concentrations. Here, the transporter ability of AtAAP1 to a chlorantraniliprole-alanine conjugate (CAP-Ala-1) was tested both in planta and in vitro. Thirty-day-old and 15-day-old plants overexpressing AtAAP1 increased the uptake of CAP-Ala-1 into the roots, whereas AtAAP1 deficiency did not completely block the uptake of CAP-Ala-1. An uptake experiment carried out in Xenopus laevis oocytes expressing AtAAP1 showed that CAP-Ala-1 interacted with AtAAP1. Although little native AtAAP1 transcription was present in the leaves, constitutive expression of AtAAP1 in plants significantly increased the ability of the leaf mesophyll protoplasts to take up CAP-Ala-1. The observations supported the possibility of exploiting AtAAP1 as a component of a novel delivery and redistribution system for amino acid-based pesticide conjugates.
Collapse
Affiliation(s)
- Zhanfu Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiting Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Jiebing Su
- Guangdong Eco-engineering Polytechnic, Guangzhou, 510520, Guangdong, China
| | - Guangkai Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| | - Fei Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
28
|
Wu H, Xu H, Marivingt-Mounir C, Bonnemain JL, Chollet JF. Vectorizing agrochemicals: enhancing bioavailability via carrier-mediated transport. PEST MANAGEMENT SCIENCE 2019; 75:1507-1516. [PMID: 30537141 DOI: 10.1002/ps.5298] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/14/2018] [Accepted: 11/30/2018] [Indexed: 05/02/2023]
Abstract
Systemicity of agrochemicals is an advantageous property for controlling phloem sucking insects, as well as pathogens and pests not accessible to contact products. After the penetration of the cuticle, the plasma membrane constitutes the main barrier to the entry of an agrochemical into the sap flow. The current strategy for developing systemic agrochemicals is to optimize the physicochemical properties of the molecules so that they can cross the plasma membrane by simple diffusion or ion trapping mechanisms. The main problem with current systemic compounds is that they move everywhere within the plant, and this non-controlled mobility results in the contamination of the plant parts consumed by vertebrates and pollinators. To achieve the site-targeted distribution of agrochemicals, a carrier-mediated propesticide strategy is proposed in this review. After conjugating a non-systemic agrochemical with a nutrient (α-amino acids or sugars), the resulting conjugate may be actively transported across the plasma membrane by nutrient-specific carriers. By applying this strategy, non-systemic active ingredients are expected to be delivered into the target organs of young plants, thus avoiding or minimizing subsequent undesirable redistribution. The development of this innovative strategy presents many challenges, but opens up a wide range of exciting possibilities. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hanxiang Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Cécile Marivingt-Mounir
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), Unité Mixte de Recherche CNRS 7285, Université de Poitiers, Poitiers Cedex 9, France
| | - Jean-Louis Bonnemain
- Laboratoire Écologie et Biologie des Interactions, Unité Mixte de Recherche CNRS 7267, Université de Poitiers, Poitiers Cedex 9, France
| | - Jean-François Chollet
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP), Unité Mixte de Recherche CNRS 7285, Université de Poitiers, Poitiers Cedex 9, France
| |
Collapse
|