1
|
Fabregat-Palau J, Ershadi A, Finkel M, Rigol A, Vidal M, Grathwohl P. Modeling PFAS Sorption in Soils Using Machine Learning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7678-7687. [PMID: 40215413 PMCID: PMC12020356 DOI: 10.1021/acs.est.4c13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/23/2025]
Abstract
In this study, we introduce PFASorptionML, a novel machine learning (ML) tool developed to predict solid-liquid distribution coefficients (Kd) for per- and polyfluoroalkyl substances (PFAS) in soils. Leveraging a data set of 1,274 Kd entries for PFAS in soils and sediments, including compounds such as trifluoroacetate, cationic, and zwitterionic PFAS, and neutral fluorotelomer alcohols, the model incorporates PFAS-specific properties such as molecular weight, hydrophobicity, and pKa, alongside soil characteristics like pH, texture, organic carbon content, and cation exchange capacity. Sensitivity analysis reveals that molecular weight, hydrophobicity, and organic carbon content are the most significant factors influencing sorption behavior, while charge density and mineral soil fraction have comparatively minor effects. The model demonstrates high predictive performance, with RPD values exceeding 3.16 across validation data sets, outperforming existing tools in accuracy and scope. Notably, PFAS chain length and functional group variability significantly influence Kd, with longer chain lengths and higher hydrophobicity positively correlating with Kd. By integrating location-specific soil repository data, the model enables the generation of spatial Kd maps for selected PFAS species. These capabilities are implemented in the online platform PFASorptionML, providing researchers and practitioners with a valuable resource for conducting environmental risk assessments of PFAS contamination in soils.
Collapse
Affiliation(s)
- Joel Fabregat-Palau
- Department
of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany
| | - Amirhossein Ershadi
- Department
of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany
| | - Michael Finkel
- Department
of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany
| | - Anna Rigol
- Department
of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain
- Institut
de Recerca de l’Aigua (IdRA), Universitat
de Barcelona, Martí
i Franquès 1-11, Barcelona 08028, Spain
| | - Miquel Vidal
- Department
of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain
| | - Peter Grathwohl
- Department
of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, Tübingen 72076, Germany
| |
Collapse
|
2
|
Hu JJ, Yu SK, Yin C, Peng FJ, Liu SS, Pan CG, Yu K. Sorption and mechanisms of legacy and emerging per- and polyfluoroalkyl substances (PFASs) on different particle size fractions of marine sediments. ENVIRONMENTAL RESEARCH 2025; 278:121643. [PMID: 40250594 DOI: 10.1016/j.envres.2025.121643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/24/2025] [Accepted: 04/16/2025] [Indexed: 04/20/2025]
Abstract
PFASs are ubiquitous in various environmental and biological media due to their extensive application and stability. However, the sorption of PFASs, especially emerging PFASs, on different particle size fractions of marine sediments remains unknown. Here, we investigated the sorption kinetics, isotherms, and mechanisms of six legacy and emerging PFASs on five different particle size fractions of marine sediments (F1 (69.4-190 μm), F2 (63.3-163 μm), F3 (5.25-72.6 μm), F4 (3.29-34.7 μm), and F5 (1.69-22.7 μm)). Our results indicated that the sorption kinetics and isotherms conformed well to the pseudo-second-order model and the Freundlich model, respectively, suggesting the nonlinear sorption of PFASs on marine sediments. The sorption capacities of PFASs decreased significantly with increasing sediment particle size from F5 to F1. Meanwhile, PFAS distribution coefficients (Kd) correlated positively with organic carbon content, specific surface area, and sediment pore volume. Kd values of PFOA and PFOS were 0.40-0.65 and 2.64-6.12 times higher than those of their substitutes, GenX and 6:2 FTSA. Hydrophobic interactions dominated PFAS sorption over electrostatic interactions. Overall, this study offers a comprehensive understanding of legacy and emerging PFAS distribution and mechanisms in marine sediments of varying particle sizes.
Collapse
Affiliation(s)
- Jun-Jie Hu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Shang-Ke Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Chao Yin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Feng-Jiao Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Shuang-Shuang Liu
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Chang-Gui Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| |
Collapse
|
3
|
Lu Y, Han H, Yi Y, Chai Y, Wang C, Zhang X, Yang X, Chen H. Insight into the sorption and desorption pattern of pyrrolizidine alkaloids and their N-oxides in acidic tea (Camellia sinensis) plantation soils. J Environ Sci (China) 2025; 148:350-363. [PMID: 39095170 DOI: 10.1016/j.jes.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 08/04/2024]
Abstract
Pyrrolizidine alkaloids (PAs) and their N-oxides (PANOs) are phytotoxins produced by various plant species and have been emerged as environmental pollutants. The sorption/desorption behaviors of PAs/PANOs in soil are crucial due to the horizontal transfer of these natural products from PA-producing plants to soil and subsequently absorbed by plant roots. This study firstly investigated the sorption/desorption behaviors of PAs/PANOs in tea plantation soils with distinct characteristics. Sorption amounts for seneciphylline (Sp) and seneciphylline-N-oxide (SpNO) in three acidic soils ranged from 2.9 to 5.9 µg/g and 1.7 to 2.8 µg/g, respectively. Desorption percentages for Sp and SpNO were from 22.2% to 30.5% and 36.1% to 43.9%. In the mixed PAs/PANOs systems, stronger sorption of PAs over PANOs was occurred in tested soils. Additionally, the Freundlich models more precisely described the sorption/desorption isotherms. Cation exchange capacity, sand content and total nitrogen were identified as major influencing factors by linear regression models. Overall, the soils exhibiting higher sorption capacities for compounds with greater hydrophobicity. PANOs were more likely to migrate within soils and be absorbed by tea plants. It contributes to the understanding of environmental fate of PAs/PANOs in tea plantations and provides basic data and clues for the development of PAs/PANOs reduction technology.
Collapse
Affiliation(s)
- Yuting Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haolei Han
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuexing Yi
- School of Chemical Engineering and Materials, Zhejiang University of Technology, Hangzhou 310008, China
| | - Yunfeng Chai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310000, China
| | - Chen Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310000, China
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310000, China
| | - Xiangde Yang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310000, China.
| |
Collapse
|
4
|
Li Y, Lv B, Wu L, Xue J, He X, Li B, Huang M, Yang L. Understanding the impact of soil components on the environmental existence of Nonylphenol:From the perspective of soil aggregates. ENVIRONMENTAL RESEARCH 2024; 261:119750. [PMID: 39111649 DOI: 10.1016/j.envres.2024.119750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/26/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Nonylphenol (4-NP) has significant adverse effects on the male reproductive system. 4-NP is commonly used in agriculture as a plasticizer and pesticide emulsifier. In the current study, two soil samples with different textures were collected to evaluate the impact of soil components on the environmental existence of 4-NP among soil aggregates. It was found that the presence of soil POM resulted in 4-NP exhibiting a significantly polarized distribution in soil aggregates, instead of the expected increase in content with decreasing particle size. High levels of organic matter and metal oxides result in a high carrying capacity of small aggregates for 4-NP in both soil textures, while POM results in a higher carrying capacity of large aggregates for 4-NP in clay soil. Another important finding is that the existence of 4-NP in soil was regulated by the percentage of aggregates. The results of contribution shown that although small aggregates in sand presented stronger 4-NP carrying capacity, whereas 4-NP was mainly distributed in large aggregates in sand. For clay soil, 4-NP was predominantly located in small aggregates with the 4-NP contributions of small aggregates amounting to 63.17%, despite the highest carrying capacity of 4-NP was observed in large aggregates. These results provide a theoretical basis to investigate the transport and transformation of 4-NP in the soil environment.
Collapse
Affiliation(s)
- Yulong Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Bowei Lv
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Li Wu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Jianming Xue
- New Zealand Forest Research Institute (Scion), Forest System, POB 29237, Christchurch, 8440, New Zealand
| | - Xiaoman He
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Bolin Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Min Huang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China.
| |
Collapse
|
5
|
Tang J, Zhang C, Liu X, Wu X, Zhang Y, Zhang T, Xia R, Zhong K. The fate of Cd in Soils with Various Particle Sizes: Characteristics, Speciation Distribution and Influencing Factors. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:60. [PMID: 39438334 DOI: 10.1007/s00128-024-03968-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
This study investigated the distribution of Cd in soil water-stable aggregate particles of varying sizes, revealing that smaller particles have higher total Cd content as well as different forms of Cd content, with the clay particle showing a greater tendency to accumulate Cd. However, the proportion of high activity Cd is lower in clay particles, posing a lower environmental risk of Cd transformation compared to silt particles. Adsorption experiments indicated that the clay particle exhibits the strongest adsorption capacity and highest adsorption rate. Additionally, correlation and principal component analyses identified Fe-Mn oxides and organic matter as the primary influencing factors on Cd distribution characteristics, with pH playing a secondary role. These findings provide valuable insights for the remediation of heavy metal-contaminated soil.
Collapse
Affiliation(s)
- Junwei Tang
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China
| | - Chaolan Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China.
- Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530004, China.
| | - Xutong Liu
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China
| | - Xianghua Wu
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yibo Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China
| | - Tao Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China
| | - Ruijing Xia
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China
| | - Kai Zhong
- College of Agriculture, Guangxi University, Nanning, Guangxi, 530004, China
| |
Collapse
|
6
|
Maâroufi L, Hofmann D, Zarfl C, Hüben M, Pütz T, Amelung W. Non-extractable residues of perfluorooctanoic acid (PFOA) in soil. CHEMOSPHERE 2024; 366:143422. [PMID: 39343318 DOI: 10.1016/j.chemosphere.2024.143422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
PER: and polyfluoroalkyl substances have gained increased attention due to their persistence, ubiquitous presence in the environment, and toxicity. We hypothesised that the formation of non-extractable residues [NER] occurs in soils and contributes to the overall persistence of these priority pollutants, and that NER formation is controlled by temperature. To test these hypotheses, we used 14C-labelled perfluorooctanoic acid [PFOA] as target compound, added it to two arable soils (Cambisol, Luvisol), and incubated them at 10 °C and 20 °C in the dark. To support potential co-metabolic decomposition, some samples were additionally fed with glucose to enhance microbial activity. The PFOA residues were then sequentially extracted using 0.01 M CaCl2, followed by accelerated solvent extraction (ASE) with methanol or methanol/acetic acid after 0, 1, 3, 9, 30, 62, and 90 days of incubation. In addition, we monitored the release of 14C into the gas phase as well as [14C]-PFOA-NER after dry combustion and liquid scintillation counting. After 90 days, we found that the [14C]-PFOA content declined in the extraction order of CaCl2 ((bio)available fraction) > ASE (residual fraction) > NER > gas fraction), with most rapid changes occurring in the first 9 days of incubation. NER formation was different in the two soils and reached 5-9% of the applied amount in the Cambisol and Luvisol, respectively. Noteworthy the proportion of 14C-PFOA in the (bio)available fraction remained relatively stable over time at 56-62% of the applied amount, indicating the reversible transfer into this fraction from a bi-exponentially declining residual (ASE) pool. These dissipation patterns were neither influenced by temperature nor by the addition of glucose. We conclude that NER exist for PFOA, but that the majority of PFOA remains in (bio)available form, thus maintaining toxicity and mobility in soil for prolonged periods of time.
Collapse
Affiliation(s)
- Lucie Maâroufi
- Institute of Bio- and Geosciences, IBG-3: Agrosphere, Forschungszentrum Jülich GmbH, 152425 Jülich, Germany; Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, Nussallee 13, University of Bonn, 53115 Bonn, Germany.
| | - Diana Hofmann
- Institute of Bio- and Geosciences, IBG-3: Agrosphere, Forschungszentrum Jülich GmbH, 152425 Jülich, Germany.
| | - Christiane Zarfl
- Department of Geosciences, University of Tübingen, Schnarrenbergstr. 94-96, 72074 Tübingen, Germany.
| | - Michael Hüben
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Auf dem Aberg 1, 57392 Schmallenberg, Germany.
| | - Thomas Pütz
- Institute of Bio- and Geosciences, IBG-3: Agrosphere, Forschungszentrum Jülich GmbH, 152425 Jülich, Germany.
| | - Wulf Amelung
- Institute of Bio- and Geosciences, IBG-3: Agrosphere, Forschungszentrum Jülich GmbH, 152425 Jülich, Germany; Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, Nussallee 13, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
7
|
Soltanian M, Gitipour S, Baghdadi M, Rtimi S. PFOA-contaminated soil remediation: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49985-50011. [PMID: 39088169 DOI: 10.1007/s11356-024-34516-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Soil and groundwater contamination has been raised as a concern due to the capability of posing a risk to human health and ecology, especially in facing highly toxic and emerging pollutants. Because of the prevalent usage of perfluorooctanoic acid (PFOA), in industrial and production processes, and subsequently the extent of sites contaminated with these pollutants, cleaning up PFOA polluted sites is paramount. This research provides a review of remediation approaches that have been used, and nine remediation techniques were reviewed under physical, chemical, and biological approaches categorization. As the pollutant specifications, environmental implications, and adverse ecological effects of remediation procedures should be considered in the analysis and evaluation of remediation approaches, unlike previous research that considered a couple of PFAS pollutants and generally dealt with technical issues, in this study, the benefits, drawbacks, and possible environmental and ecological adverse effects of PFOA-contaminated site remediation also were discussed. In the end, in addition to providing sufficient and applicable understanding by comprehensively considering all aspects and field-scale challenges and obstacles, knowledge gaps have been found and discussed.
Collapse
Affiliation(s)
- Mehdi Soltanian
- School of Civil and Environmental Engineering, Faculty of engineering and IT, University of Technology Sydney, Sydney, Australia
| | - Saeid Gitipour
- Faculty of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Majid Baghdadi
- Faculty of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | - Sami Rtimi
- Global Institute for Water Environment and Health, 1201, Geneva, Switzerland.
| |
Collapse
|
8
|
Wang J, Han Z, Zhang C, Wang M, Li H, Gao D. Effects of soil colloids on adsorption and migration of benzo(a)pyrene on contaminated sites under runoff infiltration processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 353:124150. [PMID: 38735466 DOI: 10.1016/j.envpol.2024.124150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
In the environment, soil colloids are widespread and possess a significant adsorption capacity. This makes them capable of transporting different pollutants, presenting a potential risk to human and ecological well-being. This study aimed to examine the adsorption and co-migration characteristics of benzo(a)pyrene (BaP) and soil colloids in areas contaminated with organic substances, utilizing both static and dynamic batch experiments. In the static adsorption experiments, it was observed that the adsorption of BaP onto soil colloids followed the pseudo-second-order kinetic model (R2 = 0.966), and the adsorption isotherm conformed to the Langmuir model (R2 = 0.995). The BaP and soil colloids primarily formed bonds through π-π interactions and hydrogen bonds. The dynamic experimental outcomes revealed that elevating colloids concentration contributed to increased BaP mobility. Specifically, when the concentration of soil colloids in influent was 500 mg L-1, the mobility of BaP was 23.2 % compared to that without colloids of 13.4 %. Meanwhile, the lowering influent pH value contributed to increased BaP mobility. Specifically, when the influent pH value was 4.0, the mobility of BaP was 30.1 %. The BaP's mobility gradually declined as the initial concentration of BaP in polluted soil increased. Specifically, when the initial concentration of BaP in polluted soil was 5.27 mg kg-1, the mobility of BaP was 39.1 %. This study provides a support for controlling BaP pollution in soil and groundwater.
Collapse
Affiliation(s)
- Jianlong Wang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing, 100044, China.
| | - Zhimeng Han
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing, 100044, China
| | - Changhe Zhang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; China Academy of Building Research, Beijing, 100013, China
| | - Meiqi Wang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing, 100044, China
| | - Hongxin Li
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing, 100044, China
| | - Dawen Gao
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
9
|
Yan X, An J, He W, Zhou Q. Environmental factors influencing the soil-air partitioning of semi-volatile petroleum hydrocarbons: Laboratory measurements and optimization model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171953. [PMID: 38537825 DOI: 10.1016/j.scitotenv.2024.171953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/23/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
The soil-air partition coefficient (KSA) values are commonly utilized to examine the fate of organic contaminants in soils; however, their measurement has been lacking for semi-volatile petroleum hydrocarbons within soil contaminated by crude oil. This research utilized a solid-phase fugacity meter to determine the KSA values of n-alkanes and polycyclic aromatic hydrocarbons (PAHs) under crucial environmental conditions. The results showed a notable increase in KSA values with the extent of crude oil contamination in soil. Specifically, in the 3 % crude oil treatment, the KSA values for n-alkanes and PAHs increased by 1.16 and 0.66 times, respectively, compared to the 1 % crude oil treatment. However, the KSA values decreased with changes in temperature, water content, and particle size within the specified experimental range. Among these factors, temperature played a significant role. The KSA values for n-alkanes and PAHs decreased by 0.27-0.89 and 0.61-0.83 times, respectively, with a temperature increase from 5 °C to 35 °C. Moreover, the research identified that the molecular weight of n-alkanes and PAHs contributed to variations in KSA values under identical environmental factors. With an increase in temperature from 5 °C to 35 °C, the range of n-alkanes present in the air phase expanded from C11 to C34, and PAHs showed elevated levels of acenaphthene (ACE) and benzo (b) fluoranthene (BbFA). Furthermore, heightened water content and particle size were observed to facilitate the volatilization of low molecular weight petroleum hydrocarbons. The effect of environmental variables on soil-air partitioning was evaluated using the Box-Behnken design (BBD) model, resulting in the attainment of the lowest log KSA values. These results illustrate that soil-air partitioning is a complex process influenced by various factors. In conclusion, this study improves our comprehension and predictive capabilities concerning the behavior and fate of n-alkanes and PAHs within soil-air systems.
Collapse
Affiliation(s)
- Xiuxiu Yan
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing An
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110142, China.
| | - Wenxiang He
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Qixing Zhou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
10
|
Zhang X, Li J, Li M, Zhang W, Wang Y, Xian Q. The effects of co-existing acridine on adsorption-desorption behavior of carbazole in soils: Co-sorption and mechanism insight. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134205. [PMID: 38579583 DOI: 10.1016/j.jhazmat.2024.134205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Carbazole (CBZ) and acridine (ACR) are polycyclic aromatic nitrogen heterocycles (PANHs) widely found in combined contaminated soils, while investigations on organic-organic interactions have been very limited. In this study, batch experiments were carried out on five soils with different properties, taking CBZ as a representative of PANHs and ACR as a co-existing contaminant. The adsorption isotherms of CBZ (50-1000 μg/L) were nonlinear. Soil organic matter (SOM) and cation exchange capacity (CEC) showed positive correlations with CBZ adsorption-desorption coefficients. The adsorption mechanisms of CBZ involved hydrogen bonding, π-π interaction, and cation-π bonding. Different concentrations of ACR had varying effects on CBZ. The adsorption of CBZ was inhibited with 250 μg/L ACR. The cooperative adsorption was observed on three soils with increasing ACR concentration (1000 μg/L) and led to more pronounced nonlinear isotherms. The S-shaped isotherms of ACR indicated that ACR was adsorbed to the soil surface in a perpendicular configuration. New adsorption sites were created allowing for increased CBZ adsorption through π-π interaction with ACR. Therefore, variations in soil properties and potential impacts of co-existing contaminants should be well considered when assessing the combined pollution of site soil. This will contribute to a more accurate estimation of environmental and health risks.
Collapse
Affiliation(s)
- Xueqi Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jianwei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Mengting Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Wei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yuting Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
11
|
Liu J, Zeng D, Pan J, Hu J, Zheng M, Liu W, He D, Ye Q. Effects of polyethylene microplastics occurrence on estrogens degradation in soil. CHEMOSPHERE 2024; 355:141727. [PMID: 38499076 DOI: 10.1016/j.chemosphere.2024.141727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/10/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
Growing focus has been drawn to the continuous detection of high estrogens levels in the soil environment. Additionally, microplastics (MPs) are also of growing concern worldwide, which may affect the environmental behavior of estrogens. However, little is known about effects of MPs occurrence on estrogens degradation in soil. In this study, polyethylene microplastics (PE-MPs) were chosen to examine the influence on six common estrogens (estrone (E1), 17α-estradiol (17α-E2), 17β-estradiol (17β-E2), estriol (E3), diethylstilbestrol (DES), and 17α-ethinylestradiol (17α-EE2)) degradation. The results indicated that PE-MPs had little effect on the degradation of E3 and DES, and slightly affected the degradation of 17α-E2, however, significantly inhibited the degradation of E1, 17α-EE2, and 17β-E2. It was explained that (i) obvious oxidation reaction occurred on the surface of PE-MPs, indicating that PE-MPs might compete with estrogens for oxidation sites, such as redox and biological oxidation; (ii) PE-MPs significantly changed the bacterial community in soil, resulting in a decline in the abundance of some bacterial communities that biodegraded estrogens. Moreover, the rough surface of PE-MPs facilitated the estrogen-degrading bacterial species (especially for E1, E2, and EE2) to adhere, which decreased their reaction to estrogens. These findings are expected to deepen the understanding of the environmental behavior of typical estrogens in the coexisting system of MPs.
Collapse
Affiliation(s)
- Jiangyan Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404000, China
| | - Dong Zeng
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China
| | - Jie Pan
- College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404000, China
| | - Jiawu Hu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China
| | - Mimi Zheng
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404000, China
| | - Wangrong Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China
| | - Dechun He
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China.
| | - Quanyun Ye
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China.
| |
Collapse
|
12
|
Rodgers TFM, Spraakman S, Wang Y, Johannessen C, Scholes RC, Giang A. Bioretention Design Modifications Increase the Simulated Capture of Hydrophobic and Hydrophilic Trace Organic Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5500-5511. [PMID: 38483320 DOI: 10.1021/acs.est.3c10375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Stormwater rapidly moves trace organic contaminants (TrOCs) from the built environment to the aquatic environment. Bioretention cells reduce loadings of some TrOCs, but they struggle with hydrophilic compounds. Herein, we assessed the potential to enhance TrOC removal via changes in bioretention system design by simulating the fate of seven high-priority stormwater TrOCs (e.g., PFOA, 6PPD-quinone, PAHs) with log KOC values between -1.5 and 6.74 in a bioretention cell. We evaluated eight design and management interventions for three illustrative use cases representing a highway, a residential area, and an airport. We suggest two metrics of performance: mass advected to the sewer network, which poses an acute risk to aquatic ecosystems, and total mass advected from the system, which poses a longer-term risk for persistent compounds. The optimized designs for each use case reduced effluent loadings of all but the most polar compound (PFOA) to <5% of influent mass. Our results suggest that having the largest possible system area allowed bioretention systems to provide benefits during larger events, which improved performance for all compounds. To improve performance for the most hydrophilic TrOCs, an amendment like biochar was necessary; field-scale research is needed to confirm this result. Our results showed that changing the design of bioretention systems can allow them to effectively capture TrOCs with a wide range of physicochemical properties, protecting human health and aquatic species from chemical impacts.
Collapse
Affiliation(s)
- Timothy F M Rodgers
- Institute of Resources, Environment and Sustainability, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Sylvie Spraakman
- Green Infrastructure Design Team, City of Vancouver Engineering Services, Vancouver, British Columbia V5Z0B4, Canada
| | - Yanru Wang
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Cassandra Johannessen
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B1R6, Canada
| | - Rachel C Scholes
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Amanda Giang
- Institute of Resources, Environment and Sustainability, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| |
Collapse
|
13
|
Qin C, Xiang L, Wang YZ, Yu PF, Meng C, Li YW, Zhao HM, Hu X, Gao Y, Mo CH. Binding interaction of environmental DNA with typical emerging perfluoroalkyl acids and its impact on bioavailability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167392. [PMID: 37758138 DOI: 10.1016/j.scitotenv.2023.167392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/17/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
As the replacement compounds of perfluoroalkyl acids (PFAAs), emerging PFAAs generally exhibit equal or more hazardous toxicity than legacy PFAAs. Numerous DNA as environmental organic matters coexists with emerging PFAAs, but their interactions and the resulting interaction impacts on the bioavailability of emerging PFAAs remain insufficiently understood. Here, we studied the binding strength and mechanism between DNA and emerging PFAAs (perfluorobutyric acid, perfluorobutylsulfonic acid, and hexafluoropropylene oxide dimer acid) using perfluorooctanoic acid as the control, and further investigated the impacts of DNA binding on the bioavailability of the emerging PFAAs. Isothermal titration calorimetry and quantum chemical calculation found that the emerging PFAAs could bind with DNA bases (main thymine) by van der Waals force and halogen-bond, showing the binding affinities in the range of 7.87 × 104 to L/mol to 6.54 × 106 L/mol. The PFAAs-DNA binding significantly decreased the bioavailability of the PFAAs in both seedlings and plants of pakchoi (Brassica chinensis L.), with little differences in bioavailability change extent among PFAAs. The findings highlight the universality and similarity of the DNA binding effects on PFAAs bioavailability, which can be the natural detoxification mechanism for response to the PFAAs pollution.
Collapse
Affiliation(s)
- Chao Qin
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yi-Ze Wang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Peng-Fei Yu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Can Meng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
14
|
Cai W, Navarro DA, Du J, Srivastava P, Cao Z, Ying G, Kookana RS. Effect of heavy metal co-contaminants on the sorption of thirteen anionic per- and poly-fluoroalkyl substances (PFAS) in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167188. [PMID: 37734606 DOI: 10.1016/j.scitotenv.2023.167188] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 09/23/2023]
Abstract
Understanding the sorption behavior of per- and poly-fluoroalkyl substances (PFAS) in soils are essential for assessing their mobility and risk in the environment. Heavy metals often coexist with PFAS depending on the source and history of contamination. In this study, we investigated the effect of heavy metal co-contaminants (Pb2+, Cu2+ and Zn2+) on the sorption of 13 anionic PFAS with different perfluorocarbon chain length (C3-C9) in two soils with different properties. Results revealed that Pb2+, Cu2+ and Zn2+ had little effect on the sorption of most short-chain compounds, while the presence of these heavy metals enhanced the sorption of long-chain PFAS in two soils. The distribution coefficients (Kd) of several long-chain PFAS linearly increased with increasing concentrations of heavy metal, especially in the presence of Pb2+ (ΔKd/Δ [Pb2+] > 3 for PFOS and PFNA vs <1 for PFPeS and PFHxS). While several mechanisms may have contributed to the enhancement of sorption of PFAS, the heavy metals most likely contributed through enhanced hydrophobic interactions of PFAS by neutralizing the negative charge of adsorption surfaces in soils and thus making it more favorable for their partitioning onto the solid phase. Moreover, the increase in the concentrations of heavy metals led to a decrease in the pH of the system and promoted sorption of long-chain compounds, especially in soil with lower organic carbon content. Overall, this study provides evidence that the presence of co-existing heavy metal cations in soils can significantly enhance the sorption of long-chain PFAS onto soil, thereby potentially limiting their mobility in the environment.
Collapse
Affiliation(s)
- Wenwen Cai
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Divina A Navarro
- CSIRO Environment, Locked Bag 2, Glen Osmond, 5064, Australia; School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Locked Bag 1, Glen Osmond 5064, Australia.
| | - Jun Du
- CSIRO Environment, Locked Bag 2, Glen Osmond, 5064, Australia
| | | | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Guangguo Ying
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Rai S Kookana
- CSIRO Environment, Locked Bag 2, Glen Osmond, 5064, Australia; School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Locked Bag 1, Glen Osmond 5064, Australia
| |
Collapse
|
15
|
Leng C, Wang Q, Zhang G, Xu M, Yang X. Transport of prednisolone, cortisone, and triamcinolone acetonide in agricultural soils: Sorption isotherms, transport dynamics, and field-scale simulation. ENVIRONMENTAL RESEARCH 2023; 239:117287. [PMID: 37813136 DOI: 10.1016/j.envres.2023.117287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023]
Abstract
The occurrence of glucocorticoids (GCs) in agricultural soils has raised concerns due to their high polarity, widespread biological effects in vertebrates, and their potential to disrupt vital processes such as glucose metabolism and immune function. This study investigated the sorption and transport dynamics of three GCs, namely cortisone (COR), prednisolone (PNL), and triamcinolone acetonide (TCA) in five soil-water systems (S1-S5 systems). The sorption data of the GCs were fitted to a linear sorption model (R2 = 0.95-0.99), with organic carbon (OC) normalized sorption coefficients ranging from 2.26 ± 0.02 to 3.36 ± 0.02. The sorption magnitudes (Kd) of the GCs exhibited a nearly linear correlation with their corresponding octanol-water partition coefficients (logKow) in the S1-S3 systems. However, some deviations from linearity were observed in the S4 and S5 systems. Furthermore, a strong correlation was observed between the Kd values of the GCs and the OC% of the soils. These data indicated that specific and hydrophobic partitioning interactions governed the sorption of GCs onto soils. The transport data of the GCs were fitted to a two-site nonequilibrium model using the CXTFIT program (R2 = 0.82-0.98). The retardation factor (R) for each GC exhibited a positive correlation with the OC% and clay contents of soils. Additionally, the relationships between the logR values and logKow values of the GCs deviated slightly from linear correlation in most columns. These results indicated that specific interactions in the columns were more pronounced compared to the batch systems. An initial field-scale simulation demonstrated that frequent precipitation can facilitate the dilution and vertical transport of the GCs through soil profiles. The transport potential of the GCs was affected by the properties and soils and GCs. Overall, these findings provide valuable insights into the transport potential and associated environmental risks of GCs in soil-water systems.
Collapse
Affiliation(s)
- Chen Leng
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Qingwei Wang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Ge Zhang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Manxin Xu
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Xingjian Yang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Province Key Laboratory for Land Use and Consolidation, Guangzhou 510642, PR China.
| |
Collapse
|
16
|
Xiang L, Qiu J, Chen QQ, Yu PF, Liu BL, Zhao HM, Li YW, Feng NX, Cai QY, Mo CH, Li QX. Development, Evaluation, and Application of Machine Learning Models for Accurate Prediction of Root Uptake of Per- and Polyfluoroalkyl Substances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18317-18328. [PMID: 37186812 DOI: 10.1021/acs.est.2c09788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Machine learning (ML) models were developed for understanding the root uptake of per- and polyfluoroalkyl substances (PFASs) under complex PFAS-crop-soil interactions. Three hundred root concentration factor (RCF) data points and 26 features associated with PFAS structures, crop properties, soil properties, and cultivation conditions were used for the model development. The optimal ML model, obtained by stratified sampling, Bayesian optimization, and 5-fold cross-validation, was explained by permutation feature importance, individual conditional expectation plot, and 3D interaction plot. The results showed that soil organic carbon contents, pH, chemical logP, soil PFAS concentration, root protein contents, and exposure time greatly affected the root uptake of PFASs with 0.43, 0.25, 0.10, 0.05, 0.05, and 0.05 of relative importance, respectively. Furthermore, these factors presented the key threshold ranges in favor of the PFAS uptake. Carbon-chain length was identified as the critical molecular structure affecting root uptake of PFASs with 0.12 of relative importance, based on the extended connectivity fingerprints. A user-friendly model was established with symbolic regression for accurately predicting RCF values of the PFASs (including branched PFAS isomerides). The present study provides a novel approach for profound insight into the uptake of PFASs by crops under complex PFAS-crop-soil interactions, aiming to ensure food safety and human health.
Collapse
Affiliation(s)
- Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jing Qiu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qian-Qi Chen
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Peng-Fei Yu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Bai-Lin Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
17
|
Zhu T, Zhang Y, Li Y, Tao T, Tao C. Contribution of molecular structures and quantum chemistry technique to root concentration factor: An innovative application of interpretable machine learning. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132320. [PMID: 37604035 DOI: 10.1016/j.jhazmat.2023.132320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/03/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Root concentration factor (RCF) is a significant parameter to characterize uptake and accumulation of hazardous organic contaminants (HOCs) by plant roots. However, complex interactions among chemicals, plant roots and soil make it challenging to identify underlying mechanisms of uptake and accumulation of HOCs. Here, nine machine learning techniques were applied to investigate major factors controlling RCF based on variable combinations of molecular descriptors (MD), MACCS fingerprints, quantum chemistry descriptors (QCD) and three physicochemical properties related to chemical-soil-plant system. Compared to models with variables including MACCS fingerprints or solitary physicochemical properties, the XGBoost-6 model developed by the variable combination of MD, QCD and three physicochemical properties achieved the most remarkable performance, with R2 of 0.977. Model interpretation achieved by permutation variable importance and partial dependence plots revealed the vital importance of HOCs lipophilicity, lipid content of plant roots, soil organic matter content, the overall deformability and the molecular dispersive ability of HOCs for regulating RCF. The integration of MD and QCD with physicochemical properties could improve our knowledge of underlying mechanisms regarding HOCs accumulation in plant roots from innovative structural perspectives. Multiple variables combination-oriented performance improvement of model can be extended to other parameters prediction in environmental risk assessment field.
Collapse
Affiliation(s)
- Tengyi Zhu
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Yu Zhang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Yi Li
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Tianyun Tao
- College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Cuicui Tao
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| |
Collapse
|
18
|
He Q, Yan Z, Qian S, Xiong T, Grieger KD, Wang X, Liu C, Zhi Y. Phytoextraction of per- and polyfluoroalkyl substances (PFAS) by weeds: Effect of PFAS physicochemical properties and plant physiological traits. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131492. [PMID: 37121031 DOI: 10.1016/j.jhazmat.2023.131492] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Accepted: 04/23/2023] [Indexed: 05/19/2023]
Abstract
Phytoextraction is a promising technology that uses plants to remediate contaminated soil. However, its feasibility for per- and polyfluoroalkyl substances (PFAS) and the impact of PFAS properties and plant traits on phytoextraction efficacy remains unknown. In this study, we conducted greenhouse experiment and evaluated the potential of weeds for phytoextraction of PFAS from soil and assessed the effects of PFAS properties and plant traits on PFAS uptake via systematic correlation analyses and electron probe microanalyzer with energy dispersive spectroscopy (FE-EPMA-EDS) imaging. The results showed that 1) phytoextraction can remove 0.04%- 41.4%wt of PFAS from soil, with extracted PFAS primarily stored in plant shoots; 2) Weeds preferentially extracted short-chain PFAS over long-chain homologues from soil. 3) PFAS molecular size and hydrophilicity determined plant uptake behavior, while plant morphological traits, particularly root protein and lipid content, influenced PFAS accumulation and translocation. Although plants with thin roots and small leaf areas exhibited greater PFAS uptake and storage ability, the impact of PFAS physicochemical properties was more significant. 4) Finally, short-chain PFAS were transported quickly upwards in the plant, while uptake of long-chain PFOS was restricted.
Collapse
Affiliation(s)
- Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Zheng Yan
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Shenhua Qian
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Tiantian Xiong
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Khara D Grieger
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA; North Carolina Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27606, USA
| | - Xiaoming Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Caihong Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yue Zhi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
19
|
Li H, Dong Q, Zhang M, Gong T, Zan R, Wang W. Transport behavior difference and transport model of long- and short-chain per- and polyfluoroalkyl substances in underground environmental media: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121579. [PMID: 37028785 DOI: 10.1016/j.envpol.2023.121579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonates (PFSAs), which are the most commonly regulated and most widely concerned per- and polyfluoroalkyl substances (PFAS) have received increasing attention on a global scale due to their amphiphilicity, stability, and long-range transport. Thus, understanding the typical PFAS transport behavior and using models to predict the evolution of PFAS contamination plumes is important for evaluating the potential risks. In this study, the effects of organic matter (OM), minerals, water saturation, and solution chemistry on the transport and retention of PFAS were investigated, and the interaction mechanism between long-chain/short-chain PFAS and the surrounding environment was analyzed. The results revealed that high content of OM/minerals, low saturation, low pH, and divalent cation had a great retardation effect on long-chain PFAS transport. The retention caused by hydrophobic interaction was the prominent mechanism for long-chain PFAS, whereas, the retention caused by electrostatic interaction was more relevant for short-chain PFAS. Additional adsorption at the air-water and nonaqueous-phase liquids (NAPL)-water interface was another potential interaction for retarding PFAS transport in the unsaturated media, which preferred to retard long-chain PFAS. Furthermore, the developing models for describing PFAS transport were investigated and summarized in detail, including the convection-dispersion equation, two-site model (TSM), continuous-distribution multi-rate model, modified-TSM, multi-process mass-transfer (MPMT) model, MPMT-1D model, MPMT-3D model, tempered one-sided stable density transport model, and a comprehensive compartment model. The research revealed PFAS transport mechanisms and provided the model tools, which supported the theoretical basis for the practical prediction of the evolution of PFAS contamination plumes.
Collapse
Affiliation(s)
- Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Qianling Dong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Meng Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Tiantian Gong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Rixia Zan
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Wenbing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
20
|
Huang YR, Liu SS, Zi JX, Cheng SM, Li J, Ying GG, Chen CE. In Situ Insight into the Availability and Desorption Kinetics of Per- and Polyfluoroalkyl Substances in Soils with Diffusive Gradients in Thin Films. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7809-7817. [PMID: 37155686 DOI: 10.1021/acs.est.2c09348] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The physicochemical exchange dynamics between the solid and solution phases of per- and polyfluoroalkyl substances (PFAS) in soils needs to be better understood. This study employed an in situ tool, diffusive gradients in thin films (DGT), to understand the distribution and exchange kinetics of five typical PFAS in four soils. Results show a nonlinear relationship between the PFAS masses in DGT and time, implying that PFAS were partially supplied by the solid phase in all of the soils. A dynamic model DGT-induced fluxes in soils/sediments (DIFS) was used to interpret the results and derive the distribution coefficients for the labile fraction (Kdl), response time (tc), and adsorption/desorption rates (k1 and k-1). The larger labile pool size (indicated by Kdl) for the longer chain PFAS implies their higher potential availability. The shorter chain PFAS tend to have a larger tc and relatively smaller k-1, implying that the release of these PFAS in soils might be kinetically limited but not for more hydrophobic compounds, such as perfluorooctanesulfonic acid (PFOS), although soil properties might play an important role. Kdl ultimately controls the PFAS availability in soils, while the PFAS release from soils might be kinetically constrained (which may also hold for biota uptake), particularly for more hydrophilic PFAS.
Collapse
Affiliation(s)
- Yue-Rui Huang
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Si-Si Liu
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Jin-Xin Zi
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Sheng-Ming Cheng
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, People's Republic of China
| | - Guang-Guo Ying
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Chang-Er Chen
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
21
|
Guo JJ, Li F, Xiao HC, Liu BL, Feng LN, Yu PF, Meng C, Zhao HM, Feng NX, Li YW, Cai QY, Xiang L, Mo CH, Li QX. Polyethylene and polypropylene microplastics reduce chemisorption of cadmium in paddy soil and increase its bioaccessibility and bioavailability. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:130994. [PMID: 36821898 DOI: 10.1016/j.jhazmat.2023.130994] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/15/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) usually coexist with heavy metals (HMs) in soil. MPs can influence HMs mobility and bioavailability, but the underlying mechanisms remain largely unexplored. Here, polyethylene and polypropylene MPs were selected to investigate their effects and mechanisms of sorption-desorption, bioaccessibility and bioavailability of cadmium (Cd) in paddy soil. Batch experiments indicated that MPs significantly reduced the Cd sorption in soil (p < 0.05). Accordingly, soil with the MPs had lower boundary diffusion constant of Cd (C1= 0.847∼1.020) and the Freundlich sorption constant (KF = 0.444-0.616) than that without the MPs (C1 = 0.894∼1.035, KF = 0.500-0.655). X-ray diffraction, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analyses suggested that the MPs reduced Cd chemisorption, by covering the soil active sites and thus blocking complexation of Cd with active oxygen sites and interrupting the formation of CdCO3 and Cd3P2 precipitates. Such effects of MPs enhanced about 1.2-1.5 times of Cd bioaccessibility and bioavailability in soil. Almost the same effects but different mechanisms of polyethylene and polypropylene MPs on Cd sorption in the soil indicated the complexity and pervasiveness of their effects. The findings provide new insights into impacts of MPs on the fate and risk of HMs in agricultural soil.
Collapse
Affiliation(s)
- Jing-Jie Guo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; College of Biology and Environmental Engineering, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Zhejiang Shuren University, Hangzhou 310015, China
| | - Fen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Chuan Xiao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Bai-Lin Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lin-Nan Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Peng-Fei Yu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Can Meng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
22
|
Wan X, Zhao Y, Xu X, Li Z, Xie L, Wang G, Yang F. Microcystin bound on microplastics in eutrophic waters: A potential threat to zooplankton revealed by adsorption-desorption processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 321:121146. [PMID: 36706860 DOI: 10.1016/j.envpol.2023.121146] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
The presence of microplastics (MPs) in eutrophic waters (both freshwaters and coastal waters) is increasingly reported globally, as has the occurrence of cyanotoxins, including microcystins (MCs). MPs have the potential to act as vectors for MCs in freshwater environments, but the transportation mechanisms and associated risks remain poorly understood. In this study, we investigated how aging process and water conditions influenced the adsorption behavior of the microcystin-leucine-arginine (MC-LR) onto polyethylene (PE) and polypropylene (PP). Adsorption kinetics and isotherms showed that the MC-LR sorption capacity in descending order was aged PP > pristine PP > aged PE > pristine PE. The aging process increased the MC-LR sorption amount by 25.1% and 6.5% for PP and PE, respectively. The increase in sorption affinity of aged MPs may be attributed to the significant surface oxidation and the formation of the hydrogen bonding between MPs and MC-LR. Furthermore, MC-LR sorption can be largely influenced by the aqueous conditions. MC-LR preferred to be much adsorbed onto different MPs in brackish water than in freshwater owing to the cation bridging effect and complexation of high levels of cations. The usual alkalescent pH in eutrophic waters did not favor MC-LR sorption to MPs. Finally, based on the desorption results, assuming a worst-case scenario, MC-LR bound on MPs may have a high risk to daphnids. The findings obtained in this study have improved our knowledge in the interaction of MPs with hydrophilic cyanotoxins in aqueous ecosystems, as well as the risks associated with their coexistence.
Collapse
Affiliation(s)
- Xiang Wan
- School of Geography, School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Yanyan Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Xiaoguang Xu
- School of Geography, School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Zongrui Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Liqiang Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | - Guoxiang Wang
- School of Geography, School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Fei Yang
- School of Geography, School of Environment, Nanjing Normal University, Nanjing, 210023, China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China.
| |
Collapse
|
23
|
Ruan J, Tang T, Zhang M, Qiao W. Interaction mechanism between chlorinated polyfluoroalkyl ether potassium sulfonate (F-53B) and chromium on different types of soil surfaces. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119820. [PMID: 35940486 DOI: 10.1016/j.envpol.2022.119820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/06/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
The coexistence of per- and polyfluoroalkyl substances (PFASs) and heavy metals have been found in soils. However, the interaction between the combined pollutants in soils remains unclear. In this study, the adsorption processes of single and combined Cr(VI) and chlorinated polyfluoroalkyl ether potassium sulfonate (F-53 B) in red, yellow and black soils were simulated. When compared with the single F-53 B and Cr(VI), the adsorption amount of the combined F-53 B and Cr(VI) on soils changed with the types of soils. The interactions between F-53 B and Cr(VI) in soils affected their adsorption behavior. The adsorption of the combined F-53 B and Cr(VI) best fit second-order kinetics and the Freundlich equation. Moreover, aluminum and iron oxides are highly correlated with adsorption of F-53 B and Cr(VI). Both F-53 B and Cr(VI) can form complexes with aluminum and iron oxides through electrostatic interactions, but PFOS could be bridged with iron oxides to form an inner sphere complex and with aluminum oxides to form an outer sphere complex. The coexistence of F-53 B and Cr(VI) could change the fluorescent group of dissolved organic matter (DOM) in soils due to the complexation between F-53 B and DOM. In addition, F-53 B increased the acid-soluble portion of Cr and decreased its residual form, which promoted the environmental risk of Cr in soils.
Collapse
Affiliation(s)
- Jingqi Ruan
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Tianhao Tang
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Ming Zhang
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Weichuan Qiao
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
24
|
Qi Y, Cao H, Pan W, Wang C, Liang Y. The role of dissolved organic matter during Per- and Polyfluorinated Substance (PFAS) adsorption, degradation, and plant uptake: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129139. [PMID: 35605500 DOI: 10.1016/j.jhazmat.2022.129139] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The negative effects of polyfluoroalkyl substances (PFAS) on the environment and health have recently attracted much attention. This article reviews the influence of soil- and water-derived dissolved organic matter (DOM) on the environmental fate of PFAS. In addition to being co-adsorped with PFAS to increase the adsorption capacity, DOM competes with PFAS for adsorption sites on the surface of the material, thereby reducing the removal rate of PFAS or increasing water solubility, which facilitates desorption of PFAS in the soil. It can quench some active species and inhibit the degradation of PFAS. In contrast, before DOM in water self-degrades, DOM has a greater promoting effect on the degradation of PFAS because DOM can complex with iron, iodine, among others, and act as an electron shuttle to enhance electron transfer. In soil aggregates, DOM can prevent microorganisms from being poisoned by direct exposure to PFAS. In addition, DOM increases the desorption of PFAS in plant root soil, affecting its bioavailability. In general, DOM plays a bidirectional role in adsorption, degradation, and plant uptake of PFAS, which depends on the types and functional groups of DOM. It is necessary to enhance the positive role of DOM in reducing the environmental risks posed by PFAS. In future, attention should be paid to the DOM-induced reduction of PFAS and development of a green and efficient continuous defluorination technology.
Collapse
Affiliation(s)
- Yuwen Qi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Huimin Cao
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Weijie Pan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, SUNY, Albany, NY 12222, USA
| |
Collapse
|
25
|
Liu BL, Li YW, Xie LS, Guo JJ, Xiang L, Mo CH. Sorption of microcystin-RR onto surface soils: Characteristics and influencing factors. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128571. [PMID: 35278968 DOI: 10.1016/j.jhazmat.2022.128571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Microcystins are frequently detected in cyanobacterial bloom-impacted sites; however, their mobility potential in soils is poorly understood. This study aimed to elucidate the sorption behaviors of microcystin-RR (MC-RR) in heterogeneous soils and evaluate critical affecting factors. MC-RR sorption followed the pseudo-second-order kinetics and Freundlich model. All isotherms (n = 0.83-1.03) had no or minor deviations from linearity. The linear distribution coefficients (Kd) varied from 2.64 to 15.2 across soils, depending mainly on OM and CEC. Stepwise regression analysis indicated that the Kd was predictable by the fitting formula of: Kd = 2.56 + 0.15OM + 0.28CEC (R2 = 0.45). The sorption was an endothermic physisorption process, involving electrostatic forces, cation exchange and bridging, H-bonding, ligand exchange, and van der Waals forces. The sorption of MC-RR (dominantly behaved as electroneutral zwitterions) at pH > 5 was insensitive to pH change, while more MC-RR (anionic species) was adsorbed at lower pH and in the presence of Ca2+. The study provides insights into the sorption of MC-RR across a range of soil properties and water chemistry for the first time, which is of importance for a better understanding of the mobility potential of microcystins in the terrestrial systems.
Collapse
Affiliation(s)
- Bai-Lin Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Li-Si Xie
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jing-Jie Guo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
26
|
Yin C, Pan CG, Xiao SK, Wu Q, Tan HM, Yu K. Insights into the effects of salinity on the sorption and desorption of legacy and emerging per-and polyfluoroalkyl substances (PFASs) on marine sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118957. [PMID: 35124123 DOI: 10.1016/j.envpol.2022.118957] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Per-and polyfluoroalkyl substances (PFASs) have attracted extensive attention since this century due to their wide distribution, persistence, bioaccumulation/biomagnification potential, and (eco)toxicity. In the present study, we investigated the sorption kinetics, sorption isotherms and desorption behaviors of legacy and emerging PFASs with different chain lengths and functional end groups onto marine sediments at four different salinities (0, 10, 20, and 30 practical salinity units (psu)). Results revealed that the sorption of PFASs onto sediment can be well described by the pseudo-second-order kinetic model. PFASs sorption was influenced by both compound-specific and solution-specific parameters. The distribution coefficient (Kd) for PFASs were increased with the increase of perfluorocarbon chain length and salinity, suggesting that hydrophobic and electrostatic interactions were involved in the adsorption process. 6:2 FTSA showed the lowest adsorption among PFASs with eight carbon atoms (6:2 FTSA, PFOA and PFOS). The increase of perfluorocarbon chain length of PFASs and salinity would result in the decrease of desorption rate of PFASs from sediment. In addition, PFCAs were desorbed more easily from the sediment than the PFSAs with the same perfluorocarbon chain length at all salinity groups. The present study demonstrated that salinity can apparently influence the fate of PFASs in aquatic environment and provided valuable data for modeling the fate of PFASs in real environment.
Collapse
Affiliation(s)
- Chao Yin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, PR China
| | - Chang-Gui Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, PR China.
| | - Shao-Ke Xiao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, PR China
| | - Qi Wu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, PR China
| | - Hong-Ming Tan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, PR China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, PR China
| |
Collapse
|
27
|
Adsorption of perfluorooctanoic acid from water by pH-modulated Brönsted acid and base sites in mesoporous hafnium oxide ceramics. iScience 2022; 25:104138. [PMID: 35402881 PMCID: PMC8987376 DOI: 10.1016/j.isci.2022.104138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/24/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are increasingly appearing in drinking water sources globally. Our work focuses specifically on the adsorption of the legacy perfluorooctanoic acid (PFOA) using mesoporous hafnium oxide (MHO) ceramic synthesized via a sol-gel process. Experiments were performed at varying pH to determine the effect of surface charge on adsorption capacity of PFOA by MHO, and to postulate adsorption behavior. At pH 2.3, the adsorption capacity of PFOA on MHO was 20.9 mg/g, whereas at a higher pH of 6.3, it was much lower at 9.2 mg/g. This was due to increased coulombic attractions at lower pH between the positively charged conjugate acid active sites on MHO surface and negatively charged deprotonated PFOA anion in solution. After adsorption, the solid MHO was regenerated via calcination, reducing the amount of toxic solid waste to be disposed since the adsorbent is regenerated, and the PFOA is completely removed. The adsorption capacity of PFOA by MHO was determined to be 20.9 mg/g at pH 2.3 As pH increased, the adsorption capacity of MHO decreased due to Coulombic repulsions MHO could be regenerated via calcination to limit the amount of toxic waste produced
Collapse
|
28
|
Ding X, Song X, Xu M, Yao J, Xu C, Tang Z, Zhang Z. Co-occurrence and correlations of PFASs and chlorinated volatile organic compounds (cVOCs) in subsurface in a fluorochemical industrial park: Laboratory and field investigations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152814. [PMID: 34990671 DOI: 10.1016/j.scitotenv.2021.152814] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Fluorochemical industrial park (FIP) represents an important source of per- and polyfluoroalkyl substances (PFASs) and chlorinated volatile organic compounds (cVOCs). Exploring the co-occurrence and correlations of PFASs and cVOCs is a key step towards the understanding their distributions in the field. In this study, perfluorooctanoic acid (PFOA) was the dominant compound in groundwater and aquifer solids, and elevated concentrations of short-chain perfluoroalkyl carboxylic acids (PFCAs) and hexafluoropropylene oxide oligomers were also detected in the field, suggesting their wide applications as substitutes for PFOA. Correlation analyses between PFASs and cVOCs suggested that cVOCs had a significant influence on the distribution and composition of PFASs in the field. In addition, the presence of cVOCs in the form of dense non-aqueous-phase organic liquids (DNAPL) affected the distribution and migration of PFASs at various depths, as evidenced by the relatively high PFASs concentrations (204 μg/L) and PFOA abundance (85.4%) in the deep aquifer, likely due to DNAPL-water interfaces sorption or partition into bulk DNAPL. The log Kd values, determined in the laboratory, were found to increase in the presence of DNAPL, especially for PFOA, with more than one time higher than those of perfluorobutanoic acid (PFBA) and hexafluoropropylene oxide dimer acid (HFPO-DA). This conclusion further demonstrated that PFOA had a higher potential to participate into DNAPL, which can migrate with DNAPL to the deep aquifer, supporting the higher abundance of PFOA in the deep aquifer mentioned above. However, the log Kd-field values of PFBA and HFPO-DA in the field were higher than that of PFOA, and no significant correlations (p > 0.05) were found between log Kd-field values and the chain-length of PFCAs at various depths, suggesting that the phenomena observed in the field are a result of composite influencing factors.
Collapse
Affiliation(s)
- Xiaoyan Ding
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Minmin Xu
- Shandong Academy of Environmental Sciences Co., Ltd., Jinan 250013, China
| | - Jin Yao
- Zhongke Hualu Soil Remediation Engineering Co., Ltd., Dezhou 253500, China
| | - Chang Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Sichuan Tianshengyuan Environmental Services Co., Ltd., Chengdu 610000, China
| | - Zhiwen Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Fabregat-Palau J, Vidal M, Rigol A. Modelling the sorption behaviour of perfluoroalkyl carboxylates and perfluoroalkane sulfonates in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149343. [PMID: 34418616 DOI: 10.1016/j.scitotenv.2021.149343] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
A simple parametric model was developed to predict the sorption of perfluoroalkyl substances (PFASs) in soils. Initially, sorption and desorption solid-liquid distribution coefficients (Kd and Kd,des respectively) of eight PFASs (five perfluoroalkyl carboxylates, PFCAs, and three perfluoroalkane sulfonates, PFSAs) in seven soils with organic carbon (OC) content ranging from 1.6 to 41% were quantified using batch experiments. The information obtained helped to fill the gaps in a literature-based database of Kd values of PFASs, which was lacking data on soils with high OC content. The overall dataset finally comprised 435 entries. Normalized sorption coefficients for the soil OC and mineral fraction contents (KOC and KMIN respectively) were deduced for each PFAS by correlating the corresponding Kd values obtained under a wide range of experimental conditions with the fraction of organic carbon (fOC) of the soils. Furthermore, the sorption mechanisms in each phase were shown to depend mainly on PFAS chain length. The dependence of KOC and KMIN values on PFAS chain length defined the basic equations to construct the model for predicting PFAS sorption, applicable to both PFCAs and PFSAs with chain lengths ranging from 3 to 11 fluorinated carbons. The validation of the proposed model confirmed its ability to predict the Kd of PFASs based only on the soil OC and silt+clay contents and PFAS chain length. Therefore, it can be used in the first stages of a risk assessment process aiming at estimating the potential mobility of PFASs in soils after a contamination event. SYNOPSIS: This study develops a new parametric model to predict the sorption of perfluoroalkyl substances (PFASs) in soils.
Collapse
Affiliation(s)
- Joel Fabregat-Palau
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Miquel Vidal
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Anna Rigol
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
30
|
Krop H, Eschauzier C, van der Roest E, Parsons JR, de Voogt P. Independent mode sorption of perfluoroalkyl acids by single and multiple adsorbents. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1997-2006. [PMID: 34761249 DOI: 10.1039/d1em00322d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Infinite dilution partition coefficients, Kp,0, of a series of unbranched perfluoralkylacids, PFAAs with 3 to 8 CF2 units between water and commercially available weak anion exchange (WAX) and strong anion exchange (MAX) polymers, C18-modified silica, hydrophilic-lipophilic balance polymer (HLB), and Al2O3 sorbents were determined with self-packed columns using an HPLC-MS/MS setup. The anionic WAX sorbent shows a much higher adsorption affinity (about 450 fold) for PFBA than was observed for the applied hydrophobic sorbent HLB. Since the incremental value for each CF2 group is smaller when the electrostatic adsorption process is observed, the hydrophobic partition coefficient of HLB supersedes the electrostatic one of WAX at around PFTeDA. Adsorption of PFAAs to Al2O3 was weak and did not show a clear chain length dependency. A recently developed independent mode (IM) adsorption model is a more accurate model to combine the electrostatic and hydrophobic interaction terms. This model predicts the correct behaviour of especially short chain PFAAs in soil or sediment sorption experiments. Factors increasing sorption efficiency of well- and ill-defined single and multiple adsorbents towards PFAAs are discussed. The IM model provides a method to optimise sorption remediation strategies of PFAAs in contaminated waters and proposes a two-step strategy, a starting hydrophobic step followed by an electrostatic one to remove more efficiently the short chain PFAAs.
Collapse
Affiliation(s)
- Hildo Krop
- Krop-Consult, Conradstraat 7, 1505 KA Zaandam, The Netherlands.
| | | | - Els van der Roest
- KWR Water Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, Netherlands
| | - John R Parsons
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Pim de Voogt
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
- KWR Water Research Institute, P.O. Box 1072, 3430 BB Nieuwegein, Netherlands
| |
Collapse
|
31
|
Liu G, Stewart BA, Yuan K, Ling S, Zhang M, Wang G, Lin K. Comprehensive adsorption behavior and mechanism of PFOA and PFCs in various subsurface systems in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148463. [PMID: 34198087 DOI: 10.1016/j.scitotenv.2021.148463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
The adsorption-desorption performance of perfluorooctanoic acid (PFOA), one of the environmentally persistent pollutants which is refractory to degrade in soil, was investigated and reported. The adsorption-desorption process of PFOA was firstly conducted using different fractions (sand, coarse silt and fine silt) of soil collected from Shanghai, China. More than 50% of PFOA (2.0 mg/L) could be adsorbed by soils while only less than 10% of which could be desorbed once contamination occurs. The kinetics and particle diffusion rates of PFOA in different fractions of soil were calculated and analyzed in detail. Apart from this, the retention of short-chained PFCs, which can be generated as degradation products of PFOA, were also measured. In single solute systems, the adsorption of pollutants in soils dramatically increased as the chain length of PFCs grew longer. Similarly, in mixed solutions, preferential adsorption of longer-chained PFCs over shorter chains in soils were sited, attributable to the stronger hydrophobicity of the pollutants. However, the desorption of them performed in reverse, where the desorption rates of longer-chained PFCs were far lower than those of shorter ones. Furthermore, influencing factors including pH, temperature and co-existing matters were studied during the adsorption process. After comprehending the adsorption behavior of PFOA in soil fractions, the situation of the adsorption of PFOA in various soils chosen from nine provinces in China was investigated and compared. There was an obvious discrepancy, whether it be from the rate or the amount of adsorption of PFOA (approximately 10%), in the nine different soils. Finally, a multiple linear regressive equation was employed to sort influencing parameters which are prone to affect the adsorption of PFOA in soils, the contribution of these are provided in order of relevance. These results demonstrate the adsorption performance and behavior of PFOA and PFCs in different soils, which can be utilized as a scientific reference for maximizing remediation of PFOA polluted sites in the future.
Collapse
Affiliation(s)
- Guanhong Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of resource and environmental engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Brittney Ashley Stewart
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of resource and environmental engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kai Yuan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of resource and environmental engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Siyuan Ling
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of resource and environmental engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Meng Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of resource and environmental engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Guangju Wang
- School of Science, The Hong Kong University of Science and Technology, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of resource and environmental engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
32
|
Mei W, Sun H, Song M, Jiang L, Li Y, Lu W, Ying GG, Luo C, Zhang G. Per- and polyfluoroalkyl substances (PFASs) in the soil-plant system: Sorption, root uptake, and translocation. ENVIRONMENT INTERNATIONAL 2021; 156:106642. [PMID: 34004449 DOI: 10.1016/j.envint.2021.106642] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/16/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are ubiquitous in the environment but pose potential risks to ecosystems and human health. The soil-plant system plays an important role in the bioaccumulation of PFASs. Because most PFASs in the natural environment are anionic and amphiphilic (both lipophilic and hydrophilic), their sorption and accumulation behaviors differ from those of neutral organic and common ionic compounds. In this review, we discuss processes affecting the availability of PFASs in soil after analyzing the potential mechanisms underlying the sorption and uptake of PFASs in the soil-plant system. We also summarize the current knowledge on root uptake and translocation of PFASs in plants. We found that the root concentration factor of PFASs for plants grown in soil was not significantly correlated with hydrophobicity, whereas the translocation factor was significantly and negatively correlated with PFAS hydrophobicity regardless of whether plants were grown hydroponically or in soil. Further research on the cationic, neutral, and zwitterionic forms of diverse PFASs is urgently needed to comprehensively understand the environmental fates of PFASs in the soil-plant system. Additional research directions are suggested, including the development of more accurate models and techniques to evaluate the bioavailability of PFASs, the effects of root exudates and rhizosphere microbiota on the bioavailability and plant uptake of PFASs, and the roles of different plant organelles, lipids, and proteins in the accumulation of PFASs by plants.
Collapse
Affiliation(s)
- Weiping Mei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hao Sun
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Mengke Song
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Longfei Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Weisheng Lu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Guang-Guo Ying
- The Environmental Research Institute, South China Normal University, Guangzhou 510631, China
| | - Chunling Luo
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| |
Collapse
|
33
|
Liu BL, Li YW, Tu XY, Yu PF, Xiang L, Zhao HM, Feng NX, Li H, Cai QY, Mo CH, Wong MH. Variant-Specific Adsorption, Desorption, and Dissipation of Microcystin Toxins in Surface Soil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11825-11834. [PMID: 34582220 DOI: 10.1021/acs.jafc.1c03918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microcystins (MCs) are hepatotoxic heptapeptides identified in cyanobacterial bloom-impacted waters and soils. However, their environmental fate in soils is poorly understood, preventing reliable site assessment. This study aims to clarify the variant-specific adsorption, desorption, and dissipation of MC-LR and MC-RR in agricultural soils. Results revealed that their adsorption isotherms followed the Freundlich model (R2 ≥ 0.96), exhibiting a higher nonlinear trend and lower adsorption capacity for MC-LR than for MC-RR. The soils had low desorption rates of 8.14-21.06% and 3.06-34.04%, respectively, following a 24 h desorption cycle. Pairwise comparison indicated that soil pH and clay played key roles in MC-LR adsorption and desorption, while organic matter and cation exchange capacity played key roles in those of MC-RR. MC-LR dissipation half-lives in soils were 27.18-42.52 days, compared with 35.19-43.87 days for MC-RR. Specifically, an appreciable decrease in MC concentration in sterile soils suggested the significant role of abiotic degradation. This study demonstrates that the minor structural changes in MCs might have major effects on their environmental fates in agricultural soil and indicates that the toxic effects of MCs should be of high concern due to high adsorption, low desorption, and slow dissipation.
Collapse
Affiliation(s)
- Bai-Lin Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xi-Ying Tu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Peng-Fei Yu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ming Hung Wong
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Ting Kok 999077, Hong Kong, China
| |
Collapse
|
34
|
Liu BL, Fu MM, Xiang L, Feng NX, Zhao HM, Li YW, Cai QY, Li H, Mo CH, Wong MH. Adsorption of microcystin contaminants by biochars derived from contrasting pyrolytic conditions: Characteristics, affecting factors, and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143028. [PMID: 33129529 DOI: 10.1016/j.scitotenv.2020.143028] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/27/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
The growing incidence of microcystins (MCs) in the environment has become an issue of global concern for the high ecological and human health risks. Herein, a comparative adsorption of three MCs (MC-LR, MC-YR and MC-RR) by spent mushroom substrate (SMS)-derived biochars from contrasting pyrolytic conditions (temperature: 600/300 °C; and gas steam: CO2/N2) was surveyed to better understand the mechanisms and factors affecting the adsorption performance. For biochar preparation, 600 °C and CO2 led to greater levels of aromaticity, ash, SBET, and porosity, while 300 °C and N2 created more surface functional groups. The adsorption of MCs by biochars was a pH-dependent and endothermic physisorption process, following the pseudo-second-order kinetics (R2 = 0.99) and linear isotherm model (R2 > 0.88). The distribution coefficients Kd (0.98-19.2 L/kg) varied greatly among MCs (MC-YR > MC-RR > MC-LR) and biochars (BC600 > BN600 > BC300 > BN300), which depends on the combined effects of hydrophobicity, electrostatic attraction, H-bonding, cation bridging, and the amounts of adsorption sites on biochars. Higher ash, SBET, and total pore volume of BC600 facilitated the adsorption capacity for MCs relative to other biochars. Furthermore, the co-adsorption efficacy for MCs (Kd = 1.09-8.86 L/kg) was far below those for the single adsorption, indicating strong conflicts among competing MCs. This study sheds light on the roles of pyrolytic temperature and gas steam in biochar properties, and elucidates the mechanisms and factors affecting the adsorption performance of different MCs, which lays a foundation for MCs removal from water.
Collapse
Affiliation(s)
- Bai-Lin Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ming-Ming Fu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Ming-Hung Wong
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Consortium on Health, Environment, Education and Research (CHEER), The Education University of Hong Kong, Tai Po, Hong Kong, China
| |
Collapse
|
35
|
Song B, Jiang X, Liu X, Deng Y, Hu D, Lu P. Dissipation and sorption-desorption of benzisothiazolinone in agricultural soils and identification of its metabolites. RSC Adv 2021; 11:5399-5410. [PMID: 35423089 PMCID: PMC8694648 DOI: 10.1039/d0ra09553b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/22/2021] [Indexed: 11/21/2022] Open
Abstract
Benzisothiazolinone has been widely used to control bacterial and fungal diseases in various agricultural crops by destroying the nuclear structure and interfering with the metabolism of microbial cells. In this study, the dissipation, transformation and sorption-desorption of benzisothiazolinone (BIT) in five soils were investigated to evaluate its environmental fate. Results showed that the degradation of BIT in all the tested soils fitted the first order kinetics and increased with soil organic matter (OM) content. Degradation differences between unsterilized natural and sterilized soils (t 1/2 = 0.09-26.66 and 6.80-86.64 d) suggested that BIT degradation is primarily driven by biological processes and assisted by abiotic degradation. Additionally, BIT dissipated fastest in flooded soils (t 1/2 = 0.20-4.53 d), indicating that anaerobic microorganisms are more likely to degrade BIT compared to aerobic microbes. Also, during the soil degradation process, two metabolites were monitored and identified for the first time. BIT sorption was a spontaneous physical process with no desorption hysteresis effect, which fit the Freundlich model. BIT causes relatively strong sorption (log K OC = 3.76-4.19) and low persistence in soils, thus exhibiting a low potential risk for groundwater contamination.
Collapse
Affiliation(s)
- Bangyan Song
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education Guiyang 550025 P. R. China +86 851 88292090 +86 851 88292090
- Center for Research and Development of Fine Chemicals, Guizhou University Guiyang 550025 P. R. China
| | - Xiaoxia Jiang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education Guiyang 550025 P. R. China +86 851 88292090 +86 851 88292090
- Center for Research and Development of Fine Chemicals, Guizhou University Guiyang 550025 P. R. China
| | - Xiangwu Liu
- Center for Research and Development of Fine Chemicals, Guizhou University Guiyang 550025 P. R. China
| | - Yao Deng
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education Guiyang 550025 P. R. China +86 851 88292090 +86 851 88292090
- Center for Research and Development of Fine Chemicals, Guizhou University Guiyang 550025 P. R. China
| | - Deyu Hu
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education Guiyang 550025 P. R. China +86 851 88292090 +86 851 88292090
- Center for Research and Development of Fine Chemicals, Guizhou University Guiyang 550025 P. R. China
| | - Ping Lu
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education Guiyang 550025 P. R. China +86 851 88292090 +86 851 88292090
- Center for Research and Development of Fine Chemicals, Guizhou University Guiyang 550025 P. R. China
| |
Collapse
|
36
|
Chen XT, Yu PF, Xiang L, Zhao HM, Li YW, Li H, Zhang XY, Cai QY, Mo CH, Wong MH. Dynamics, thermodynamics, and mechanism of perfluorooctane sulfonate (PFOS) sorption to various soil particle-size fractions of paddy soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111105. [PMID: 32866887 DOI: 10.1016/j.ecoenv.2020.111105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Soil is an important sink for perfluorooctane sulfonate (PFOS) that is a typical persistent organic pollutant with high toxicity. Understanding of PFOS sorption to various particle-size fractions of soil provides an insight into the mobility and bioavailability of PFOS in soil. This study evaluated kinetics, isotherms, and mechanisms of PFOS sorption to six soil particle-size fractions of paddy soil at environmentally relevant concentrations (0.01-1 μg/mL). The used soil particle-size fractions included coarse sand (120.4-724.4 mm), fine sand (45.7-316.2 mm), coarse silt (17.3-79.4 mm), fine silt (1.9-39.8 mm), clay (0.5-4.4 mm), and humic acid fractions (8.2-83.7 mm) labeled as F1~F6, respectively. PFOS sorption followed pseudo-second-order kinetics related to film diffusion and intraparticle diffusion, with speed-limiting phase acted by the latter. PFOS sorption isotherm data followed Freundlich model, with generally convex isotherms in larger size fractions (F1~F3) but concave isotherms in smaller size fractions (F4 and F5) and humic acid fraction (F6). Increasing organic matter content, Brunner-Emmet-Teller surface area, and smaller size fractions were conducive to PFOS sorption. Hydrophobic force, divalent metal ion-bridging effect, ligand exchange, hydrogen bonding, and protein-like interaction played roles in PFOS sorption. But hydrophobic force controlled the PFOS sorption, because its relevant organic matter governed the contribution of the soil fractions to the overall PFOS sorption. The larger size fractions dominated the PFOS sorption to the original soil because of their high mass percentages (~80%). This likely caused greater potential risks of PFOS migration into groundwater and bioaccumulation in crops at higher temperatures and ce values, based on their convex isotherms with an exothermic physical process.
Collapse
Affiliation(s)
- Xiao-Ting Chen
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Peng-Fei Yu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xiang-Yun Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Ming Hung Wong
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| |
Collapse
|
37
|
Xiang L, Chen XT, Yu PF, Li XH, Zhao HM, Feng NX, Li YW, Li H, Cai QY, Mo CH, Li QX. Oxalic Acid in Root Exudates Enhances Accumulation of Perfluorooctanoic Acid in Lettuce. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13046-13055. [PMID: 33030897 DOI: 10.1021/acs.est.0c04124] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Perfluorooctanoic acid (PFOA) is bioaccumulative in crops. PFOA bioaccumulation potential varies largely among crop varieties. Root exudates are found to be associated with such variations. Concentrations of low-molecular-weight organic acids (LMWOAs) in root exudates from a PFOA-high-accumulation lettuce variety are observed significantly higher than those from PFOA-low-accumulation lettuce variety (p < 0.05). Root exudates and their LMWOAs components exert great influences on the linear sorption-desorption isotherms of PFOA in soils, thus activating PFOA and enhancing its bioavailability. Among root exudate components, oxalic acid is identified to play a key role in activating PFOA uptake, with >80% attribution. Oxalic acid at rhizospheric concentrations (0.02-0.5 mM) can effectively inhibit PFOA sorption to soils by decreasing hydrophobic force, electrostatic attraction, ligand exchange, and cation-bridge effect. Oxalic acid enhances dissolution of metallic ions, iron/aluminum oxides, and organic matters from soils and forms oxalate-metal complexes, based on nuclear magnetic resonance spectra, ultraviolet spectra, and analyses of metal ions, iron/aluminum organometallic complexes, and dissolved organic carbon. The findings not only reveal the activation process of PFOA in soils by root exudates, particularly oxalic acid at rhizospheric concentrations, but also give an insight into the mechanism of enhancing PFOA accumulation in lettuce varieties.
Collapse
Affiliation(s)
- Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Xiao-Ting Chen
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Peng-Fei Yu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xin-Hong Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
38
|
Fluorinated Surfactant Adsorption on Mineral Surfaces: Implications for PFAS Fate and Transport in the Environment. SURFACES 2020. [DOI: 10.3390/surfaces3040037] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fluorinated surfactants, which fall under the class of per- and polyfluoroalkyl substances (PFAS), are amphiphilic molecules that comprise hydrophobic fluorocarbon chains and hydrophilic head-groups. Fluorinated surfactants have been utilized in many applications, e.g., fire-fighting foams, paints, household/kitchenware items, product packaging, and fabrics. These compounds then made their way into the environment, and have been detected in soil, fresh water, and seawater. From there, they can enter human bodies. Fluorinated surfactants are persistent in water and soil environments, and their adsorption onto mineral surfaces contributes to this persistence. This review examines how fluorinated surfactants adsorb onto mineral surfaces, by analyzing the thermodynamics and kinetics of adsorption, and the underlying mechanisms. Adsorption of fluorinated surfactants onto mineral surfaces can be explained by electrostatic interactions, hydrophobic interactions, hydrogen bonding, and ligand and ion exchange. The aqueous pH, varying salt or humic acid concentrations, and the surfactant chemistry can influence the adsorption of fluorinated surfactants onto mineral surfaces. Further research is needed on fluorinated surfactant adsorbent materials to treat drinking water, and on strategies that can modulate the fate of these compounds in specific environmental locations.
Collapse
|
39
|
Zhang L, Meng Z, Chen L, Zhang G, Zhang W, Tian Z, Wang Z, Yu S, Zhou Z, Diao J. Perfluorooctanoic acid exposure impact a trade-off between self-maintenance and reproduction in lizards (Eremias argus) in a gender-dependent manner. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114341. [PMID: 32182535 DOI: 10.1016/j.envpol.2020.114341] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/14/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
The trade-off between self-maintenance and reproduction has been explored wildly in reptiles. However, the effects of exogenous pollutants on the life history traits of reptiles have not been paid attention to. In the current study, lizards (Eremias argus), living in the soil polluted by perfluorooctanoic acid (PFOA) were selected as the main focus. Bodyweight, survival rate, clutch characteristics and biochemical analysis (immune response, lipid accumulation, sex steroid secretion, antioxidant level, and metabolomics) were investigated and the results revealed that lizards' life-history trade-offs are gender-dependent: females were more inclined to choose a "Conservative" life-history strategy. After 60 days of exposure to PFOA, larger body weight, higher survival rate, stronger immune response, and lighter egg mass in females suggested that their trade-offs are more biased towards self-maintenance. Whereas, the "Risk" strategy would more popular among males: reduced body weight and survival rate, and suffering from oxidative damage indicated that males made little investment in self-maintenance.
Collapse
Affiliation(s)
- Luyao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Zhiyuan Meng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Li Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Guiting Zhang
- Department of Industrial Development, China Crop Protection Industry Association, Rm.918,Building 16, An Hui Li Forth Section, Chaoyang, Beijing, 100723, China
| | - Wenjun Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Zhongnan Tian
- Institute for Environmental Reference Materials of Ministry of Ecology and Environment, Beijing,State Environmental Protection Key Laboratory of Environmental Pollutant Metrology and Reference Materials, Beijing, 100029, PR China
| | - Zikang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Simin Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China
| | - Jinling Diao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
40
|
Yang X, Lin H, Zhang Y, He Z, Dai X, Zhang Z, Li Y. Sorption and desorption of seven steroidal synthetic progestins in five agricultural soil-water systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110586. [PMID: 32272348 DOI: 10.1016/j.ecoenv.2020.110586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Manure fertilization and wastewater irrigation can introduce the biologically potent synthetic progestins into agricultural soils, causing endocrine disruption in organisms of nearby surface waters. Therefore, this study investigated the sorption and desorption potential of etonogestrel, medroxyprogesterone, gestodene, norgestrel, cyproterone acetate, levonorgestrel, and dienogest in five agricultural soil-water systems. Sorption data were well-described by the linear sorption model. In most batch systems, cyproterone acetate exhibited the highest affinities for soils, followed by etonogestrel, medroxyprogesterone, levonorgestrel, gestodene, norgestrel, and dienogest. The sorption magnitudes (logKoc or logKd) were significantly correlated with the progestin hydrophobicities (R2 = 0.72-0.86, p < 0.05). The Kd values of the progestins were also significantly correlated with organic carbon content and pore volumes of the soils (R2 = 0.68-0.98, p < 0.05). In addition, 0.5 M urea resulted in 3-19% decreases in Kd values of the progestins. Taken together, these data indicated that hydrophobic partitioning interaction, hydrogen bonding interaction, and pore filling were the sorption mechanisms for the progestins in soil-water systems. No significant desorption hysteresis was observed for the progestins, indicating that they can be readily desorbed under rainfall or irrigation events. Based on the sorption and desorption data, we estimated the dynamic transport of the progestins in conventional agricultural management systems, and predicted the concentrations of the progestins as a function of soil-sorbed concentration, water-soil ratio, and dilution factor of receiving waters. This study will improve the understanding of the risks posed by the progestins under field-scale hydrological conditions.
Collapse
Affiliation(s)
- Xingjian Yang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Hang Lin
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yulong Zhang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou, 510642, PR China
| | - Zhili He
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xiong Dai
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou, 510642, PR China
| | - Zhen Zhang
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yongtao Li
- College of Natural Resources and Environment, Joint Institute for Environment & Education, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
41
|
Li J, Zheng T, Yuan D, Gao C, Liu C. Probing the single and combined toxicity of PFOS and Cr(VI) to soil bacteria and the interaction mechanisms. CHEMOSPHERE 2020; 249:126039. [PMID: 32062202 DOI: 10.1016/j.chemosphere.2020.126039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/17/2020] [Accepted: 01/25/2020] [Indexed: 05/24/2023]
Abstract
Many research focused on the removal of perfluorooctane sulfonic acid (PFOS) and hexavalent chromium (Cr(VI)) in some industrial wastewater (e.g. electroplating wastewater), but few research reported the combined toxicity of PFOS and Cr(VI) to soil bacteria. Therefore, the toxicity and mechanisms of the combined PFOS and Cr(VI) to bacteria (with Bacillus subtilis as a model) are explored. The results show that the combined PFOS and Cr(VI) exhibits much higher toxicity to the bacteria than that of Cr(VI) alone. The growth profile of Bacillus subtilis exposed by the combined pollution decreased by 18% and 56%, respectively, compared with that of single Cr(VI) and the control, indicating the combined toxicity to Bacillus subtilis is synergistic. Moreover, the changes of EPSs in Bacillus subtilis, such as decreased potential, increased extracellular polysaccharides, decreased extracellular proteins and irregular morphology, also confirmed that the combined PFOS and Cr(VI) caused greater toxicity. The increase of intracellular ROS and permeability of dye 4', 6-diamidino-2-phenylindoledihydrochloride (DAPI) suggest that oxidative damage and increased membrane permeability are the main mechanisms of toxicity induced by the combined PFOS and Cr(VI). This work could provide useful information for the risk assessment of co-exposure to PFOS and heavy metals in the natural environment.
Collapse
Affiliation(s)
- Jie Li
- School of Environmental Science and Engineering, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Tongtong Zheng
- School of Environmental Science and Engineering, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Dong Yuan
- Department of Chemistry and Chemical Engineering, Qilu Normal University, Shandong Province, 36# Lishan Road, Jinan, 250013, PR China
| | - Canzhu Gao
- School of Environmental Science and Engineering, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Chunguang Liu
- School of Environmental Science and Engineering, Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, China-America CRC for Environment & Health of Shandong Province, Shandong University, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China; Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, PR China.
| |
Collapse
|
42
|
Xiang L, Zeng LJ, Du PP, Wang XD, Wu XL, Sarkar B, Lü H, Li YW, Li H, Mo CH, Wang H, Cai QY. Effects of rice straw biochar on sorption and desorption of di-n-butyl phthalate in different soil particle-size fractions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 702:134878. [PMID: 31726350 DOI: 10.1016/j.scitotenv.2019.134878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/05/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
Sorption of organic contaminants by biochar greatly affects their bioavailability and fate in soils. Nevertheless, very little information is available regarding the effects of biochar on sorption and desorption of organic contaminants in different soil particle-size fractions. In this study, di-n-butyl phthalate (DBP), a prevalent organic contaminant in agricultural soils, was taken as a model contaminant. The effects of biochar on DBP sorption and desorption in six particle-size fractions (i.e., coarse sand, fine sand, coarse silt, fine silt, clay, and humic acid fractions) of paddy soil were investigated using batch sorption-desorption experiments. A straw-derived biochar with high specific surface area (116 m2/g) and high content of organic matter (OM) rich in aromatic carbon (67%) was prepared. Addition of this biochar (1% and 5%) significantly promoted the sorption and retention of DBP in all the paddy soil particle-size fractions at environmentally relevant DBP concentrations (2-12 mg/L) with 1.2-132-fold increase of the Kd values. With increasing addition rates of biochar, DBP retention by the biochar enhanced. The biochar's effectiveness was remarkably influenced by the physicochemical properties of the soil particle-size fractions, especially, the OM contents and pore size showed the most striking effects. A parameter (rkd) reflecting the biochar's effectiveness showed negative and positive correlations with OM contents and pore size of the soil particle-size fractions, respectively. Accordingly, strong effect of the biochar was found in the soil fractions with low OM contents and high pore size. The findings of this study gave insight into the effects and influencing factors of biochar on sorption and desorption of organic contaminants in soils at scale of various particle-size factions.
Collapse
Affiliation(s)
- Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Li-Juan Zeng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Pei-Pei Du
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiao-Dan Wang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiao-Lian Wu
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Binoy Sarkar
- Department of Animal and Plant Sciences, The University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Huixiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
43
|
Martz M, Heil J, Marschner B, Stumpe B. Effects of soil organic carbon (SOC) content and accessibility in subsoils on the sorption processes of the model pollutants nonylphenol (4-n-NP) and perfluorooctanoic acid (PFOA). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:162-173. [PMID: 30954815 DOI: 10.1016/j.scitotenv.2019.03.369] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/19/2019] [Accepted: 03/23/2019] [Indexed: 06/09/2023]
Abstract
Subsoils control the release of hydrophobic pollutants to groundwater systems, but the role of subsoil soil organic carbon (SOC) in sorption processes of hydrophobic organic pollutants remains unclear. Thus, this study aimed to understand the role of subsoil SOC in sorption processes of 4-n-nonylphenol (NP) and perfluorooctanoic acid (PFOA) as model pollutants. To characterize the sorption behavior of NP and PFOA, 42 sub- and 54 topsoil samples were used for batch experiments. Differences in NP and PFOA sorption between sub- and topsoil samples and its mechanisms were identified using multiple regression analysis. Generally, the sorption of NP and PFOA was linear in all samples. The sorption of NP to soil samples (logKD = 1.78-3.68) was significantly higher and less variable than that of PFOA (logKD = -0.97-1.44). In topsoils, SOC content had the highest influence on NP and PFOA sorption. For NP, hydrophobic interactions between NP and SOC were identified as the most important sorption mechanism. For PFOA, hydrophobic as well as electrostatic interactions were determined depending on soil pH. In subsoils, the relevance of SOC content for pollutant sorption decreased drastically. For NP, not SOC content but rather SOC quality was relevant in SOC poor subsoils. For PFOA, clay and iron oxide content were found to be relevant for pollutant interactions with the solid phase. Thus, especially in SOC depleted subsoils, the sorption potential for PFOA remained unpredictable.
Collapse
Affiliation(s)
- Melanie Martz
- Department of Human & Environmental Research, Institute of Geography, Bergische Universität Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany.
| | - Jannis Heil
- Department of Human & Environmental Research, Institute of Geography, Bergische Universität Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
| | - Bernd Marschner
- Department of Soil Science and Soil Ecology, Institute of Geography, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Britta Stumpe
- Department of Human & Environmental Research, Institute of Geography, Bergische Universität Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
| |
Collapse
|
44
|
Sun A, Gou D, Dong Y, Xu Q, Cao G. Extraction and Analysis of Available Boron Isotopes in Soil Using Multicollector Inductively Coupled Plasma Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7183-7189. [PMID: 31150243 DOI: 10.1021/acs.jafc.9b01455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As a result of the important roles of boron (B) in the growth of plants, the uptake of B by plants is dependent upon the existing form and content of available B in soil, which can bring about the local cycle of B isotope equilibrium. A method using water-heating extraction combined with three-step ion-exchange chromatography was developed for the extraction and isotopic analysis of available B in soil. The extraction efficiency and fractionation of B isotopic composition in the procedure were investigated. The results showed that, in the upper layers of soils, the change of δ11B values was opposite that of the mass concentration and a similar variation between δ11B and content occurred in the lower layers. The isotope of available B in soil can create a featured isotopic signature to further understand the geochemical details related to the soil properties and molecular mechanism of B uptake in plants.
Collapse
Affiliation(s)
- Aide Sun
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resource and Environment , Linyi University , Linyi , Shandong 276005 , People's Republic of China
- State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou , Guangdong 510640 , People's Republic of China
| | - Dianda Gou
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resource and Environment , Linyi University , Linyi , Shandong 276005 , People's Republic of China
| | - Yuliang Dong
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resource and Environment , Linyi University , Linyi , Shandong 276005 , People's Republic of China
| | - Qingcai Xu
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resource and Environment , Linyi University , Linyi , Shandong 276005 , People's Republic of China
| | - Guangjie Cao
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resource and Environment , Linyi University , Linyi , Shandong 276005 , People's Republic of China
| |
Collapse
|
45
|
Xiang L, Wang XD, Chen XH, Mo CH, Li YW, Li H, Cai QY, Zhou DM, Wong MH, Li QX. Sorption Mechanism, Kinetics, and Isotherms of Di- n-butyl Phthalate to Different Soil Particle-Size Fractions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4734-4745. [PMID: 30957994 DOI: 10.1021/acs.jafc.8b06357] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Di- n-butyl phthalate (DBP) is a prevalent pollutant in agricultural soils due to use of plastic film. This study focused on sorption mechanism, kinetics, and isotherms of DBP to six paddy soil particle-size fractions (i.e., coarse sand, fine sand, coarse silt, fine silt, clay, and humic acid fractions). DBP sorption involved in both boundary layer diffusion and intraparticle diffusion, following pseudo-second-order kinetics. DBP sorption was a spontaneous physical process, which fit the Freundlich model. Hydrophobic and ionic interaction relevant to the organic matter content, cation exchange capacity, surface area, and pore volume of soil fractions played key roles in DBP sorption. DBP was strongly adsorbed to humic acid and the sorption was reversely associated with soil particle sizes. DBP may exhibit higher mobility and bioavailability in a soil-crop system at lower temperature (15 °C), due to the lower log Koc values.
Collapse
Affiliation(s)
- Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
- Department of Molecular Biosciences and Bioengineering , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| | - Xiao-Dan Wang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
| | - Xiao-Hong Chen
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
| | - Dong-Mei Zhou
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
- Key Laboratory of Soil Environment and Pollution Remediation , Institute of Soil Science, Chinese Academy of Sciences , Nanjing 210008 , P. R. China
| | - Ming-Hung Wong
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology , Jinan University , Guangzhou 510632 , P. R. China
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies , The University of Hong Kong , Tai Po , Hong Kong, SAR , China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| |
Collapse
|