1
|
Liu Z, Shang Q, Cheng J, He Q, Liu Y, Li H, Fang D, Li X, Zhu Y, Chen J, Chen J. Mechanistic study of a triterpenoid-enriched fraction derived from Cynomorium songaricum against NAFLD: An integrative elucidation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156782. [PMID: 40318532 DOI: 10.1016/j.phymed.2025.156782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/28/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a growing global health concern linked to metabolic dysfunction and inflammation. Traditional Chinese Medicine (TCM), with its emphasis on restoring balance and harmony within the body, is well-suited to address the heterogeneity of NAFLD. Effective strategies to manage NAFLD remain limited, emphasizing the need for novel bioactive compounds with therapeutic potential. PURPOSE This study aimed to investigate the protective effects of a triterpenoid-enriched fraction (CST) derived from Cynomorium songaricum and its active compounds on NAFLD and to elucidate their underlying mechanisms. METHODS CST composition was analyzed using UHPLC/ESI-LTQ-Orbitrap-MS. Anti-inflammatory and lipid-lowering effects were assessed through in vitro and in vivo experiments. Integration of RNA-seq and novel network pharmacology identified key molecular targets, while molecular docking confirmed interactions of oleanolic acid (OLA) and ursolic acid (UA) with IKBKB and TACE, crucial components of the NF-κB pathway. RESULTS CST, OLA and UA significantly reduced lipid accumulation and downregulated inflammatory markers, including TNF-α and lipogenesis-related genes in vitro. In vivo, these compounds reduced lipid accumulation and modulated NF-κB activation, demonstrating robust anti-inflammatory and lipid-regulating effects. CONCLUSION CST exhibits promising bioactive properties in managing NAFLD. IKBKB and TACE mediate CST's protective effects against NAFLD by suppressing NF-κB target genes, reducing TNF-α, and inhibiting lipogenesis. These findings provide a foundation for developing CST and its active components, OLA and UA, as potential therapeutic agents for NAFLD.
Collapse
Affiliation(s)
- Zhihao Liu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, PR China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong, PR China
| | - Qixiang Shang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, PR China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong, PR China
| | - Juanjuan Cheng
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong, PR China; Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, PR China
| | - Quanrun He
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, PR China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong, PR China
| | - Yining Liu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, PR China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong, PR China
| | - Haimeng Li
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, PR China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong, PR China
| | - Daozheng Fang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, PR China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong, PR China
| | - Xinyue Li
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, PR China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong, PR China
| | - Yong Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, PR China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong, PR China
| | - Jianping Chen
- Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, PR China.
| | - Jihang Chen
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, PR China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong, PR China.
| |
Collapse
|
2
|
Ren L, Gao Y, Chen L, Yang L. Therapeutic effects of tripterygium glycosides on periodontitis: Exploring the role of ursolic acid and the RIPK3/NLRP3 signaling pathway. Int Immunopharmacol 2025; 146:113903. [PMID: 39729923 DOI: 10.1016/j.intimp.2024.113903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND Periodontitis, a chronic inflammatory disease, poses challenges in treatment due to its complex etiology. Tripterygium glycosides (TGs), renowned for their immunosuppressive and anti-inflammatory capabilities, present a prospective therapeutic option for the management of periodontitis. This study delves into the therapeutic efficacy of TGs in periodontitis and reveals the fundamental mechanisms involved. MATERIALS AND METHODS Animal experiments were conducted to observe the therapeutic effects of TGs. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) technology was employed to identify the optimal components. Proteomic technology was used to identify differentially expressed proteins, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Molecular docking and experimental verification of core components and targets were also performed. RESULTS TGs markedly attenuated periodontal damage and alveolar bone resorption and significantly reduced the expression of inflammatory factors. Ursolic acid (UA) was identified as a crucial active ingredient. Among the signaling pathways, the nucleotide-binding oligomerization domain-like receptor (NLR) pathway was the most prominently enriched pathway. The binding of UA to receptor-interacting protein kinase 3 (RIPK3) was demonstrated to have therapeutic efficacy. In vitro experiments verified that UA exerts anti-inflammatory effects through the RIPK3/NLRP3 signaling pathway. CONCLUSION This study demonstrated that TGs effectively treat periodontitis by mitigating alveolar bone loss and suppressing inflammation. As the primary component of TGs, UA exerts therapeutic effects by inhibiting the expression of RIPK3, which in turn influences the activation of the NLRP3 inflammasome and the subsequent expression of downstream inflammatory factors. The findings of this study offer a theoretical foundation for the clinical application of TGs in the management of periodontitis.
Collapse
Affiliation(s)
- Long Ren
- Department of Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Ying Gao
- Dental Disease Prevention and Treatment Center of Minhang District, Shanghai 201103, China
| | - Li Chen
- Department of Orthodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, China..
| | - Lina Yang
- Dental Disease Prevention and Treatment Center of Minhang District, Shanghai 201103, China.
| |
Collapse
|
3
|
Wan X, Ma J, Bai H, Hu X, Ma Y, Zhao M, Liu J, Duan Z. Drug Advances in NAFLD: Individual and Combination Treatment Strategies of Natural Products and Small-Synthetic-Molecule Drugs. Biomolecules 2025; 15:140. [PMID: 39858534 PMCID: PMC11764138 DOI: 10.3390/biom15010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease and is closely associated with metabolic diseases such as obesity, type 2 diabetes mellitus (T2DM), and metabolic syndrome. However, effective treatment strategies for NAFLD are still lacking. In recent years, progress has been made in understanding the pathogenesis of NAFLD, identifying multiple therapeutic targets and providing new directions for drug development. This review summarizes the recent advances in the treatment of NAFLD, focusing on the mechanisms of action of natural products, small-synthetic-molecule drugs, and combination therapy strategies. This review aims to provide new insights and strategies in treating NAFLD.
Collapse
Affiliation(s)
- Xing Wan
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
- Institute of Integrated Traditional Chinese and Western Medicine, Dalian Medical University, Dalian 116051, China
| | - Jingyuan Ma
- The First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China; (J.M.); (Y.M.)
| | - He Bai
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| | - Xuyang Hu
- The Second Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China;
| | - Yanna Ma
- The First Clinical Medical College, Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China; (J.M.); (Y.M.)
| | - Mingjian Zhao
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| | - Jifeng Liu
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| | - Zhijun Duan
- The First Affiliated Hospital of Dalian Medical University, Dalian 116012, China; (X.W.); (H.B.); (M.Z.)
| |
Collapse
|
4
|
Cai Y, Fang L, Chen F, Zhong P, Zheng X, Xing H, Fan R, Yuan L, Peng W, Li X. Targeting AMPK related signaling pathways: A feasible approach for natural herbal medicines to intervene non-alcoholic fatty liver disease. J Pharm Anal 2025; 15:101052. [PMID: 40034684 PMCID: PMC11873010 DOI: 10.1016/j.jpha.2024.101052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 03/05/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disease characterized by abnormal deposition of lipid in hepatocytes. If not intervened in time, NAFLD may develop into liver fibrosis or liver cancer, and ultimately threatening life. NAFLD has complicated etiology and pathogenesis, and there are no effective therapeutic means and specific drugs. Currently, insulin sensitizers, lipid-lowering agents and hepatoprotective agents are often used for clinical intervention, but these drugs have obvious side effects, and their effectiveness and safety need to be further confirmed. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) plays a central role in maintaining energy homeostasis. Activated AMPK can enhance lipid degradation, alleviate insulin resistance (IR), suppress oxidative stress and inflammatory response, and regulate autophagy, thereby alleviating NAFLD. Natural herbal medicines have received extensive attention recently because of their regulatory effects on AMPK and low side effects. In this article, we reviewed the biologically active natural herbal medicines (such as natural herbal medicine formulas, extracts, polysaccharides, and monomers) that reported in recent years to treat NAFLD via regulating AMPK, which can serve as a foundation for subsequent development of candidate drugs for NAFLD.
Collapse
Affiliation(s)
- Yongqing Cai
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Lu Fang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, 400016, China
| | - Fei Chen
- Department of Pharmacy, Dazhou Integrated Traditional Chinese Medicine and Western Medicine Hospital, Dazhou, Sichuan, 635000, China
| | - Peiling Zhong
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, 400016, China
| | - Xiangru Zheng
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Haiyan Xing
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Rongrong Fan
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 14152, Sweden
| | - Lie Yuan
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, 400016, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, 400016, China
| |
Collapse
|
5
|
Banerjee T, Sarkar A, Ali SZ, Bhowmik R, Karmakar S, Halder AK, Ghosh N. Bioprotective Role of Phytocompounds Against the Pathogenesis of Non-alcoholic Fatty Liver Disease to Non-alcoholic Steatohepatitis: Unravelling Underlying Molecular Mechanisms. PLANTA MEDICA 2024; 90:675-707. [PMID: 38458248 DOI: 10.1055/a-2277-4805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), with a global prevalence of 25%, continues to escalate, creating noteworthy concerns towards the global health burden. NAFLD causes triglycerides and free fatty acids to build up in the liver. The excessive fat build-up causes inflammation and damages the healthy hepatocytes, leading to non-alcoholic steatohepatitis (NASH). Dietary habits, obesity, insulin resistance, type 2 diabetes, and dyslipidemia influence NAFLD progression. The disease burden is complicated due to the paucity of therapeutic interventions. Obeticholic acid is the only approved therapeutic agent for NAFLD. With more scientific enterprise being directed towards the understanding of the underlying mechanisms of NAFLD, novel targets like lipid synthase, farnesoid X receptor signalling, peroxisome proliferator-activated receptors associated with inflammatory signalling, and hepatocellular injury have played a crucial role in the progression of NAFLD to NASH. Phytocompounds have shown promising results in modulating hepatic lipid metabolism and de novo lipogenesis, suggesting their possible role in managing NAFLD. This review discusses the ameliorative role of different classes of phytochemicals with molecular mechanisms in different cell lines and established animal models. These compounds may lead to the development of novel therapeutic strategies for NAFLD progression to NASH. This review also deliberates on phytomolecules undergoing clinical trials for effective management of NAFLD.
Collapse
Affiliation(s)
- Tanmoy Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Sk Zeeshan Ali
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Rudranil Bhowmik
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Amit Kumar Halder
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur, West Bengal, India
| | - Nilanjan Ghosh
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| |
Collapse
|
6
|
Jiménez-Cortegana C, López-Enríquez S, Alba G, Santa-María C, Martín-Núñez GM, Moreno-Ruiz FJ, Valdés S, García-Serrano S, Rodríguez-Díaz C, Ho-Plágaro A, Fontalba-Romero MI, García-Fuentes E, Garrido-Sánchez L, Sánchez-Margalet V. The Expression of Genes Related to Reverse Cholesterol Transport and Leptin Receptor Pathways in Peripheral Blood Mononuclear Cells Are Decreased in Morbid Obesity and Related to Liver Function. Int J Mol Sci 2024; 25:7549. [PMID: 39062791 PMCID: PMC11276733 DOI: 10.3390/ijms25147549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Obesity is frequently accompanied by non-alcoholic fatty liver disease (NAFLD). These two diseases are associated with altered lipid metabolism, in which reverse cholesterol transport (LXRα/ABCA1/ABCG1) and leptin response (leptin receptor (Ob-Rb)/Sam68) are involved. The two pathways were evaluated in peripheral blood mononuclear cells (PBMCs) from 86 patients with morbid obesity (MO) before and six months after Roux-en-Y gastric bypass (RYGB) and 38 non-obese subjects. In the LXRα pathway, LXRα, ABCA1, and ABCG1 mRNA expressions were decreased in MO compared to non-obese subjects (p < 0.001, respectively). Ob-Rb was decreased (p < 0.001), whereas Sam68 was increased (p < 0.001) in MO. RYGB did not change mRNA gene expressions. In the MO group, the LXRα pathway (LXRα/ABCA1/ABCG1) negatively correlated with obesity-related variables (weight, body mass index, and hip), inflammation (C-reactive protein), and liver function (alanine-aminotransferase, alkaline phosphatase, and fatty liver index), and positively with serum albumin. In the Ob-R pathway, Ob-Rb and Sam68 negatively correlated with alanine-aminotransferase and positively with albumin. The alteration of LXRα and Ob-R pathways may play an important role in NAFLD development in MO. It is possible that MO patients may require more than 6 months following RYBGB to normalize gene expression related to reverse cholesterol transport or leptin responsiveness.
Collapse
MESH Headings
- Humans
- Obesity, Morbid/metabolism
- Obesity, Morbid/surgery
- Obesity, Morbid/genetics
- Male
- Leukocytes, Mononuclear/metabolism
- Female
- Receptors, Leptin/genetics
- Receptors, Leptin/metabolism
- Adult
- Cholesterol/metabolism
- Liver X Receptors/metabolism
- Liver X Receptors/genetics
- ATP Binding Cassette Transporter 1/genetics
- ATP Binding Cassette Transporter 1/metabolism
- Middle Aged
- Liver/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics
- Signal Transduction
- Biological Transport
- Gene Expression Regulation
- Non-alcoholic Fatty Liver Disease/metabolism
- Non-alcoholic Fatty Liver Disease/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
Collapse
Grants
- PI09/01016 Instituto de Salud Carlos III
- PE-0098-2019 Consejería de Salud y Familias, Junta de Andalucía, Spain
- PI-2013-575 Consejería de Salud y Familias, Junta de Andalucía, Spain
- P10-CTS6928, P11-CTS8161, P11-CTS8081, CTS-151 Consejería de Universidad, Investigación e Innovación, Junta de Andalucia, Spain
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry, Molecular Biology and Immunology, University of Seville Medical School, 41009 Seville, Spain; (C.J.-C.); (S.L.-E.); (G.A.); (V.S.-M.)
| | - Soledad López-Enríquez
- Department of Medical Biochemistry, Molecular Biology and Immunology, University of Seville Medical School, 41009 Seville, Spain; (C.J.-C.); (S.L.-E.); (G.A.); (V.S.-M.)
| | - Gonzalo Alba
- Department of Medical Biochemistry, Molecular Biology and Immunology, University of Seville Medical School, 41009 Seville, Spain; (C.J.-C.); (S.L.-E.); (G.A.); (V.S.-M.)
| | - Consuelo Santa-María
- Department of Biochemistry and Molecular Biology, University of Seville Pharmacy School, 41012 Seville, Spain;
| | - Gracia M. Martín-Núñez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29010 Málaga, Spain; (G.M.M.-N.); (L.G.-S.)
| | - Francisco J. Moreno-Ruiz
- Unidad de Gestión Clínica de Cirugía General, Digestiva y Trasplantes, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29010 Málaga, Spain;
| | - Sergio Valdés
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29010 Málaga, Spain; (S.V.); (S.G.-S.); (M.I.F.-R.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 29010 Málaga, Spain
| | - Sara García-Serrano
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29010 Málaga, Spain; (S.V.); (S.G.-S.); (M.I.F.-R.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 29010 Málaga, Spain
| | - Cristina Rodríguez-Díaz
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29010 Málaga, Spain; (C.R.-D.); (A.H.-P.)
| | - Ailec Ho-Plágaro
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29010 Málaga, Spain; (C.R.-D.); (A.H.-P.)
| | - María I. Fontalba-Romero
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29010 Málaga, Spain; (S.V.); (S.G.-S.); (M.I.F.-R.)
| | - Eduardo García-Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29010 Málaga, Spain; (C.R.-D.); (A.H.-P.)
- CIBER Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 29010 Málaga, Spain
- Departamento de Farmacología, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| | - Lourdes Garrido-Sánchez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29010 Málaga, Spain; (G.M.M.-N.); (L.G.-S.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 29010 Málaga, Spain
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry, Molecular Biology and Immunology, University of Seville Medical School, 41009 Seville, Spain; (C.J.-C.); (S.L.-E.); (G.A.); (V.S.-M.)
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío/Virgen Macarena, CSIC, Universidad de Sevilla, 41013 Seville, Spain
| |
Collapse
|
7
|
Wang Y, Liu K. Therapeutic potential of oleanolic acid in liver diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4537-4554. [PMID: 38294504 DOI: 10.1007/s00210-024-02959-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
Liver-associated diseases affect millions of individuals worldwide. In developed countries, the incidence of viral hepatitis is reducing due to advancements in disease prevention, diagnosis, and treatment. However, with improvements in living standards, the prevalence of metabolic liver diseases, such as non-alcoholic fatty liver disease and alcohol-related liver disease, is expected to increase; notably, this rise in the prevalence of metabolic liver disease can lead to the development of more severe liver diseases, including liver failure, cirrhosis, and liver cancer. The growing demand for natural alternative therapies for chronic diseases has highlighted the importance of studying the pharmacology of bioactive compounds in plants. One such compound is oleanolic acid (OA), a pentacyclic triterpenoid known for its antioxidant, anti-inflammatory, anti-ulcer, antibacterial, antiviral, antihypertensive, anti-obesity, anticancer, anti-diabetic, cardioprotective, hepatoprotective, and anti-neurodegenerative properties. Recent studies have demonstrated that OA treatment can reduce the risk of pathological liver damage, ultimately alleviating liver dysregulation and restoring overall liver function. This review aims to explore the latest research on the biological effects of OA and its derivatives. Notably, it explores the mechanisms of action of these compounds in both in vitro and in vivo research models and, ultimately, highlights OA as a promising candidate for alternative therapies in the treatment and management of chronic liver disease.
Collapse
Affiliation(s)
- Yongxin Wang
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Kai Liu
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
8
|
Zhang Y, Wang X, Liu T, Zhang ZY, Song WG, Guo SD. Exserolide J ameliorates lipid accumulation in vitro by regulating liver X receptor alpha and peroxisome proliferator-activated receptor alpha proteins. Heliyon 2024; 10:e31861. [PMID: 38947487 PMCID: PMC11214467 DOI: 10.1016/j.heliyon.2024.e31861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
Exserolides are isocoumarin derivatives containing lactone moiety. Recently, some isocoumarins have been demonstrated to ameliorate hyperlipidemia, a major factor for inducing cardiovascular diseases. However, the effects and mechanisms of action of exserolides on hyperlipidemia are not known. The aim of this study is to investigate whether the marine fungus Setosphaeria sp.-derived exserolides (compounds I, J, E, and F) exert lipid-lowering effects via improving reverse cholesterol transport (RCT) in vitro. RAW264.7 macrophages and HepG2 cells were used to establish lipid-laden models, and the levels of intracellular lipids and RCT-related proteins were determined by assay kits and Western blotting, respectively. We observed that exserolides (at a 5 μM concentration) significantly decreased intracellular cholesterol and triglyceride levels in oxidized low-density lipoprotein-laden RAW264.7 cells and markedly improved [3H]-cholesterol efflux. Among the four tested compounds, exserolide J increased the protein levels of ATP-binding cassette transporter A1, peroxisome proliferator-activated receptor α (PPARα), and liver X receptor α (LXRα). Furthermore, treatment with exserolides significantly decreased oleic acid-laden lipid accumulation in HepG2 hepatocytes. Mechanistically, exserolides enhance PPARα protein levels; furthermore, compound J increases cholesterol 7 alpha-hydroxylase A1 and LXRα protein levels. Molecular docking revealed that exserolides, particularly compound J, can interact with PPARα and LXRα proteins. These data suggest that the terminal carboxyl group of compound J plays a key role in lowering lipid levels by stimulating LXRα and PPARα proteins. In conclusion, compound J exhibits powerful lipid-lowering effects in vitro. However, its hypolipidemic effects in vivo should be investigated in the future.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Endocrinology and Metabolism, Guiqian International General Hospital, Guiyang, 550018, China
| | - Xue Wang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Shandong Second Medical University, Weifang, 261053, China
| | - Tian Liu
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Shandong Second Medical University, Weifang, 261053, China
| | - Zi-Yi Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Wen-Gang Song
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Shandong Second Medical University, Weifang, 261053, China
| |
Collapse
|
9
|
Su F, Koeberle A. Regulation and targeting of SREBP-1 in hepatocellular carcinoma. Cancer Metastasis Rev 2024; 43:673-708. [PMID: 38036934 PMCID: PMC11156753 DOI: 10.1007/s10555-023-10156-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is an increasing burden on global public health and is associated with enhanced lipogenesis, fatty acid uptake, and lipid metabolic reprogramming. De novo lipogenesis is under the control of the transcription factor sterol regulatory element-binding protein 1 (SREBP-1) and essentially contributes to HCC progression. Here, we summarize the current knowledge on the regulation of SREBP-1 isoforms in HCC based on cellular, animal, and clinical data. Specifically, we (i) address the overarching mechanisms for regulating SREBP-1 transcription, proteolytic processing, nuclear stability, and transactivation and (ii) critically discuss their impact on HCC, taking into account (iii) insights from pharmacological approaches. Emphasis is placed on cross-talk with the phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt)-mechanistic target of rapamycin (mTOR) axis, AMP-activated protein kinase (AMPK), protein kinase A (PKA), and other kinases that directly phosphorylate SREBP-1; transcription factors, such as liver X receptor (LXR), peroxisome proliferator-activated receptors (PPARs), proliferator-activated receptor γ co-activator 1 (PGC-1), signal transducers and activators of transcription (STATs), and Myc; epigenetic mechanisms; post-translational modifications of SREBP-1; and SREBP-1-regulatory metabolites such as oxysterols and polyunsaturated fatty acids. By carefully scrutinizing the role of SREBP-1 in HCC development, progression, metastasis, and therapy resistance, we shed light on the potential of SREBP-1-targeting strategies in HCC prevention and treatment.
Collapse
Affiliation(s)
- Fengting Su
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
10
|
Capuano A, D’Urso G, Gazzillo E, Lauro G, Chini MG, D’Auria MV, Ferraro MG, Iazzetti F, Irace C, Bifulco G, Casapullo A. Fatty Acid Synthase as Interacting Anticancer Target of the Terpenoid Myrianthic Acid Disclosed by MS-Based Proteomics Approaches. Int J Mol Sci 2024; 25:5918. [PMID: 38892106 PMCID: PMC11172900 DOI: 10.3390/ijms25115918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
This research focuses on the target deconvolution of the natural compound myrianthic acid, a triterpenoid characterized by an ursane skeleton isolated from the roots of Myrianthus arboreus and from Oenothera maritima Nutt. (Onagraceae), using MS-based chemical proteomic techniques. Application of drug affinity responsive target stability (DARTS) and targeted-limited proteolysis coupled to mass spectrometry (t-LiP-MS) led to the identification of the enzyme fatty acid synthase (FAS) as an interesting macromolecular counterpart of myrianthic acid. This result, confirmed by comparison with the natural ursolic acid, was thoroughly investigated and validated in silico by molecular docking, which gave a precise picture of the interactions in the MA/FAS complex. Moreover, biological assays showcased the inhibitory activity of myrianthic acid against the FAS enzyme, most likely related to its antiproliferative activity towards tumor cells. Given the significance of FAS in specific pathologies, especially cancer, the myrianthic acid structural moieties could serve as a promising reference point to start the potential development of innovative approaches in therapy.
Collapse
Affiliation(s)
- Alessandra Capuano
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (A.C.); (E.G.); (G.L.); (G.B.); (A.C.)
- PhD Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Gilda D’Urso
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (A.C.); (E.G.); (G.L.); (G.B.); (A.C.)
| | - Erica Gazzillo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (A.C.); (E.G.); (G.L.); (G.B.); (A.C.)
- PhD Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (A.C.); (E.G.); (G.L.); (G.B.); (A.C.)
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, C.da Fonte Lappone, 86090 Pesche, Italy
| | - Maria Valeria D’Auria
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Maria Grazia Ferraro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
| | - Federica Iazzetti
- Biochem Lab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy; (F.I.); (C.I.)
| | - Carlo Irace
- Biochem Lab, Department of Pharmacy, School of Medicine and Surgery, University of Naples “Federico II”, Via Domenico Montesano 49, 80131 Naples, Italy; (F.I.); (C.I.)
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (A.C.); (E.G.); (G.L.); (G.B.); (A.C.)
| | - Agostino Casapullo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (A.C.); (E.G.); (G.L.); (G.B.); (A.C.)
| |
Collapse
|
11
|
Kadasah SF, Radwan MO. Overview of Ursolic Acid Potential for the Treatment of Metabolic Disorders, Autoimmune Diseases, and Cancers via Nuclear Receptor Pathways. Biomedicines 2023; 11:2845. [PMID: 37893218 PMCID: PMC10604592 DOI: 10.3390/biomedicines11102845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Nuclear receptors (NRs) form a family of druggable transcription factors that are regulated by ligand binding to orchestrate multifaceted physiological functions, including reproduction, immunity, metabolism, and growth. NRs represent attractive and valid targets for the management and treatment of a vast array of ailments. Pentacyclic triterpenes (PTs) are ubiquitously distributed natural products in medicinal and aromatic plants, of which ursolic acid (UA) is an extensively studied member, due to its diverse bio-pertinent activities against different cancers, inflammation, aging, obesity, diabetes, dyslipidemia, and liver injury. In fact, PTs share a common lipophilic structure that resembles NRs' endogenous ligands. Herein, we present a review of the literature on UA's effect on NRs, showcasing the resulting health benefits and potential therapeutic outcomes. De facto, UA exhibited numerous pharmacodynamic effects on PPAR, LXR, FXR, and PXR, resulting in remarkable anti-inflammatory, anti-hyperlipidemic, and hepatoprotective properties, by lowering lipid accumulation in hepatocytes and mitigating non-alcoholic steatohepatitis (NASH) and its subsequent liver fibrosis. Furthermore, UA reversed valproate and rifampicin-induced hepatic lipid accumulation. Additionally, UA showed great promise for the treatment of autoimmune inflammatory diseases such as multiple sclerosis and autoimmune arthritis by antagonizing RORγ. UA exhibited antiproliferative effects against skin, prostate, and breast cancers, partially via PPARα and RORγ pathways. Herein, for the first time, we explore and provide insights into UA bioactivity with respect to NR modulation.
Collapse
Affiliation(s)
- Sultan F. Kadasah
- Department of Biology, Faculty of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia
| | - Mohamed O. Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| |
Collapse
|
12
|
Radwan MO, Kadasah SF, Aljubiri SM, Alrefaei AF, El-Maghrabey MH, El Hamd MA, Tateishi H, Otsuka M, Fujita M. Harnessing Oleanolic Acid and Its Derivatives as Modulators of Metabolic Nuclear Receptors. Biomolecules 2023; 13:1465. [PMID: 37892147 PMCID: PMC10604226 DOI: 10.3390/biom13101465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Nuclear receptors (NRs) constitute a superfamily of ligand-activated transcription factors with a paramount role in ubiquitous physiological functions such as metabolism, growth, and reproduction. Owing to their physiological role and druggability, NRs are deemed attractive and valid targets for medicinal chemists. Pentacyclic triterpenes (PTs) represent one of the most important phytochemical classes present in higher plants, where oleanolic acid (OA) is the most studied PTs representative owing to its multitude of biological activities against cancer, inflammation, diabetes, and liver injury. PTs possess a lipophilic skeleton that imitates the NRs endogenous ligands. Herein, we report a literature overview on the modulation of metabolic NRs by OA and its semi-synthetic derivatives, highlighting their health benefits and potential therapeutic applications. Indeed, OA exhibited varying pharmacological effects on FXR, PPAR, LXR, RXR, PXR, and ROR in a tissue-specific manner. Owing to these NRs modulation, OA showed prominent hepatoprotective properties comparable to ursodeoxycholic acid (UDCA) in a bile duct ligation mice model and antiatherosclerosis effect as simvastatin in a model of New Zealand white (NZW) rabbits. It also demonstrated a great promise in alleviating non-alcoholic steatohepatitis (NASH) and liver fibrosis, attenuated alpha-naphthol isothiocyanate (ANIT)-induced cholestatic liver injury, and controlled blood glucose levels, making it a key player in the therapy of metabolic diseases. We also compiled OA semi-synthetic derivatives and explored their synthetic pathways and pharmacological effects on NRs, showcasing their structure-activity relationship (SAR). To the best of our knowledge, this is the first review article to highlight OA activity in terms of NRs modulation.
Collapse
Affiliation(s)
- Mohamed O. Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.T.); (M.O.); (M.F.)
| | - Sultan F. Kadasah
- Department of Biology, Faculty of Science, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Salha M. Aljubiri
- Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia;
| | | | - Mahmoud H. El-Maghrabey
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
| | - Mohamed A. El Hamd
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.T.); (M.O.); (M.F.)
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.T.); (M.O.); (M.F.)
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.T.); (M.O.); (M.F.)
| |
Collapse
|
13
|
Zou H, Yang Y, Chen HW. Natural compounds ursolic acid and digoxin exhibit inhibitory activities to cancer cells in RORγ-dependent and -independent manner. Front Pharmacol 2023; 14:1146741. [PMID: 37180705 PMCID: PMC10169565 DOI: 10.3389/fphar.2023.1146741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Natural compounds ursolic acid (UA) and digoxin isolated from fruits and other plants display potent anti-cancer effects in preclinical studies. UA and digoxin have been at clinical trials for treatment of different cancers including prostate cancer, pancreatic cancer and breast cancer. However, they displayed limited benefit to patients. Currently, a poor understanding of their direct targets and mechanisms of action (MOA) severely hinders their further development. We previously identified nuclear receptor RORγ as a novel therapeutic target for castration-resistant prostate cancer (CRPC) and triple-negative breast cancer (TNBC) and demonstrated that tumor cell RORγ directly activates gene programs such as androgen receptor (AR) signaling and cholesterol metabolism. Previous studies also demonstrated that UA and digoxin are potential RORγt antagonists in modulating the functions of immune cells such as Th17 cells. Here we showed that UA displays a strong activity in inhibition of RORγ-dependent transactivation function in cancer cells, while digoxin exhibits no effect at clinically relevant concentrations. In prostate cancer cells, UA downregulates RORγ-stimulated AR expression and AR signaling, whereas digoxin upregulates AR signaling pathway. In TNBC cells, UA but not digoxin alters RORγ-controlled gene programs of cell proliferation, apoptosis and cholesterol biosynthesis. Together, our study reveals for the first-time that UA, but not digoxin, acts as a natural antagonist of RORγ in the cancer cells. Our finding that RORγ is a direct target of UA in cancer cells will help select patients with tumors that likely respond to UA treatment.
Collapse
Affiliation(s)
- Hongye Zou
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Yatian Yang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
- UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, CA, United States
- VA Northern California Health Care System, Mather, CA, United States
| |
Collapse
|
14
|
Emerging Role of SMILE in Liver Metabolism. Int J Mol Sci 2023; 24:ijms24032907. [PMID: 36769229 PMCID: PMC9917820 DOI: 10.3390/ijms24032907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Small heterodimer partner-interacting leucine zipper (SMILE) is a member of the CREB/ATF family of basic leucine zipper (bZIP) transcription factors. SMILE has two isoforms, a small and long isoform, resulting from alternative usage of the initiation codon. Interestingly, although SMILE can homodimerize similar to other bZIP proteins, it cannot bind to DNA. As a result, SMILE acts as a co-repressor in nuclear receptor signaling and other transcription factors through its DNA binding inhibition, coactivator competition, and direct repression, thereby regulating the expression of target genes. Therefore, the knockdown of SMILE increases the transactivation of transcription factors. Recent findings suggest that SMILE is an important regulator of metabolic signals and pathways by causing changes in glucose, lipid, and iron metabolism in the liver. The regulation of SMILE plays an important role in pathological conditions such as hepatitis, diabetes, fatty liver disease, and controlling the energy metabolism in the liver. This review focuses on the role of SMILE and its repressive actions on the transcriptional activity of nuclear receptors and bZIP transcription factors and its effects on liver metabolism. Understanding the importance of SMILE in liver metabolism and signaling pathways paves the way to utilize SMILE as a target in treating liver diseases.
Collapse
|
15
|
Sadasivam N, Radhakrishnan K, Choi HS, Kim DK. Emerging Role of SMILE in Liver Metabolism. Int J Mol Sci 2023; 24:2907. [DOI: https:/doi.org/10.3390/ijms24032907 academic] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023] Open
Abstract
Small heterodimer partner-interacting leucine zipper (SMILE) is a member of the CREB/ATF family of basic leucine zipper (bZIP) transcription factors. SMILE has two isoforms, a small and long isoform, resulting from alternative usage of the initiation codon. Interestingly, although SMILE can homodimerize similar to other bZIP proteins, it cannot bind to DNA. As a result, SMILE acts as a co-repressor in nuclear receptor signaling and other transcription factors through its DNA binding inhibition, coactivator competition, and direct repression, thereby regulating the expression of target genes. Therefore, the knockdown of SMILE increases the transactivation of transcription factors. Recent findings suggest that SMILE is an important regulator of metabolic signals and pathways by causing changes in glucose, lipid, and iron metabolism in the liver. The regulation of SMILE plays an important role in pathological conditions such as hepatitis, diabetes, fatty liver disease, and controlling the energy metabolism in the liver. This review focuses on the role of SMILE and its repressive actions on the transcriptional activity of nuclear receptors and bZIP transcription factors and its effects on liver metabolism. Understanding the importance of SMILE in liver metabolism and signaling pathways paves the way to utilize SMILE as a target in treating liver diseases.
Collapse
Affiliation(s)
- Nanthini Sadasivam
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kamalakannan Radhakrishnan
- Clinical Vaccine R&D Centre, Department of Microbiology, Combinatorial Tumour Immunotheraphy MRC, Medical School, Chonnam National University, Gwangju 58128, Republic of Korea
| | - Hueng-Sik Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
16
|
Terpenoids: Natural Compounds for Non-Alcoholic Fatty Liver Disease (NAFLD) Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010272. [PMID: 36615471 PMCID: PMC9822439 DOI: 10.3390/molecules28010272] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
Natural products have been the most productive source for the development of drugs. Terpenoids are a class of natural active products with a wide range of pharmacological activities and therapeutic effects, which can be used to treat a variety of diseases. Non-alcoholic fatty liver disease (NAFLD), a common metabolic disorder worldwide, results in a health burden and economic problems. A literature search was conducted to obtain information relevant to the treatment of NAFLD with terpenoids using electronic databases, namely PubMed, Web of Science, Science Direct, and Springer, for the period 2011-2021. In total, we found 43 terpenoids used in the treatment of NAFLD. Over a dozen terpenoid compounds of natural origin were classified into five categories according to their structure: monoterpenoids, sesquiterpenoids, diterpenoids, triterpenoids, and tetraterpenoids. We found that terpenoids play a therapeutic role in NAFLD, mainly by regulating lipid metabolism disorder, insulin resistance, oxidative stress, and inflammation. The AMPK, PPARs, Nrf-2, and SIRT 1 pathways are the main targets for terpenoid treatment. Terpenoids are promising drugs and will potentially create more opportunities for the treatment of NAFLD. However, current studies are restricted to animal and cell experiments, with a lack of clinical research and systematic structure-activity relationship (SAR) studies. In the future, we should further enrich the research on the mechanism of terpenoids, and carry out SAR studies and clinical research, which will increase the likelihood of breakthrough insights in the field.
Collapse
|
17
|
Wu YL, Wu JX, Shen TT, Chai HS, Chen HF, Zhang Q. Quzhi Formula Alleviates Nonalcoholic Steatohepatitis by Impairing Hepatocyte Lipid Accumulation and Inflammation via Bip/eIF2α Signaling. J Clin Transl Hepatol 2022; 10:1050-1058. [PMID: 36381096 PMCID: PMC9634762 DOI: 10.14218/jcth.2021.00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS The Quzhi formula, a Chinese medicine compound prescription, relieves nonalcoholic steatohepatitis (NASH) symptoms. This study aimed to explore the mechanism of the Quzhi formula against NASH. METHODS A choline-deficient, L-amino acid-defined, high-fat diet induced a NASH mouse model and a free fatty acid-induced mouse hepatocyte cell model were used to evaluate the function of Quzhi formula in vivo and in vitro. Network pharmacology and molecular docking technology were performed to uncover the possible protective mechanisms of the Quzhi formula against NASH. Key factors in liver lipid metabolism and endoplasmic reticulum (ER) stress pathway were evaluated to verify the mechanism. RESULTS The positive contribution of the Quzhi formula on NASH was confirmed in vivo and in vitro. Abnormal accumulation of lipid in the liver and inflammatory responses were significantly decreased by the Quzhi formula. Network pharmacological analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the Quzhi formula protected against NASH by regulating ER stress and inflammatory responses, which was enhanced by further molecular docking analysis. In addition, mechanism exploration showed that Quzhi formula mainly reduced ER stress by downregulating Bip/eIF2α signaling. CONCLUSIONS The Quzhi formula protected against NASH by inhibiting lipid accumulation, ER stress, and inflammatory responses, which supports the potential use of Quzhi formula as an alternative treatment for NASH.
Collapse
Affiliation(s)
- Yue-Lan Wu
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiao-Xiang Wu
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Clinical Laboratory, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting-Ting Shen
- Department of Infectious Diseases, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai-Sheng Chai
- Shanghai municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui-Fen Chen
- Department of Laboratory Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
- Correspondence to: Qin Zhang, Phase I Clinical Trial Unit, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China. ORCID: https://orcid.org/0000-0002-0150-488X. Tel: +86-21-52039999-79305, Fax: +86-21-52039795, E-mail: ; Hui-Fen Chen, Department of Laboratory Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 536 ChangLe Road, Shanghai 200040, China. ORCID: https://orcid.org/0000-0002-6630-7035. Tel: +86-21-54033031, Fax: +86-21-50730190, E-mail:
| | - Qin Zhang
- Phase I Clinical Trial Unit, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Correspondence to: Qin Zhang, Phase I Clinical Trial Unit, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China. ORCID: https://orcid.org/0000-0002-0150-488X. Tel: +86-21-52039999-79305, Fax: +86-21-52039795, E-mail: ; Hui-Fen Chen, Department of Laboratory Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 536 ChangLe Road, Shanghai 200040, China. ORCID: https://orcid.org/0000-0002-6630-7035. Tel: +86-21-54033031, Fax: +86-21-50730190, E-mail:
| |
Collapse
|
18
|
Role of Neurite Outgrowth Inhibitor B Receptor in hepatic steatosis. Acta Histochem 2022; 124:151977. [DOI: 10.1016/j.acthis.2022.151977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022]
|
19
|
Al-kuraishy HM, Al-Gareeb AI, Negm WA, Alexiou A, Batiha GES. Ursolic acid and SARS-CoV-2 infection: a new horizon and perspective. Inflammopharmacology 2022; 30:1493-1501. [PMID: 35922738 PMCID: PMC9362167 DOI: 10.1007/s10787-022-01038-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/14/2022] [Indexed: 12/11/2022]
Abstract
SARS-CoV-2 (severe acute respiratory syndrome coronavirus type 2) has been identified as the source of a world coronavirus pandemic in 2019. Covid-19 is considered a main respiratory disease-causing viral pneumonia and, in severe cases, leads to acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Although, extrapulmonary manifestations of Covid-19 like neurological, cardiovascular, and gastrointestinal have been confirmed. Exaggerated immune response and release of a high amount of pro-inflammatory cytokines may progress, causing a cytokine storm. Consequently, direct and indirect effects of SARS-CoV-2 infection can evolve into systemic complications due to the progression of hyper inflammation, oxidative stress and dysregulation of the renin-angiotensin system (RAS). Therefore, anti-inflammatory and antioxidant agents could be efficient in alleviating these disorders. Ursolic acid has anti-inflammatory, antioxidant, and antiviral effects; it reduces the release of pro-inflammatory cytokines, improves anti-inflammatory cytokines, and inhibits the production of reactive oxygen species (ROS). In virtue of its anti-inflammatory and antioxidant effects, ursolic acid may minimize SARS-CoV-2 infection-induced complications. Also, by regulating RAS and inflammatory signaling pathways, ursolic acid might effectively reduce the development of ALI in ARDS in Covid-19. In this state, this perspective discusses how ursolic acid can mitigate hyper inflammation and oxidative stress in Covid-19.
Collapse
Affiliation(s)
- Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW Australia
- AFNP Med, Vienna, Austria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AL Beheira, Damanhour, 22511 Egypt
| |
Collapse
|
20
|
Mioc M, Milan A, Malița D, Mioc A, Prodea A, Racoviceanu R, Ghiulai R, Cristea A, Căruntu F, Șoica C. Recent Advances Regarding the Molecular Mechanisms of Triterpenic Acids: A Review (Part I). Int J Mol Sci 2022; 23:ijms23147740. [PMID: 35887090 PMCID: PMC9322890 DOI: 10.3390/ijms23147740] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Triterpenic acids are phytocompounds with a widespread range of biological activities that have been the subject of numerous in vitro and in vivo studies. However, their underlying mechanisms of action in various pathologies are not completely elucidated. The current review aims to summarize the most recent literature, published in the last five years, regarding the mechanism of action of three triterpenic acids (asiatic acid, oleanolic acid, and ursolic acid), corelated with different biological activities such as anticancer, anti-inflammatory, antidiabetic, cardioprotective, neuroprotective, hepatoprotective, and antimicrobial. All three discussed compounds share several mechanisms of action, such as the targeted modulation of the PI3K/AKT, Nrf2, NF-kB, EMT, and JAK/STAT3 signaling pathways, while other mechanisms that proved to only be specific for a part of the triterpenic acids discussed, such as the modulation of Notch, Hippo, and MALAT1/miR-206/PTGS1 signaling pathway, were highlighted as well. This paper stands as the first part in our literature study on the topic, which will be followed by a second part focusing on other triterpenic acids of therapeutic value.
Collapse
Affiliation(s)
- Marius Mioc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Andreea Milan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Daniel Malița
- Department of Radiology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Correspondence: (D.M.); (A.M.); Tel.: +40-256-494-604 (D.M. & A.M.)
| | - Alexandra Mioc
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
- Department of Anatomy, Physiology, Pathophysiology, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
- Correspondence: (D.M.); (A.M.); Tel.: +40-256-494-604 (D.M. & A.M.)
| | - Alexandra Prodea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Roxana Racoviceanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Roxana Ghiulai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Andreea Cristea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
| | - Florina Căruntu
- Department of Medical Semiology II, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Street, 300041 Timisoara, Romania;
| | - Codruța Șoica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| |
Collapse
|
21
|
Bian C, Zhang H, Gao J, Wang Y, Li J, Guo D, Wang W, Song Y, Weng Y, Ren H. SIRT6 regulates SREBP1c-induced glucolipid metabolism in liver and pancreas via the AMPKα-mTORC1 pathway. J Transl Med 2022; 102:474-484. [PMID: 34923569 DOI: 10.1038/s41374-021-00715-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/09/2022] Open
Abstract
The aim of this study was to determine the mechanism by which SIRT6 regulates glucolipid metabolism disorders. We detected histological and molecular changes in Sprague-Dawley rats as well as in BRL 3A and INS-1 cell lines subjected to overnutrition and starvation. SIRT6, SREBP1c, and glucolipid metabolism biomarkers were identified by fluorescence co-localization, real-time PCR, and western blotting. Gene silencing studies were performed. Recombinant SIRT6, AMPK agonist (AICAR), mTOR inhibitor (rapamycin), and liver X receptor (LXR) agonist (T0901317) were used to pre-treated in BRL 3A and INS-1 cells. Real-time PCR and western blotting were used to detect related proteins, and cell counting was utilized to detect proliferation. We obtained conflicting results; SIRT6 and SREBP1c appeared in both the liver and pancreas of high-fat and hungry rats. Recombinant SIRT6 alleviated the decrease in AMPKα and increase in mTORC1 (complex of mTOR, Raptor, and Rheb) caused by overnutrition. SIRT6 siRNA reversed the glucolipid metabolic disorders caused by the AMPK agonist and mTOR inhibitor but not by the LXR agonist. Taken together, our results demonstrate that SIRT6 regulates glycolipid metabolism through AMPKα-mTORC1 regulating SREBP1c in the liver and pancreas induced by overnutrition and starvation, independent of LXR.
Collapse
Affiliation(s)
- Che Bian
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Haibo Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Jing Gao
- Department of Gerontology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuxia Wang
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jia Li
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Dan Guo
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Wei Wang
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuling Song
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yang Weng
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Huiwen Ren
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
22
|
Ji L, Li Q, He Y, Zhang X, Zhou Z, Gao Y, Fang M, Yu Z, Rodrigues RM, Gao Y, Li M. Therapeutic potential of traditional Chinese medicine for the treatment of NAFLD: a promising drug Potentilla discolor Bunge. Acta Pharm Sin B 2022; 12:3529-3547. [PMID: 36176915 PMCID: PMC9513494 DOI: 10.1016/j.apsb.2022.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/09/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive accumulation of hepatic lipids and metabolic stress-induced liver injury. There are currently no approved effective pharmacological treatments for NAFLD. Traditional Chinese medicine (TCM) has been used for centuries to treat patients with chronic liver diseases without clear disease types and mechanisms. More recently, TCM has been shown to have unique advantages in the treatment of NAFLD. We performed a systematic review of the medical literature published over the last two decades and found that many TCM formulas have been reported to be beneficial for the treatment of metabolic dysfunctions, including Potentilla discolor Bunge (PDB). PDB has a variety of active compounds, including flavonoids, terpenoids, organic acids, steroids and tannins. Many compounds have been shown to exhibit a series of beneficial effects for the treatment of NAFLD, including anti-oxidative and anti-inflammatory functions, improvement of lipid metabolism and reversal of insulin resistance. In this review, we summarize potential therapeutic effects of TCM formulas for the treatment of NAFLD, focusing on the medicinal properties of natural active compounds from PDB and their underlying mechanisms. We point out that PDB can be classified as a novel candidate for the treatment and prevention of NAFLD.
Collapse
Affiliation(s)
- Longshan Ji
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
| | - Qian Li
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
| | - Yong He
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Zhang
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
| | - Zhenhua Zhou
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yating Gao
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
| | - Miao Fang
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
| | - Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Robim M. Rodrigues
- Department of in Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels 1000, Belgium
- Corresponding authors.
| | - Yueqiu Gao
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
- Corresponding authors.
| | - Man Li
- Laboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
- Corresponding authors.
| |
Collapse
|
23
|
Yan X, Liu X, Wang Y, Ren X, Ma J, Song R, Wang X, Dong Y, Fan Q, Wei J, Yu A, Sui H, She G. Multi-omics integration reveals the hepatoprotective mechanisms of ursolic acid intake against chronic alcohol consumption. Eur J Nutr 2022; 61:115-126. [PMID: 34215920 DOI: 10.1007/s00394-021-02632-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/28/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Alcoholic liver disease (ALD) is a major health issue globally. In addition to pharmacotherapy, dietary support is also regarded as reliable strategy for ALD management. As a widely distributed natural constituent within edible plants, the present study aims to investigate the hepatoprotective effects of ursolic acid (UA) against ALD and also to deepen insights into the underlying targets and mechanisms comprehensively. METHODS The hepatoprotective activity of UA against chronic alcohol-induced liver injury was investigated on Lieber-DeCarli liquid diet-based mouse model. In-depth RNA-seq transcriptomics and TMT-based proteomics analyses were conducted in parallel. Data integration as well as bioinformatics analysis were also performed to unravel the targets and mechanisms associated with the hepatoprotective activity of UA intake against alcoholic liver injury comprehensively. RESULTS The serum biomarkers and pathological characteristics indicated the hepatoprotective effects of UA intake on alcoholic liver injury. 567 target genes and 377 target proteins related to the hepatoprotective activity of UA were identified in transcriptomics and proteomics analysis respectively, most of which were associated with function of cellular process, cell part and binding. After data integration, 56 co-regulated targets, including ADH4, CYP450 enzymes, NQO1, apolipoproteins, glutathione-S-transferase, etc. which were consistently modulated on both mRNA and protein levels were identified. These co-regulated targets were found to be correlated with 70 KEGG pathways led by carcinogenesis, retinol metabolism and CYP450 metabolism pathways. CONCLUSION UA intake ameliorated chronic alcohol-induced liver injury. Given the role of the co-regulated targets in ALD and the bioinformatics analysis results, CYP450-, glutathione and redox homeostasis-dependent antioxidation, promotion of lipid transport, and restoration of ethanol metabolic capacity are the potentially underlying mechanisms. This information will further deepen our insights into the hepatoprotective effects of UA-rich edible plants, and provide us valuable instruction for ALD management.
Collapse
Affiliation(s)
- Xin Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaoyun Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xueyang Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jiamu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ruolan Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiuhuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ying Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Qiqi Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jing Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Axiang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Hong Sui
- School of Chinese Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
24
|
She J, Gu T, Pang X, Liu Y, Tang L, Zhou X. Natural Products Targeting Liver X Receptors or Farnesoid X Receptor. Front Pharmacol 2022; 12:772435. [PMID: 35069197 PMCID: PMC8766425 DOI: 10.3389/fphar.2021.772435] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
Nuclear receptors (NRs) are a superfamily of transcription factors induced by ligands and also function as integrators of hormonal and nutritional signals. Among NRs, the liver X receptors (LXRs) and farnesoid X receptor (FXR) have been of significance as targets for the treatment of metabolic syndrome-related diseases. In recent years, natural products targeting LXRs and FXR have received remarkable interests as a valuable source of novel ligands encompassing diverse chemical structures and bioactive properties. This review aims to survey natural products, originating from terrestrial plants and microorganisms, marine organisms, and marine-derived microorganisms, which could influence LXRs and FXR. In the recent two decades (2000-2020), 261 natural products were discovered from natural resources such as LXRs/FXR modulators, 109 agonists and 38 antagonists targeting LXRs, and 72 agonists and 55 antagonists targeting FXR. The docking evaluation of desired natural products targeted LXRs/FXR is finally discussed. This comprehensive overview will provide a reference for future study of novel LXRs and FXR agonists and antagonists to target human diseases, and attract an increasing number of professional scholars majoring in pharmacy and biology with more in-depth discussion.
Collapse
Affiliation(s)
- Jianglian She
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tanwei Gu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Lan Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
25
|
Luan M, Wang H, Wang J, Zhang X, Zhao F, Liu Z, Meng Q. Advances in Anti-inflammatory Activity, Mechanism and Therapeutic Application of Ursolic Acid. Mini Rev Med Chem 2022; 22:422-436. [PMID: 34517797 DOI: 10.2174/1389557521666210913113522] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 06/08/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
In vivo and in vitro studies reveal that Ursolic Acid (UA) is able to counteract endogenous and exogenous inflammatory stimuli and has favorable anti-inflammatory effects. The antiinflammatory mechanisms mainly include decreasing the release of histamine in mast cells, suppressing the activities of lipoxygenase, cyclooxygenase and phospholipase, and reducing the production of nitric oxide and reactive oxygen species, blocking the activation of the signal pathway, downregulating the expression of inflammatory factors, and inhibiting the activities of elastase and complement. These mechanisms can open up new avenues for the scientific community to develop or improve novel therapeutic approaches to tackle inflammatory diseases, such as arthritis, atherosclerosis, neuroinflammation, liver diseases, kidney diseases, diabetes, dermatitis, bowel diseases, cancer. The anti-inflammatory activity, the anti-inflammatory mechanism of ursolic acid and its therapeutic applications are reviewed in this paper.
Collapse
Affiliation(s)
- Mingzhu Luan
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Huiyun Wang
- College of Pharmacy, Jining Medical University, Shandong Province, 276826, P.R. China
| | - Jiazhen Wang
- The Second Hospital of Anhui Medical University, Anhui Province, 230601, P.R. China
| | - Xiaofan Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Fenglan Zhao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Zongliang Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| | - Qingguo Meng
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, P.R. China
| |
Collapse
|
26
|
Thorne JL, Cioccoloni G. Nuclear Receptors and Lipid Sensing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:83-105. [DOI: 10.1007/978-3-031-11836-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
27
|
López-Sánchez GN, Dóminguez-Pérez M, Uribe M, Chávez-Tapia NC, Nuño-Lámbarri N. Non-alcoholic fatty liver disease and microRNAs expression, how it affects the development and progression of the disease. Ann Hepatol 2021; 21:100212. [PMID: 32533953 DOI: 10.1016/j.aohep.2020.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
The obesity pandemic that affects the global population generates one of the most unfavorable microenvironmental conditions in the hepatocyte, which triggers the metabolic hepatopathy known as non-alcoholic fatty liver; its annual rates increase in its prevalence and does not seem to improve in the future. The international consortia, LITMUS by the European Union and NIMBLE by the United States of America, have started a race for the development of hepatic steatosis and steatohepatitis reliable biomarkers to have an adequate diagnosis. MicroRNAs have been proposed as diagnostic and prognostic biomarkers involved in adaptation to changes in the liver microenvironment, which could improve clinical intervention strategies in patients with hepatic steatosis.
Collapse
Affiliation(s)
- Guillermo Nahúm López-Sánchez
- Traslational Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra, Tlalpan, Z.C. 14050 Mexico City, Mexico
| | - Mayra Dóminguez-Pérez
- Genomics of Cardiovascular Diseases Laboratory, National Institute of Genomic Medicine, Periferico Sur 4809, Arenal Tepepan, Tlalpan, Z.C. 14610 Mexico City, Mexico
| | - Misael Uribe
- Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra, Tlalpan, Z.C. 14050 Mexico City, Mexico
| | - Norberto Carlos Chávez-Tapia
- Traslational Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra, Tlalpan, Z.C. 14050 Mexico City, Mexico; Obesity and Digestive Diseases Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra, Tlalpan, Z.C. 14050 Mexico City, Mexico
| | - Natalia Nuño-Lámbarri
- Traslational Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150, Toriello Guerra, Tlalpan, Z.C. 14050 Mexico City, Mexico.
| |
Collapse
|
28
|
Jin M, Wei Y, Yu H, Ma X, Yan S, Zhao L, Ding L, Cheng J, Feng H. Erythritol Improves Nonalcoholic Fatty Liver Disease by Activating Nrf2 Antioxidant Capacity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13080-13092. [PMID: 34719928 DOI: 10.1021/acs.jafc.1c05213] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a kind of serious fat disorder that has become a critical problem to human society. Therefore, finding drugs that are safe and effective has become more and more important. Erythritol (Ery) is a polyol sweetener with a variety of biological functions. However, whether Ery has a relieving effect on NAFLD has not been reported yet. Therefore, we induced HepG2 cells with oleic acid and palmitic acid as our in vitro model. Moreover, we choose wild-type mice with tyloxapol and high-fat diet and nuclear factor E2-related factor 2 (Nrf2) knockout mice with high-fat diet as our in vivo model. We found that Ery could reverse the lipid accumulation, oxidative stress, and endoplasmic reticulum stress caused by the NAFLD model. The mechanism studies showed that Ery promoted the translocation of Nrf2 from cytoplasm to nucleus, and the molecular simulation docking results of Ery and Nrf2 showed that there was a hydrogen bond between them. Moreover, Ery could promote the production of HO-1 and NQO1 antioxidant proteins and inhibit the expression of endoplasmic reticulum stress proteins GPR78, p-PERK, and CHOP. On the contrast, when Nrf2 was knocked out in mice, Ery lost its protective effect on NAFLD. In conclusion, we found that the potential mechanism of Ery's protective effect is that it plays an antioxidant role by activating the Nrf2 signaling pathway, thereby inhibiting endoplasmic reticulum stress and lipid accumulation in NAFLD.
Collapse
Affiliation(s)
- Meiyu Jin
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Yunfei Wei
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Hao Yu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Xin Ma
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Siru Yan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Lilei Zhao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Lu Ding
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Jiaqi Cheng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| | - Haihua Feng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China
| |
Collapse
|
29
|
Chen H, Zhou X, Yang Q. Safety evaluation of dufulin racemate and its R(S)-enantiomers in rats based on dose-effect relationship, time-effect relationship, and lipidomics. Toxicology 2021; 461:152895. [PMID: 34391840 DOI: 10.1016/j.tox.2021.152895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
In the present study, the dose-effect and time-effect relationships of Dufulin racemate (rac-DFL) and its R(S)-enantiomers in rats were investigated after oral administration to evaluate their safety. A total of six doses (2.5, 5.0, 10.0, 20.0, 50.0, and 100.0 mg/kg) were administered and seven time-intervals (1 h, 3 h, 1 d, 3 d, 5 d, 7 d, and 14 d) were considered to observe the effects of rac-DFL, (R)-DFL, and (S)-DFL on general behavioral characteristics, liver and kidney functions, pathological changes, and lipid metabolism in rats. The results showed that the rats in each group exhibited a good mental state, agile activity, smooth and shiny fur, and normal diet. Viscera indices of heart, liver, spleen, lung, and kidney were 5.10-5.56, 4.15-4.59, 0.24-0.28, 6.08-6.48, and 11.02-11.98 mg/g for dose-effect relationships, and 5.01-5.94, 4.11-4.79, 0.24-0.30, 6.00-6.87, and 11.02-11.99 mg/g for time-effect relationships, respectively. Values of ALT, AST, TBil, DBil, IBil, BUN, Scr, β2-MG, and UA were 33.02-38.93 U/L, 108.17-126.53 U/L, 16.22-17.94 μmol/L, 5.75-8.12 μmol/L, 9.50-10.94 μmol/L, 4.03-5.85 mmol/L, 19.42-21.61 μmol/L, 48.16-52.73 mg/L, and 68.51-78.65 μmol/L, respectively. The statistical results showed that there were no significant differences in organ indices as well as liver and kidney function indices among different groups. In terms of pathological morphology, liver and kidney tissue sections of different groups of rats demonstrated normalcy. Rac-DFL, (R)-DFL, and (S)-DFL in the range of 2.5-100.0 mg/kg exerted no significant effect on lipid metabolism. Compared with the blank group, 35, 55, and 14 differential lipids were screened from rac-DFL, (S)-DFL, and (R)-DFL groups, respectively. These lipid changes completely returned to normalcy within 3 h. There were no significant differences at 1, 3, 5, 7, and 14 d after gavage. These results will aid further evaluation of the safety of dufulin and for provision of scientific evidence for its application as a pesticide.
Collapse
Affiliation(s)
- Huaguo Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China; Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang, 550001, China.
| | - Xin Zhou
- Guizhou Engineering Laboratory for Quality Control & Evaluation Technology of Medicine, Guizhou Normal University, 116 Baoshan North Rd., Guiyang, 550001, China
| | - Qin Yang
- College of Civil Engineering, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
30
|
Yan X, Ren X, Liu X, Wang Y, Ma J, Song R, Wang X, Dong Y, Fan Q, Wei J, Yu A, She G. Dietary Ursolic Acid Prevents Alcohol-Induced Liver Injury via Gut-Liver Axis Homeostasis Modulation: The Key Role of Microbiome Manipulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7074-7083. [PMID: 34152776 DOI: 10.1021/acs.jafc.1c02362] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ursolic acid (UA), a natural triterpenoid widely distributed within fruits and edible plants, has been proven to relieve alcoholic liver disease (ALD). However, the mechanisms involved largely remain unclear. This study investigated whether the beneficial effects of UA on ALD could be related to gut-liver axis (GLA) modulation. Special attention was paid to the contribution of gut microbiome manipulation. UA ameliorated intestinal oxidative stress and barrier dysfunction induced by alcohol. As a consequence of gut leakiness amelioration, the related endotoxemia-mediated liver toll-like receptor 4 pathway induction and the subsequent reactive oxygen species overproduction were reverted. UA also counteracted alcohol-induced gut dysbiosis. A fecal microbiota transplantation study indicated that liver injury as well as ileum oxidative stress and gut barrier dysfunction of recipient mice were partly ameliorated as a result of microbiome remodeling. These results suggest that dietary UA alleviates ALD through GLA homeostasis modulation. Gut microbiome manipulation contributes to the hepatoprotective activity and GLA modulating effect of UA.
Collapse
Affiliation(s)
- Xin Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Xueyang Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Xiaoyun Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Jiamu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Ruolan Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Xiuhuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Ying Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Qiqi Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Jing Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Axiang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| |
Collapse
|
31
|
Mai CT, Zheng DC, Li XZ, Zhou H, Xie Y. Liver X receptors conserve the therapeutic target potential for the treatment of rheumatoid arthritis. Pharmacol Res 2021; 170:105747. [PMID: 34186192 DOI: 10.1016/j.phrs.2021.105747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 01/03/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic multi-system autoimmune disease with extremely complex pathogenesis. Significantly altered lipid paradox related to the inflammatory burden is reported in RA patients, inducing 50% higher cardiovascular risks. Recent studies have also demonstrated that lipid metabolism can regulate many functions of immune cells in which metabolic pathways have altered. The nuclear liver X receptors (LXRs), including LXRα and LXRβ, play a central role in regulating lipid homeostasis and inflammatory responses. Undoubtedly, LXRs have been considered as an attractive therapeutic target for the treatment of RA. However, there are some contradictory effects of LXRs agonists observed in previous animal studies where both pro-inflammatory role and anti-inflammatory role were revealed for LXRs activation in RA. Therefore, in addition to updating the knowledge of LXRs as the prominent regulators of lipid homeostasis, the purpose of this review is to summarize the effects of LXRs agonists in RA-associated immune cells, to explore the underlying reasons for the contradictory therapeutic effects of LXRs agonists observed in RA animal models, and to discuss future strategy for the treatment of RA with LXRs modulators.
Collapse
Affiliation(s)
- Chu-Tian Mai
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau; Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - De-Chong Zheng
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau; Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Xin-Zhi Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau; Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau.
| |
Collapse
|
32
|
Dixon ED, Nardo AD, Claudel T, Trauner M. The Role of Lipid Sensing Nuclear Receptors (PPARs and LXR) and Metabolic Lipases in Obesity, Diabetes and NAFLD. Genes (Basel) 2021; 12:genes12050645. [PMID: 33926085 PMCID: PMC8145571 DOI: 10.3390/genes12050645] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are metabolic disorders characterized by metabolic inflexibility with multiple pathological organ manifestations, including non-alcoholic fatty liver disease (NAFLD). Nuclear receptors are ligand-dependent transcription factors with a multifaceted role in controlling many metabolic activities, such as regulation of genes involved in lipid and glucose metabolism and modulation of inflammatory genes. The activity of nuclear receptors is key in maintaining metabolic flexibility. Their activity depends on the availability of endogenous ligands, like fatty acids or oxysterols, and their derivatives produced by the catabolic action of metabolic lipases, most of which are under the control of nuclear receptors. For example, adipose triglyceride lipase (ATGL) is activated by peroxisome proliferator-activated receptor γ (PPARγ) and conversely releases fatty acids as ligands for PPARα, therefore, demonstrating the interdependency of nuclear receptors and lipases. The diverse biological functions and importance of nuclear receptors in metabolic syndrome and NAFLD has led to substantial effort to target them therapeutically. This review summarizes recent findings on the roles of lipases and selected nuclear receptors, PPARs, and liver X receptor (LXR) in obesity, diabetes, and NAFLD.
Collapse
Affiliation(s)
| | | | | | - Michael Trauner
- Correspondence: ; Tel.: +43-140-4004-7410; Fax: +43-14-0400-4735
| |
Collapse
|
33
|
Sandoval V, Sanz-Lamora H, Marrero PF, Relat J, Haro D. Lyophilized Maqui ( Aristotelia chilensis) Berry Administration Suppresses High-Fat Diet-Induced Liver Lipogenesis through the Induction of the Nuclear Corepressor SMILE. Antioxidants (Basel) 2021; 10:637. [PMID: 33919415 PMCID: PMC8143281 DOI: 10.3390/antiox10050637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/10/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
The liver is one of the first organs affected by accumulated ectopic lipids. Increased de novo lipogenesis and excessive triglyceride accumulation in the liver are hallmarks of nonalcoholic fatty liver disease (NAFLD) and are strongly associated with obesity, insulin resistance, and type 2 diabetes. Maqui dietary supplemented diet-induced obese mice showed better insulin response and decreased weight gain. We previously described that these positive effects of maqui are partially due to an induction of a brown-like phenotype in subcutaneous white adipose tissue that correlated with a differential expression of Chrebp target genes. In this work, we aimed to deepen the molecular mechanisms underlying the impact of maqui on the onset and development of the obese phenotype and insulin resistance focusing on liver metabolism. Our results showed that maqui supplementation decreased hepatic steatosis caused by a high-fat diet. Changes in the metabolic profile include a downregulation of the lipogenic liver X receptor (LXR) target genes and of fatty acid oxidation gene expression together with an increase in the expression of small heterodimer partner interacting leucine zipper protein (Smile), a corepressor of the nuclear receptor family. Our data suggest that maqui supplementation regulates lipid handling in liver to counteract the metabolic impact of a high-fat diet.
Collapse
Affiliation(s)
- Viviana Sandoval
- Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Sede De la Patagonia, Puerto-Montt 5501842, Chile;
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (H.S.-L.); (P.F.M.)
| | - Hèctor Sanz-Lamora
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (H.S.-L.); (P.F.M.)
- Institute of Nutrition and Food Safety, University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
| | - Pedro F. Marrero
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (H.S.-L.); (P.F.M.)
- Institute of Biomedicine, University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Joana Relat
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (H.S.-L.); (P.F.M.)
- Institute of Nutrition and Food Safety, University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Diego Haro
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramenet, Spain; (H.S.-L.); (P.F.M.)
- Institute of Biomedicine, University of Barcelona (IBUB), E-08028 Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
34
|
Fan S, Zhang H, Wang Y, Zhao Y, Luo L, Wang H, Chen G, Xing L, Zheng P, Huang C. LXRα/β Antagonism Protects against Lipid Accumulation in the Liver but Increases Plasma Cholesterol in Rhesus Macaques. Chem Res Toxicol 2021; 34:833-838. [PMID: 33647205 DOI: 10.1021/acs.chemrestox.0c00445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by lipid accumulation in the liver and associates with obesity, hyperlipidemia, and insulin resistance. NAFLD could lead to nonalcoholic steatohepatitis (NASH), hepatic fibrosis, cirrhosis, and even cancers. The development of therapy for NAFLD has been proven difficult. Emerging evidence suggests that liver X receptor (LXR) antagonist is a potential treatment for fatty liver disease. However, concerns about the cholesterol-increasing effects make it questionable for the development of LXR antagonists. Here, the overweight monkeys were fed with LXRβ-selective antagonist sophoricoside or LXRα/β dual-antagonist morin for 3 months. The morphology of punctured liver tissues was examined by H&E staining. The liver, heart, and kidney damage indices were analyzed using plasma. The blood index was assayed using complete blood samples. We show that LXRβ-selective antagonist sophoricoside and LXRα/β dual-antagonist morin alleviated lipid accumulation in the liver in overweight monkeys. The compounds resulted in higher plasma TC or LDL-c contents, increased white blood cell and lymphocyte count, and decreased neutrophile granulocyte count in the monkeys. The compounds did not alter plasma glucose, apolipoprotein A (ApoA), ApoB, ApoE, lipoprotein (a) (LPA), nonesterified fatty acid (NEFA), aspartate transaminases (AST), creatinine (CREA), urea nitrogen (UN), and creatine kinase (CK) levels. Our data suggest that LXRβ-selective and LXRα/β dual antagonism may lead to hypercholesterolemia in nonhuman primates, which calls into question the development of LXR antagonist as a therapy for NAFLD.
Collapse
Affiliation(s)
- Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Haiyan Zhang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yahui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuanyuan Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lingling Luo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongrun Wang
- Hengshu Bio-Technology Company, Yibin HighTech Park, Yibin, Sichuan 644601, China
| | - Gen Chen
- Hengshu Bio-Technology Company, Yibin HighTech Park, Yibin, Sichuan 644601, China
| | - Lianjun Xing
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Peiyong Zheng
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
35
|
Cheng J, Liu Y, Liu Y, Liu D, Liu Y, Guo Y, Wu Z, Li H, Wang H. Ursolic acid alleviates lipid accumulation by activating the AMPK signaling pathway in vivo and in vitro. J Food Sci 2020; 85:3998-4008. [PMID: 33001454 DOI: 10.1111/1750-3841.15475] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/10/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023]
Abstract
The mechanism underlying the effect of ursolic acid (UA) on lipid metabolism remains unclear. This study aimed to explore the mechanisms of UA in reducing lipid accumulation in free fatty acids-cultured HepG2 cells and in high-fat-diet-fed C57BL/6J mice. In vivo, UA effectively alleviated liver steatosis and decreased the size of adipocytes in the epididymis. It also significantly decreased the total cholesterol (TC) and triglyceride (TG) contents in the liver and plasma in C57BL/6 mice. In vitro, UA (20 µM) significantly reduced lipid accumulation; the intracellular TC contents decreased from 0.078 ± 0.0047 to 0.049 ± 0.0064 µmol/mg protein, and TG contents from 0.133 ± 0.005 to 0.066 ± 0.0047 µmol/mg protein, in HepG2 cells. Furthermore, UA reduced the mRNA expression related to fat synthesis, enhanced the mRNA expression related to adipose decomposition, and dramatically upregulated the protein expression of P-AMPK in vivo and in vitro. Of note, these protective effects of UA on a high-fat environment were blocked by the AMPK inhibitor (compound C) in vitro. In addition, the molecular docking results suggested that UA could be docked to the AMPK protein as an AMPK activator. These results indicated that UA lowered the lipid content probably via activating the AMPK signaling pathway, thereby inhibiting lipid synthesis and promoting fat decomposition. PRACTICAL APPLICATION: Ursolic acid (UA) widely exists in vegetables and fruits. This study highlighted a lipid-lowing mechanism of UA in HepG2 cells and C57BL/6J mice. The data indicated that UA might be used in lipid-lowering functional foods.
Collapse
Affiliation(s)
- Jing Cheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, 300457, China
| | - Ying Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, 300457, China
| | - Yaojie Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, 300457, China
| | - Dong Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, 300457, China
| | - Yang Liu
- Animal and Plant and Food Inspection Center of Tianjin Customs (Former Tianjin Inspection and Quarantine Bureau), Tianjin, 300461, China
| | - Yatu Guo
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, 300384, China
| | - Zijian Wu
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300143, China
| | - Heyu Li
- Tianjin Ubasio Biotechnology Group Co. Ltd., Tianjin, 300457, China
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, 300457, China
| |
Collapse
|
36
|
Xu Y, Guo W, Zhang C, Chen F, Tan HY, Li S, Wang N, Feng Y. Herbal Medicine in the Treatment of Non-Alcoholic Fatty Liver Diseases-Efficacy, Action Mechanism, and Clinical Application. Front Pharmacol 2020; 11:601. [PMID: 32477116 PMCID: PMC7235193 DOI: 10.3389/fphar.2020.00601] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/17/2020] [Indexed: 12/19/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease with high prevalence in the developed countries. NAFLD has been considered as one of the leading causes of cryptogenic cirrhosis and chronic liver disease. The individuals with obesity, insulin resistance and diabetes mellitus, hyperlipidaemia, and hypertension cardiovascular disease have a high risk to develop NAFLD. The related critical pathological events are associated with the development of NAFLD including insulin resistance, lipid metabolism dysfunction, oxidative stress, inflammation, apoptosis, and fibrosis. The development of NAFLD range from simple steatosis to non-alcoholic steatohepatitis (NASH). Hepatic steatosis is characterized by fat accumulation, which represents the early stage of NAFLD. Then, inflammation triggered by steatosis drives early NAFLD progression into NASH. Therefore, the amelioration of steatosis and inflammation is essential for NAFLD therapy. The herbal medicine have taken great effects on the improvement of steatosis and inflammation for treating NAFLD. It has been found out that these effects involved the multiple mechanisms underlying lipid metabolism and inflammation. In this review, we pay particular attention on herbal medicine treatment and make summary about the research of herbal medicine, including herb formula, herb extract and naturals compound on NAFLD. We make details about their protective effects, the mechanism of action involved in the amelioration steatosis and inflammation for NAFLD therapy as well as the clinical application.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
37
|
Sesamin, a Naturally Occurring Lignan, Inhibits Ligand-Induced Lipogenesis through Interaction with Liver X Receptor Alpha (LXR α) and Pregnane X Receptor (PXR). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9401648. [PMID: 31976003 PMCID: PMC6959160 DOI: 10.1155/2019/9401648] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022]
Abstract
Liver X receptor (LXR) is a nuclear receptor that regulates various biological processes, including de novo lipogenesis, cholesterol metabolism, and inflammation. Selective inhibition of LXR may aid the treatment of nonalcoholic fatty liver disease (NAFLD). Sesamin is a naturally occurring lignan in many dietary plants and has a wide range of beneficial effects on metabolism. The mechanism underlying sesamin action especially on the regulation of LXR remains elusive. Reporter assays, mRNA and protein expression, and in silico modeling were used to identify sesamin as an antagonist of LXRα. Sesamin was applied to the hepatic HepaRG and intestinal LS174T cells and showed that it markedly ameliorated lipid accumulation in the HepaRG cells, by reducing LXRα transactivation, inhibiting the expression of downstream target genes. This effect was associated with the stimulation of AMP-activated protein kinase (AMPK) signaling pathway, followed by decreased T0901317-LXRα-induced expression of SREBP-1c and its downstream target genes. Mechanistically, sesamin reduced the recruitment of SRC-1 but enhanced that of SMILE to the SREBP-1c promoter region under T0901317 treatment. It regulated the transcriptional control exerted by LXRα by influencing its interaction with coregulators and thus decreased mRNA and protein levels of genes downstream of LXRα and reduced lipid accumulation in hepatic cells. Additionally, sesamin reduced valproate- and rifampin-induced LXRα and pregnane X receptor (PXR) transactivation. This was associated with reduced expression of target genes and decreased lipid accumulation. Thus, sesamin is an antagonist of LXRα and PXR and suggests that it may alleviate drug-induced lipogenesis via the suppression of LXRα and PXR signaling.
Collapse
|
38
|
Ni M, Zhang B, Zhao J, Feng Q, Peng J, Hu Y, Zhao Y. Biological mechanisms and related natural modulators of liver X receptor in nonalcoholic fatty liver disease. Biomed Pharmacother 2019; 113:108778. [PMID: 30897538 DOI: 10.1016/j.biopha.2019.108778] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is becoming a worldwide health problem, but no approved medical treatment exists so far. Nuclear receptors are one of the drug targets for nonalcoholic steatohepatitis (NASH). Among them, liver X receptor (LXR) has been studied in recent years in tumors, metabolic diseases and inflammatory diseases, but its physiological and pharmacological effects in the treatment of NASH are controversial. Activation of LXR has the potential to modulate cholesterol homeostasis, induce anti-inflammatory effects and increase insulin sensitivity, but liver lipid deposition and hypertriglyceridemia are also increased. Inhibition of liver LXR transcriptional activity in the context of NAFLD can effectively alleviate hepatic steatosis, inflammation, and fibrosis but elevates the risk of potential cardiovascular disease. The contradictory pharmacodynamic effects of LXR in the treatment of NASH increase the difficulty of developing targeted drugs. Moreover, natural compounds play an important part in drug development, and in recent years, some natural compounds have been reported to treat NAFLD by acting on LXR or LXR pathways with fewer adverse reactions, presenting a promising therapeutic prospect. In this review, we discuss the mechanisms of LXR in NASH and summarize the natural products reported to modulate NAFLD via LXR or the LXR pathway, offering an alternative approach for LXR-related drug development in NAFLD.
Collapse
Affiliation(s)
- Mingzhu Ni
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Binbin Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianan Zhao
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qin Feng
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key laboratory of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinghua Peng
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key laboratory of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiyang Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key laboratory of Traditional Chinese Medicine, Shanghai 201203, China; E-Institute of Shanghai Municipal Education Commission, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yu Zhao
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key laboratory of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
39
|
Cheng N, Chen S, Liu X, Zhao H, Cao W. Impact of SchisandraChinensis Bee Pollen on Nonalcoholic Fatty Liver Disease and Gut Microbiota in HighFat Diet Induced Obese Mice. Nutrients 2019; 11:E346. [PMID: 30736329 PMCID: PMC6412546 DOI: 10.3390/nu11020346] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 01/22/2023] Open
Abstract
Schisandrachinensisbee pollen has been used as a health food in China for centuries; however, its bioactive constituents and functions are not very clear. In this study, we investigated the phenolic compounds of Schisandrachinensisbee pollen extract (SCPE) by UHPLC-Q-Orbitrap-HRMS/HPLC-DAD-ECD and its prevention from nonalcoholic fatty liver disease (NAFLD) and modulation of gut microbiota in high fat diet induced obese C57BL/6 mice. The results showed that 12 phenolic compounds were identified in SCPE, and naringenin, rutin and chrysin were the main constituents. The content of naringenin reached 1.89 mg/g, and total phenolic content (TPC) of SCPE were 101.83 mg GA/g. After obese mice were administrated with SCPE at 7.86 and 15.72 g/kg BW for 8 weeks, body weight gains were reduced by 18.23% and 19.37%. SCPE could decrease fasting blood glucose, cut down the lipid accumulation in serum and liver, lessen oxidative injury and inflammation in obesity mice. Moreover, SCPE could effectively inhibit the formation of NAFLD by inhibition of LXR-α, SREBP-1c and FAS genes expression, and modulate the structural alteration of gut microbiota in obesity mice. These findings suggested that SCPE could attenuate the features of the metabolism syndrome in obesity mice, which can be used to prevent obesity and NAFLD of human beings.
Collapse
Affiliation(s)
- Ni Cheng
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China.
- Bee Product Research Center of Shaanxi Province, Xi'an 710065, China.
| | - Sinan Chen
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China.
| | - Xinyan Liu
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China.
| | - Haoan Zhao
- School of Chemical Engineering, Northwest University, 229 North TaiBai Road, Xi'an 710069, China.
| | - Wei Cao
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China.
- Bee Product Research Center of Shaanxi Province, Xi'an 710065, China.
| |
Collapse
|