1
|
Zhao C, Lei S, Zhao H, Li Z, Miao Y, Peng C, Gong J. Theabrownin remodels the circadian rhythm disorder of intestinal microbiota induced by a high-fat diet to alleviate obesity in mice. Food Funct 2025; 16:1310-1329. [PMID: 39866149 DOI: 10.1039/d4fo05947f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The intestinal microbiota undergoes diurnal compositional and functional oscillations within a day, which affect the metabolic homeostasis of the host and exacerbate the occurrence of obesity. TB has the effect of reducing body weight and lipid accumulation, but the mechanism of improving obesity caused by a high-fat diet based on the circadian rhythm of intestinal microorganisms has not been clarified. In this study, we used multi-omics and imaging approaches to investigate the mechanism of TB in alleviating obesity in mice based on the circadian rhythm of gut microbiota. The results showed that TB could significantly regulate the levels and rhythmic expression of serum lipid indicators (TG, TC, LDL) and serum hormones (MT, FT3, LEP, CORT). The number of intestinal microbiota colonizing the colonic epithelium underwent daily fluctuations. TB remodeled the rhythmic oscillation of gut microbes (i.e., Lachnospiraceae_NK4A136_group, Alistipes, etc.), including the number, composition, abundance and rhythmic expression of the biogeographic localization of microbes. TB notably reduced the levels of 16 bile acids (TCA, THDCA, TCDA, GHDCA, T-α-MCA, etc.) and restored the balance of bile acid metabolism. It was found that TB may mitigate high-fat diet-induced obesity in mice by reshaping the circadian rhythm of the gut microbiome and regulating bile acid metabolism.
Collapse
Affiliation(s)
- Chunyan Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
| | - Shuwen Lei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
| | - Hong Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
| | - Zelin Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
- Agro-products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650221, China
| | - Yue Miao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650201, China
| | - Chunxiu Peng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, Yunnan 650201, China.
| | - Jiashun Gong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
- Agro-products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650221, China
| |
Collapse
|
2
|
Gao Y, Wen Y, Lin Q, Feng Y, Shi X, Xiao S, Tumukunde E, Zheng K, Cao S. Phylogenetic and Expression Analysis of SBP-Box Gene Family to Enhance Environmental Resilience and Productivity in Camellia sinensis cv. Tie-guanyin. PLANTS (BASEL, SWITZERLAND) 2025; 14:422. [PMID: 39942984 PMCID: PMC11819660 DOI: 10.3390/plants14030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/15/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025]
Abstract
Tieguanyin tea, a renowned oolong tea, is one of the ten most famous teas in China. The Squamosa Promoter Binding Protein (SBP)-box transcription factor family, widely present in plants, plays a crucial role in plant development, growth, and stress responses. In this study, we identify and analyze 22 CsSBP genes at the genome-wide level. These genes were distributed unevenly across 11 chromosomes. Using Arabidopsis thaliana and Solanum lycopersicum L. as model organisms, we constructed a phylogenetic tree to classify these genes into six distinct subfamilies. Collinearity analysis revealed 20 homologous gene pairs between AtSBP and CsSBP, 21 pairs between SiSBP and CsSBP, and 14 pairs between OsSBP and CsSBP. Cis-acting element analysis indicated that light-responsive elements were the most abundant among the CsSBP genes. Protein motif, domain, and gene architecture analyses demonstrated that members of the same subgroup shared similar exon-intron structures and motif arrangements. Furthermore, we evaluated the expression profiles of nine CsSBP genes under light, shade, and cold stress using qRT-PCR analysis. Notably, CsSBP1, CsSBP17, and CsSBP19 were significantly upregulated under all three stresses. This study provides fundamental insights into the CsSBP gene family and offers a novel perspective on the mechanisms of SBP transcription factor-mediated stress responses, as well as Tieguanyin tea's adaptation to environmental variations.
Collapse
Affiliation(s)
- Yusen Gao
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.G.); (S.X.)
| | - Yingxin Wen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.W.); (Y.F.)
| | - Qinmin Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (X.S.)
| | - Yizhuo Feng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.W.); (Y.F.)
| | - Xinying Shi
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (X.S.)
| | - Siyao Xiao
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.G.); (S.X.)
| | - Elisabeth Tumukunde
- College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China;
| | - Kehui Zheng
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.W.); (Y.F.)
| |
Collapse
|
3
|
Li X, Zhang Y, Zhang Q, Cao A, Feng J. Eucalyptus essential oil exerted a sedative-hypnotic effect by influencing brain neurotransmitters and gut microbes via the gut microbiota-brain axis. Front Pharmacol 2024; 15:1464654. [PMID: 39386024 PMCID: PMC11461282 DOI: 10.3389/fphar.2024.1464654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
Sleep disorders are becoming more and more common, leading to many health problems. However, most of current available medications to treat sleep disorders are addictive and even impair cognitive abilities. Therefore, it is important to find a natural and safe alternative to treat sleep disorders. In this study, twenty-four 8-week-old male ICR mice (25 ± 2 g) were equally divided into three groups: the control group (gavage of 0.9% saline), the eucalyptus essential oil (EEO) group (10 mg/kg B.W.), and the diazepam group (1 mg/kg B.W.). Firstly, open field test and sleep induction test were used to determine the sedative-hypnotic effect of EEO. Secondly, the effect of EEO on neurotransmitters in the mice brain was determined. Finally, based on the gut microbiota-brain axis (GMBA), the effect of EEO on the intestinal flora of mice was explored. It was found that EEO significantly reduce the activity and prolong the sleep duration of mice, exhibiting a good sedative-hypnotic effect. In the brain, EEO could increase the levels of sleep-promoting neurotransmitters, such as glutamine, Gamma-aminobutyric acid (GABA), glycine, tryptophan, N-acetylserotonin, and 5-hydroxyindoleacetic acid (5-HIAA). In the intestine, EEO was found to increase the diversity of gut microbes, the abundance of short chain fatty acid (SCFA) producing flora, and the abundance of functional flora synthesizing GABA and glycine neurotransmitters. These studies suggested that EEO exerted a sedative-hypnotic effect by acting on gut microbes and neurotransmitters in the brain. EEO has the potential to become a natural and safe alternative to traditional hypnotic sedative drugs.
Collapse
Affiliation(s)
- Xuejiao Li
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yuanyi Zhang
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Qian Zhang
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Aizhi Cao
- Biotechnology R&D Center of Shandong Longchang Animal Health Products Co., Ltd., Jinan, China
| | - Jie Feng
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Wu X, Zhou Y, Xi Y, Zhou H, Tang Z, Xiong L, Qin D. Polyphenols: Natural Food-Grade Biomolecules for the Treatment of Nervous System Diseases from a Multi-Target Perspective. Pharmaceuticals (Basel) 2024; 17:775. [PMID: 38931442 PMCID: PMC11206395 DOI: 10.3390/ph17060775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Polyphenols are the most prevalent naturally occurring phytochemicals in the human diet and range in complexity from simple molecules to high-molecular-weight polymers. They have a broad range of chemical structures and are generally categorized as "neuroprotective", "anti-inflammatory", and "antioxidant" given their main function of halting disease onset and promoting health. Research has shown that some polyphenols and their metabolites can penetrate the blood-brain barrier and hence increase neuroprotective signaling and neurohormonal effects to provide anti-inflammatory and antioxidant effects. Therefore, multi-targeted modulation of polyphenols may prevent the progression of neuropsychiatric disorders and provide a new practical therapeutic strategy for difficult-to-treat neuropsychiatric disorders. Therefore, multi-target modulation of polyphenols has the potential to prevent the progression of neuropsychiatric disorders and provide a new practical therapeutic strategy for such nervous system diseases. Herein, we review the therapeutic benefits of polyphenols on autism-spectrum disorders, anxiety disorders, depression, and sleep disorders, along with in vitro and ex vivo experimental and clinical trials. Although their methods of action are still under investigation, polyphenols are still seldom employed directly as therapeutic agents for nervous system disorders. Comprehensive mechanistic investigations and large-scale multicenter randomized controlled trials are required to properly evaluate the safety, effectiveness, and side effects of polyphenols.
Collapse
Affiliation(s)
- Xinchen Wu
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.W.); (Y.Z.); (Y.X.)
| | - Yang Zhou
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.W.); (Y.Z.); (Y.X.)
| | - Yujiang Xi
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.W.); (Y.Z.); (Y.X.)
| | - Haimei Zhou
- School of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (H.Z.); (Z.T.)
| | - Zhengxiu Tang
- School of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (H.Z.); (Z.T.)
| | - Lei Xiong
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.W.); (Y.Z.); (Y.X.)
| | - Dongdong Qin
- School of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (H.Z.); (Z.T.)
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China
| |
Collapse
|
5
|
Wang X, Ye G, Wang Z, Wang Z, Gong L, Wang J, Liu J. Dietary Oat β-Glucan Alleviates High-Fat Induced Insulin Resistance through Regulating Circadian Clock and Gut Microbiome. Mol Nutr Food Res 2024; 68:e2300917. [PMID: 38778506 DOI: 10.1002/mnfr.202300917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/16/2024] [Indexed: 05/25/2024]
Abstract
SCOPE High-fat diet induced circadian rhythm disorders (CRD) are associated with metabolic diseases. As the main functional bioactive component in oat, β-glucan (GLU) can improve metabolic disorders, however its regulatory effect on CRD remains unclear. In this research, the effects of GLU on high-fat diet induced insulin resistance and its mechanisms are investigated, especially focusing on circadian rhythm-related process. METHODS AND RESULTS Male C57BL/6 mice are fed a low fat diet, a high-fat diet (HFD), and HFD supplemented 3% GLU for 13 weeks. The results show that GLU treatment alleviates HFD-induced insulin resistance and intestinal barrier dysfunction in obese mice. The rhythmic expressions of circadian clock genes (Bmal1, Clock, and Cry1) in the colon impaired by HFD diet are also restored by GLU. Further analysis shows that GLU treatment restores the oscillatory nature of gut microbiome, which can enhance glucagon-like peptide (GLP-1) secretion via short-chain fatty acids (SCFAs) mediated activation of G protein-coupled receptors (GPCRs). Meanwhile, GLU consumption significantly relieves colonic inflammation and insulin resistance through modulating HDAC3/NF-κB signaling pathway. CONCLUSION GLU can ameliorate insulin resistance due to its regulation of colonic circadian clock and gut microbiome.
Collapse
Affiliation(s)
- Xingyu Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Gaoqi Ye
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Zongwei Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
| | - Ziyuan Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing, 100048, China
| | - Lingxiao Gong
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing, 100048, China
| | - Jing Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing, 100048, China
| | - Jie Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, 100048, China
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing, 100048, China
| |
Collapse
|
6
|
Wu T, Zhu W, Chen L, Jiang T, Dong Y, Wang L, Tong X, Zhou H, Yu X, Peng Y, Wang L, Xiao Y, Zhong T. A review of natural plant extracts in beverages: Extraction process, nutritional function, and safety evaluation. Food Res Int 2023; 172:113185. [PMID: 37689936 DOI: 10.1016/j.foodres.2023.113185] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
The demand for foods and beverages with therapeutic and functional features has increased as a result of rising consumer awareness of health and wellness. In natural, plants are abundant, widespread, and inexpensive, in addition to being rich in bioactive components that are beneficial to health. The bioactive substances contained in plants include polyphenols, polysaccharides, flavonoids, aromatics, aliphatics, terpenoids, etc., which have rich active functions and application potential for plant-based beverages. In this review, various existing extraction processes and their advantages and disadvantages are introduced. The antioxidant, anti-inflammatory, intestinal flora regulation, metabolism regulation, and nerve protection effects of plant beverages are described. The biotoxicity and sensory properties of plant-based beverages are also summarized. With the diversification of the food industry and commerce, plant-based beverages may become a promising new category of health functional foods in our daily lives.
Collapse
Affiliation(s)
- Tong Wu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Wanying Zhu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Linyan Chen
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Tao Jiang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Yuhe Dong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Letao Wang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Xinyang Tong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Hui Zhou
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Ling Wang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao.
| |
Collapse
|
7
|
Fang WW, Wang KF, Zhou F, Ou-Yang J, Zhang ZY, Liu CW, Zeng HZ, Huang JA, Liu ZH. Oolong tea of different years protects high-fat diet-fed mice against obesity by regulating lipid metabolism and modulating the gut microbiota. Food Funct 2023; 14:2668-2683. [PMID: 36883322 DOI: 10.1039/d2fo03577d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Long-term stored oolong tea has recently attracted considerable attention concerning its salutary effect. In this study, the anti-obesity effect of different years' oolong tea on high-fat diet-fed mice was compared. Wuyi rock tea of 2001, 2011, and 2020 were chosen to be the representative samples of oolong tea. The results showed that eight-week administration of 2001 Wuyi rock tea (WRT01), 2011 Wuyi rock tea (WRT11), and 2020 Wuyi rock tea (WRT20) extracts (400 mg per kg per d) significantly decreased the body weight and attenuated the obesity in high-fat diet-fed mice. 2001 and 2011 Wuyi rock teas reduced obesity mainly through regulating lipid metabolism and activating the AMPK/SREBP-1 pathway, downregulating the expression of SREBP-1, FAS, and ACC and upregulating CPT-1a expression; while the 2011 and 2020 Wuyi rock teas by moderating the gut microbiota dysbiosis, reshaping the gut microbiota, and promoting the growth of beneficial bacteria, especially Akkermansia. 2011 Wuyi rock tea was proven to be more effective in reducing body weight gain and liver oxidative stress than the others. Collectively, all three Wuyi rock teas of different years alleviated high-fat diet-induced obesity by regulating lipid metabolism and modulating gut microbiota, whereas the emphasis of their internal mechanism is different with different storage ages.
Collapse
Affiliation(s)
- Wen-Wen Fang
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Kuo-Fei Wang
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Fang Zhou
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Jie Ou-Yang
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Zi-Ying Zhang
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Chang-Wei Liu
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Hong-Zhe Zeng
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Jian-An Huang
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| | - Zhong-Hua Liu
- Key Laboratory of Tea Science of Ministry of Education; National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients; Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients; Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
8
|
Winiarska-Mieczan A, Kwiecień M, Jachimowicz-Rogowska K, Donaldson J, Tomaszewska E, Baranowska-Wójcik E. Anti-Inflammatory, Antioxidant, and Neuroprotective Effects of Polyphenols-Polyphenols as an Element of Diet Therapy in Depressive Disorders. Int J Mol Sci 2023; 24:ijms24032258. [PMID: 36768580 PMCID: PMC9916817 DOI: 10.3390/ijms24032258] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Depressive disorders can affect up to 350 million people worldwide, and in developed countries, the percentage of patients with depressive disorders may be as high as 10%. During depression, activation of pro-inflammatory pathways, mitochondrial dysfunction, increased markers of oxidative stress, and a reduction in the antioxidant effectiveness of the body are observed. It is estimated that approximately 30% of depressed patients do not respond to traditional pharmacological treatments. However, more and more attention is being paid to the influence of active ingredients in food on the course and risk of neurological disorders, including depression. The possibility of using foods containing polyphenols as an element of diet therapy in depression was analyzed in the review. The possibility of whether the consumption of products such as polyphenols could alleviate the course of depression or prevent the progression of it was also considered. Results from preclinical studies demonstrate the potential of phenolic compounds have the potential to reduce depressive behaviors by regulating factors related to oxidative stress, neuroinflammation, and modulation of the intestinal microbiota.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland
- Correspondence: ; Tel.: +48-81-445-67-44
| | - Małgorzata Kwiecień
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland
| | - Karolina Jachimowicz-Rogowska
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland
| | - Janine Donaldson
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna St. 8, 20-704 Lublin, Poland
| |
Collapse
|
9
|
Xiang Q, Liu Y, Wu Z, Wang R, Zhang X. New hints for improving sleep: Tea polyphenols mediate gut microbiota to regulate circadian disturbances. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Qiao Xiang
- Department of Food Science and Engineering Ningbo University Ningbo P.R. China
| | - Yanan Liu
- Department of Food Science and Engineering Ningbo University Ningbo P.R. China
| | - Zufang Wu
- Department of Food Science and Engineering Ningbo University Ningbo P.R. China
| | - Rui Wang
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life Sciences Sichuan University Chengdu P.R. China
| | - Xin Zhang
- Department of Food Science and Engineering Ningbo University Ningbo P.R. China
| |
Collapse
|
10
|
Steg A, Oczkowicz M, Smołucha G. Omics as a Tool to Help Determine the Effectiveness of Supplements. Nutrients 2022; 14:nu14245305. [PMID: 36558464 PMCID: PMC9784029 DOI: 10.3390/nu14245305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
There has been considerable interest in dietary supplements in the last two decades. Companies are releasing new specifics at an alarming pace, while dietary supplements are one of the less-studied substances released for public consumption. However, access to state-of-the-art and high-throughput techniques, such as the ones used in omics, make it possible to check the impact of a substance on human transcriptome or proteome and provide answers to whether its use is reasonable and beneficial. In this review, the main domains of omics are briefly introduced. The review focuses on the three most widely used omics techniques: NGS, LC-MS, NMR, and their usefulness in studying dietary supplements. Examples of studies are described for some of the most commonly supplemented substances, such as vitamins: D, E, A, and plant extracts: resveratrol, green tea, ginseng, and curcumin extract. Techniques used in omics have proven to be useful in studying dietary supplements. NGS techniques are helpful in identifying pathways that change upon supplementation and determining polymorphisms or conditions that qualify for the necessity of a given supplementation. LC-MS techniques are used to establish the serum content of supplemented a compound and its effects on metabolites. Both LC-MS and NMR help establish the actual composition of a compound, its primary and secondary metabolites, and its potential toxicity. Moreover, NMR techniques determine what conditions affect the effectiveness of supplementation.
Collapse
|
11
|
Zhang Y, Feng X, Lin H, Chen X, He P, Wang Y, Chu Q. Tieguanyin extracts ameliorated DSS-induced mouse colitis by suppressing inflammation and regulating intestinal microbiota. Food Funct 2022; 13:13040-13051. [PMID: 36453715 DOI: 10.1039/d2fo02781j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Previous studies have shown that a typical kind of oolong tea, Tieguanyin, has multiple health benefits, while there is no research investigating its effects on inflammatory bowel disease (IBD). In this study, we aimed to explore the alleviation effects of Tieguanyin water (TWE) and ethanol (TES) extracts on IBD. Physiological activity status, colitis severity (disease activity index (DAI), colon and spleen weight), inflammatory cytokines (interleukin (IL)-4, interferon-γ (IFN-γ), IL-17, transforming growth factor-β (TGF-β), and IL-10) and microbiota composition were measured in experimental colitis mice induced by dextran sulfate sodium (DSS). TWE and TES exerted remarkable protective effects against experimental colitis, showing decreased colitis severity and improved colon morphology. TES also suppressed colonic inflammation via downregulation of pro-inflammatory cytokines (IL-4, IFN-γ, IL-17, and TGF-β) and upregulation of the anti-inflammatory cytokine IL-10. In addition, TWE and TES treatment caused significant alterations in the gut microbiota. Oolong tea extract treatment reduced the community abundance of pernicious bacteria Escherichia-Shigella from 21.6% (DSS) to 0.9% (TES) and 1.2% (TWE), and elevated that of probiotics Lachnospiraceae_NK4A136_group from 2.2% to 15.2% (TES) and 11.9% (TWE). Therefore, TWE and TES both remarkably ameliorated DSS-induced colitis, which suggested oolong extracts could be a candidate for IBD treatment.
Collapse
Affiliation(s)
- Yuxi Zhang
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China. .,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Xinyu Feng
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China. .,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.,Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Haiyu Lin
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China. .,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Xue Chen
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China. .,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Puming He
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China. .,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Yuefei Wang
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China. .,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Qiang Chu
- Institute of Tea Science, Zhejiang University, Hangzhou 310058, China. .,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| |
Collapse
|
12
|
Lin Y, Yu W, Cai C, Wang P, Gao S, Zhang J, Fan X, Fang W, Ye N. Rapid varietal authentication of oolong tea products by microfluidic-based SNP genotyping. Food Res Int 2022; 162:111970. [DOI: 10.1016/j.foodres.2022.111970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/04/2022] [Accepted: 09/21/2022] [Indexed: 11/04/2022]
|
13
|
Torres‐Fuentes C, Suárez M, Aragonès G, Mulero M, Ávila‐Román J, Arola‐Arnal A, Salvadó MJ, Arola L, Bravo FI, Muguerza B. Cardioprotective Properties of Phenolic Compounds: A Role for Biological Rhythms. Mol Nutr Food Res 2022; 66:e2100990. [PMID: 35279936 PMCID: PMC9786928 DOI: 10.1002/mnfr.202100990] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/25/2022] [Indexed: 12/30/2022]
Abstract
Cardiovascular diseases (CVD) are the leading cause of deaths worldwide and their prevalence is continuously increasing. Available treatments may present several side effects and therefore the development of new safer therapeutics is of interest. Phenolic compounds have shown several cardioprotective properties helpful in reducing different CVD risk factors such as inflammation, elevated blood pressure, hyperlipidemia, or endothelial dysfunction. These factors are significantly influenced by biological rhythms which are in fact emerging as key modulators of important metabolic and physiological processes. Thus, increased events of CVD have been observed under circadian rhythm disruption or in winter versus other seasons. These rhythms can also affect the functionality of phenolic compounds. Indeed, different effects have been observed depending on the administration time or under different photoperiods. Therefore, in this review the focus will be on the potential of phenolic compounds as therapeutics to prevent CVD via biological rhythm modulation.
Collapse
Affiliation(s)
- Cristina Torres‐Fuentes
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Manuel Suárez
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Gerard Aragonès
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Miquel Mulero
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Javier Ávila‐Román
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Anna Arola‐Arnal
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Maria Josepa Salvadó
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Lluís Arola
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Francisca Isabel Bravo
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Begoña Muguerza
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| |
Collapse
|
14
|
Sweet R, Kroon PA, Webber MA. Activity of antibacterial phytochemicals and their potential use as natural food preservatives. Crit Rev Food Sci Nutr 2022; 64:2076-2087. [PMID: 36121430 DOI: 10.1080/10408398.2022.2121255] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The risk to human health from bacterial foodborne infection is presently controlled by the addition of antimicrobial preservatives to food. However, the use of chemical preservatives such as sodium nitrite poses a health risk in themselves with concerns around carcinogenic effects. This makes the development of improved preservatives a priority for the food industry. One promising source of novel antimicrobial compounds can be found in nature; phytochemicals, in particular polyphenols are secondary metabolites produced by plants for numerous purposes including antimicrobial defence. There has been significant study of phytochemicals; including quantifying their antimicrobial activity, potential to synergise with current antibiotics and the feasibility of their application as natural food preservatives. However, there remains significant uncertainty about the relative antimicrobial efficacy of different phytochemicals, their mechanisms of action (MOA) and the potential for emergence of bacterial resistance to their effects. This review summarizes recent work relevant to the potential development of phytochemicals as antimicrobial agents.
Collapse
Affiliation(s)
- Ryan Sweet
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Paul A Kroon
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Norwich Medical School, Norwich Research Park, Norwich, UK
| |
Collapse
|
15
|
Polysaccharides from Bamboo Shoot (Leleba oldhami Nakal) Byproducts Alleviate Antibiotic-Associated Diarrhea in Mice through Their Interactions with Gut Microbiota. Foods 2022; 11:foods11172647. [PMID: 36076830 PMCID: PMC9455761 DOI: 10.3390/foods11172647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 02/06/2023] Open
Abstract
A water-soluble polysaccharide BSP was extracted from the basal part of bamboo shoot, a main by-product of bamboo shoot processing. BSP is composed of glucose (72.8%), xylose (19.43%) and a small amount of galactose, arabinose, glucuronic acid and mannose. The effects of BSP on mice with antibiotic-associated diarrhea (AAD) were investigated. The mice fed with BSP exhibited significant higher bodyweight gain, lower pH value and higher concentrations of SCFAs in the feces compared with those fed with saline. BSP administration reduced the inflammatory cells in the small intestine and colon in the AAD mice, and Firmicutes/Bacteroidetes ratio in the gut was decreased from 0.56 to 0.19. Moreover, BSP administration affected the composition and diversity of the gut microbiota in the AAD mice, particularly on the improvement of beneficial bacteria such as Bacteroides, Lactobacillus and Lachnospiraceae_NK4A136_group. Our results suggest that the polysaccharides from bamboo shoot by-products could be an attractive natural component for gut health and AAD treatment.
Collapse
|
16
|
Shi M, Lu Y, Wu J, Zheng Z, Lv C, Ye J, Qin S, Zeng C. Beneficial Effects of Theaflavins on Metabolic Syndrome: From Molecular Evidence to Gut Microbiome. Int J Mol Sci 2022; 23:7595. [PMID: 35886943 PMCID: PMC9317877 DOI: 10.3390/ijms23147595] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, many natural foods and herbs rich in phytochemicals have been proposed as health supplements for patients with metabolic syndrome (MetS). Theaflavins (TFs) are a polyphenol hydroxyl substance with the structure of diphenol ketone, and they have the potential to prevent and treat a wide range of MetS. However, the stability and bioavailability of TFs are poor. TFs have the marvelous ability to alleviate MetS through antiobesity and lipid-lowering (AMPK-FoxO3A-MnSOD, PPAR, AMPK, PI3K/Akt), hypoglycemic (IRS-1/Akt/GLUT4, Ca2+/CaMKK2-AMPK, SGLT1), and uric-acid-lowering (XO, GLUT9, OAT) effects, and the modulation of the gut microbiota (increasing beneficial gut microbiota such as Akkermansia and Prevotella). This paper summarizes and updates the bioavailability of TFs, and the available signaling pathways and molecular evidence on the functionalities of TFs against metabolic abnormalities in vitro and in vivo, representing a promising opportunity to prevent MetS in the future with the utilization of TFs.
Collapse
Affiliation(s)
- Meng Shi
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Yuting Lu
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Junling Wu
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Zhibing Zheng
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Chenghao Lv
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Jianhui Ye
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China;
| | - Si Qin
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Chaoxi Zeng
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| |
Collapse
|
17
|
Winiarska-Mieczan A, Tomaszewska E, Donaldson J, Jachimowicz K. The Role of Nutritional Factors in the Modulation of the Composition of the Gut Microbiota in People with Autoimmune Diabetes. Nutrients 2022; 14:2498. [PMID: 35745227 PMCID: PMC9227140 DOI: 10.3390/nu14122498] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a disease marked by oxidative stress, chronic inflammation, and the presence of autoantibodies. The gut microbiota has been shown to be involved in the alleviation of oxidative stress and inflammation as well as strengthening immunity, thus its' possible involvement in the pathogenesis of T1DM has been highlighted. The goal of the present study is to analyze information on the relationship between the structure of the intestinal microbiome and the occurrence of T1DM. The modification of the intestinal microbiota can increase the proportion of SCFA-producing bacteria, which could in turn be effective in the prevention and/or treatment of T1DM. The increased daily intake of soluble and non-soluble fibers, as well as the inclusion of pro-biotics, prebiotics, herbs, spices, and teas that are sources of phytobiotics, in the diet, could be important in improving the composition and activity of the microbiota and thus in the prevention of metabolic disorders. Understanding how the microbiota interacts with immune cells to create immune tolerance could enable the development of new therapeutic strategies for T1DM and improve the quality of life of people with T1DM.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Department of Bromatology and Nutrition Physiology, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland
| | - Janine Donaldson
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa;
| | - Karolina Jachimowicz
- Department of Bromatology and Nutrition Physiology, Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
| |
Collapse
|
18
|
He Q, Si C, Sun Z, Chen Y, Zhang X. The Intervention of Prebiotics on Depression via the Gut-Brain Axis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123671. [PMID: 35744797 PMCID: PMC9230023 DOI: 10.3390/molecules27123671] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/20/2022] [Accepted: 06/05/2022] [Indexed: 12/12/2022]
Abstract
The imbalance of intestinal microbiota can cause the accumulation of endotoxin in the main circulation system of the human body, which has a great impact on human health. Increased work and life pressure have led to a rise in the number of people falling into depression, which has also reduced their quality of life. The gut–brain axis (GBA) is closely related to the pathological basis of depression, and intestinal microbiota can improve depressive symptoms through GBA. Previous studies have proven that prebiotics can modulate intestinal microbiota and thus participate in human health regulation. We reviewed the regulatory mechanism of intestinal microbiota on depression through GBA, and discussed the effects of prebiotics, including plant polysaccharides and polyphenols on the regulation of intestinal microbiota, providing new clues for the prevention and treatment of depression.
Collapse
Affiliation(s)
- Qinghui He
- Amway (China) R&D Centre Co., Ltd., Guangzhou 510730, China;
| | - Congcong Si
- Ningbo Tech-inno Health Industry Co., Ltd., Ningbo 315211, China; (C.S.); (Z.S.); (Y.C.)
| | - Zhenjiao Sun
- Ningbo Tech-inno Health Industry Co., Ltd., Ningbo 315211, China; (C.S.); (Z.S.); (Y.C.)
| | - Yuhui Chen
- Ningbo Tech-inno Health Industry Co., Ltd., Ningbo 315211, China; (C.S.); (Z.S.); (Y.C.)
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
- Correspondence:
| |
Collapse
|
19
|
Sun Y, Ho CT, Liu Y, Zhan S, Wu Z, Zheng X, Zhang X. The Modulatory Effect of Cyclocarya paliurus Flavonoids on Intestinal Microbiota and Hypothalamus Clock Genes in a Circadian Rhythm Disorder Mouse Model. Nutrients 2022; 14:nu14112308. [PMID: 35684108 PMCID: PMC9182649 DOI: 10.3390/nu14112308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 01/27/2023] Open
Abstract
Circadian rhythm disruption is detrimental and results in adverse health consequences. We used a multi-omics profiling approach to investigate the effects of Cyclocarya paliurus flavonoid (CPF)-enriched diets on gut microbiota, metabolites, and hypothalamus clock genes in mice with induced circadian rhythm disruption. It was observed that CPF supplementation altered the specific composition and function of gut microbiota and metabolites induced by circadian rhythm disruption. Analysis showed that the abundance of Akkermansia increased, while the abundance of Clostridiales and Ruminiclostridium displayed a significant downward trend after the CPF intervention. Correlation analysis also revealed that these gut microbes had certain correlations with the metabolites, suggesting that CPFs help the intestinal microbiota to repair the intestinal environment and modulate the release of some beneficial metabolites. Notably, single-cell RNA-seq revealed that CPF supplementation significantly regulated the expression of genes associated with circadian rhythm, myelination, and neurodegenerative diseases. Altogether, these findings highlight that CPFs may represent a promising dietary therapeutic strategy for treating circadian rhythm disruption.
Collapse
Affiliation(s)
- Ying Sun
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (Y.S.); (Y.L.); (S.Z.); (Z.W.)
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
- Correspondence: (C.-T.H.); (X.Z.); (X.Z.)
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (Y.S.); (Y.L.); (S.Z.); (Z.W.)
| | - Shennan Zhan
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (Y.S.); (Y.L.); (S.Z.); (Z.W.)
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (Y.S.); (Y.L.); (S.Z.); (Z.W.)
| | - Xiaojie Zheng
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China
- Correspondence: (C.-T.H.); (X.Z.); (X.Z.)
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (Y.S.); (Y.L.); (S.Z.); (Z.W.)
- Correspondence: (C.-T.H.); (X.Z.); (X.Z.)
| |
Collapse
|
20
|
Sun Q, Xu W, Liu Y, Zhan S, Shao X, Wu Z, Weng P, Cheng K, Zhang X. Single-Cell Transcriptomic Analysis Demonstrates the Regulation of Peach Polysaccharides on Circadian Rhythm Disturbance. Mol Nutr Food Res 2022; 66:e2101170. [PMID: 35598297 DOI: 10.1002/mnfr.202101170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/06/2022] [Indexed: 11/08/2022]
Abstract
SCOPE Plant polysaccharides are thought to have a prebiotic effect, promoting the growth of probiotics, which may regulate circadian rhythms. This study evaluates the regulation of peach polysaccharides (PPS) on circadian rhythm disturbance through intestinal microbiota by a mouse model. METHODS AND RESULTS PPS is administered to mice with circadian rhythm disturbance for 4 weeks. The study finds that PPS ameliorated the structural disorder of intestinal microbiota induced by continuous darkness, decreasing the ratio of Firmicutes/Bacteroidetes (F/B), thereby regulating furfural degradation, penicillin and cephalosporin biosynthesis, and antibiotic biosynthesis. Single-cell transcriptomics is used to determine the type of hypothalamus cells and the expression of clock genes in mice, showing that the number of astrocytes and oligoendrocytes cells in the hypothalamus of the transplanted mice is up-regulated, and the expression of neuroprotective genes such as Sox9 and Mobp increased. In addition, clock genes such as Cry2 and Per3 show significant callback. CONCLUSION This study shows that PPS can ameliorate the imbalance of intestinal microbiota and cell dysfunction caused by circadian rhythm disorder, suggesting that PPS is a feasible strategy for the prevention and treatment of circadian rhythm disorder and related cognitive impairment.
Collapse
Affiliation(s)
- Qiaoyu Sun
- Department of Food Science and Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Wenqing Xu
- School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Shengnan Zhan
- Department of Food Science and Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Xingfeng Shao
- Department of Food Science and Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Peifang Weng
- Department of Food Science and Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Kejun Cheng
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui, 323000, P. R. China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, 315211, P. R. China
| |
Collapse
|
21
|
Yan R, Ho CT, Zhang X. Modulatory effects in circadian-related diseases via the reciprocity of tea polyphenols and intestinal microbiota. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Hu S, Luo L, Zeng L. Tea combats circadian rhythm disorder syndrome via the gut-liver-brain axis: potential mechanisms speculated. Crit Rev Food Sci Nutr 2022; 63:7126-7147. [PMID: 35187990 DOI: 10.1080/10408398.2022.2040945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circadian rhythm is an intrinsic mechanism developed by organisms to adapt to external environmental signals. Nowadays, owing to the job and after-work entertainment, staying up late - Circadian rhythm disorders (CRD) are common. CRD is linked to the development of fatty liver, type 2 diabetes, and chronic gastroenteritis, which affecting the body's metabolic and inflammatory responses via multi-organ crosstalk (gut-liver-brain axis, etc.). However, studies on the mechanisms of multi-organ interactions by CRD are still weak. Current studies on therapeutic agents for CRD remain inadequate, and phytochemicals have been shown to alleviate CRD-induced syndromes that may be used for CRD-therapy in the future. Tea, a popular phytochemical-rich beverage, reduces glucolipid metabolism and inflammation. But it is immature and unclear in the mechanisms of alleviation of CRD-mediated syndrome. Here, we have analyzed the threat of CRD to hosts and their offspring' health from the perspective of the "gut-liver-brain" axis. The potential mechanisms of tea in alleviating CRD were further explored. It might be by interfering with bile acid metabolism, tryptophan metabolism, and G protein-coupled receptors, with FXR, AHR, and GPCR as potential targets. We hope to provide new perspectives on the role of tea in the prevention and mitigation of CRD.HighlightsThe review highlights the health challenges of CRD via the gut-liver-brain axis.CRD research should focus on the health effects on healthy models and its offspring.Tea may prevent CRD by regulating bile acid, tryptophan, and GPCR.Potential targets for tea prevention and mitigation of CRD include FXR, AHR and GPCR.A comprehensive assessment mechanism for tea in improving CRD should be established.
Collapse
Affiliation(s)
- Shanshan Hu
- College of Food Science, Southwest University, Beibei, Chongqing, People's Republic of China
| | - Liyong Luo
- College of Food Science, Southwest University, Beibei, Chongqing, People's Republic of China
| | - Liang Zeng
- College of Food Science, Southwest University, Beibei, Chongqing, People's Republic of China
| |
Collapse
|
23
|
Zhang Y, Cheng L, Liu Y, Zhang R, Wu Z, Cheng K, Zhang X. Omics Analyses of Intestinal Microbiota and Hypothalamus Clock Genes in Circadian Disturbance Model Mice Fed with Green Tea Polyphenols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1890-1901. [PMID: 35112849 DOI: 10.1021/acs.jafc.1c07594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Green tea polyphenols (GTP) have similar activities as prebiotics, which effectively regulate the structure of intestinal flora and affect their metabolic pathways. The intestinal flora is closely related to the host's circadian rhythm, and the supplementation with GTP may be an effective way to improve circadian rhythm disorders. In this study, we established a mouse model of circadian rhythm disturbance of anthropogenic flora to investigate the regulation mechanism of GTP on the host circadian rhythms. After 4 weeks of GTP administration, the results showed that GTP significantly alleviated the structural disorder of intestinal microbiota, thus effectively regulating related metabolites associated with brain nerves and circadian rhythms. Moreover, single-cell transcription of the mouse hypothalamus suggested that GTP up-regulated the number of astrocytes and oligodendrocytes and adjusted the expression of core clock genes Csnk1d, Clock, Per3, Cry2, and BhIhe41 caused by circadian disruption. Therefore, this study provided evidence that GTP can improve the physiological health of hosts with the circadian disorder by positively affecting intestinal flora and related metabolites and regulating circadian gene expression.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Ruilin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Kejun Cheng
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, P.R. China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| |
Collapse
|
24
|
Xiang Q, Cheng L, Zhang R, Liu Y, Wu Z, Zhang X. Tea Polyphenols Prevent and Intervene in COVID-19 through Intestinal Microbiota. Foods 2022; 11:506. [PMID: 35205982 PMCID: PMC8871045 DOI: 10.3390/foods11040506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/22/2022] [Accepted: 02/05/2022] [Indexed: 12/13/2022] Open
Abstract
Although all countries have taken corresponding measures, the coronavirus disease 2019 (COVID-19) is still ravaging the world. To consolidate the existing anti-epidemic results and further strengthen the prevention and control measures against the new coronavirus, we are now actively pioneering a novel research idea of regulating the intestinal microbiota through tea polyphenols for reference. Although studies have long revealed the regulatory effect of tea polyphenols on the intestinal microbiota to various gastrointestinal inflammations, little is known about the prevention and intervention of COVID-19. This review summarizes the possible mechanism of the influence of tea polyphenols on COVID-19 mediated by the intestinal microbiota. In this review, the latest studies of tea polyphenols exhibiting their own antibacterial and anti-inflammatory activities and protective effects on the intestinal mucosal barrier are combed through and summarized. Among them, (-)-epigallocatechin-3-gallate (EGCG), one of the main monomers of catechins, may be activated as nuclear factor erythroid 2 p45-related factor 2 (Nrf2). The agent inhibits the expression of ACE2 (a cellular receptor for SARS-CoV-2) and TMPRSS2 to inhibit SARS-CoV-2 infection, inhibiting the life cycle of SARS-CoV-2. Thus, preliminary reasoning and judgments have been made about the possible mechanism of the effect of tea polyphenols on the COVID-19 control and prevention mediated by the microbiota. These results may be of great significance to the future exploration of specialized research in this field.
Collapse
Affiliation(s)
- Qiao Xiang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (Q.X.); (Y.L.); (Z.W.)
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA;
| | - Ruilin Zhang
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (Q.X.); (Y.L.); (Z.W.)
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (Q.X.); (Y.L.); (Z.W.)
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (Q.X.); (Y.L.); (Z.W.)
| |
Collapse
|
25
|
Hong M, Cheng L, Liu Y, Wu Z, Zhang P, Zhang X. A Natural Plant Source-Tea Polyphenols, a Potential Drug for Improving Immunity and Combating Virus. Nutrients 2022; 14:nu14030550. [PMID: 35276917 PMCID: PMC8839699 DOI: 10.3390/nu14030550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is still in a global epidemic, which has profoundly affected people’s lives. Tea polyphenols (TP) has been reported to enhance the immunity of the body to COVID-19 and other viral infectious diseases. The inhibitory effect of TP on COVID-19 may be achieved through a series of mechanisms, including the inhibition of multiple viral targets, the blocking of cellular receptors, and the activation of transcription factors. Emerging evidence shows gastrointestinal tract is closely related to respiratory tract, therefore, the relationship between the state of the gut–lung axis microflora and immune homeostasis of the host needs further research. This article summarized that TP can improve the disorder of flora, reduce the occurrence of cytokine storm, improve immunity, and prevent COVID-19 infection. TP may be regarded as a potential and valuable source for the design of new antiviral drugs with high efficiency and low toxicity.
Collapse
Affiliation(s)
- Mengyu Hong
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (Z.W.)
| | - Lu Cheng
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (Z.W.)
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (Z.W.)
| | - Peng Zhang
- Department of Student Affairs, Xinyang Normal University, Xinyang 464000, China
- Correspondence: (P.Z.); (X.Z.)
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (Z.W.)
- Correspondence: (P.Z.); (X.Z.)
| |
Collapse
|
26
|
Hu S, Chen Y, Zhao S, Sun K, Luo L, Zeng L. Ripened Pu-Erh Tea Improved the Enterohepatic Circulation in a Circadian Rhythm Disorder Mice Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13533-13545. [PMID: 34726418 DOI: 10.1021/acs.jafc.1c05338] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Glucolipid metabolism, nitrogen metabolism, and inflammation are closely related to circadian rhythm disorder (CRD). Ripened Pu-erh tea (RPT) shows significant antidyslipidemic, antihyperurecemic, and anti-inflammatory effects. However, it is unclear whether healthy population are affected by CRD and whether long-term consumption of RPT can alleviate it. To investigate this problem, healthy mice were pretreated with RPT (0.25%, w/v) for 60 days and then subjected to CRD for 40 days. Our results indicated that healthy mice showed obesity, and the intestinal and liver inflammation increased after CRD, which were associated with the development of a metabolic disorder syndrome. RPT effectively reversed this trend by increasing the production and excretion rates of bile acid. RPT reshaped the disorder of gut microbiota caused by CRD and promoted the change of archaeal intestinal types from Firmicutes-dominant type to Bacteroidota-dominant type. In addition, by repairing the intestinal barrier function, RPT inhibited the infiltration of harmful microorganisms or metabolites through enterohepatic circulation, thus reducing the risk of chronic liver inflammation. In conclusion, RPT may reduce the risk of CRD-induced obesity in mice by increasing bile acid metabolism. The change of bile acid pool contributes to the reshaping of gut microflora, thus reducing intestinal inflammation and oxidative stress induced by CRD. Therefore, we speculated that the weakening of CRD damage caused by RPT is due to the improvement of bile acid-mediated enterohepatic circulation. It was found that 0.25% RPT (a human equivalent dose of 7 g/60 kg/day) has potential for regulating CRD.
Collapse
Affiliation(s)
- Shanshan Hu
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Yu Chen
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Sibo Zhao
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Kang Sun
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Liyong Luo
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Liang Zeng
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| |
Collapse
|
27
|
Liu Y, Wu Z, Cheng L, Zhang X, Yang H. The role of the intestinal microbiota in the pathogenesis of host depression and mechanism of TPs relieving depression. Food Funct 2021; 12:7651-7663. [PMID: 34286799 DOI: 10.1039/d1fo01091c] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Depression is a prevalent neuropsychiatric disease with a high recurrence rate, affecting over 350 million people worldwide. Intestinal flora disorders and gut-brain-axis (GBA) dysfunction may cause mental disorders. Alterations in the intestinal flora composition could increase the permeability of the gut barrier, activate systemic inflammation and immune responses, regulate the release and efficacy of monoamine neurotransmitters, alter the activity and function of the hypothalamic-pituitary-adrenal (HPA) axis, and modify the abundance of the brain-derived neurotrophic factor (BDNF); all of these showed a close correlation with the occurrence of depression. In addition, the disturbance of the intestinal flora is related to circadian rhythm disorders, which aggravate the symptoms of depression. Tea polyphenols (TPs) have been found to have antidepressant effects. Therefore, the close reciprocity between the intestinal flora and circadian rhythm provides a new opportunity for TPs to regulate depression relying on the intestinal flora. In this review, we discussed the relationship between intestinal flora dysbiosis and the pathogenesis of depression and the mechanism of TPs relieving depression via the GBA.
Collapse
Affiliation(s)
- Yang Liu
- Laboratory of Food Biotechnology, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo315211, PR China.
| | | | | | | | | |
Collapse
|
28
|
Hong M, Zhang R, Liu Y, Wu Z, Weng P. The interaction effect between tea polyphenols and intestinal microbiota: Role in ameliorating neurological diseases. J Food Biochem 2021; 46:e13870. [PMID: 34287960 DOI: 10.1111/jfbc.13870] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/17/2021] [Accepted: 06/27/2021] [Indexed: 01/08/2023]
Abstract
Tea polyphenols (TP) are one of the most functional and bioactive substances in tea. The interactions between TP and intestinal microbiota suggest that probiotics intervention is a useful method to ameliorate neurological diseases. Now, numerous researches have suggested that TP plays a significant role in modulating intestinal bacteria, especially in the area of sustaining a stable state of intestinal microbial function and abundance. Furthermore, homeostatic intestinal bacteria can enhance the immunity of the host. The close reciprocity between intestinal microbiota and the central nervous system provides a new chance for TP to modulate neural-related diseases depending on intestinal microbiota. Therefore, based on the bidirectional relationship between the brain and the intestines, this review provides a new clue to solve insomnia symptoms and related neurological diseases that will enable us to better study the bidirectional effects of TP and intestinal microbiota on the improvement of host health. PRACTICAL APPLICATIONS: This review provides a new clue to solve insomnia symptoms and related neurological diseases that will enable us to better study bidirectional effects of TP and intestinal microbiota on the improvement of host health.
Collapse
Affiliation(s)
- Mengyu Hong
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Ruilin Zhang
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Yanan Liu
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Zufang Wu
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Peifang Weng
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| |
Collapse
|
29
|
Ávila-Román J, Soliz-Rueda JR, Bravo FI, Aragonès G, Suárez M, Arola-Arnal A, Mulero M, Salvadó MJ, Arola L, Torres-Fuentes C, Muguerza B. Phenolic compounds and biological rhythms: Who takes the lead? Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Sun Q, Cheng L, Zhang X, Wu Z, Weng P. The interaction between tea polyphenols and host intestinal microorganisms: an effective way to prevent psychiatric disorders. Food Funct 2021; 12:952-962. [PMID: 33439201 DOI: 10.1039/d0fo02791j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tea polyphenols (TP) are the most bioactive components in tea extracts. It has been reported that TP can regulate the composition and the function of the intestinal flora. Meanwhile, intestinal microorganisms improve the bioavailability of TP, and the corresponding metabolites of TP can regulate intestinal micro-ecology and promote human health more effectively. The dysfunction of the microbiota-gut-brain axis is the main pathological basis of depression, and its abnormality may be the direct cause and potential influencing factor of psychiatric disorders. The interrelationship between TP and intestinal microorganisms is discussed in this review, which will enable us to better evaluate the potential preventive effects of TP on psychiatric disorders by modulating host intestinal microorganisms.
Collapse
Affiliation(s)
- Qiaoyu Sun
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
| | - Peifang Weng
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
| |
Collapse
|
31
|
|
32
|
Hong M, Ho C, Zhang X, Zhang R, Liu Y. Dietary strategies may influence human nerves and emotions by regulating intestinal microbiota: an interesting hypothesis. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mengyu Hong
- Department of Food Science and Engineering Ningbo University Ningbo315211China
| | - Chi‐Tang Ho
- Department of Food Science Rutgers University New Brunswick NJ08901USA
| | - Xin Zhang
- Department of Food Science and Engineering Ningbo University Ningbo315211China
| | - Ruilin Zhang
- Department of Food Science and Engineering Ningbo University Ningbo315211China
| | - Yanan Liu
- Department of Food Science and Engineering Ningbo University Ningbo315211China
| |
Collapse
|
33
|
Song D, Ho CT, Zhang X, Wu Z, Cao J. Modulatory effect of Cyclocarya paliurus flavonoids on the intestinal microbiota and liver clock genes of circadian rhythm disorder mice model. Food Res Int 2020; 138:109769. [PMID: 33292949 DOI: 10.1016/j.foodres.2020.109769] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022]
Abstract
Host circadian rhythm and gut microbiota have a bidirectional relationship, indicating that prebiotics or prebiotic-like substance is a possible way to regulate circadian rhythm. The modulatory effect of Cyclocarya paliurus flavonoids (CPF) on the intestinal microbiota and liver clock genes of a circadian rhythm disorder mouse model was investigated in the present study. 16S rDNA sequencing analysis showed that CPF ameliorated the imbalanced intestinal microbial structure induced by circadian rhythm disorder. Compared with the constant darkness (CD) group, the ratio of the relative abundance of Firmicutes to Bacteroidetes was significantly decreased after the intervention of CPF for 4 weeks. In addition, CPF significantly alleviated the disrupted diurnal oscillation and phase shift of the specific intestinal microbes and liver clock genes induced by constant darkness. Moreover, metagenomics analysis of gut microbiota showed that the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched the most differentially expressed genes (DEGs) after CPF administration includes xenobiotics biodegradation and metabolism, carbohydrate metabolism and cell motility. The results suggested that CPF may positively regulate the gut flora disturbed by host circadian rhythm disorder, including its composition, diurnal oscillation and function, as well as affect the expression of liver clock genes, thus improving the host micro-ecology and health.
Collapse
Affiliation(s)
- Dan Song
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, United States
| | - Xin Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China.
| | - Zufang Wu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Jinxuan Cao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
34
|
Zhang L, Yan R, Wu Z. Metagenomics analysis of intestinal flora modulatory effect of green tea polyphenols by a circadian rhythm dysfunction mouse model. J Food Biochem 2020; 44:e13430. [PMID: 32776532 DOI: 10.1111/jfbc.13430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
The present study investigated the regulatory mechanism of green tea polyphenols (GTP) on the circadian rhythm of gut flora. The administration of GTP mitigated the variations in the serum and liver level of constant dark (CD)-induced circadian rhythm disorder mouse model. For the gut microbial population, GTP promoted the relative abundance of Bacteroidetes while inhibited Firmicutes. Furthermore, KEGG pathways of biosynthesis of amino acids, two-component system and ATP-binding cassette translocators enriched the most differentially expressed genes after GTP interference. It indicated GTP may prevent CD-induced circadian rhythm disorder, which has an enormous potential to be utilized as prebiotic-like ingredients in food industry. PRACTICAL APPLICATIONS: The findings underscore the capacity of GTP to modulate circadian rhythm by modulating the structure and functional characteristics of host gut microbiota and influencing metabolism, conducing to the melioration of human microecology. The prebiotic function of GTP indicated it can be used to prevent metabolic disturbance related to circadian rhythm disorder.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physical Education, China University of Mining and Technology, Beijing, P.R. China
| | - Ruonan Yan
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| |
Collapse
|
35
|
Yan R, Ho C, Zhang X. Interaction between Tea Polyphenols and Intestinal Microbiota in Host Metabolic Diseases from the Perspective of the Gut–Brain Axis. Mol Nutr Food Res 2020; 64:e2000187. [DOI: 10.1002/mnfr.202000187] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/29/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Ruonan Yan
- Department of Food Science and EngineeringNingbo University Ningbo 315211 P. R. China
| | - Chi‐Tang Ho
- Department of Food ScienceRutgers University New Brunswick NJ 08901 USA
| | - Xin Zhang
- Department of Food Science and EngineeringNingbo University Ningbo 315211 P. R. China
| |
Collapse
|
36
|
Teichman EM, O'Riordan KJ, Gahan CGM, Dinan TG, Cryan JF. When Rhythms Meet the Blues: Circadian Interactions with the Microbiota-Gut-Brain Axis. Cell Metab 2020; 31:448-471. [PMID: 32130879 DOI: 10.1016/j.cmet.2020.02.008] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/18/2019] [Accepted: 02/10/2020] [Indexed: 12/19/2022]
Abstract
The microbiota-gut-brain axis encompasses a bidirectional mode of communication between the microorganisms residing in our gut, and our brain function and behavior. The composition of the gut microbiota is subject to diurnal variation and is entrained by host circadian rhythms. In turn, a diverse microbiota is essential for optimal regulation of host circadian pathways. Disruption of the cyclical nature of this microbe-host interaction profoundly influences disease pathology and severity. This review aims to summarize current knowledge on this bidirectional relationship. Indeed, the past few years have revealed promising data regarding the relationship between the microbiota-gut-brain axis and circadian rhythms and how they act in concert to influence disease, but further research needs to be done to examine how they coalesce to modulate severity of, and risk for, certain diseases. Moreover, there is a need for a greater understanding of the molecular mechanisms underlying the close relationship between circadian-microbiome-brain interactions.
Collapse
Affiliation(s)
| | | | - Cormac G M Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; School of Microbiology, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
37
|
Song D, Yang CS, Zhang X, Wang Y. The relationship between host circadian rhythms and intestinal microbiota: A new cue to improve health by tea polyphenols. Crit Rev Food Sci Nutr 2020; 61:139-148. [PMID: 31997655 DOI: 10.1080/10408398.2020.1719473] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Under the control of the host circadian rhythms, intestinal microbiota undergoes dietary-dependent diurnal fluctuations in composition and function. In addition, microbiome plays a critical role in maintaining the host circadian rhythms and metabolic homeostasis. The interactions between host circadian rhythms and intestinal microbiota suggest that intervention with prebiotics or probiotic is a possible way to alleviate circadian rhythm misalignment and related metabolic diseases. This review discusses the circadian rhythm oscillations of gut flora, relationship between host circadian rhythms and microbiome and related effects on metabolism. The influence on circadian rhythms by the interactions between tea polyphenols (TP) and intestinal microbiota is highlighted.
Collapse
Affiliation(s)
- Dan Song
- Department of Food Science and Engineering, Ningbo University, Ningbo University, Ningbo, P.R. China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo University, Ningbo, P.R. China.,State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, P.R. China
| | - Ying Wang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, P.R. China
| |
Collapse
|
38
|
Guo T, Ho CT, Zhang X, Cao J, Wang H, Shao X, Pan D, Wu Z. Oolong Tea Polyphenols Ameliorate Circadian Rhythm of Intestinal Microbiome and Liver Clock Genes in Mouse Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11969-11976. [PMID: 31583884 DOI: 10.1021/acs.jafc.9b04869] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Our present study focused on the regulating effect of oolong tea polyphenols (OTPs) on the circadian rhythm of liver and intestinal microbiome. OTP significantly alleviated the disrupted diurnal oscillation and phase shift of the specific intestinal microbiota and liver clock genes in mice induced by constant dark (CD) treatment. Transcriptomics revealed that 1114 genes in the control group and 647 genes in the CD group showed circadian rhythm while 723 genes were rhythmic in the CD-OTP group. The Gene Ontology (GO) database provided significant differences in differentially expressed genes (DEGs) in response to OTP treatment. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched the most DEGs after OTP intervention including "Focal adhesion" (9 DEGs) and "PI3K-Akt signaling pathway" (9 DEGs). The present study provided a global view that OTP may alleviate the circadian rhythm disorder of the host, contributing to the improvement of microecology and health.
Collapse
Affiliation(s)
| | - Chi-Tang Ho
- Department of Food Science , Rutgers University , New Brunswick , New Jersey 08901 , United States
| | | | | | | | | | | | | |
Collapse
|