1
|
Wang S, Wang Q, Xu J, Yu J, Wang S. In vitro fecal fermentation characteristics of starch-chitosan composite prepared by screw extrusion. Carbohydr Polym 2025; 361:123657. [PMID: 40368569 DOI: 10.1016/j.carbpol.2025.123657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 04/08/2025] [Accepted: 04/24/2025] [Indexed: 05/16/2025]
Abstract
In this study, we prepared a series of composites with various chitosan-to-starch ratios by means of screw extrusion. The morphology and structural order of the composite were examined, and the fermentability was investigated through an in vitro human fecal fermentation model. Fourier transform infrared (FTIR) spectroscopy demonstrated the formation of hydrogen bonds between starch and chitosan in the composite, and X-ray diffraction (XRD) analysis indicated the structural order of the composite was enhanced with increasing chitosan proportions. The addition of chitosan slowed down the pH drop rate during the fermentation, and high chitosan proportion decreased the production of short-chain fatty acids (SCFAs), especially butyrate. The final butyrate concentrations of the composite with chitosan to starch ratio of 1:6 (CS:S = 1:6, 0.97 mmol/g) was almost twice that of the composite with chitosan to starch ratio of 2:1 (CS:S = 2:1, 0.51 mmol/g). Health-promoting microbes including Agathobacter, Prevotella_9, Ruminococcus, and Bifidobacterium were obviously promoted by extruded starch. Moreover, the composite sample with chitosan to starch ratio of 1:6 (CS:S = 1:6) exhibited a good synergistic effect in regulating the microbiota composition, reflected by the increase in the relative abundance of Agathobacter and Prevotella_9. This finding demonstrated that the ratio of starch to chitosan might be a controlling factor in determining the fermentation properties of screw extruded composite.
Collapse
Affiliation(s)
- Shaokang Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qian Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jinchuan Xu
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, China
| | - Jinglin Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Cheng B, Feng H, Li C, Jia F, Zhang X. The mutual effect of dietary fiber and polyphenol on gut microbiota: Implications for the metabolic and microbial modulation and associated health benefits. Carbohydr Polym 2025; 358:123541. [PMID: 40383597 DOI: 10.1016/j.carbpol.2025.123541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 05/20/2025]
Abstract
Gut microbiota plays a critical role in maintaining human health by regulating digestion, metabolism, and immune function. Emerging research highlights the potential of dietary interventions, particularly dietary fiber (DF) and polyphenols, in modulating gut microbiota composition and function. DF serves as a fermentable substrate for beneficial gut bacteria, promoting the production of short-chain fatty acids (SCFAs). Polyphenols, a diverse group of bioactive compounds selectively modulate microbial populations and contribute to the production of bioactive metabolites with host health benefits. Importantly, the interplay between DF and polyphenols creates a synergistic effect within the gut microbiome, shaping microbial diversity, enhancing SCFAs production, and strengthening gut barrier function, which together support metabolic and immune homeostasis. This review systematically explores the synergistic effects of DF-polyphenol combinations on gut microbiota modulation, microbial metabolites, and their implications for overall health. The combined effects of DF and polyphenols hold promise for targeted nutritional strategies in preventing metabolic disorders and improving gut health. Moreover, the extent of these benefits is influenced by the structural characteristics of DF, the source and dosage of polyphenols, and individual gut microbiota composition. Further research is warranted to optimize DF-polyphenol interactions and facilitate their applications in personalized nutrition and functional food development.
Collapse
Affiliation(s)
- Bo Cheng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongyan Feng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Cheng Li
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China
| | - Fei Jia
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Xiaowei Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
3
|
Li L, Zhang Y, Huang Z, Hong Y, Cheng L, Gu Z. Steric Inhibition by Butyryl Groups on Gut Microbial Amylases Significantly Impacts In Vitro Fecal Fermentation of Butyrylated Starch. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6943-6954. [PMID: 40048501 DOI: 10.1021/acs.jafc.4c10445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Colonic starch fermentation requires the assistance of gut microbial amylases (GMAs). However, it remains unknown whether chemically substituted butyryl groups induce a steric inhibitory effect on GMAs analogous to that observed with pancreatic amylase during the intestinal digestion of butyrylated starch. In this study, we investigated the in vitro fermentation and enzymatic hydrolysis performance of three types of butyrylated starch. The results showed that the esterolysis of butyryl groups was a rate-limiting process, and the fermentation of butyrylated starch was partially inhibited by steric inhibition of the butyryl groups on GMAs. X-ray photoelectron spectroscopy (XPS) results further confirmed the negative correlation between the fermentation rate of starch and the relative content of butyryl groups accessible to the gut microbiota. Moreover, analyses of the enzymatic characteristics and the resulting hydrolysate composition demonstrated that a relatively high multiple attack degree (MAD) made GMAs more susceptible to steric inhibition by butyryl groups, thus producing more malto-oligosaccharides, which are preferred by butyrate-producing bacteria. These findings provide important insights into the fermentation behavior of butyrylated starch from the perspective of interactions between microbial amylases and starch.
Collapse
Affiliation(s)
- Lingjin Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yi Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zehao Huang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
| | - Li Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
| |
Collapse
|
4
|
Huang Y, Lu Z, Liu F, Lane JA, Chen J, Huang Q, Hu R, Zhang B. Osteopontin associated Bifidobacterium bifidum microencapsulation modulates infant fecal fermentation and gut microbiota development. Food Res Int 2024; 197:115211. [PMID: 39593296 DOI: 10.1016/j.foodres.2024.115211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/22/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
Probiotic supplementation is an effective method for improving infant gut health, and probiotic encapsulation can enhance probiotic viability under adverse environmental conditions while ensuring an adequate amount of probiotic is delivered to the target site to confer a health benefit for the host. In this study, Bifidobacterium bifidum R0071 was microencapsulated using pectin or alginate, combined bovine milk osteopontin (OPN) as an excipient during the microencapsulation process. The microencapsulated probiotics were subjected to in vitro simulated infant gastrointestinal digestion and a fecal fermentation model to assess survival capacity and their impact on gas and organic acid production, as well as the development of gut microbiota. The results demonstrated that microencapsulation in the presence of osteopontin increased simulated gastrointestinal survival. During infant fecal fermentation, a significant increase in total gas production (5.5-9.1 mL) was observed for the microencapsulated probiotic with even higher level of gas production observed for osteopontin associated microencapsulated probiotic during the late stage of fermentation (8-24 h). Infant fecal fermentation of the microencapsulated probiotic also produced substantial amounts of acetate (8-17 mM) and lactate (12-35 mM), along with minor amounts of succinate (1-2 mM) and propionate (0.5-2 mM). A positive correlation was observed between metabolite production and the number of viable B. bifidum R0071 entering colon fermentation, which significantly increased with the use of OPN in the microencapsulation process. The osteopontin associated microencapsulated probiotic also significantly elevated the relative abundance of Veillonella, which, along with Bifidobacterium, influenced gas and metabolite production. Overall, our findings demonstrate that incorporating OPN as an excipient in the microencapsulation of Bifidobacterium bifidum R0071 enhances probiotic viability and positively influences the development of infant gut microbiota, highlighting its potential application in promoting infant health.
Collapse
Affiliation(s)
- Yuqin Huang
- South China University of Technology, School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, Guangzhou 510640, China
| | - Zerong Lu
- H&H Group, H&H Research, China Research and Innovation Center, Guangzhou 510700, China
| | - Feitong Liu
- H&H Group, H&H Research, China Research and Innovation Center, Guangzhou 510700, China
| | - Jonathan A Lane
- H&H Group, H&H Research, Global Research and Technology Center, P61 K202 Co. Cork, Ireland
| | - Juchun Chen
- H&H Group, H&H Research, China Research and Innovation Center, Guangzhou 510700, China
| | - Qiang Huang
- South China University of Technology, School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, Guangzhou 510640, China
| | - Ruibiao Hu
- H&H Group, H&H Research, China Research and Innovation Center, Guangzhou 510700, China.
| | - Bin Zhang
- South China University of Technology, School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, Guangzhou 510640, China; Sino-Singapore International Research Institute, Guangzhou 510555, China.
| |
Collapse
|
5
|
Lin J, Li E, Li C. Increasing degree of substitution inhibits acetate while promotes butyrate production during in vitro fermentation of citric acid-modified rice starch. Int J Biol Macromol 2024; 281:136385. [PMID: 39383914 DOI: 10.1016/j.ijbiomac.2024.136385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Citric acid-modified starch functions as a resistant starch, while the combined effects of its fine molecular structure and degree of substitution on gut microbiota are not well understood. To this end, citric acid-modified starches with varying degrees of substitution were synthesized from rice starches with distinct molecular structures and their impact on gut microbiota composition and short-chain fatty acid (SCFA) production was analyzed. Notably, rice starch with a higher degree of substitution significantly reduced acetate production, while promoted butyrate production. Correlation analysis further suggested that amylopectin chains with 12 < DP ≤ 36 and amylose chains with 100 < DP ≤ 500 alter the growth of Faecalibacterium_prausnitzii and Bacteroides_vulgatus, consequentially determining the production of SCFAs. Collectively, these findings indicate that citric acid-modified rice starch with different degrees of substitution can target specific gut bacteria and SCFA production, thus conferring beneficial impact on human health.
Collapse
Affiliation(s)
- Jiakang Lin
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Enpeng Li
- Joint International Research Laboratory of Agriculture Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Cheng Li
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China.
| |
Collapse
|
6
|
He M, Wu X, Gao T, Chen L, Teng F, Li Y. Effects of ultrasonic and chemical dual modification treatments on the structural, and properties of cornstarch. Food Chem 2024; 451:139221. [PMID: 38688094 DOI: 10.1016/j.foodchem.2024.139221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/10/2024] [Accepted: 03/31/2024] [Indexed: 05/02/2024]
Abstract
This study aimed to explore the changes in the structural and functional properties of cornstarch modified by oxidation, esterification, and cross-linking under ultrasonic pretreatment. FT-IR and XRD characteristic peaks revealed successful access to chemical functional groups. Both ultrasonic and the three chemical treatments eroded the surface of starch granules, reducing their particle size and increasing their RC. Meanwhile, the destruction of the granules was further enhanced by the dual modification treatments. The ultrasonic pretreatment synergized and improved the swelling power, solubility, and translucency of all three chemical treatments. Further, it improved the poorer freeze-thaw stability of cross-linked starch, resulting in a lower water precipitation rate. In addition, both ultrasonic and chemical treatments significantly decreased RDS and SDS, and increased RS content. The ultrasonic-chemical dual modification had a synergistic effect on in vitro digestibility, resulting in a further increase in RS. In conclusion, this study provided ideas for developing new starch modification technology and deep processing of cornstarch, expanding its application areas and thus meeting the different needs of starch-based products.
Collapse
Affiliation(s)
- Mingyu He
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xixi Wu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Tian Gao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Le Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fei Teng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
7
|
Liu J, Dhital S, Ahmed Junejo S, Fu X, Huang Q, Zhang B. Structural changes and degradation mechanism of type 3 resistant starch during in vitro fecal fermentation. Food Res Int 2024; 190:114639. [PMID: 38945585 DOI: 10.1016/j.foodres.2024.114639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
The colonic fermentation metabolites of resistant starch (RS) are recognized to have various health benefits. However, the relationship between the structural variation of RS and the colonic fermentation properties, remains inadequately studied, especially for type 3 resistant starch. The in vitro fecal fermentation properties with multi-structure evolution of A- and B-type polymorphic resistant starch spherulites (RSS) were investigated. Both polymorphic types of RSS showed similar fermentation rate and total short-chain fatty acid profiles, while the butyrate concentration of the A-type RSS subjected to 24 h of fermentation was significantly higher compared to B-type RSS. In the case of recrystallized starch spherulites, irrespective of the polymorphic type, gut bacteria preferentially degraded the intermediate chains and crystalline regions, as the local molecule-ordered area potentially serves as suitable attachment sites or surfaces for microbial enzymes.
Collapse
Affiliation(s)
- Jiaying Liu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Clayton Campus, VIC 3800, Australia
| | - Shahid Ahmed Junejo
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, Guangzhou 510640, China.
| |
Collapse
|
8
|
Wang N, Zhang C, Li H, Wu J, Zhang D, Li Y, Yang L, Zhang N, Wang X. Structure properties of Canna edulis RS3 (double enzyme hydrolysis) and RS4 (OS-starch and cross-linked starch): Influence on fermentation products and human gut microbiota. Int J Biol Macromol 2024; 265:130700. [PMID: 38458281 DOI: 10.1016/j.ijbiomac.2024.130700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/05/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
This study investigated the in vitro fermentation characteristics of different structural types of Canna edulis resistant starch (RS). RS3 was prepared through a double enzyme hydrolysis method, and RS4 (OS-starch and cross-linked starch) was prepared using octenyl succinic anhydride and sodium trimetaphosphate/sodium tripolyphosphate, respectively. The RS3 and RS4 samples were structurally analyzed using scanning electron microscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction analysis. This was followed by in vitro fermentation experiments. The results revealed microstructure differences in the two groups of starch samples. Compared to native starch, RS3 and RS4 exhibited a lower degree of order and endothermic energy, with lower crystallinity (RS3: 29.59 ± 1.11 %; RS4 [OS-starch]: 28.01 ± 1.32 %; RS4 [cross-linked starch]: 30.44 ± 1.73 %) than that in native starch (36.29 ± 0.89 %). The RS content was higher in RS3 (63.40 ± 2.85 %) and RS4 (OS-starch: 71.21 ± 1.28 %; cross-linked starch: 74.33 ± 0.643 %) than in native starch (57.71 ± 2.95 %). RS3 and RS4 exhibited slow fermentation rates, promoting the production of short-chain fatty acids. RS3 and cross-linked starch significantly increased the production of acetate and butyrate. Moreover, RS3 significantly promoted the abundance of Lactobacillus, while OS-starch and cross-linked starch significantly enhanced the abundance of Dorea and Coprococcus, respectively. Hence, the morphological structure and RS content of the samples greatly influenced the fermentation rate. Moreover, the different varieties of RS induced specific gut microbial regulation. Hence, they show potential applications in functional foods for tailored gut microbiota management.
Collapse
Affiliation(s)
- Nan Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Chi Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China; School of Medicine, Linyi University, Linyi 276000, Shandong, China
| | - Houxier Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Jiahui Wu
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Dachuan Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Yan Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Li Yang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Nan Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Xueyong Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast corner of the intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China.
| |
Collapse
|
9
|
Gong L, Liu F, Liu J, Wang J. Dietary fiber (oligosaccharide and non-starch polysaccharide) in preventing and treating functional gastrointestinal disorders - Challenges and controversies: A review. Int J Biol Macromol 2024; 258:128835. [PMID: 38128805 DOI: 10.1016/j.ijbiomac.2023.128835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Functional gastrointestinal disorders (FGIDs) are a group of chronic or recurrent gastrointestinal functional diseases, including functional dyspepsia, irritable bowel syndrome, and functional constipation. A lack of safe and reliable treatments for abdominal pain-related FGIDs has prompted interest in new therapies. Evidence has shown that supplementation with dietary fiber may help treat FGIDs. Dietary fibers (DFs) have been demonstrated to have regulatory effects on the gut microbiota, microbiota metabolites, and gastrointestinal movement and have important implications for preventing and treating FGIDs. However, the adverse effects of some DFs, such as fermentable oligosaccharides, on FGIDs are unclear. This review provides an overview of the DFs physiological properties and functional characteristics that influence their use in management of FGIDs, with emphasis on structural modification technology to improve their therapeutic activities. The review highlights that the use of appropriate or novel fibers is a potential therapeutic approach for FGIDs.
Collapse
Affiliation(s)
- Lingxiao Gong
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Feiyue Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jie Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
10
|
Wang N, Zhang C, Li H, Zhang D, Wu J, Li Y, Yang L, Zhang N, Wang X. Addition of Canna edulis starch and starch nanoparticles to stabilized Pickering emulsions: In vitro digestion and fecal fermentation. Int J Biol Macromol 2024; 258:128993. [PMID: 38163505 DOI: 10.1016/j.ijbiomac.2023.128993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Starch nanoparticles (SNPs) were prepared through acid hydrolysis of Canna edulis native starch and modified with octenyl succinic anhydride (OSA) to yield OS-starch and OS-SNPs. These modified particles were used to stabilize curcumin-loaded Pickering emulsions. Effects on gut microbiota during in vitro fecal fermentation were examined. The surface of OS-starch exhibits a porous structure, while OS-SNPs display layered grooves. OSA modification was confirmed by Fourier transform infrared spectroscopy (with peaks at 1728 cm-1 and 1573 cm-1) and proton nuclear magnetic resonance spectra (0.5-2 ppm). The degree of substitution for OS-starch and OS-SNPs is 0.0106 ± 0.0004 and 0.0079 ± 0.0003, respectively. Following modification, the crystallinity decreased from 35.69 ± 0.46 % (native starch) to 30.17 ± 0.70 % (OS-starch), SNPs decreased from 45.87 ± 0.89 % to 43.63 ± 0.64 % (OS-SNPs). Contact angles for OS-starch and OS-SNPs are 77.47 ± 1.78 and 55.57 ± 0.21, respectively. OS-SNPs exhibited superior emulsification properties compared to OS-starch, forming stable Pickering emulsions with pseudoplastic fluid behavior and enhanced curcumin storage protection over 14 days (60.88 ± 4.26 %) with controlled release. Stabilizing Pickering emulsions with OS-starch and OS-SNPs positively affected on gut microbiota and improved the intestinal environment, showing promise for their application in transportation systems and innovative prebiotic food formulations.
Collapse
Affiliation(s)
- Nan Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Chi Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Houxier Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Dachuan Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Jiahui Wu
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Yan Li
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Li Yang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Nan Zhang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China
| | - Xueyong Wang
- School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China.
| |
Collapse
|
11
|
Klostermann CE, Endika MF, Kouzounis D, Buwalda PL, de Vos P, Zoetendal EG, Bitter JH, Schols HA. Presence of digestible starch impacts in vitro fermentation of resistant starch. Food Funct 2024; 15:223-235. [PMID: 38054370 PMCID: PMC10760408 DOI: 10.1039/d3fo01763j] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023]
Abstract
Starch is an important energy source for humans. Starch escaping digestion in the small intestine will transit to the colon to be fermented by gut microbes. Many gut microbes express α-amylases that can degrade soluble starch, but only a few are able to degrade intrinsic resistant starch (RS), which is insoluble and highly resistant to digestion (≥80% RS). We studied the in vitro fermentability of eight retrograded starches (RS-3 preparations) differing in rapidly digestible starch content (≥70%, 35-50%, ≤15%) by a pooled adult faecal inoculum and found that fermentability depends on the digestible starch fraction. Digestible starch was readily fermented yielding acetate and lactate, whereas resistant starch was fermented much slower generating acetate and butyrate. Primarily Bifidobacterium increased in relative abundance upon digestible starch fermentation, whereas resistant starch fermentation also increased relative abundance of Ruminococcus and Lachnospiraceae. The presence of small fractions of total digestible starch (±25%) within RS-3 preparations influenced the fermentation rate and microbiota composition, after which the resistant starch fraction was hardly fermented. By short-chain fatty acid quantification, we observed that six individual faecal inocula obtained from infants and adults were able to ferment digestible starch, whereas only one adult faecal inoculum was fermenting intrinsic RS-3. This suggests that, in contrast to digestible starch, intrinsic RS-3 is only fermentable when specific microbes are present. Our data illustrates that awareness is required for the presence of digestible starch during in vitro fermentation of resistant starch, since such digestible fraction might influence and overrule the evalution of the prebiotic potential of resistant starches.
Collapse
Affiliation(s)
- Cynthia E Klostermann
- Biobased Chemistry and Technology, Wageningen University & Research, Wageningen, The Netherlands
| | - Martha F Endika
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Dimitrios Kouzounis
- Laboratory of Food Chemistry, Wageningen University & Research, The Netherlands.
| | - Piet L Buwalda
- Biobased Chemistry and Technology, Wageningen University & Research, Wageningen, The Netherlands
- Coöperatie Koninklijke AVEBE, Veendam, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Centre Groningen, The Netherlands
| | - Erwin G Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Johannes H Bitter
- Biobased Chemistry and Technology, Wageningen University & Research, Wageningen, The Netherlands
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University & Research, The Netherlands.
| |
Collapse
|
12
|
Tosi M, Montanari C, Bona F, Tricella C, Agostinelli M, Dolor J, Chillemi C, Di Profio E, Tagi VM, Vizzuso S, Fiore G, Zuccotti G, Verduci E. Dietary Inflammatory Potential in Pediatric Diseases: A Narrative Review. Nutrients 2023; 15:5095. [PMID: 38140353 PMCID: PMC10745369 DOI: 10.3390/nu15245095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Inflammatory status is one of the main drivers in the development of non-communicable diseases (NCDs). Specific unhealthy dietary patterns and the growing consumption of ultra-processed foods (UPFs) may influence the inflammation process, which negatively modulates the gut microbiota and increases the risk of NCDs. Moreover, several chronic health conditions require special long-term dietary treatment, characterized by altered ratios of the intake of nutrients or by the consumption of disease-specific foods. In this narrative review, we aimed to collect the latest evidence on the pro-inflammatory potential of dietary patterns, foods, and nutrients in children affected by multifactorial diseases but also on the dietetic approaches used as treatment for specific diseases. Considering multifactorial diet-related diseases, the triggering effect of pro-inflammatory diets has been addressed for metabolic syndrome and inflammatory bowel diseases, and the latter for adults only. Future research is required on multiple sclerosis, type 1 diabetes, and pediatric cancer, in which the role of inflammation is emerging. For diseases requiring special diets, the role of single or multiple foods, possibly associated with inflammation, was assessed, but more studies are needed. The evidence collected highlighted the need for health professionals to consider the entire dietary pattern, providing balanced and healthy diets not only to permit the metabolic control of the disease itself, but also to prevent the development of NCDs in adolescence and adulthood. Personalized nutritional approaches, in close collaboration between the hospital, country, and families, must always be promoted together with the development of new methods for the assessment of pro-inflammatory dietary habits in pediatric age and the implementation of telemedicine.
Collapse
Affiliation(s)
- Martina Tosi
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
- Department of Health Sciences, University of Milan, 20146 Milan, Italy;
| | - Chiara Montanari
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
| | - Federica Bona
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
| | - Chiara Tricella
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
| | - Marta Agostinelli
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
| | - Jonabell Dolor
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
| | - Claudia Chillemi
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
| | - Elisabetta Di Profio
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
- Department of Health Sciences, University of Milan, 20146 Milan, Italy;
| | - Veronica Maria Tagi
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
- Department of Health Sciences, University of Milan, 20146 Milan, Italy;
| | - Sara Vizzuso
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
| | - Giulia Fiore
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
- Department of Health Sciences, University of Milan, 20146 Milan, Italy;
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; (M.T.); (C.M.); (F.B.); (C.T.); (M.A.); (J.D.); (C.C.); (E.D.P.); (V.M.T.); (S.V.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milan, 20157 Milan, Italy
| | - Elvira Verduci
- Department of Health Sciences, University of Milan, 20146 Milan, Italy;
- Metabolic Diseases Unit, Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy
| |
Collapse
|
13
|
Yin J, Cheng L, Hong Y, Li Z, Li C, Ban X, Zhu L, Gu Z. A Comprehensive Review of the Effects of Glycemic Carbohydrates on the Neurocognitive Functions Based on Gut Microenvironment Regulation and Glycemic Fluctuation Control. Nutrients 2023; 15:5080. [PMID: 38140339 PMCID: PMC10745758 DOI: 10.3390/nu15245080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Improper glycemic carbohydrates (GCs) consumption can be a potential risk factor for metabolic diseases such as obesity and diabetes, which may lead to cognitive impairment. Although several potential mechanisms have been studied, the biological relationship between carbohydrate consumption and neurocognitive impairment is still uncertain. In this review, the main effects and mechanisms of GCs' digestive characteristics on cognitive functions are comprehensively elucidated. Additionally, healthier carbohydrate selection, a reliable research model, and future directions are discussed. Individuals in their early and late lives and patients with metabolic diseases are highly susceptible to dietary-induced cognitive impairment. It is well known that gut function is closely related to dietary patterns. Unhealthy carbohydrate diet-induced gut microenvironment disorders negatively impact cognitive functions through the gut-brain axis. Moreover, severe glycemic fluctuations, due to rapidly digestible carbohydrate consumption or metabolic diseases, can impair neurocognitive functions by disrupting glucose metabolism, dysregulating calcium homeostasis, oxidative stress, inflammatory responses, and accumulating advanced glycation end products. Unstable glycemic status can lead to more severe neurological impairment than persistent hyperglycemia. Slow-digested or resistant carbohydrates might contribute to better neurocognitive functions due to stable glycemic response and healthier gut functions than fully gelatinized starch and nutritive sugars.
Collapse
Affiliation(s)
- Jian Yin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Ling Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Y.); (Y.H.); (Z.L.); (C.L.); (X.B.); (L.Z.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
14
|
Wang S, De Paepe K, Van de Wiele T, Fu X, Wang S, Zhang B, Huang Q. Starch-entrapped microspheres enhance gut microbiome-mediated anti-obesity effects of resistant starch in high-fat diet induced obese C57BL/6J mice. Food Res Int 2023; 172:113215. [PMID: 37689957 DOI: 10.1016/j.foodres.2023.113215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 09/11/2023]
Abstract
The prevalence of obesity is growing worldwide and has been extensively linked to gut microbiota dysbiosis. In addition to exercise and physical activity, fiber-rich foods may be a first-line prophylactic to manage obesity. This study investigated in vivo dietary intervention with high-amylose maize starch (HAMS) and starch-entrapped microspheres (MS) to treat high-fat diet induced metabolic disorder and gut microbiome dysbiosis in mice. MS more efficiently controlled body weight as well as adipose tissue mass compared to HAMS. Furthermore, MS significantly reduced blood glucose, insulin, lipid and pro-inflammatory cytokine levels compared to the high-fat diet, while the effects of HAMS were less pronounced. The MS-altered gut microbiota composition favoring Streptococcaceae, Bacilli, Firmicutes and unclassified Clostridiales was predicted to promote fatty acid, pantothenate and Coenzyme A biosynthesis. In line with this, elevated fecal short chain fatty acid (SCFA), in particular, propionate concentration was observed in MS-fed mice. Our study provides novel insights into the mechanistic action of MS on intestinal homeostasis, providing a basis for future dietary therapeutic applications.
Collapse
Affiliation(s)
- Shaokang Wang
- State Key Laboratory of Food Nutrition and Safety, School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Kim De Paepe
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Xiong Fu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Bin Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China; China-Singapore International Research Institute, Guangzhou 510555, China.
| | - Qiang Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China; China-Singapore International Research Institute, Guangzhou 510555, China.
| |
Collapse
|
15
|
Jiali L, Wu Z, Liu L, Yang J, Wang L, Li Z, Liu L. The research advance of resistant starch: structural characteristics, modification method, immunomodulatory function, and its delivery systems application. Crit Rev Food Sci Nutr 2023; 64:10885-10902. [PMID: 37409451 DOI: 10.1080/10408398.2023.2230287] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Resistant starch, also known as anti-digestion enzymatic starch, which cannot be digested or absorbed in the human small intestine. It can be fermented in the large intestine into short-chain fatty acids (SCFAs) and metabolites, which are advantageous to the human body. Starches can classify as rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS), which possess high thermal stability, low water holding capacity, and emulsification characteristics. Resistant starch has excellent physiological functions such as stabilizing postprandial blood glucose levels, preventing type II diabetes, preventing intestinal inflammation, and regulating gut microbiota phenotype. It is extensively utilized in food processing, delivery system construction, and Pickering emulsion due to its processing properties. The resistant starches, with their higher resistance to enzymatic hydrolysis, support their suitability as a potential drug carrier. Therefore, this review focuses on resistant starch with structural features, modification characteristics, immunomodulatory functions, and delivery system applications. The objective was to provide theoretical guidance for applying of resistant starch to food health related industries.
Collapse
Affiliation(s)
- Li Jiali
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Lingyi Liu
- Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Junsi Yang
- Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Lei Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| |
Collapse
|
16
|
Luo X, Huang Q, Fu X, Kraithong S, Hu Y, Yuan Y, Bao J, Zhang B. In vitro fecal fermentation characteristics of mutant rice starch depend more on amylose content than crystalline structure. Carbohydr Polym 2023; 307:120606. [PMID: 36781271 DOI: 10.1016/j.carbpol.2023.120606] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
To obtain the relation between rice starch features and fermentation characteristics, rice starches with various polymorphic types and apparent amylose contents were subjected to in vitro fecal fermentation. Gas and short-chain fatty acid production was evaluated as a function of fermentation time, and the microbial responses were monitored by 16S rRNA sequencing technique at the end of fermentation. Regardless of polymorphic type, three high-amylose mutant rice starches (i.e., GM03, A-type; BP577, B-type; Wx21TT, C-type) displayed significantly slower fermentation rate during the first 12 h and higher final butyrate yield (17.6-17.9 mM) compared to the A-type normal starches (9311 and Wx22TT), and promoted the proliferation of Roseburia. However, A-type normal rice starches presented higher propionate production, and increased the growth of Bacteroides and Megamonas. The principal component and redundancy analyses indicated that three high-amylose mutant rice starches showed similar abundance and migration of microbial communities, and the apparent amylose content was closely correlated with the abundance of their five key amplicon sequence variants. Our results demonstrated that amylose content might be a controlling factor in determining the fermentation properties of rice starches than crystalline structure.
Collapse
Affiliation(s)
- Xiaoyi Luo
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Supaluck Kraithong
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Yaqi Hu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yang Yuan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jinsong Bao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China.
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
17
|
Wang W, Chen C, Zhou C, Tang Z, Luo D, Fu X, Zhu S, Yang X. Effects of glycation with chitooligosaccharide on digestion and fermentation processes of lactoferrin in vitro. Int J Biol Macromol 2023; 234:123762. [PMID: 36812963 DOI: 10.1016/j.ijbiomac.2023.123762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
This study aimed to investigate the digestion and fermentation processes of lactoferrin (LF) glycated with chitooligosaccharide (COS) under a controlled Maillard reaction, utilizing the in vitro digestion and fermentation model, and to compare the results of these processes to LF undertaken without glycation. After gastrointestinal digestion, the products of the LF-COS conjugate were found to have more fragments with lower molecular weight than LF, and the antioxidant capabilities (via ABTS and ORAC assay) of the LF-COS conjugate digesta also increased. In addition, the undigested fractions could be further fermented by the intestinal microbiota. Compared with LF, more short-chain fatty acids (SCFAs) were generated (from 2397.40 to 2623.10 μg/g), and more species of microbiota (from 451.78 to 568.10) were observed in LF-COS conjugate treatment. Furthermore, the relative abundance of Bacteroides and Faecalibacterium that could utilize carbohydrates and metabolic intermediates to produce SCFAs also increased in LF-COS conjugate than that of LF. Our results demonstrated that glycation with COS under the controlled wet-heat treatment Maillard reaction could modify the digestion of LF and have a potentially positive influence on the intestinal microbiota community.
Collapse
Affiliation(s)
- Wenduo Wang
- School of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China; SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chun Chen
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Chunxia Zhou
- School of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Zhongsheng Tang
- School of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Donghui Luo
- School of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China.
| | - Siming Zhu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Xinhe Yang
- School of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| |
Collapse
|
18
|
Unlocking the Potential of High-Amylose Starch for Gut Health: Not All Function the Same. FERMENTATION 2023. [DOI: 10.3390/fermentation9020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
High-amylose starch has unique functional properties and nutritional values in food applications. This type of starch is generally resistant to enzymatic digestion in the gastrointestinal tract, and contains an increased fraction of resistant starch (RS), which is a type of dietary fiber. The digestion and fermentation of high-amylose starch in the gut are of current research interest, as the processes are related to its nutritional functionality. This review summarizes recent in vitro and in vivo studies on the digestion and fermentation of high-amylose starches from different botanical sources and those that have been obtained by modifications. The RS content and fermentation properties are compared among high-amylose starches. This review aims to provide a current understanding of the relationship between high-amylose starch structures and fermentation-related nutritional properties. The results of these studies suggest that both modifications and food processing of high-amylose starch result in distinct fermentation products and nutritional properties. The review provides insight into the potential future applications of diverse high-amylose starches as bioactive compounds to modulate colonic fermentation.
Collapse
|
19
|
Li X, Chen W, Gao J, Gao W, Zhang Y, Zeng H, Zheng B. Structural changes of butyrylated lotus seed starch and its impact on the gut microbiota of rat in vitro fermentation. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Cao S, Li C. Influence of Resistant Starch in Whole Rice on Human Gut Microbiota─From Correlation Implications to Possible Causal Mechanisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12760-12771. [PMID: 36190451 DOI: 10.1021/acs.jafc.2c05380] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rice is the main staple food for a large population around the world, while it generally has a high glycemic index and low resistant starch (RS) content. Although many strategies have been applied to develop healthier rice products with increased RS contents, their actual effects on gut microbiota and human health remain elusive. In this review, currently available production methods of rice RS are briefly summarized, followed by a critical discussion on their interactions with gut microbiota and subsequent effects on human health, from correlation implications to causal mechanisms. Different contents, types, and structures of RS have been produced by strategies such as genetic manipulation and controlling cooking conditions. The difference can largely determine effects of rice RS on gut microbiota composition and metabolites by specific RS-gut microbiota interactions. This review can thus help the rice industry develop rice products with desirable RS contents and structures to generally improve human health.
Collapse
Affiliation(s)
- Senbin Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
- Joint International Research Laboratory of Agriculture Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, People's Republic of China
| |
Collapse
|
21
|
Dong Y, Huang C, Yang J, Zheng Z, Dai Z. Docosapentaenoic Acid (DPA, 22:5 n-3) Alleviates Ulcerative Colitis via Modification of Gut Microbiota and Their Metabolism. Nutrients 2022; 14:nu14194204. [PMID: 36235856 PMCID: PMC9570819 DOI: 10.3390/nu14194204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
N-3 polyunsaturated fatty acids (n-3PUFA) are regarded as viable alternatives to aid the treatment of ulcerative colitis (UC). Most research focuses on eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA); little information is available about the effect of docosapentaenoic acid (DPA) on the gut microbiota and their metabolism in UC mice. In this study, the changes in gut microbiota and their metabolism in UC mice were studied through the 16S rRNA sequencing method and untargeted metabolomics. Moreover, the differential bacterial genus and differential metabolites in responding to DPA supplementation were screened through permutation test after orthogonal partial least squares discriminant analysis (OPLS-DA). The results indicated that DPA supplementation increased the diversity and altered the composition of the gut microbiota in UC mice; Akkermansia, Alistipes, Butyricicoccus, and Lactobacillus were selected as the differential bacterial genus. Supplementation of DPA also altered the fecal metabolite profile in the UC mice. Moreover, butyrate, N-carbamylglutamate (NCG), and histamine were screened as the differential metabolites. In conclusion, the regulation effect of DPA on the gut microbiota and their metabolism might be involved in the intervention mechanism of DPA in UC. More research needs to be carried out to elucidate the mechanism systematically.
Collapse
Affiliation(s)
- Ye Dong
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Cheng Huang
- Greentown Agricultural Testing Technology Co., Ltd., Hangzhou 310052, China
| | - Jiacheng Yang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Zhenxiao Zheng
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
- Correspondence: ; Tel./Fax: +86-057-187-103-135
| | - Zhiyuan Dai
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| |
Collapse
|
22
|
Li L, He S, Lin Y, Zheng B, Zhang Y, Zeng H. A novel lotus seed cross-linked resistant starch: Structural, physicochemical and digestive properties. Front Nutr 2022; 9:989042. [PMID: 36017223 PMCID: PMC9395931 DOI: 10.3389/fnut.2022.989042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/26/2022] [Indexed: 11/27/2022] Open
Abstract
The structural properties and physicochemical characteristics of lotus seed cross-linked resistant starches (LSCSs; LS-0CS, LS-1CS, LS-2CS, LS-4CS, LS-6CS, LS-8CS, LS-10CS, and LS-12CS) with different concentrations of cross-linking agents were investigated. The degrees of cross-linking of LSCSs increased along with the amount of cross-linking agent. The higher the degree of cross-linking, the greater the degree of LSCSs granule agglomeration. The occurrence of the cross-linking reaction was confirmed by the appearance of P = O at 1,250 cm–1 as assessed by FT-IR, and the covalent bonds formed by the phosphate group in LSCSs were mainly composed of distarch monophosphate (DMSP) as determined by 31P NMR. As the crosslinking degree increased, the peak strength of DMSP in starch was stronger and the specific gravity of DMSP was larger. Among the samples, LS-12CS had the highest cross-linking degree, with a greater specific gravity of DMSP. Moreover, the solubility levels of LSCSs decreased and the thermal stability and anti-digestive properties improved as the cross-linking degree increased, which was correlated with the degree of agglomeration and DMSP in LSCSs. The RS content of LS-12CS was 48.95 ± 0.86%.
Collapse
Affiliation(s)
- Lanxin Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuqi He
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongjie Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China.,China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China.,China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China.,China-Ireland International Cooperation Center for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
23
|
Xu S, Lane JA, Chen J, Zheng Y, Wang H, Fu X, Huang Q, Dhital S, Liu F, Zhang B. In Vitro Infant Fecal Fermentation Characteristics of Human Milk Oligosaccharides Were Controlled by Initial Microbiota Composition More than Chemical Structure. Mol Nutr Food Res 2022; 66:e2200098. [PMID: 35989465 DOI: 10.1002/mnfr.202200098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/16/2022] [Indexed: 11/08/2022]
Abstract
SCOPE Human milk oligosaccharides (HMOs), multifunctional glycans naturally present in human milk, are known to contribute to the infant's microbiota and immune system development. However, the molecular specificity of HMOs on microbiota and associated fermentation is not yet fully understood, and is important for the development of infant formula optimum functionality. METHODS AND RESULTS In vitro fermentation is carried out on structurally different HMOs with infant fecal inocula dominated by Bifidobacterium longum, Bifidobacterium breve, and Bacteroides. The gas, metabolite (SCFA, lactate, and succinate) profiles, and microbiota responses differ between individual microbiota inocula patterns regardless of HMO structure. In terms of HMO pairs with same sugar composition but different glycosidic bonds, gas and metabolite profiles are similar with the B. longum- and B. breve-dominated inocula. However, large individual variations are observed with the Bacteroides-dominated inocula. The microbial communities at the end of fermentation are closely related to the initial microbiota composition. CONCLUSION The findings demonstrate that short-term in vitro fermentation outcomes largely depend on the initial gut microbiota composition more than the impact of HMO molecular specificity. These results advance the current understanding for the design of personalized infant nutritional solutions and therapies in future.
Collapse
Affiliation(s)
- Shiqi Xu
- School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, South China University of Technology, Guangzhou, 510640, China
| | - Jonathan A Lane
- H&H Group, H&H Research, Global Research and Technology Centre, P61 K202 Co, Cork, Ireland
| | - Juchun Chen
- H&H Group, H&H Research, China Research and Innovation Center, Guangzhou, 510700, China
| | - Yuxing Zheng
- H&H Group, H&H Research, China Research and Innovation Center, Guangzhou, 510700, China
| | - Hongwei Wang
- H&H Group, H&H Research, China Research and Innovation Center, Guangzhou, 510700, China
| | - Xiong Fu
- School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, South China University of Technology, Guangzhou, 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, South China University of Technology, Guangzhou, 510640, China.,Sino-Singapore International Research Institute, Guangzhou, 510555, China
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Feitong Liu
- H&H Group, H&H Research, China Research and Innovation Center, Guangzhou, 510700, China
| | - Bin Zhang
- School of Food Science and Engineering, Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, South China University of Technology, Guangzhou, 510640, China.,Sino-Singapore International Research Institute, Guangzhou, 510555, China
| |
Collapse
|
24
|
Di Profio E, Magenes VC, Fiore G, Agostinelli M, La Mendola A, Acunzo M, Francavilla R, Indrio F, Bosetti A, D’Auria E, Borghi E, Zuccotti G, Verduci E. Special Diets in Infants and Children and Impact on Gut Microbioma. Nutrients 2022; 14:3198. [PMID: 35956374 PMCID: PMC9370825 DOI: 10.3390/nu14153198] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota is a complex system that starts to take shape early in life. Several factors influence the rise of microbial gut colonization, such as term and mode of delivery, exposure to antibiotics, maternal diet, presence of siblings and family members, pets, genetics, local environment, and geographical location. Breastfeeding, complementary feeding, and later dietary patterns during infancy and toddlerhood are major players in the proper development of microbial communities. Nonetheless, if dysbiosis occurs, gut microbiota may remain impaired throughout life, leading to deleterious consequences, such as greater predisposition to non-communicable diseases, more susceptible immune system and altered gut-brain axis. Children with specific diseases (i.e., food allergies, inborn errors of metabolism, celiac disease) need a special formula and later a special diet, excluding certain foods or nutrients. We searched on PubMed/Medline, Scopus and Embase for relevant pediatric studies published over the last twenty years on gut microbiota dietary patterns and excluded case reports or series and letters. The aim of this review is to highlight the changes in the gut microbiota in infants and children fed with special formula or diets for therapeutic requirements and, its potential health implications, with respect to gut microbiota under standard diets.
Collapse
Affiliation(s)
- Elisabetta Di Profio
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Vittoria Carlotta Magenes
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Giulia Fiore
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Marta Agostinelli
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Alice La Mendola
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Miriam Acunzo
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Ruggiero Francavilla
- Pediatric Section, Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Flavia Indrio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Alessandra Bosetti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Enza D’Auria
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Elisa Borghi
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, 20144 Milan, Italy
- Pediatric Clinical Research Center, Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20122 Milan, Italy
| | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| |
Collapse
|
25
|
Yan Z, Zhang M, Xu M, Yu J, Copeland L, Huang Y, Wang S. Effect of Debranching and Differential Ethanol Precipitation on the Formation and Fermentation Properties of Maize Starch-Lipid Complexes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9132-9142. [PMID: 35849541 DOI: 10.1021/acs.jafc.2c03081] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The objective of this study was to investigate the effect of starch debranching followed by differential ethanol precipitation on the formation and in vitro fermentation of starch-lipid complexes. Three groups of linear glucan chains, with a degree of polymerization (DP) of 383∼2950, 37∼75, and 3∼8, were obtained after debranched maize starch (DMS) was fractionated by differential ethanol precipitation. The glucan fraction with DP 383∼2950 formed only type IIb complexes with lauric acid (LA), whereas the fraction with DP 37∼75 formed predominantly type Ia complexes. The glucan faction with DP 8∼32 did not form V-complexes with LA. In vitro fermentation of the type IIb complexes with human fecal samples promoted the proliferation of butyrate-producing bacteria Megamonas, Blautia, and Megasphaera and resulted in a larger amount of butyrate and total short-chain fatty acids being produced than in similar fermentations of the maize starch-LA complex, DMS-LA complex, and fructo-oligosaccharides. This study showed that starch-lipid complexes with a more stable type IIb crystallite resulted in a greater production of butyrate.
Collapse
Affiliation(s)
- Ziqing Yan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Miaomiao Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Mengjie Xu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jinglin Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Les Copeland
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yongchun Huang
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
26
|
Li D, Yao X, Yang Y, Cao G, Yi G. In vitro digestibility and fermentability profiles of wheat starch modified by chlorogenic acid. Int J Biol Macromol 2022; 215:92-101. [PMID: 35718148 DOI: 10.1016/j.ijbiomac.2022.06.083] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/02/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
This study was designed to investigate the effect of chlorogenic acid (CA) on starch digestibility and fermentability in vitro. Compared with wheat starch (WS), WS-CA complexes exhibited a looser porous gel matrix, and higher solubility and swelling power with the addition of different proportion of CA. The WS-CA complexes significantly reduced the digestive rate of the gelatinized WS, and increased the proportion of resistant starch (RS) ranging from 31.70 % to 69.63 % much higher than that in the gelatinized WS (26.34 %). The residual WS-CA complexes after 24 h of fermentation with human feces induced the production of short-chain fatty acid, as well as the proliferation of gut microbiota such as genera Megamonas and Parabacteroides positively associated with the improvement of human health. The results suggest that complex of starch and CA could be a promising method for developing starchy foods with lower starch hydrolysis and promoting the growth of probiotics.
Collapse
Affiliation(s)
- Dan Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Xiaolin Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China.
| | - Yongli Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Guifang Cao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Gaoyang Yi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| |
Collapse
|
27
|
Fabrication of quercetin-loaded nanoparticles based on Hohenbuehelia serotina polysaccharides and their modulatory effects on intestinal function and gut microbiota in vivo. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Liu J, Liu F, Arıoğlu‐Tuncil S, Xie Z, Fu X, Huang Q, Zhang B. In vitro
faecal fermentation outcomes and microbiota shifts of resistant starch spherulites. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jiaying Liu
- School of Food Science and Engineering Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou 510640 China
| | - Feitong Liu
- H&H Group Global Research and Technology Center Guangzhou 510700 China
| | - Seda Arıoğlu‐Tuncil
- Department of Nutrition and Dietetics Faculty of Health Sciences Necmettin Erbakan University Konya 42090 Turkey
| | - Zhuqing Xie
- School of Food Science and Engineering Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou 510640 China
- Department of Food Science University of Copenhagen Frederiksberg DK‐1958 Denmark
| | - Xiong Fu
- School of Food Science and Engineering Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou 510640 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510640 China
| | - Qiang Huang
- School of Food Science and Engineering Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou 510640 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510640 China
| | - Bin Zhang
- School of Food Science and Engineering Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety South China University of Technology Guangzhou 510640 China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou 510640 China
| |
Collapse
|
29
|
Li L, Li W, Yang L, Cheng L, Li Z, Li C, Hong Y, Gu Z. Butyl Group Distribution, Intestinal Digestion, and Colonic Fermentation Characteristics of Different Butyrylated Starches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3289-3299. [PMID: 35258968 DOI: 10.1021/acs.jafc.1c07861] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite being a promising butyrate carrier, butyrylated starch remains poorly understood in terms of the correlation between starch structure and fermentation characteristics. Herein, three butyrylated starches derived from different botanical sources were prepared with a similar degree of substitution. Raman microscopy and water contact angle analysis suggested that a relatively large proportion of butyl group substitutions occurred within the interior of butyrylated waxy maize starch (B-WMS) granules. In vitro digestion results showed that branch points provided butyl groups with a specific protection from enzymatic hydrolysis, whereas butyl groups significantly increased the resistant starch content of butyrylated starch. Moreover, the porous morphology with less distributed butyl groups on the granular surface contributed to a faster fermentation rate in B-WMS. The current study reveals the influence of botanical origin on butyl group distribution, which in turn plays a pivotal role in regulating the intestinal digestion and colonic fermentation of butyrylated starch.
Collapse
Affiliation(s)
- Lingjin Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lihong Yang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
30
|
Ding L, Huang Q, Xiang W, Fu X, Zhang B, Wu JY. Chemical cross-linking reduces in vitro starch digestibility of cooked potato parenchyma cells. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Li C, Hu Y. New definition of resistant starch types from the gut microbiota perspectives - a review. Crit Rev Food Sci Nutr 2022; 63:6412-6422. [PMID: 35075962 DOI: 10.1080/10408398.2022.2031101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Current definition of resistant starch (RS) types is largely based on their interactions with digestive enzymes from human upper gastrointestinal tract. However, this is frequently inadequate to reflect their effects on the gut microbiota, which is an important mechanism for RS to fulfill its function to improve human health. Distinct shifts of gut microbiota compositions and alterations of fermented metabolites could be resulted by the consumption of RS from the same type. This review summarized these defects from the current definitions of RS types, while more importantly proposed pioneering concepts for new definitions of RS types from the gut microbiota perspectives. New RS types considered the aspects of RS fermentation rate, fermentation end products, specificity toward gut microbiota and shifts of gut microbiota caused by the consumption of RS. These definitions were depending on the known outcomes from RS-gut microbiota interactions. The application of new RS types in understanding the complex RS-gut microbiota interactions and promoting human health should be focused in the future.
Collapse
Affiliation(s)
- Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yiming Hu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Hu Y, Li C, Hou Y. Possible regulation of liver glycogen structure through the gut-liver axis by resistant starch: a review. Food Funct 2021; 12:11154-11164. [PMID: 34694313 DOI: 10.1039/d1fo02416g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Liver glycogen α particles in diabetic patients are fragile relative to those in healthy individuals, and restoring these fragile glycogen particles to a normal state shows potential to contribute to the remission of diabetes. Resistant starch (RS) is beneficial for diabetes management through its interactions with the gut microbiota. However, its effects on glycogen fragility are not fully understood. This review aims to summarize the recent understanding of the interactions between RS and the human gut microbiota and the possible connections to liver glycogen biosynthesis to elucidate its role in the development of glycogen fragility. RS might regulate glycogen fragility in diabetes by modulating the postprandial glycemic response and glycogen biosynthesis pathways. Before RS can be applied to repair fragile glycogen, more work should be done to better understand in vivo RS structures and identify the factor binding glycogen β particles together. This review contains important information on the connections between glycogen fragility and RS-gut microbiota interactions, which could help to better understand the health benefits of RS consumption.
Collapse
Affiliation(s)
- Yiming Hu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200031, China.
| | - Cheng Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200031, China.
| |
Collapse
|
33
|
Wang S, De Paepe K, Van de Wiele T, Fu X, Yuan Y, Zhang B, Huang Q. Starch Microspheres Entrapped with Chitosan Delay In Vitro Fecal Fermentation and Regulate Human Gut Microbiota Composition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12323-12332. [PMID: 34623811 DOI: 10.1021/acs.jafc.1c04039] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A slow dietary fiber fermentation rate is desirable to obtain a steady metabolite release and even distribution throughout the entire colon, ensuring to meet the energy needs in the distal colon. In this study, we prepared starch-entrapped microspheres with a variable chitosan-to-starch ratio by means of electrospraying and investigated the fermentability by human fecal microbiota in an in vitro batch system. Starch encapsulation reduced microbial gas production and the concentration of short-chain fatty acids. Butyrate production, in particular, gradually decreased with increasing chitosan proportions. Moreover, the starch and chitosan composites induced a synergistic effect on the gut microbiota composition. Roseburia, Lachnospiraceae, and Clostridiales were promoted by all of the microspheres, and the abundance of the aforementioned health-promoting taxa reached a maximum in chitosan/starch microspheres with a 1:6 (w/w) ratio. Our findings highlight the possible benefits of rationally designing functional foods targeting functional and taxonomic gut microbiota modulation.
Collapse
Affiliation(s)
- Shaokang Wang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Kim De Paepe
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, (111 Center), Guangzhou 510640, China
| | - Yang Yuan
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Bin Zhang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, (111 Center), Guangzhou 510640, China
| | - Qiang Huang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, (111 Center), Guangzhou 510640, China
| |
Collapse
|
34
|
Montanari C, Parolisi S, Borghi E, Putignani L, Bassanini G, Zuvadelli J, Bonfanti C, Tummolo A, Dionisi Vici C, Biasucci G, Burlina A, Carbone MT, Verduci E. Dysbiosis, Host Metabolism, and Non-communicable Diseases: Trialogue in the Inborn Errors of Metabolism. Front Physiol 2021; 12:716520. [PMID: 34588993 PMCID: PMC8475650 DOI: 10.3389/fphys.2021.716520] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Inborn errors of metabolism (IEMs) represent a complex system model, in need of a shift of approach exploring the main factors mediating the regulation of the system, internal or external and overcoming the traditional concept of biochemical and genetic defects. In this context, among the established factors influencing the metabolic flux, i.e., diet, lifestyle, antibiotics, xenobiotics, infectious agents, also the individual gut microbiota should be considered. A healthy gut microbiota contributes in maintaining human health by providing unique metabolic functions to the human host. Many patients with IEMs are on special diets, the main treatment for these diseases. Hence, IEMs represent a good model to evaluate how specific dietary patterns, in terms of macronutrients composition and quality of nutrients, can be related to a characteristic microbiota associated with a specific clinical phenotype (“enterophenotype”). In the present review, we aim at reporting the possible links existing between dysbiosis, a condition reported in IEMs patients, and a pro-inflammatory status, through an altered “gut-liver” cross-talk network and a major oxidative stress, with a repercussion on the health status of the patient, increasing the risk of non-communicable diseases (NCDs). On this basis, more attention should be paid to the nutritional status assessment and the clinical and biochemical signs of possible onset of comorbidities, with the goal of improving the long-term wellbeing in IEMs. A balanced intestinal ecosystem has been shown to positively contribute to patient health and its perturbation may influence the clinical spectrum of individuals with IEMs. For this, reaching eubiosis through the improvement of the quality of dietary products and mixtures, the use of pre-, pro- and postbiotics, could represent both a preventive and therapeutic strategy in these complex diseases.
Collapse
Affiliation(s)
- Chiara Montanari
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Sara Parolisi
- UOS Metabolic and Rare Diseases, AORN Santobono, Naples, Italy
| | - Elisa Borghi
- Department of Health Science, University of Milan, Milan, Italy
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Juri Zuvadelli
- Clinical Department of Pediatrics, ASST Santi Paolo e Carlo, San Paolo Hospital, University of Milan, Milan, Italy
| | - Cristina Bonfanti
- Rare Metabolic Disease Unit, Pediatric Department, Fondazione MBBM, San Gerardo Hospital, Monza, Italy
| | - Albina Tummolo
- Metabolic Diseases and Clinical Genetics Unit, Children's Hospital Giovanni XXIII, Bari, Italy
| | | | - Giacomo Biasucci
- Department of Paediatrics & Neonatology, Guglielmo da Saliceto Hospital, Piacenza, Italy
| | - Alberto Burlina
- Division of Inborn Metabolic Diseases, Department of Diagnostic Services, University Hospital of Padua, Padua, Italy
| | | | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy.,Department of Health Science, University of Milan, Milan, Italy
| |
Collapse
|
35
|
Yu M, Arıoğlu-Tuncil S, Xie Z, Fu X, Huang Q, Chen T, Zhang B. In vitro fecal fermentation profiles and microbiota responses of pulse cell wall polysaccharides: enterotype effect. Food Funct 2021; 12:8376-8385. [PMID: 34346458 DOI: 10.1039/d1fo01231b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The gut microbiota community of individuals is predominated by diverse fiber-utilizing bacteria, and might have distinct fermentation outcomes for a given dietary substrate. In this research, we isolated pea cell walls (PCWs) from cotyledon seeds, and performed the in vitro fecal fermentation by individual Prevotella- and Bacteroides-enterotype inocula. The Prevotella-enterotype inoculum showed a higher fermentation rate and produced more short-chain fatty acids (SCFAs), especially propionate and butyrate, throughout the entire fermentation period from PCW degradation compared with the Bacteroides-enterotype one. Furthermore, the better monosaccharide utilization capacity of Prevotella-enterotype inoculum was shown, compared to the Bacteroides-enterotype inoculum. PCW fermentation with Prevotella- and Bacteroides-enterotype inocula resulted in different microbial changes, and the abundance of Prevotella and Bacteroides was promoted, respectively. These results may contribute to predicting the responses of Prevotella and Bacteroides enterotypes to diets and offer useful information in personalized nutrition.
Collapse
Affiliation(s)
- Miaomiao Yu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| | - Seda Arıoğlu-Tuncil
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Necmettin Erbakan University, Konya, 42090, Turkey
| | - Zhuqing Xie
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
- Department of Food Science, University of Copenhagen, Frederiksberg DK-1958, Denmark
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Tingting Chen
- School of Food Science, Nanchang University, Nanchang, China.
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| |
Collapse
|
36
|
Wang S, Xia J, De Paepe K, Zhang B, Fu X, Huang Q, Van de Wiele T. Ultra-high Pressure Treatment Controls In Vitro Fecal Fermentation Rate of Insoluble Dietary Fiber from Rosa Roxburghii Tratt Pomace and Induces Butyrogenic Shifts in Microbiota Composition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10638-10647. [PMID: 34460265 DOI: 10.1021/acs.jafc.1c03453] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dietary fiber has been considered a key element in shaping the beneficial host-microbe symbiosis. In the present study, we identified Rosa roxburghii Tratt fruits as a promising dietary fiber source. The physicochemical properties and in vitro fermentability by human fecal microbes of R. roxburghii pomace water insoluble dietary fiber (RIDF) obtained from ultrasonic extraction and ultrahigh pressure (90 MPa)-treated RIDF (RIDF-90) were compared to those of R. roxburghii Tratt pomace (R). Ultrahigh pressure modification significantly increased the water holding, oil holding, and swelling capacity of RIDF-90 in comparison to R and RIDF. RIDF-90 displayed the slowest fermentation rate yet yielded the highest butyrate production. The superior butyrogenic properties of both RIDF-90 and, in part, RIDF were reflected by increased Coprococcus and Ruminococcus levels, demonstrating that ultrasonic extraction and/or further ultrahigh pressure treatment of insoluble fibers promotes the prebiotic value of R. roxburghii Tratt.
Collapse
Affiliation(s)
- Shaokang Wang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Jie Xia
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Kim De Paepe
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
- Sino-Singapore International Research Institute, Guangzhou 510555, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
- Sino-Singapore International Research Institute, Guangzhou 510555, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
- Sino-Singapore International Research Institute, Guangzhou 510555, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| |
Collapse
|
37
|
Li C, Hu Y. Align resistant starch structures from plant-based foods with human gut microbiome for personalized health promotion. Crit Rev Food Sci Nutr 2021; 63:2509-2520. [PMID: 34515592 DOI: 10.1080/10408398.2021.1976722] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Resistant starch (RS) is beneficial for human health through its interactions with gut microbiota. However, the alignment between RS structures with gut microbiota profile and consequentially health benefits remain elusive. This review summarizes current understanding of RS complex structures and their interactions with the gut microbiota, aiming to highlight the possibility of manipulating RS structures for a targeted and predictable gut microbiota shift for human health in a personalized way. Current definition of RS types is strongly associated with starch digestion behaviors in small intestine, which does not precisely reflect their interactions with human gut microbiota. Distinct alterations of gut microbiota could be associated with the same RS type. The principles to describe the specificity of different RS structural characteristics in terms of aligning with human gut microbiota shift was proposed in this review, which could result in new definitions of RS types from the microbial perspectives. To consider the highly variable personal features, a machine-learning algorithm to integrate different personalized factors and better understand the complex interaction between RS and gut microbiota and its effects on individual health was explained. This review contains important information to bring interactions between RS and gut microbiota to translational practice.
Collapse
Affiliation(s)
- Cheng Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yiming Hu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Zhang Z, Bao J. Recent Advances in Modification Approaches, Health Benefits, and Food Applications of Resistant Starch. STARCH-STARKE 2021. [DOI: 10.1002/star.202100141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhongwei Zhang
- Yazhou Bay Science and Technology City Hainan Institute of Zhejiang University Yazhou Districut Sanya Hainan 572025 China
- Institute of Nuclear Agricultural Sciences College of Agriculture and Biotechnology Zhejiang University Zijingang Campus Hangzhou 310058 China
| | - Jinsong Bao
- Yazhou Bay Science and Technology City Hainan Institute of Zhejiang University Yazhou Districut Sanya Hainan 572025 China
- Institute of Nuclear Agricultural Sciences College of Agriculture and Biotechnology Zhejiang University Zijingang Campus Hangzhou 310058 China
| |
Collapse
|
39
|
Pulse processing affects gas production by gut bacteria during in vitro fecal fermentation. Food Res Int 2021; 147:110453. [PMID: 34399455 DOI: 10.1016/j.foodres.2021.110453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 12/18/2022]
Abstract
Flatulence is one barrier to pulse consumption for many people. Therefore, we examined how processing affects gas production by the microbiome in three classes of pulses. Processing did not affect gas production from Navy beans. However, in Pardina lentils and green peas, (-1.9 ± 0.3 mL/24 h, p < 0.001; -2.3 ± 0.3 mL/24 h, p < 0.001, respectively). In Pardina lentils and green peas, germination diminished carbohydrate utilization by the microbiome compared with unprocessed samples. In Pardina lentils germination reduced abundance germination resulted in the greatest reduction in gas production among six processing methods of amplicon sequence variants (ASVs) from Bacteroides and Lachnospiraceae and reduced propionate production compared with unprocessed samples. In green peas, germination reduced ASVs from Lachnospiraceae, including one from Roseburia, and reduced proportion of butyrate production during fermentation. Three ASVs from Clostridium sensu stricto (cluster 1), Megasphaera elsdenii, and unclassified Veillonellaceae, were strongly associated with increased gas production across all samples (ρ = 0.67-0.69, p < 0.001). This study showed that processing can reduce gas production by the microbiome in some pulses, but also reduces saccharolytic fermentation and production of beneficial microbial metabolites.
Collapse
|
40
|
Li H, Gilbert RG, Gidley MJ. Molecular-structure evolution during in vitro fermentation of granular high-amylose wheat starch is different to in vitro digestion. Food Chem 2021; 362:130188. [PMID: 34090046 DOI: 10.1016/j.foodchem.2021.130188] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/14/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
This study investigates the evolution of the distributions of whole molecular size and of chain length of granular wheat starches (37 ~ 93% amylose content), subjected to in vitro fermentation with a porcine faecal inoculum or digestion with pancreatic enzymes. The results showed that the molecular structures of high-amylose starch (HAS) unfermented residues largely remained unchanged during the fermentation process, while wild-type starch (37% amylose content) showed a preferential degradation of the amylopectin fraction. In contrast, under simulated digestion conditions, the undigested residues of HAS showed structural changes, including a decrease in amylose content, a shift of amylose peak position towards lower degrees of polymerisation, and an enzyme-resistant fraction. These changes of starch structure are likely to be dependent on the different starch-degrading enzyme activities present in pancreatic vs. microbial systems. Molecular changes in response to fermentation metabolism revealed by size-exclusion chromatography can help understand the microbial utilization of resistant starch.
Collapse
Affiliation(s)
- Haiteng Li
- The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Robert G Gilbert
- The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia; Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Michael J Gidley
- The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia.
| |
Collapse
|
41
|
Xie X, Chen C, Huang Q, Fu X. Digestibility, bioactivity and prebiotic potential of phenolics released from whole gold kiwifruit and pomace by in vitro gastrointestinal digestion and colonic fermentation. Food Funct 2021; 11:9613-9623. [PMID: 33155604 DOI: 10.1039/d0fo02399j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim of this study was to evaluate the release of phenolics, biological activity variation and prebiotic potential of whole gold kiwifruit and pomace by in vitro digestion and colonic fermentation. The released phenolics of whole kiwifruit and pomace after digestion were 99.53 and 101.04 mg GAE per 100 g FW, respectively. Six compounds were quantified, and catechin, gallic and caffeic acid were mainly released in the oral phase, protocatechuic acid in the gastric phase, and coumaric and hydroxybenzoic acid during fermentation. The whole kiwifruit possessed higher antioxidant activity than the pomace, while both showed decreases during the whole digestion and fermentation process. After S-intestine digestion, the α-glucosidase inhibitory activities of pomace and whole kiwifruit were 1.33 and 3.11 mg acarbose per g FW, respectively. The fermentation of the whole kiwifruit and pomace caused reduction of the pH and variation of the gut microbiota diversity. Compared with whole kiwifruit, the pomace showed stronger modulative effects on the ratio of Firmicutes/Bacteroidetes. These findings provide scientific evidence for the utilization of pomace and whole gold kiwifruit.
Collapse
Affiliation(s)
- Xing Xie
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China.
| | | | | | | |
Collapse
|
42
|
Wang S, Dhital S, Wang K, Fu X, Zhang B, Huang Q. Side-by-side and exo-pitting degradation mechanism revealed from in vitro human fecal fermentation of granular starches. Carbohydr Polym 2021; 263:118003. [PMID: 33858585 DOI: 10.1016/j.carbpol.2021.118003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/08/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022]
Abstract
The in vitro fecal fermentation characteristics and microbiota responses to A- and B-type polymorphic starches as model (whole) foods enriched with resistant starch was investigated. Marked difference in fermentation rate as well as microbial genera was observed during fermentation, the degradation pattern as well as structural evolution during fermentation was almost similar. The final butyrate concentrations of both HAMS and PS (ca. 38 mM) were significantly higher than that of WMS (23 mM) and NMS (33 mM), which was associated with the increase of the relative abundance of Roseburia, Blautia, and Lachnospiraceae. A-type polymorphic starches, on the other hand had remarkably faster fermentation rate and promoted Megamonas. X-ray diffraction and size-exclusion chromatography of residual starch during the fermentation course demonstrated the "side-by-side" fermentation pattern. Based on the structural changes observed, we conclude that in vitro fecal fermentation of starch granules predominantly controlled by the surface features rather than the molecular and supra-molecular structure.
Collapse
Affiliation(s)
- Shaokang Wang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China; Sino-Singapore International Research Institute, Guangzhou, 510555, China
| | - Sushil Dhital
- Department of Chemical Engineering, Monash University, Clayton Campus, VIC, 3800, Australia
| | - Kai Wang
- School of Food Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China; Sino-Singapore International Research Institute, Guangzhou, 510555, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, 510640, China
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China; Sino-Singapore International Research Institute, Guangzhou, 510555, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, 510640, China.
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China; Sino-Singapore International Research Institute, Guangzhou, 510555, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, 510640, China.
| |
Collapse
|
43
|
|
44
|
Qin R, Wang J, Chao C, Yu J, Copeland L, Wang S, Wang S. RS5 Produced More Butyric Acid through Regulating the Microbial Community of Human Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3209-3218. [PMID: 33630575 DOI: 10.1021/acs.jafc.0c08187] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The objective of this research was to compare the in vitro fermentability of three resistant starches (RS2, RS3, and RS5). Structural analyses showed that there were small changes in the long- and short-range ordered structure of three RSs after fermentation by human gut microbiota. The fermentation of RSs by gut microbiota produced large amounts of short-chain fatty acids, with RS5 producing more butyric acid and RS3 producing more lactic acid. RS3 and RS5 decreased the pH of the fermentation culture to a greater extent compared with RS2. Moreover, RS5 increased significantly the relative abundance of Bifidobacterium, Dialister, Collinsella, Romboutsia, and Megamonas. The results suggested that the form of RS was the main factor affecting the physiological function of RS and that RS5, as a recently recognized form of resistant starch, could be a better functional ingredient to improve health compared with RS2 and RS3.
Collapse
Affiliation(s)
- Renbing Qin
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Technology Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Chen Chao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jinglin Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Les Copeland
- Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- School of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
45
|
Abstract
Resistant starch, microbiome, and precision modulation. Mounting evidence has positioned the gut microbiome as a nexus of health. Modulating its phylogenetic composition and function has become an attractive therapeutic prospect. Resistant starches (granular amylase-resistant α-glycans) are available as physicochemically and morphologically distinguishable products. Attempts to leverage resistant starch as microbiome-modifying interventions in clinical studies have yielded remarkable inter-individual variation. Consequently, their utility as a potential therapy likely depends predominantly on the selected resistant starch and the subject's baseline microbiome. The purpose of this review is to detail i) the heterogeneity of resistant starches, ii) how resistant starch is sequentially degraded and fermented by specialized gut microbes, and iii) how resistant starch interventions yield variable effects on the gut microbiome.
Collapse
Affiliation(s)
- Peter A. Dobranowski
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
46
|
Effect of in vitro digestion-fermentation of Ca(II)-alginate beads containing sugar and biopolymers over global antioxidant response and short chain fatty acids production. Food Chem 2020; 333:127483. [DOI: 10.1016/j.foodchem.2020.127483] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022]
|
47
|
Use of random forest analysis to quantify the importance of the structural characteristics of beta-glucans for prebiotic development. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
48
|
Inhibition of α-amylase by polyphenolic compounds: Substrate digestion, binding interactions and nutritional intervention. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Guan N, He X, Wang S, Liu F, Huang Q, Fu X, Chen T, Zhang B. Cell Wall Integrity of Pulse Modulates the in Vitro Fecal Fermentation Rate and Microbiota Composition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1091-1100. [PMID: 31896257 DOI: 10.1021/acs.jafc.9b06094] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The physical structure of type 1 resistant starch (RS 1) could influence the metabolite production and stimulate the growth of specific bacteria in the human colon. In the present study, we isolated intact cotyledon cells from pinto bean seeds as whole pulse food and RS 1 model and obtained a series of cell wall integrities through controlled enzymolysis. In vitro human fecal fermentation performance and microbiota responses were tested, and we reported that the cell wall integrity controls the in vitro fecal fermentation rate of heat-treated pinto bean cells. The concentration of butyrate produced by pinto bean cell fermentation enhanced with weakened cell wall integrity, and certain beneficial bacterial groups such as Blautia and Roseburia genera were remarkably promoted by pinto bean cells with damaged cell wall integrity. However, the intact cell sample had a shape more similar to microbiota composition with the purified cell wall polysaccharides, rather than the damaged cells.
Collapse
Affiliation(s)
- Nannan Guan
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , China
| | - Xiaowei He
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , China
| | - Shaokang Wang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , China
- Sino-Singapore International Research Institute , Guangzhou 510555 , China
| | - Feitong Liu
- H&H Group Global Research and Technology Center , Guangzhou 510700 , China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , China
- Sino-Singapore International Research Institute , Guangzhou 510555 , China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) , Guangzhou 510640 , China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) , Guangzhou 510640 , China
| | - Tingting Chen
- School of Food Science and Technology , Nanchang University , Nanchang 330047 , China
- Department of Biochemistry and Microbiology , Rutgers University , New Brunswick , New Jersey 08901-8525 , United States
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , South China University of Technology , Guangzhou 510640 , China
- Sino-Singapore International Research Institute , Guangzhou 510555 , China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) , Guangzhou 510640 , China
| |
Collapse
|