1
|
Han S, Wang S, Fu S, Chen K, Gao W, Cheng Y, Liu M, Zhang X, Lei K. Design, Synthesis, and Herbicidal Activity of Novel 5-Acylbarbituric Acid Derivatives Containing Maleimide Moieties and Evaluation of Their Mode of Action. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11386-11398. [PMID: 40296318 DOI: 10.1021/acs.jafc.4c11800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
In continuation of our search for herbicide lead compounds with novel structures and enhanced activities, a total of thirty 5-acylbarbituric acid derivatives containing maleimide moieties were designed and synthesized, and their herbicidal activities were evaluated in the greenhouse. The bioassay results showed that some of the newly synthesized target compounds had good herbicidal activity, of which BT-IV-1 displayed an excellent inhibitory effect on Brassia campestris, Amaranthus retroflexus, Amaranthus blitum, Chenopodium album, Portulaca oleracea, and Abutilon theophrasti, with inhibition rate > 80% at the dosage of 37.5 g ha-1, and it was determined to be safe for Oryza sativa, Zea mays, and Panicum miliaceum at the dosage of 75 g ha-1. Studying the molecular mechanism by phenotypic observation, membrane permeability evaluation, molecular docking, and in vitro maize protoporphyrinogen oxidase (PPO) activity evaluation reveals that BT-IV-1 is a PPO inhibitor. The present work indicates that BT-IV-1 can serve as a potential lead compound for the further development of novel PPO-inhibiting herbicides.
Collapse
Affiliation(s)
- Shibo Han
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Shumin Wang
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Shuyue Fu
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Ke Chen
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Korea
| | - Wei Gao
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Yaning Cheng
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Meng Liu
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Xiangmei Zhang
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Kang Lei
- State Key Laboratory of Macromolecular Drugs and Large-scale Preparation, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| |
Collapse
|
2
|
Kong LJ, Cao XY, Sun NB, Min LJ, Duke SO, Wu HK, Zhang LQ, Liu XH. Isoxazoline: An Emerging Scaffold in Pesticide Discovery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8678-8693. [PMID: 40176756 DOI: 10.1021/acs.jafc.4c09612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Isoxazolines are five-membered heterocycle compounds with a wide range of pharmacological and pesticidal activities. Numerous marketed pesticides contain an isoxazoline motif as a key skeleton. Isoxazoline compounds have relatively simple syntheses and wide biological activities against various weeds, bacteria, and other pests. In recent years, they have received increasing attention and are widely used in organic chemistry research, such as intermediate and catalyst ligands in organic synthesis. They also have excellent optoelectronic properties and are widely used in the field of materials. Hence, the exploration of isoxazoline derivatives remains an important research area in pesticide discovery. This review provides an up-to-date overview of isoxazoline heterocycle compounds utilized as pesticides and in pesticide discovery, highlighting their structure and biological properties. It summarizes relevant publications from the last 10 years, offering insights into the recent advancements in this field of research.
Collapse
Affiliation(s)
- Ling-Jie Kong
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Xin-Yu Cao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Na-Bo Sun
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China
| | - Li-Jing Min
- College of Life Science, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou 313000, Zhejiang, China
| | - Stephen O Duke
- National Center for Natural Product Research, School of Pharmacy, University of Mississippi, P.O. Box 1848, University, Mississippi 38677, United States
| | - Hong-Ke Wu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Li-Qin Zhang
- College of Life Science, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou 313000, Zhejiang, China
| | - Xing-Hai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
3
|
Geng W, Zhang W, Lei Q, Gan X. Discovery of N-Phenylphthalimides Containing Ether Moiety as Potential Protoporphyrinogen IX Oxidase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6599-6609. [PMID: 40042937 DOI: 10.1021/acs.jafc.5c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The discovery of novel protoporphyrinogen IX oxidase (PPO) inhibitors has become a key focus in herbicide development. To explore new PPO inhibitors, a series of N-phenylphthalimide derivatives with ether moieties were designed and successfully synthesized. Among these, compound B18 (Ki = 10.3 nM) exhibited a strong inhibitory effect on NtPPO, outperforming flumiclorac-pentyl (Ki = 46.3 nM) and flumioxazin (Ki = 52.0 nM). It is noted that compounds A3, B18, B19, and B20 showed broad-spectrum herbicidal activity against the tested weeds at 75 g a.i./ha. In addition, results of molecular simulation and density functional theory (DFT) calculations indicated that compound B18 possessed not only a robust hydrogen bond with Arg98 of NtPPO but also superior chemical reactivity, electrostatic field, and strong polarity. Therefore, compound B18 may be regarded as a promising lead compound for the development of high-efficiency PPO inhibitors.
Collapse
Affiliation(s)
- Wang Geng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Wei Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Qiong Lei
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| | - Xiuhai Gan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
4
|
Zhao LX, Luo K, Guo XD, Zou YL, Gao S, Fu Y, Ye F. Design, Synthesis, and Biological Activity Evaluation of Novel Phenoxypyridine Derivatives Containing Acylthiourea Fragments as Protoporphyrinogen Oxidase Inhibitor Herbicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5020-5032. [PMID: 39993238 DOI: 10.1021/acs.jafc.4c09757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Protoporphyrinogen oxidase (PPO, EC 1.3.3.4) plays a crucial role in the biosynthesis of chlorophyll in plants. PPO inhibitor herbicides are noted for their broad-spectrum activity, high efficiency, low toxicity, and minimal environmental impact, positioning them as effective targets for the discovery of environmentally friendly herbicides. In this research, utilizing the principles of bioisosterism and substructure activity splicing, 42 phenoxypyridine derivatives containing acylthiourea fragments were synthesized. Among them, the compound g13 exhibited superior inhibitory efficacy against six target weed species in greenhouse herbicidal trials. In vitro enzyme activity assays indicated that g13 significantly inhibited Echinochloa crus-galli PPO (EcPPO), with an IC50 value of 0.109 ± 0.018 μM, demonstrating superior inhibitory activity compared to oxyfluorfen. Furthermore, compound g13 exhibited superior crop safety compared to oxyfluorfen and holds potential application prospects for weed management in wheat and cotton. Molecular docking and dynamics simulations were employed to elucidate the binding mode and molecular mechanism of g13 with NtPPO. Potential metabolic pathways for g13 in plant systems were also analyzed. These experimental and theoretical results indicate that g13 is a promising lead candidate for PPO inhibitor herbicides.
Collapse
Affiliation(s)
- Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Kai Luo
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Xian-Da Guo
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yue-Li Zou
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
5
|
Zhang W, Zhang J, Yan C, Li Y, Gan X. Novel N-Phenyltriazinone Carboxylic Acid Derivatives as Promising Protoporphyrinogen IX Oxidase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3908-3917. [PMID: 39910440 DOI: 10.1021/acs.jafc.4c09169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Protoporphyrinogen IX oxidase (PPO) is a critical target for new herbicide development. We used a scaffold hopping strategy to develop 49 novel N-phenyltriazinone carboxylic acid derivatives and assessed their function as PPO inhibitors. Bioassay revealed that compound D5 exhibited excellent inhibitory activity against Nicotiana tabacum PPO (NtPPO) with a Ki of 33.7 nM, comparable to that of trifludimoxazin (Ki = 31.1 nM). Compound D5 also exhibited remarkable postemergence herbicidal activity against five weed species (Setaria faberii, Echinochloa crusgalli, Amaranthus retroflexus, Abutilon juncea, and Portulaca oleracea) at an ultralow concentration (9.375 g a.i./ha), and it showed broad-spectrum herbicidal activity and relatively high safety in wheat, rice, and peanut at 150 and 75 g a.i./ha, respectively. In molecular simulations, compound D5 stably binds NtPPO via π-π stacking with Phe392 and a sandwiched π-alkyl interaction with the key amino acids Leu356 and Leu372. This study shows that the novel N-phenyltriazinone carboxylic acid derivative D5 is a promising PPO inhibitor for agricultural weed control.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jiahui Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Chaohui Yan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yan Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiuhai Gan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
6
|
Zhang W, Guo P, Zhang Y, Zhou Q, Sun Y, Xu H. Application of Difluoromethyl Isosteres in the Design of Pesticide Active Molecules. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21344-21363. [PMID: 39305256 DOI: 10.1021/acs.jafc.4c04239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Difluoromethyl (CF2H) groups have been found in many listed pesticides due to their unique physical and chemical properties and outstanding biological activity. In pesticide molecules, compared with the drastic changes brought by trifluoromethyl, difluoromethyl usually moderately regulates the metabolic stability, lipophilicity, bioavailability, and binding affinity of compounds. Therefore, difluoromethylation has become an effective means to modify the biological activity of pesticide molecules. This paper reviews the representative literatures and patents containing difluoromethyl groups in the past 10 years, and introduces the research progress. The aim is to provide an effective reference value for the study of difluoromethyl in pesticides.
Collapse
Affiliation(s)
- Wanjie Zhang
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Pengxiang Guo
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Yannian Zhang
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Qin Zhou
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Yan Sun
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Hongliang Xu
- Engineering Research Center of Pesticide of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
7
|
Geng W, Zhang Q, Liu L, Tai G, Gan X. Design, Synthesis, and Herbicidal Activity of Novel Tetrahydrophthalimide Derivatives Containing Oxadiazole/Thiadiazole Moieties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17191-17199. [PMID: 39054861 DOI: 10.1021/acs.jafc.4c01389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Protoporphyrinogen oxidase (PPO, EC 1.3.3.4) has a high status in the development of new inhibitors. To develop novel and highly effective PPO inhibitors, active substructure linking and bioisosterism replacement strategies were used to design and synthesize novel tetrahydrophthalimide derivatives containing oxadiazole/thiadiazole moieties, and their inhibitory effects on Nicotiana tobacco PPO (NtPPO) and herbicidal activity were evaluated. Among them, compounds B11 (Ki = 9.05 nM) and B20 (Ki = 10.23 nM) showed significantly better inhibitory activity against NtPPO than that against flumiclorac-pentyl (Ki = 46.02 nM). Meanwhile, compounds A20 and B20 were 100% effective against three weeds (Abutilon theophrasti, Amaranthus retroflexus, and Portulaca oleracea) at 37.5 g a.i./ha. It was worth observing that compound B11 was more than 90% effective against three weeds (Abutilon theophrasti, Amaranthus retroflexus, and Portulaca oleracea) at 18.75 and 9.375 g a.i./ha. It was also safer to rice, maize, and wheat than flumiclorac-pentyl at 150 g a.i./ha. In addition, the molecular docking results showed that compound B11 could stably bind to NtPPO and it had a stronger hydrogen bond with Arg98 (2.9 Å) than that of flumiclorac-pentyl (3.2 Å). This research suggests that compound B11 could be used as a new PPO inhibitor, and it could help control weeds in agricultural production.
Collapse
Affiliation(s)
- Wang Geng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Qi Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Li Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Gangyin Tai
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiuhai Gan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
8
|
Zhang W, Zhang J, Yan C, Gan X. Discovery of Novel N-Phenyltriazinone Derivatives Containing Oxime Ether or Oxime Ester Moieties as Promising Protoporphyrinogen IX Oxidase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12946-12955. [PMID: 38809794 DOI: 10.1021/acs.jafc.4c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Protoporphyrinogen IX oxidase (PPO, EC 1.3.3.4) is one of the most important targets for the discovery of green herbicides. In order to find novel PPO inhibitors with a higher herbicidal activity, a series of novel N-phenyltriazinone derivatives containing oxime ether and oxime ester groups were designed and synthesized based on the strategy of pharmacophore and scaffold hopping. Bioassay results revealed that some compounds showed herbicidal activities; especially, compound B16 exhibited broad-spectrum and excellent 100% herbicidal effects to Echinochloa crusgalli, Digitaria sanguinalis, Setaria faberii, Abutilon juncea, Amaranthus retroflexus, and Portulaca oleracea at a concentration of 37.5 g a.i./ha, which were comparable to trifludimoxazin. Nicotiana tabacum PPO (NtPPO) enzyme inhibitory assay indicated that B16 showed an excellent enzyme inhibitory activity with a value of 32.14 nM, which was similar to that of trifludimoxazin (31.33 nM). Meanwhile, compound B16 revealed more safety for crops (rice, maize, wheat, peanut, soybean, and cotton) than trifludimoxazin at a dose of 150 g a.i./ha. Moreover, molecular docking and molecular dynamics simulation further showed that B16 has a very strong and stable binding to NtPPO. It indicated that B16 can be used as a potential PPO inhibitor and herbicide candidate for application in the field.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jiahui Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Chaohui Yan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiuhai Gan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
9
|
Zheng BF, Zuo Y, Yang WY, Liu H, Wu QY, Yang GF. Design, Synthesis, and Biological Evaluation of Pyridazinone-Containing Derivatives As Novel Protoporphyrinogen IX Oxidase Inhibitor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10772-10780. [PMID: 38703122 DOI: 10.1021/acs.jafc.3c09157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
Protoporphyrinogen IX oxidase (PPO, E.C. 1.3.3.4) plays a pivotal role in chlorophyll biosynthesis in plants, making it a prime target for herbicide development. In this study, we conducted an investigation aimed at discovering PPO-inhibiting herbicides. Through this endeavor, we successfully identified a series of novel compounds based on the pyridazinone scaffold. Following structural optimization and biological assessment, compound 10ae, known as ethyl 3-((6-fluoro-5-(6-oxo-4-(trifluoromethyl)pyridazin-1(6H)-yl)benzo[d]thiazol-2-yl)thio)propanoate, emerged as a standout performer. It exhibited robust activity against Nicotiana tabacum PPO (NtPPO) with an inhibition constant (Ki) value of 0.0338 μM. Concurrently, we employed molecular simulations to obtain further insight into the binding mechanism with NtPPO. Additionally, another compound, namely, ethyl 2-((6-fluoro-5-(5-methyl-6-oxo-4-(trifluoromethyl)pyridazin-1(6H)-yl)benzo[d]thiazol-2-yl)thio)propanoate (10bh), demonstrated broad-spectrum and highly effective herbicidal properties against all six tested weeds (Leaf mustard, Chickweed, Chenopodium serotinum, Alopecurus aequalis, Poa annua, and Polypogon fugax) at the dosage of 150 g a.i./ha through postemergence application in a greenhouse. This work identified a novel lead compound (10bh) that showed good activity in vitro and excellent herbicidal activity in vivo and had promising prospects as a new PPO-inhibiting herbicide lead.
Collapse
Affiliation(s)
- Bai-Feng Zheng
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Yang Zuo
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Wen-Yi Yang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Hui Liu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Qiong-You Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
10
|
Zhang M, Cai H, Pang C, Chen Z, Ling D, Jin Z, Chi YR. Design, Synthesis, and Herbicidal Evaluation of Pyrrolidinone-Containing 2-Phenylpyridine Derivatives as Novel Protoporphyrinogen Oxidase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10218-10226. [PMID: 38666644 DOI: 10.1021/acs.jafc.3c09173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
In this work, a series of pyrrolidinone-containing 2-phenylpyridine derivatives were synthesized and evaluated as novel protoporphyrinogen IX oxidase (PPO, EC 1.3.3.4) inhibitors for herbicide development. At 150 g ai/ha, compounds 4d, 4f, and 4l can inhibit the grassy weeds of Echinochloa crus-galli (EC), Digitaria sanguinalis (DS), and Lolium perenne (LP) with a range of 60 to 90%. Remarkably, at 9.375 g ai/ha, these compounds showed 100% inhibition effects against broadleaf weeds of Amaranthus retroflexus (AR) and Abutilon theophrasti (AT), which were comparable to the performance of the commercial herbicides flumioxazin (FLU) and saflufenacil (SAF) and better than that of acifluorfen (ACI). Molecular docking analyses revealed significant hydrogen bonding and π-π stacking interactions between compounds 4d and 4l with Arg98, Asn67, and Phe392, respectively. Additionally, representative compounds were chosen for in vivo assessment of PPO inhibitory activity, with compounds 4d, 4f, and 4l demonstrating excellent inhibitory effects. Notably, compounds 4d and 4l induced the accumulation of reactive oxygen species (ROS) and a reduction in the chlorophyll (Chl) content. Consequently, compounds 4d, 4f, and 4l are promising lead candidates for the development of novel PPO herbicides.
Collapse
Affiliation(s)
- Meng Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Hui Cai
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Chen Pang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Zhongyin Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Dan Ling
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 637371 Singapore
| |
Collapse
|
11
|
Cai H, Zhang X, Ling D, Zhang M, Pang C, Chen Z, Jin Z, Ren SC, Chi YR. Discovery of Pyridyl-Benzothiazol Hybrids as Novel Protoporphyrinogen Oxidase Inhibitors via Scaffold Hopping. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38593435 DOI: 10.1021/acs.jafc.3c08596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In order to discover novel protoporphyrinogen oxidase (PPO) inhibitors with excellent herbicidal activity, a series of structurally novel 6-(pyridin-2-yl) benzothiazole derivatives were designed based on the scaffold hopping strategy. The in vitro experiments demonstrated that the newly synthesized compounds exhibited noteworthy inhibitory activity against Arabidopsis thaliana PPO (AtPPO), with IC50 values ranging from 0.06 to 1.36 μM. Preliminary postemergence herbicidal activity tests and crop safety studies indicated that some of our compounds exhibited excellent herbicidal activity and crop safety. For instance, compound (rac)-7as exhibited superior herbicidal activities to commercially available flumioxazin (FLU) and saflufenacil (SAF) at all the tested concentrations and showed effective herbicidal activities even at a dosage as low as 18.75 g ai/ha. Meanwhile, compound (rac)-7as showed good crop safety for wheat at a dosage as high as 150 g of ai/ha. Although the absolute configuration of compound 7as has no obvious effect on its herbicidal activity, compound (R)-7as showed a slightly higher crop safety than compound (S)-7as. Molecular simulation studies of Nicotiana tabacum PPO (NtPPO) and our candidate compounds showed that the benzothiazole moiety of compounds (R)-7as or (S)-7as formed multiple π-π stacking interactions with FAD, and the pyridine ring generated π-π stacking with Phe-392. Our finding proved that the pyridyl-benzothiazol hybrids are promising scaffolds for the development of PPO-inhibiting herbicides.
Collapse
Affiliation(s)
- Hui Cai
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xiao Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Dan Ling
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Meng Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Chen Pang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhongyin Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shi-Chao Ren
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
12
|
Chen Z, Cai H, Zhang X, Zhang M, Hao GF, Jin Z, Ren S, Chi YR. Design, Synthesis, and Herbicidal Activity of Substituted 3-(Pyridin-2-yl)Phenylamino Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2501-2511. [PMID: 38270648 DOI: 10.1021/acs.jafc.3c06144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
To discover protoporphyrinogen oxidase (PPO) inhibitors with robust herbicidal activity and crop safety, three types of substituted 3-(pyridin-2-yl)phenylamino derivatives bearing amide, urea, or thiourea as side chain were designed via structure splicing strategy. Postemergence herbicidal activity assessment of 33 newly prepared compounds revealed that many of our compounds such as 6a, 7b, and 8d exhibited superior herbicidal activities against broadleaf and monocotyledon weeds to commercial acifluorfen. In particular, compound 8d exhibited excellent herbicidal activities and high crop safety at a dosage range of 37.5-150 g ai/ha. PPO inhibitory studies supported our compounds as typical PPO inhibitors. Molecular docking studies revealed that compound 8d provided effective interactions with Nicotiana tabacum PPO (NtPPO) via diverse interaction models, such as π-π stacking and hydrogen bonds. Molecular dynamics (MD) simulation studies and degradation studies were also conducted to gain insight into the inhibitory mechanism. Our study indicates that compound 8d may be a candidate molecule for the development of novel herbicides.
Collapse
Affiliation(s)
- Zhongyin Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Hui Cai
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Xiao Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Meng Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Ge-Fei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Shichao Ren
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
13
|
Alnafta N, Beffa R, Bojack G, Bollenbach-Wahl B, Brant NZ, Dörnbrack C, Dorn N, Freigang J, Gatzweiler E, Getachew R, Hartfiel C, Heinemann I, Helmke H, Hohmann S, Jakobi H, Lange G, Lümmen P, Willms L, Frackenpohl J. Designing New Protoporphyrinogen Oxidase-Inhibitors Carrying Potential Side Chain Isosteres to Enhance Crop Safety and Spectrum of Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18270-18284. [PMID: 37269295 DOI: 10.1021/acs.jafc.3c01420] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
There are several methods to control weeds, which impose particular challenges for farmers in all parts of the world, although applying small molecular compounds still remains the most efficient technology to date. However, plants can evolve to become resistant toward active ingredients which is also the case for protoporphyrinogen oxidase (PPO) inhibitors, a class of highly effective herbicides in use for more than 50 years. Hence, it is essential to continuously discover and develop new herbicidal PPO inhibitors with enhanced intrinsic activity, an improved resistance profile, enhanced crop safety, favorable physicochemical properties, and a clean toxicological profile. By modifying structural key features from known PPO inhibitors such as tiafenacil, inspired by isostere and mix&match concepts in combination with modeling investigations based on a wild-type Amaranthus crystal structure, we have found new promising lead structures showing strong activity in vitro and in vivo against several notorious dicotyledon and monocotyledon weeds with emerging resistance (e.g., Amaranthus palmeri, Amaranthus tuberculatus, Lolium rigidum, and Alopecurus myosuroides). While several phenyl uracils carrying an isoxazoline motif in their thio-linked side chain showed promising resistance-breaking potential against different Amaranthus species, introducing a thioacrylamide side chain afforded outstanding efficacy against resistant grass weeds.
Collapse
Affiliation(s)
- Neanne Alnafta
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Roland Beffa
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Guido Bojack
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Birgit Bollenbach-Wahl
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Nicola Z Brant
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Christine Dörnbrack
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Nicole Dorn
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Jörg Freigang
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Elmar Gatzweiler
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Rahel Getachew
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Claudia Hartfiel
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Ines Heinemann
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Hendrik Helmke
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Sabine Hohmann
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Harald Jakobi
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Gudrun Lange
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Peter Lümmen
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Lothar Willms
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Jens Frackenpohl
- Research and Development, Weed Control Chemistry, Crop Science Division, Bayer AG, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| |
Collapse
|
14
|
Zhang M, Cai H, Ling D, Pang C, Chang J, Jin Z, Chi YR. Herbicidal Activity of Beflubutamid Analogues as PDS Inhibitors and SAR Analysis and Degradation Dynamics in Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37906815 DOI: 10.1021/acs.jafc.3c04733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
In this work, a series of beflubutamid (BF) analogues' postemergent herbicidal activity was evaluated, and the structure-activity relationship (SAR) was discussed. At a dosage of 300 g ai/ha, compounds (Rac)-6h and (Rac)-6q showed excellent herbicidal activity against Amaranthus retroflexus, Abutilon theophrasti, and Medicago sativa, with inhibition rates of 90, 100, and 80% and 100, 100, and 100%, respectively, comparable to that of commercial herbicide BF, which showed inhibition rates of 90, 100, and 100%, respectively. Notably, at dosages of 150 and 300 g ai/ha, the chiral compounds (S)-6h and (S)-6q exhibited higher herbicidal activities than their racemates. Molecular docking results indicated that compounds (S)-BF and (S)-6h have stronger binding affinities with Oryza sativa phytoene desaturase (OsPDS), resulting in a higher herbicidal activity. Additionally, the degradation dynamics half-life of (S)-BF in wheat was determined to be 77.02 h. Consequently, compounds (S)-6h and (S)-6q are promising lead candidates for the development of highly effective herbicides.
Collapse
Affiliation(s)
- Meng Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Hui Cai
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Dan Ling
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Chen Pang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Jinming Chang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, People's Republic of China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
15
|
Zheng BF, Zuo Y, Huang GY, Wang ZZ, Ma JY, Wu QY, Yang GF. Synthesis and Biological Activity Evaluation of Benzoxazinone-Pyrimidinedione Hybrids as Potent Protoporphyrinogen IX Oxidase Inhibitor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14221-14231. [PMID: 37729497 DOI: 10.1021/acs.jafc.3c03593] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Protoporphyrinogen IX oxidase (PPO/Protox, E.C. 1.3.3.4) is recognized as one of the most important targets for herbicide discovery. In this study, we report our ongoing research efforts toward the discovery of novel PPO inhibitors. Specifically, we identified a highly potent new compound series containing a pyrimidinedione moiety and bearing a versatile building block-benzoxazinone scaffold. Systematic bioassays resulted in the discovery of compound 7af, ethyl 4-(7-fluoro-6-(3-methyl-2,6-dioxo-4-(trifluoromethyl)-3,6-dihydropyrimidin-1(2H)-yl)-3-oxo-2,3-dihydro-4H-benzo[b][1,4]oxazin-4-yl)butanoate, which exhibited broad-spectrum and excellent herbicidal activity at the dosage of 37.5 g a.i./ha through postemergence application. The inhibition constant (Ki) value of 7af to Nicotiana tabacum PPO (NtPPO) was 14 nM, while to human PPO (hPPO), it was 44.8 μM, indicating a selective factor of 3200, making it the most selective PPO inhibitor to date. Moreover, molecular simulations further demonstrated the selectivity and the binding mechanism of 7af to NtPPO and hPPO. This study not only identifies a candidate that showed excellent in vivo bioactivity and high safety toward humans but also provides a paradigm for discovering PPO inhibitors with improved performance through molecular simulation and structure-guided optimization.
Collapse
Affiliation(s)
- Bai-Feng Zheng
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P. R. China
| | - Yang Zuo
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang-Yi Huang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhi-Zheng Wang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P. R. China
| | - Jin-Yi Ma
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P. R. China
| | - Qiong-You Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
16
|
Shi J, Tian Y, Chen S, Liao C, Mao G, Deng X, Yu L, Zhu X, Li J. Design, synthesis and antifungal evaluation of phenylthiazole-1,3,4-oxadiazole thione (ketone) derivatives inspired by natural thiasporine A. PEST MANAGEMENT SCIENCE 2023; 79:3439-3450. [PMID: 36966468 DOI: 10.1002/ps.7481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/02/2023] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Plant pathogenic fungal infections have become a severe threat to the yield and quality of agricultural products, and new green antifungal agents with high efficiency and low toxicity are needed. In this study, a series of thiasporine A derivatives containing phenylthiazole-1,3,4-oxadiazole thione (ketone) structures were designed and synthesized, and their antifungal activities against six invasive and highly destructive phytopathogenic fungi were evaluated. RESULTS The results found that all compounds showed moderate to potent antifungal activity against six phytopathogenic fungi, and most of the E series compounds showed remarkable antifungal activity against Sclerotinia sclerotiorum and Colletotrichum camelliaet. In particular, compounds E1-E5, E7, E8, E13, E14, E17, and E22 showed more significant antifungal activity against S. sclerotiorum, with half-maximal effective concentration (EC50 ) values of 0.22, 0.48, 0.56, 0.65, 0.51, 0.39, 0.60, 0.56, 0.60, 0.63, and 0.45 μg mL-1 , respectively, which were superior to that of carbendazim (0.70 μg mL-1 ). Further activity studies showed that compound E1 possessed superior curative activities against S. sclerotiorum in vivo and better inhibitory effects on sclerotia germination and the formation of S. sclerotiorum compared with those of carbendazim. CONCLUSIONS This study indicates that these thiasporine A derivatives containing phenylthiazole-1,3,4-oxadiazole thione structures might be used as antifungal agents against S. sclerotiorum. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinchao Shi
- Institute of Pesticides, College of Agriculture, Yangtze University, Jingzhou, China
| | - Yao Tian
- Institute of Pesticides, College of Agriculture, Yangtze University, Jingzhou, China
| | - Shunshun Chen
- Institute of Pesticides, College of Agriculture, Yangtze University, Jingzhou, China
| | - Changzhou Liao
- Institute of Pesticides, College of Agriculture, Yangtze University, Jingzhou, China
| | - Guoqing Mao
- Institute of Pesticides, College of Agriculture, Yangtze University, Jingzhou, China
| | - Xiaoqian Deng
- Institute of Pesticides, College of Agriculture, Yangtze University, Jingzhou, China
| | - Linhua Yu
- Institute of Pesticides, College of Agriculture, Yangtze University, Jingzhou, China
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China
| | - Xiang Zhu
- Institute of Pesticides, College of Agriculture, Yangtze University, Jingzhou, China
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Junkai Li
- Institute of Pesticides, College of Agriculture, Yangtze University, Jingzhou, China
- Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
17
|
Mattison RL, Beffa R, Bojack G, Bollenbach-Wahl B, Dörnbrack C, Dorn N, Freigang J, Gatzweiler E, Getachew R, Hartfiel C, Heinemann I, Helmke H, Hohmann S, Jakobi H, Lange G, Lümmen P, Willms L, Frackenpohl J. Design, synthesis and screening of herbicidal activity for new phenyl pyrazole-based protoporphyrinogen oxidase-inhibitors (PPO) overcoming resistance issues. PEST MANAGEMENT SCIENCE 2023; 79:2264-2280. [PMID: 36815643 DOI: 10.1002/ps.7425] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/19/2022] [Accepted: 02/23/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Whilst there are several methods to control weeds, which continuously plague farmers around the globe, the application of small molecular compounds is still the most effective technology to date. Plants can evolve to become resistant to PPO-inhibitors, a class of herbicides in commercial use since the 1960s. It is therefore essential to continuously develop new herbicides based on this mode-of-action with enhanced intrinsic activity, an improved resistance profile and favourable physicochemical properties. Based on an Amaranthus PPO crystal structure and subsequent modelling studies, halogen-substituted pyrazoles have been investigated as isosteres of uracil-based PPO-inhibitors. RESULTS By combining structural features from the commercial PPO-inhibitors tiafenacil and pyraflufen-ethyl and by investigating receptor-binding properties, we identified new promising pyrazole-based lead structures showing strong activity in vitro and in vivo against economically important weeds of the Amaranthus genus: A. retroflexus, and resistant A. palmeri and A. tuberculatus. CONCLUSION The present work covers a series of novel PPO-inhibiting compounds that contain a pyrazole ring and a substituted thioacetic acid sidechain attached to the core phenyl group. These compounds show good receptor fit in line with excellent herbicidal activity against weeds that plague corn and rice crops with low application rates. This, in combination with promising selectivity in corn, have the potential to mitigate and affect weeds that have become resistant to some of the current market standards. Remarkably, some of the novel PPO-inhibitors outlined herein show efficacies against economically important weeds that were superior to recently commercialized and structurally related tiafenacil. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rebecca L Mattison
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Roland Beffa
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Guido Bojack
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Birgit Bollenbach-Wahl
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Christine Dörnbrack
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Nicole Dorn
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Jörg Freigang
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Elmar Gatzweiler
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Rahel Getachew
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Claudia Hartfiel
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Ines Heinemann
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Hendrik Helmke
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Sabine Hohmann
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Harald Jakobi
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Gudrun Lange
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Peter Lümmen
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Lothar Willms
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| | - Jens Frackenpohl
- Research & Development, Weed Control, Division Crop Science, Bayer AG, Industriepark Höchst, Frankfurt am Main, Germany
| |
Collapse
|
18
|
Wu X, Song C, Zhu Y, Wang X, Zhang H, Hu D, Song R. Design and synthesis of novel PPO-inhibiting pyrimidinedione derivatives safed towards cotton. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105449. [PMID: 37248018 DOI: 10.1016/j.pestbp.2023.105449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/25/2023] [Accepted: 05/01/2023] [Indexed: 05/31/2023]
Abstract
Developing innovative and effective herbicides is of utmost importance since weed management has become a worldwide agricultural production concern, resulting in severe economic losses every year. In this study, a series of new pyrimidinedione compounds were developed via combination of pyrimidinediones with N-phenylacetamide moiety. The herbicidal activity test (37.5-150 g of ai/ha) indicated that most of the new derivatives exhibited excellent herbicidal activity against dicotyledonous weeds, but less against grasses. Among them, compound 34 was identified as the best postemergence herbicidal activities against six species of weeds (Amaranthus retrof lexus, AR; Abutilon theophrasti, AT; Veronica polita, VP; Echinochloa crusgalli, EC; Digitaria sanguinalis, DS; Setaria viridis, SV), which were comparable to the commercial control agent saflufenacil (≥90%). The protoporphyrinogen oxidase (PPO; EC. 1.3.3.4) activity experiment suggested that compound 34 could significantly reduce the PPO content in weeds, the relative expression levels of the PPO gene were verified by real-time quantitative polymerase chain reaction (RT-qPCR), and the results were consistent with the trend of the enzyme activity data. Molecular docking showed that compound 34 could occupy the PPO enzyme catalytic substrate pocket, which played an excellent inhibitory effect on the activity of receptor protein. Meanwhile, the tolerance of compound 34 to cotton was better than that of the commercial agent saflufenacil at 150 g of ai/ha. Thus, compound 34 exhibits the potential to be a new PPO herbicide for weed control in cotton fields. This study provided a basis for the subsequent structural modification and mechanism research of pyrimidinedione derivatives.
Collapse
Affiliation(s)
- Xiaoyan Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China
| | - Changxiong Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China
| | - Yunying Zhu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China
| | - Xiaoguo Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China
| | - Hui Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China
| | - Deyu Hu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China.
| | - Runjiang Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
19
|
Bai F, Wang N, Bai Y, Ma X, Gu C, Dai B, Chen J. NHPI-Mediated Electrochemical α-Oxygenation of Amides to Benzimides. J Org Chem 2023. [PMID: 36866582 DOI: 10.1021/acs.joc.2c02700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
This report describes a mild electrochemical α-oxygenation of a wide range of linear and cyclic benzamides mediated by N-hydroxyphthalimide (NHPI) in an undivided cell using O2 as the oxygen source and 2,4,6-trimethylpyridine perchlorate as an electrolyte. The radical scavenger experiment and the 18O labeling experiment were carried out, which indicated the involvement of a radical pathway and suggested O2 as an oxygen source in the imides, respectively.
Collapse
Affiliation(s)
- Fang Bai
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, China
| | - Ning Wang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, China
| | - Yinshan Bai
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, China
| | - Xiaowei Ma
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, China
| | - Chengzhi Gu
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, China
| | - Bin Dai
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, China
| | - Jianpeng Chen
- Hami Shuoyuan Chemical Co., Ltd, Xinjiang Uygur Autonomous Region 832000, China
| |
Collapse
|
20
|
Liu HY, Yu LK, Qin SN, Yang HZ, Wang DW, Xi Z. Design, Synthesis, and Metabolism Studies of N-1,4-Diketophenyltriazinones as Protoporphyrinogen IX Oxidase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3225-3238. [PMID: 36780578 DOI: 10.1021/acs.jafc.2c09082] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Protoporphyrinogen IX oxidase (PPO, EC 1.3.3.4) is an established site for green herbicide discovery. In this work, based on structural analysis, we develop an active fragment exchange and link (AFEL) approach to designing a new class of N-1,4-diketophenyltriazinones I-III as potent Nicotiana tabacum PPO (PPO) inhibitors. After systematic structure-activity relationship optimizations, a series of new compounds with Ki values in the single-digit nanomolar range toward NtPPO and promising herbicidal activity were discovered. Among them, Ii (Ki = 0.11 nM) displays 284- and 90-fold improvement in NtPPO inhibitory activity over trifludimoxazin (Ki = 31 nM) and saflufenacil (Ki = 10 nM), respectively. In addition, Ip (Ki = 2.14 nM) not only exhibited good herbicidal activity at 9.375-37.5 g ai/ha but also showed high crop safety to rice at 75 g ai/ha by the postemergence application, indicating that Ip could be developed as a potential herbicide for weed control in rice fields. Additionally, our molecular dynamic simulation clarified the molecular basis for the interactions of these molecules with NtPPO. The metabolism studies in planta showed that IIIc could be converted to Ic, which displayed higher herbicidal activity than IIIc. The density functional theory analysis showed that due to the effect of two sulfur atoms at the triazinone moiety, IIIc is more reactive than Ic, making it more easily degraded in planta. Our work indicates that the AFEL strategy could be used to design new molecules with improved bioactivity.
Collapse
Affiliation(s)
- Hong-Yun Liu
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Liang-Kun Yu
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Sheng-Nan Qin
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Huang-Ze Yang
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Da-Wei Wang
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
21
|
Zhang C, Yang J, Zhao C, Li L, Wu Z. Potential Fungicide Candidates: A Dual Action Mode Study of Novel Pyrazole-4-carboxamides against Gibberella zeae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1862-1872. [PMID: 36669159 DOI: 10.1021/acs.jafc.2c06962] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Pyrazole carboxamides are a class of traditional succinate dehydrogenase inhibitors (SDHIs) that have developed into a variety of commercialized fungicides. In the present work, a series of novel 1,5-disubstituted-1H-pyrazole-4-carboxamide derivatives were designed and synthesized based on the active backbone of 5-trifluoromethyl-1H-4-pyrazole carboxamide. Bioassay results indicated that some target compounds exhibited excellent in vitro antifungal activities against six phytopathogenic fungi. Notably, the EC50 values of Y47 against Gibberella zeae, Nigrospora oryzae, Thanatephorus cucumeris, and Verticillium dahliae were 5.2, 9.2, 12.8, and 17.6 mg/L, respectively. The in vivo protective and curative activities of Y47 at 100 mg/L against G. zeae on maize were 50.7 and 44.2%, respectively. Three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis revealed that the large steric hindrance and electronegative groups on the 5-position of the pyrazole ring were important for the activity. The IC50 value of Y47 against succinate dehydrogenase (SDH) was 7.7 mg/L, superior to fluopyram (24.7 mg/L), which was consistent with the docking results. Morphological studies with fluorescence microscopy (FM) and scanning electron microscopy (SEM) found that Y47 could affect the membrane integrity of mycelium by inducing endogenous reactive oxygen species (ROS) production and causing peroxidation of cellular lipids, which was further verified by the malondialdehyde (MDA) content. Antifungal mechanism analysis demonstrated that the target compound Y47 not only had significant SDH inhibition activity but could also affect the membrane integrity of mycelium, exhibiting obvious dual action modes. This research provides a novel approach to the development of traditional SDHIs and their derivatives.
Collapse
Affiliation(s)
- Chengzhi Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jingxin Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Cailong Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Longju Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhibing Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
22
|
Wang YE, Yang D, Ma C, Hu S, Huo J, Chen L, Kang Z, Mao J, Zhang J. Design, Synthesis, and Herbicidal Activity of Naphthalimide-Aroyl Hybrids as Potent Transketolase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12819-12829. [PMID: 36173029 DOI: 10.1021/acs.jafc.2c04533] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Transketolase (TK) was identified as a new target for the development of novel herbicides. In this study, a series of naphthalimide-aroyl hybrids were designed and prepared based on TK as a new target and tested for their herbicidal activities. In vitro bioassay showed that compounds 4c and 4w exhibited stronger inhibitory effects against Digitaria sanguinalis (DS) and Amaranthus retroflexus (AR) with the inhibition over 90% at 200 mg/L and around 80% at 100 mg/L. Also, compounds 4c and 4w exhibited excellent postemergence herbicidal activity against DS and AR with the inhibition around 90% at 90 g [active ingredient (ai)]/ha and 80% at 50 g (ai)/ha in the greenhouse, which was comparable with the activity of mesotrione. The fluorescent quenching experiments of At TK revealed the occurrence of electron transfer from compound 4w to At TK and the formation of a strong exciplex between them. Molecular docking analyses further showed that compounds 4w exhibited profound affinity with At TK through the interaction with the amino acids in the active site, which results in its strong inhibitory activities against TK. These findings demonstrated that compound 4w is potentially a lead candidate for novel herbicides targeting TK.
Collapse
Affiliation(s)
- Yan-En Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Dongchen Yang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Chujian Ma
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Shiqi Hu
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jingqian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Zhanhai Kang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jianyou Mao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| |
Collapse
|
23
|
Barber DM. A Competitive Edge: Competitor Inspired Scaffold Hopping in Herbicide Lead Optimization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11075-11090. [PMID: 35271269 DOI: 10.1021/acs.jafc.1c07910] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the years, scaffold hopping has proven to be a powerful tool in the agrochemical optimization process. It offers the opportunity to modify known molecular lead structures to improve a range of parameters, including biological efficacy and spectrum, physicochemical properties, toxicity, stability, and to secure new intellectual property. Very often the disclosure of a new chemical structure can spark a multitude of competitor activities, where scaffold hopping plays a crucial role in the optimization process as well as for the generation of new intellectual property. Herein, recent examples of scaffold hopping in early phase herbicide research based on competitor inspired activities will be discussed using examples of how these research campaigns can often result in the registration of new crop protection products.
Collapse
Affiliation(s)
- David M Barber
- Research and Development, Weed Control Chemistry, Bayer AG, Crop Science Division, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| |
Collapse
|
24
|
Zhang D, Zhou N, Yang LJ, Yu ZL, Ma DJ, Wang DW, Li YH, Liu B, Wang BF, Xu H, Xi Z. Discovery of (5-(Benzylthio)-4-(3-(trifluoromethyl)phenyl)-4 H-1,2,4-triazol-3-yl) Methanols as Potent Phytoene Desaturase Inhibitors through Virtual Screening and Structure Optimization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10144-10157. [PMID: 35946897 DOI: 10.1021/acs.jafc.2c02981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phytoene desaturase (PDS) is not only an important enzyme in the biosynthesis of carotenoids but also a promising target for herbicide discovery. However, in recent years, no expected PDS inhibitors with new scaffolds have been reported. Hence, a solution for developing PDS inhibitors is to search for new compounds with novel chemotypes based on the PDS protein structure. In this work, we integrated structure-based virtual screening, structure-guided optimization, and biological evaluation to discover some PDS inhibitors with novel chemotypes. It is noteworthy that the highly potent compound 1b, 1-(4-chlorophenyl)-2-((5-(hydroxymethyl)-4-(3-(trifluoromethyl)phenyl)-4H-1,2,4-triazol-3-yl)thio)ethan-1-one, exhibited a broader spectrum of post-emergence herbicidal activity at 375-750 g/ha against six kinds of weeds than the commercial PDS inhibitor diflufenican. Surface plasmon resonance (SPR) assay showed that the affinity of our compound 1b (KD = 65.9 μM) to PDS is slightly weaker but at the same level as diflufenican (KD = 38.3 μM). Meanwhile, determination of the phytoene content and PDS mRNA quantification suggested that 1b could induce PDS mRNA reduction and phytoene accumulation. Moreover, 1b also caused the increase of reactive oxygen species (ROS) and the change of ROS-associated enzyme activity in albino leaves. Hence, all these results indicated the feasibility of PDS protein structure-based virtual screen and structure optimization to search for highly potent PDS inhibitors with novel chemotypes for weed control.
Collapse
Affiliation(s)
- Di Zhang
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Nuo Zhou
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Li-Jun Yang
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhi-Lei Yu
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - De-Jun Ma
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Da-Wei Wang
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yong-Hong Li
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Bin Liu
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Bai-Fan Wang
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Han Xu
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhen Xi
- National Pesticide Engineering Research Center (Tianjin), Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
25
|
Design, synthesis, herbicidal activity, and the molecular docking study of novel diphenyl ether derivatives as protoporphyrinogen IX oxidase inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Yang J, Xie D, Zhang C, Zhao C, Wu Z, Xue W. Synthesis, antifungal activity and in vitro mechanism of novel 1-substituted-5-trifluoromethyl-1H-pyrazole-4-carboxamide derivatives. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
27
|
Zhao LX, Peng JF, Liu FY, Zou YL, Gao S, Fu Y, Ye F. Design, Synthesis, and Herbicidal Activity of Diphenyl Ether Derivatives Containing a Five-Membered Heterocycle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1003-1018. [PMID: 35040327 DOI: 10.1021/acs.jafc.1c05210] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protoporphyrinogen oxidase (PPO, EC 1.3.3.4) is an important target for discovering novel herbicides, and it causes bleaching symptoms by inhibiting the synthesis of chlorophyll and heme. In this study, the active fragments of several commercial herbicides were joined by substructure splicing and bioisosterism, and a series of novel diphenyl ether derivatives containing five-membered heterocycles were synthesized. The greenhouse herbicidal activity and the PPO inhibitory activity in vitro were discussed in detail. The results showed that most compounds had good PPO inhibitory activity, and target compounds containing trifluoromethyl groups tended to have higher activity. Among them, compound G4 showed the best inhibitory activity, with a half-maximal inhibitory concentration (IC50) of 0.0468 μmol/L, which was approximately 3 times better than that of oxyfluorfen (IC50 = 0.150 μmol/L). In addition, molecular docking indicated that compound G4 formed obvious π-π stacking interactions and hydrogen bond interactions with PHE-392 and ARG-98, respectively. Remarkably, compound G4 had good safety for corn, wheat, rice, and soybean, and the cumulative concentration in crops was lower than that of oxyfluorfen. Therefore, compound G4 can be used to develop potential lead compounds for novel PPO inhibitors.
Collapse
Affiliation(s)
- Li-Xia Zhao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Jian-Feng Peng
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Feng-Yi Liu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yue-Li Zou
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Gao
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ying Fu
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fei Ye
- Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
28
|
Wang DW, Zhang H, Yu SY, Zhang RB, Liang L, Wang X, Yang HZ, Xi Z. Discovery of a Potent Thieno[2,3- d]pyrimidine-2,4-dione-Based Protoporphyrinogen IX Oxidase Inhibitor through an In Silico Structure-Guided Optimization Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14115-14125. [PMID: 34797973 DOI: 10.1021/acs.jafc.1c05665] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A key objective for herbicide research is to develop new compounds with improved bioactivity. Protoporphyrinogen IX oxidase (PPO) is an essential target for herbicide discovery. Here, we report using an in silico structure-guided optimization approach of our previous lead compound 1 and designed and synthesized a new series of compounds 2-6. Systematic bioassays led to the discovery of a highly potent compound 6g, 1-methyl-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-yn-1-yl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)thieno[2,3-d]pyrimidine-2,4(1H,3H)-dione, which exhibited an excellent and wide spectrum of weed control at the rates of 30-75 g ai/ha by the postemergence application and is relatively safe on maize at 75 g ai/ha. Additionally, the Ki value of 6g to Nicotiana tabacum PPO (NtPPO) was found to be 2.5 nM, showing 3-, 12-, and 18-fold higher potency relative to compound 1 (Ki = 7.4 nM), trifludimoxazin (Ki = 31 nM), and flumioxazin (Ki = 46 nM), respectively. Furthermore, molecular simulations further suggested that the thieno[2,3-d]pyrimidine-2,4-dione moiety of 6g could form a more favorable π-π stacking interaction with the Phe392 of NtPPO than the heterocyclic moiety of compound 1. This study provides an effective strategy to obtain enzyme inhibitors with improved performance through molecular simulation and structure-guided optimization.
Collapse
Affiliation(s)
- Da-Wei Wang
- National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Hang Zhang
- National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Yi Yu
- National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Rui-Bo Zhang
- National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lu Liang
- National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xia Wang
- National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Huang-Ze Yang
- National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhen Xi
- National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, and College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
29
|
Yang L, Wang D, Ma D, Zhang D, Zhou N, Wang J, Xu H, Xi Z. In Silico Structure-Guided Optimization and Molecular Simulation Studies of 3-Phenoxy-4-(3-trifluoromethylphenyl)pyridazines as Potent Phytoene Desaturase Inhibitors. Molecules 2021; 26:molecules26226979. [PMID: 34834071 PMCID: PMC8618034 DOI: 10.3390/molecules26226979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
A series of novel 3-phenoxy-4-(3-trifluoromethylphenyl)pyridazines 2–5 were designed, based on the structure of our previous lead compound 1 through the in silico structure-guided optimization approach. The results showed that some of these new compounds showed a good herbicidal activity at the rate of 750 g ai/ha by both pre- and post-emergence applications, especially compound 2a, which displayed a comparable pre-emergence herbicidal activity to diflufenican at 300–750 g ai/ha, and a higher post-emergence herbicidal activity than diflufenican at the rates of 300–750 g ai/ha. Additionally, 2a was safe to wheat by both pre- and post-emergence applications at 300 g ai/ha, showing the compound’s potential for weed control in wheat fields. Our molecular simulation studies revealed the important factors involved in the interaction between 2a and Synechococcus PDS. This work provided a lead compound for weed control in wheat fields.
Collapse
Affiliation(s)
- Lijun Yang
- National Pesticide Engineering Research Center, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (L.Y.); (D.W.); (D.M.); (D.Z.); (N.Z.)
| | - Dawei Wang
- National Pesticide Engineering Research Center, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (L.Y.); (D.W.); (D.M.); (D.Z.); (N.Z.)
| | - Dejun Ma
- National Pesticide Engineering Research Center, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (L.Y.); (D.W.); (D.M.); (D.Z.); (N.Z.)
| | - Di Zhang
- National Pesticide Engineering Research Center, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (L.Y.); (D.W.); (D.M.); (D.Z.); (N.Z.)
| | - Nuo Zhou
- National Pesticide Engineering Research Center, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (L.Y.); (D.W.); (D.M.); (D.Z.); (N.Z.)
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Beijing 100191, China;
| | - Han Xu
- National Pesticide Engineering Research Center, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (L.Y.); (D.W.); (D.M.); (D.Z.); (N.Z.)
- Correspondence: (H.X.); (Z.X.)
| | - Zhen Xi
- National Pesticide Engineering Research Center, Department of Chemical Biology, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (L.Y.); (D.W.); (D.M.); (D.Z.); (N.Z.)
- Correspondence: (H.X.); (Z.X.)
| |
Collapse
|
30
|
Wang YE, Yang D, Huo J, Chen L, Kang Z, Mao J, Zhang J. Design, Synthesis, and Herbicidal Activity of Thioether Containing 1,2,4-Triazole Schiff Bases as Transketolase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11773-11780. [PMID: 34587736 DOI: 10.1021/acs.jafc.1c01804] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Transketolase (TK) represents a potential target for novel herbicide development. To discover novel TK inhibitors with potency against resistant weeds, 36 thioether compounds containing 1,2,4-triazole Schiff bases were designed and synthesized for herbicidal activity evaluation. The results demonstrated that compounds 5av and 5aw provided excellent weed control with inhibition of over 90% against the tested weeds, even at concentrations as low as 100 mg/L in vitro. In addition, compounds 5av and 5aw exhibited higher postemergence herbicidal activity than all of the positive controls against the tested weeds at 50-90 g [active ingredient (ai)]/ha in a greenhouse, while being safe for crops of maize and wheat at 90 g (ai)/ha. Fluorescent binding experiments of At TK indicated that compounds 5av and 5aw had strong TK inhibitory activity and could tightly bind with the enzyme At TK. Also, molecular docking analyses revealed that the structures of compounds 5av and 5aw were suitable for TK inhibitory activity. Taken together, these results suggested that compounds 5av and 5aw were promising herbicide candidates for weed control in wheat and maize fields targeting TK.
Collapse
Affiliation(s)
- Yan-En Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, People's Republic of China
- College of Science, Hebei Agricultural University, Baoding, Hebei 071001, People's Republic of China
| | - Dongchen Yang
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, People's Republic of China
| | - Jingqian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, People's Republic of China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, People's Republic of China
| | - Zhanhai Kang
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, People's Republic of China
| | - Jianyou Mao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei 071001, People's Republic of China
| |
Collapse
|
31
|
Liang L, Yu S, Li Q, Wang X, Wang D, Xi Z. Design, synthesis, and molecular simulation studies of N-phenyltetrahydroquinazolinones as protoporphyrinogen IX oxidase inhibitors. Bioorg Med Chem 2021; 39:116165. [PMID: 33915477 DOI: 10.1016/j.bmc.2021.116165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 02/05/2023]
Abstract
Discovering new protoporphyrinogen oxidase (PPO, EC 1.3.3.4) inhibitors is a promising direction for agrochemical research. Herein, we reported the discovery and in silico structure-guided optimization of N-phenyltetrahydroquinazolinones 1 and 2 as new PPO inhibitors. Most of the obtained compounds 1 and 2 exhibited significantly enhanced Nicotiana tabacum PPO (NtPPO) inhibitory potency than that of flumioxazin. Promisingly, 1-(tert-butoxy)-1-oxopropan-2-yl 2-chloro-4-fluoro-5-(4-oxo-5,6,7,8-tetrahydroquinazolin-3(4H)-yl)benzoate, 2o, with a Ki value of 4 nM, showed ten folds more enhanced NtPPO-inhibiting potency than flumioxazin. Additionally, compounds 2b and 2i showed a broad spectrum of broadleaf weeds control at 37.5-150 g ai/ha, and selective for wheat at 150 g ai/ha in the post-emergent application. The molecular simulation studies revealed the vital basis between N-phenyltetrahydroquinazolinones and NtPPO. The present work indicated that the N-phenyltetrahydroquinazolinone motif might be a potential scaffold for herbicide discovery.
Collapse
Affiliation(s)
- Lu Liang
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, and Department of Chemical Biology, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Shuyi Yu
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, and Department of Chemical Biology, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Qian Li
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, and Department of Chemical Biology, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Xia Wang
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, and Department of Chemical Biology, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Dawei Wang
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, and Department of Chemical Biology, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, and Department of Chemical Biology, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
32
|
Wang DW, Liang L, Xue ZY, Yu SY, Zhang RB, Wang X, Xu H, Wen X, Xi Z. Discovery of N-Phenylaminomethylthioacetylpyrimidine-2,4-diones as Protoporphyrinogen IX Oxidase Inhibitors through a Reaction Intermediate Derivation Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4081-4092. [PMID: 33787231 DOI: 10.1021/acs.jafc.1c00796] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Protoporphyrinogen oxidase (PPO, EC 1.3.3.4) is an effective target for green herbicide discovery. In this work, we reported the unexpected discovery of a novel series of N-phenylaminomethylthioacetylpyrimidine-2,4-diones (2-6) as promising PPO inhibitors based on investigating the reaction intermediates of our initially designed N-phenyluracil thiazolidinone (1). An efficient one-pot procedure that gave 41 target compounds in good to high yields was developed. Systematic Nicotiana tabacum PPO (NtPPO) inhibitory and herbicidal activity evaluations led to identifying some compounds with improved NtPPO inhibition potency than saflufenacil and good post-emergence herbicidal activity at 37.5-150 g of ai/ha. Among these analogues, ethyl 2-((((2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4-(trifluoromethyl)-3,6-dihydropyrimidin-1(2H)-yl)phenyl)amino)methyl)thio)acetate (2c) (Ki = 11 nM), exhibited excellent weed control at 37.5-150 g of ai/ha and was safe for rice at 150 g of ai/ha, indicating that compound 2c has the potential to be developed as a new herbicide for weed management in paddy fields. Additionally, our molecular simulation and metabolism studies showed that the side chains of compound 2c could form a hydrogen-bond-mediated seven-membered ring system; substituting a methyl group at R1 could reinforce the hydrogen bond of the ring system and reduce the metabolic rate of target compounds in planta.
Collapse
Affiliation(s)
- Da-Wei Wang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Lu Liang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Zhi-Yuan Xue
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Shu-Yi Yu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Rui-Bo Zhang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Xia Wang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Han Xu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Xin Wen
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
33
|
PPO-Inhibiting Herbicides and Structurally Relevant Schiff Bases: Evaluation of Inhibitory Activities against Human Protoporphyrinogen Oxidase. Processes (Basel) 2021. [DOI: 10.3390/pr9020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The study of human protoporphyrinogen oxidase (hPPO) inhibition can contribute significantly to a better understanding of some pathogeneses (e.g., porphyria, herbicide exposure) and the development of anticancer agents. Therefore, we prepared new potential inhibitors with Schiff base structural motifs (2-hydroxybenzaldehyde-based Schiff bases 9–13 and chromanone derivatives 17–19) as structurally relevant to PPO herbicides. The inhibitory activities (represented by the half maximal inhibitory concentration (IC50) values) and enzymatic interactions (represented by the hPPO melting temperatures) of these synthetic compounds and commercial PPO herbicides used against hPPO were studied by a protoporphyrin IX fluorescence assay. In the case of PPO herbicides, significant hPPO inhibition and changes in melting temperature were observed for oxyfluorten, oxadiazon, lactofen, butafenacil, saflufenacil, oxadiargyl, chlornitrofen, and especially fomesafen. Nevertheless, the prepared compounds did not display significant inhibitory activity or changes in the hPPO melting temperature. However, a designed model of hPPO inhibitors based on the determined IC50 values and a docking study (by using AutoDock) found important parts of the herbicide structural motif for hPPO inhibition. This model could be used to better predict PPO herbicidal toxicity and improve the design of synthetic inhibitors.
Collapse
|
34
|
Zhang RB, Yu SY, Liang L, Ismail I, Wang DW, Li YH, Xu H, Wen X, Xi Z. Design, Synthesis, and Molecular Mechanism Studies of N-Phenylisoxazoline-thiadiazolo[3,4- a]pyridazine Hybrids as Protoporphyrinogen IX Oxidase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13672-13684. [PMID: 33155804 DOI: 10.1021/acs.jafc.0c05955] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Protoporphyrinogen oxidase (PPO, EC 1.3.3.4) is an important target for green agrochemical discovery. Herein, a novel N-phenylisoxazoline-thiadiazolo[3,4-a]pyridazine herbicidal active scaffold was designed by the scaffold hybridization strategy. Systematic structural optimization enabled the discovery of a series of derivatives with excellent weed control at 9.375-150 g ai/ha by the post-emergent application. Some derivatives exhibited improved Nicotiana tabacum PPO (NtPPO)-inhibitory activity than fluthiacet-methyl. Of these, 2b, with Ki = 21.8 nM, displayed higher weed control than fluthiacet-methyl at the rate of 12-75 g ai/ha, and selective to maize at 75 g ai/ha. In planta, 2b was converted into a bioactive metabolite 5 (Ki = 4.6 nM), which exhibited 4.6-fold more potency than 2b in inhibiting the activity of NtPPO. Molecular dynamics simulation explained that 5 formed stronger π-π interaction with Phe392 than that of 2b. This work not only provides a promising lead compound for weed control in maize fields but is also helpful to understand the molecular mechanism and basis of the designed hybrids.
Collapse
Affiliation(s)
- Rui-Bo Zhang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Yi Yu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lu Liang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ismail Ismail
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Da-Wei Wang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yong-Hong Li
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Han Xu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xin Wen
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
35
|
Zhang Y, Wang D, Shen Y, Xi Z. Crystal structure and biochemical characterization of Striga hermonthica HYPO-SENSITIVE TO LIGHT 8 (ShHTL8) in strigolactone signaling pathway. Biochem Biophys Res Commun 2020; 523:1040-1045. [PMID: 31973817 DOI: 10.1016/j.bbrc.2020.01.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/11/2020] [Indexed: 01/06/2023]
Abstract
Striga is a parasitic weed that disperses easily, and its seeds can persist in the soil for many years, presenting long-term threats to food security. If SLs stimulate the seed germination of root parasitic weeds before planting, weeds will wither due to no host. Therefore, it is necessary to determine the mechanism of strigolactone (SL) signaling in Striga to reduce the impacts of this parasitic weed. Striga has eleven different kinds of HYPO-SENSITIVE to LIGHT (ShHTL) hydrolases. Different ShHTL hydrolases exhibit distinct responses to SLs, despite these ShHTLs exhibiting more than 60% sequence identity. Currently, structural information is available for only five ShHTL proteins, and more structural information is needed to design Striga germination stimulants or inhibitors. In this paper, we report the crystal structure of ShHTL8, which is determined at a resolution of 1.4 Å. Scanning fluorimetry and HPLC assays indicate that L125, M147, M154 and I194 are important binding sites, and of which L125 may act as a key holder involved in the catalytic reaction. Additionally, the corresponding residue, Y124 of ShHTL1 and F135 of ShHTL2 also play a significant role in the substrate recognition.
Collapse
Affiliation(s)
- Yingying Zhang
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry Nankai University, Weijin 94, Tianjin, 300071, China
| | - Dawei Wang
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry Nankai University, Weijin 94, Tianjin, 300071, China
| | - Yuequan Shen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, 300353, China.
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry Nankai University, Weijin 94, Tianjin, 300071, China.
| |
Collapse
|