1
|
Han Z, Wang L, Zhu H, Tu Y, He P, Li B. Uncovering the effects and mechanisms of tea and its components on depression, anxiety, and sleep disorders: A comprehensive review. Food Res Int 2024; 197:115191. [PMID: 39593401 DOI: 10.1016/j.foodres.2024.115191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 11/28/2024]
Abstract
Depression, anxiety and sleep disorders are prevalent psychiatric conditions worldwide, significantly impacting the physical and mental well-being of individuals. The treatment of these conditions poses various challenges, including limited efficacy and potential side effects. Tea, a globally recognized healthful beverage, contains a variety of active compounds. Studies have shown that consuming tea or ingesting its certain active ingredients have a beneficial impact on the mental health issues mentioned above. While the effects of tea on physical health are well-documented, there remains a gap in our systematic understanding of its impact on mental health. This article offers a thorough overview of animal, clinical, and epidemiological studies examining tea and its components in the treatment of depression, anxiety, and sleep disorders, and summarizes the associated molecular mechanisms. The active ingredients in tea, including L-theanine, γ-aminobutyric acid (GABA), arginine, catechins, theaflavins, caffeine, theacrine, and several volatile compounds, may help improve depression, anxiety, and sleep disorders. The underlying molecular mechanisms involve the regulation of neurotransmitters, including monoamines, GABA, and brain-derived neurotrophic factor (BDNF), as well as the suppression of oxidative stress and inflammation. Additionally, these ingredients may influence the microbiota-gut-brain (MGB) axis and the hypothalamic-pituitary-adrenal (HPA) axis. This review provides valuable insights into the effects and mechanisms by which tea and its components regulate depression, anxiety, and sleep disorders, laying the groundwork for further research into relevant mechanisms and the development of tea-based mental health products.
Collapse
Affiliation(s)
- Ziyi Han
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Leyu Wang
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Huanqing Zhu
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Youying Tu
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Puming He
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Bo Li
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
2
|
Zhao Z, Chen R, Ng K. Effects of Differently Processed Tea on the Gut Microbiota. Molecules 2024; 29:4020. [PMID: 39274868 PMCID: PMC11397556 DOI: 10.3390/molecules29174020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Tea is a highly popular beverage, primarily due to its unique flavor and aroma as well as its perceived health benefits. The impact of tea on the gut microbiome could be an important means by which tea exerts its health benefits since the link between the gut microbiome and health is strong. This review provided a discussion of the bioactive compounds in tea and the human gut microbiome and how the gut microbiome interacts with tea polyphenols. Importantly, studies were compiled on the impact of differently processed tea, which contains different polyphenol profiles, on the gut microbiota from in vivo animal feeding trials, in vitro human fecal fermentation experiments, and in vivo human feeding trials from 2004-2024. The results were discussed in terms of different tea types and how their impacts are related to or different from each other in these three study groups.
Collapse
Affiliation(s)
- Zimo Zhao
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ruofan Chen
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ken Ng
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
3
|
Allaband C, Lingaraju A, Flores Ramos S, Kumar T, Javaheri H, Tiu MD, Dantas Machado AC, Richter RA, Elijah E, Haddad GG, Leone VA, Dorrestein PC, Knight R, Zarrinpar A. Time of sample collection is critical for the replicability of microbiome analyses. Nat Metab 2024; 6:1282-1293. [PMID: 38951660 PMCID: PMC11309016 DOI: 10.1038/s42255-024-01064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/08/2024] [Indexed: 07/03/2024]
Abstract
As the microbiome field moves from descriptive and associative research to mechanistic and interventional studies, being able to account for all confounding variables in the experimental design, which includes the maternal effect1, cage effect2, facility differences3, as well as laboratory and sample handling protocols4, is critical for interpretability of results. Despite significant procedural and bioinformatic improvements, unexplained variability and lack of replicability still occur. One underexplored factor is that the microbiome is dynamic and exhibits diurnal oscillations that can change microbiome composition5-7. In this retrospective analysis of 16S amplicon sequencing studies in male mice, we show that sample collection time affects the conclusions drawn from microbiome studies and its effect size is larger than those of a daily experimental intervention or dietary changes. The timing of divergence of the microbiome composition between experimental and control groups is unique to each experiment. Sample collection times as short as only 4 hours apart can lead to vastly different conclusions. Lack of consistency in the time of sample collection may explain poor cross-study replicability in microbiome research. The impact of diurnal rhythms on the outcomes and study design of other fields is unknown but likely significant.
Collapse
Affiliation(s)
- Celeste Allaband
- Division of Biomedical Sciences, University of California, San Diego, La Jolla, CA, USA
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Amulya Lingaraju
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
| | - Stephany Flores Ramos
- Division of Biomedical Sciences, University of California, San Diego, La Jolla, CA, USA
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Tanya Kumar
- Medical Scientist Training Program, University of California San Diego, La Jolla, CA, USA
| | - Haniyeh Javaheri
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
| | - Maria D Tiu
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
| | | | - R Alexander Richter
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
| | - Emmanuel Elijah
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - Gabriel G Haddad
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Rady Children's Hospital, San Diego, CA, USA
| | - Vanessa A Leone
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Pieter C Dorrestein
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
- Center for Computational Mass Spectrometry, University of California, San Diego, La Jolla, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Amir Zarrinpar
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA.
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Division of Gastroenterology, Jennifer Moreno Department of Veterans Affairs Medical Center, La Jolla, CA, USA.
- Institute of Diabetes and Metabolic Health, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Wu J, Deng X, Sun Y, Li J, Dai H, Qi S, Huang Y, Sun W. Aged oolong tea alleviates dextran sulfate sodium-induced colitis in mice by modulating the gut microbiota and its metabolites. Food Chem X 2024; 21:101102. [PMID: 38268839 PMCID: PMC10805651 DOI: 10.1016/j.fochx.2023.101102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/26/2024] Open
Abstract
In this study, the mechanism of aged oolong tea (AOT) to alleviate colitis was investigated in terms of microbiome, metabolome, and fecal microbiota transplantation (FMT). AOT storage period could alleviate colitis in mice and there were some differences in AOT between storage periods, especially AOT-10. AOT improves UC by modulating oxidative stress and inflammatory factors and upregulating intestinal tight junction protein expression (Occludin, Claudin-1, ZO-1 and MUC2), which is associated with the recovery of gut microbiota. FMT and targeted metabolomics further demonstrate that the anti-inflammatory effects of AOT can reshape the gut microbiota through faecal bacterial transfer. Anti-inflammatory effects are exerted through the stimulation of metabolic pathways associated with amino acid, fatty acid and bile acid metabolites. Importantly, the study identified key bacteria (e.g., Sutterella, Clostridiaceae_Clostridium, Mucispirillum, Oscillospira and Ruminococcus) for the development and remission of inflammation. Conclusively, AOT may have great potential in the future adjuvant treatment of colitis.
Collapse
Affiliation(s)
- Jun Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuming Deng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yue Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haomin Dai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siyu Qi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yan Huang
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Naveed M, Chao OY, Hill JW, Yang YM, Huston JP, Cao R. Circadian neurogenetics and its implications in neurophysiology, behavior, and chronomedicine. Neurosci Biobehav Rev 2024; 157:105523. [PMID: 38142983 PMCID: PMC10872425 DOI: 10.1016/j.neubiorev.2023.105523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
The circadian rhythm affects multiple physiological processes, and disruption of the circadian system can be involved in a range of disease-related pathways. The genetic underpinnings of the circadian rhythm have been well-studied in model organisms. Significant progress has been made in understanding how clock genes affect the physiological functions of the nervous system. In addition, circadian timing is becoming a key factor in improving drug efficacy and reducing drug toxicity. The circadian biology of the target cell determines how the organ responds to the drug at a specific time of day, thus regulating pharmacodynamics. The current review brings together recent advances that have begun to unravel the molecular mechanisms of how the circadian clock affects neurophysiological and behavioral processes associated with human brain diseases. We start with a brief description of how the ubiquitous circadian rhythms are regulated at the genetic, cellular, and neural circuit levels, based on knowledge derived from extensive research on model organisms. We then summarize the latest findings from genetic studies of human brain disorders, focusing on the role of human clock gene variants in these diseases. Lastly, we discuss the impact of common dietary factors and medications on human circadian rhythms and advocate for a broader application of the concept of chronomedicine.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Ruifeng Cao
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Neurology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
6
|
Wang H, Xu R, Li Q, Su Y, Zhu W. Daily fluctuation of colonic microbiome in response to nutrient substrates in a pig model. NPJ Biofilms Microbiomes 2023; 9:85. [PMID: 37938228 PMCID: PMC10632506 DOI: 10.1038/s41522-023-00453-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023] Open
Abstract
Studies on rodents indicate the daily oscillations of the gut microbiota have biological implications for host. However, the responses of fluctuating gut microbes to the dynamic nutrient substrates are not fully clear. In the study, we found that the feed intake, nutrient substrates, microbiota and metabolites in the colon underwent asynchronous oscillation within a day. Short-chain fatty acids (SCFAs) including acetate, propionate, butyrate and valerate peaked during T24 ~ T27 (Timepoint 24, 12:00 pm, T27, 03:00 am) whereas branched SCFAs isobutyrate and isovalerate peaked during T09 ~ T12. Further extended local similarity analysis (eLSA) revealed that the fluctuation of feed intake dynamically correlated with the colonic carbon substrates which further influenced the oscillation of sugar metabolites and acetate, propionate, butyrate and valerate with a certain time shift. The relative abundance of primary degrader Ruminococcaceae taxa was highly related to the dynamics of the carbon substrates whereas the fluctuations of secondary degraders Lactobacillaceae and Streptococcaceae taxa were highly correlated with the sugar metabolites. Meanwhile, colonic nitrogen substrates were correlated with branched amino acids and the branched SCFAs. Furthermore, we validated the evolution of gut microbes under different carbohydrate and protein combinations by using an in vitro fermentation experiment. The study pictured the dynamics of the micro-ecological environment within a day which highlights the implications of the temporal dimension in studies related to the gut microbiota. Feed intake, more precisely substrate intake, is highly correlated with microbial evolution, which makes it possible to develop chronotherapies targeting the gut microbiota through nutrition intervention.
Collapse
Affiliation(s)
- Hongyu Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rongying Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiuke Li
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
7
|
Zhao X, Yan F, Li X, Qu D, Xu Y. A systematic review of tea pigments: Prevention of major diseases, protection of organs, and potential mechanisms and applications. Food Sci Nutr 2023; 11:6830-6844. [PMID: 37970420 PMCID: PMC10630803 DOI: 10.1002/fsn3.3666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 11/17/2023] Open
Abstract
With the growing awareness of a healthy life, tea pigments (TPGs) are in focus for their health benefits. TPGs not only provide specific color to tea liquor but also possess health benefits such as anti-obesity, anti-tumor, anti-inflammatory, anti-viral, anti-oxidative, and bacteriostatic properties. Also, TPGs can benefit bone, liver, kidney, cardiovascular, gut microbiome, and sleep health. Based on previous reports, this review provides a brief introduction to the health benefits of TPGs, focusing on the prevention of human diseases and the protection of organs. Also, the latest research on the functional mechanism(s), practical application, and development strategies of TPGs is discussed.
Collapse
Affiliation(s)
- Xuan Zhao
- Qinba Black Tea Research Institute, Shaanxi University of TechnologyHanzhongChina
| | - Fei Yan
- Qinba Black Tea Research Institute, Shaanxi University of TechnologyHanzhongChina
- Shaanxi Bio‐Resources Key LaboratoryHanzhongChina
- Coordination and Innovation Center for Comprehensive Development of Qinba Biological ResourcesHanzhongChina
- College of Biological Science and EngineeringShaanxi University of TechnologyHanzhongChina
| | - Xin‐Sheng Li
- Qinba Black Tea Research Institute, Shaanxi University of TechnologyHanzhongChina
- Shaanxi Bio‐Resources Key LaboratoryHanzhongChina
- Coordination and Innovation Center for Comprehensive Development of Qinba Biological ResourcesHanzhongChina
- College of Biological Science and EngineeringShaanxi University of TechnologyHanzhongChina
| | - Dong Qu
- Shaanxi Bio‐Resources Key LaboratoryHanzhongChina
- Coordination and Innovation Center for Comprehensive Development of Qinba Biological ResourcesHanzhongChina
- College of Biological Science and EngineeringShaanxi University of TechnologyHanzhongChina
| | - Yue‐Ling Xu
- Qinba Black Tea Research Institute, Shaanxi University of TechnologyHanzhongChina
- College of Biological Science and EngineeringShaanxi University of TechnologyHanzhongChina
| |
Collapse
|
8
|
Cheng WY, Desmet L, Depoortere I. Time-restricted eating for chronodisruption-related chronic diseases. Acta Physiol (Oxf) 2023; 239:e14027. [PMID: 37553828 DOI: 10.1111/apha.14027] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/05/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023]
Abstract
The circadian timing system enables organisms to adapt their physiology and behavior to the cyclic environmental changes including light-dark cycle or food availability. Misalignment between the endogenous circadian rhythms and external cues is known as chronodisruption and is closely associated with the development of metabolic and gastrointestinal disorders, cardiovascular diseases, and cancer. Time-restricted eating (TRE, in human) is an emerging dietary approach for weight management. Recent studies have shown that TRE or time-restricted feeding (TRF, when referring to animals) has several beneficial health effects, which, however, are not limited to weight management. This review summarizes the effects of TRE/TRF on regulating energy metabolism, gut microbiota and homeostasis, development of cardiovascular diseases and cancer. Furthermore, we will address the role of circadian clocks in TRE/TRF and propose ways to optimize TRE as a dietary strategy to obtain maximal health benefits.
Collapse
Affiliation(s)
- Wai-Yin Cheng
- Translational Research Center for Gastrointestinal Disorders, Gut Peptide Research Lab, University of Leuven, Leuven, Belgium
| | - Louis Desmet
- Translational Research Center for Gastrointestinal Disorders, Gut Peptide Research Lab, University of Leuven, Leuven, Belgium
| | - Inge Depoortere
- Translational Research Center for Gastrointestinal Disorders, Gut Peptide Research Lab, University of Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Chai R, Ye Z, Wu Q, Xue W, Shi S, Du Y, Wu H, Wei Y, Hu Y. Circadian rhythm in cardiovascular diseases: a bibliometric analysis of the past, present, and future. Eur J Med Res 2023; 28:194. [PMID: 37355671 DOI: 10.1186/s40001-023-01158-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/05/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND One of the most prominent features of living organisms is their circadian rhythm, which governs a wide range of physiological processes and plays a critical role in maintaining optimal health and function in response to daily environmental changes. This work applied bibliometric analysis to explore quantitative and qualitative trends in circadian rhythm in cardiovascular diseases (CVD). It also aims to identify research hotspots and provide fresh suggestions for future research. METHODS The Web of Science Core Collection was used to search the data on circadian rhythm in CVD. HistCite, CiteSpace, and VOSviewer were used for bibliometric analysis and visualization. The analysis included the overall distribution of yearly outputs, top nations, active institutions and authors, core journals, co-cited references, and keywords. To assess the quality and efficacy of publications, the total global citation score (TGCS) and total local citation score (TLCS) were calculated. RESULTS There were 2102 papers found to be associated with the circadian rhythm in CVD, with the overall number of publications increasing year after year. The United States had the most research citations and was the most prolific country. Hermida RC, Young ME, and Ayala DE were the top three writers. The three most notable journals on the subject were Chronobiology International, Hypertension Research, and Hypertension. In the early years, the major emphasis of circadian rhythm in CVD was hormones. Inflammation, atherosclerosis, and myocardial infarction were the top developing research hotspots. CONCLUSION Circadian rhythm in CVD has recently received a lot of interest from the medical field. These topics, namely inflammation, atherosclerosis, and myocardial infarction, are critical areas of investigation for understanding the role of circadian rhythm in CVD. Although they may not be future research priorities, they remain of significant importance. In addition, how to implement these chronotherapy theories in clinical practice will depend on additional clinical trials to get sufficient trustworthy clinical evidence.
Collapse
Affiliation(s)
- Ruoning Chai
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zelin Ye
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjing Xue
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuqing Shi
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yihang Du
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huaqin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Wei
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
10
|
Liu S, Cheng L, Liu Y, Zhan S, Wu Z, Zhang X. Relationship between Dietary Polyphenols and Gut Microbiota: New Clues to Improve Cognitive Disorders, Mood Disorders and Circadian Rhythms. Foods 2023; 12:foods12061309. [PMID: 36981235 PMCID: PMC10048542 DOI: 10.3390/foods12061309] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Cognitive, mood and sleep disorders are common and intractable disorders of the central nervous system, causing great inconvenience to the lives of those affected. The gut-brain axis plays a vital role in studying neurological disorders such as neurodegenerative diseases by acting as a channel for a bidirectional information exchange between the gut microbiota and the nervous system. Dietary polyphenols have received widespread attention because of their excellent biological activity and their wide range of sources, structural diversity and low toxicity. Dietary intervention through the increased intake of dietary polyphenols is an emerging strategy for improving circadian rhythms and treating metabolic disorders. Dietary polyphenols have been shown to play an essential role in regulating intestinal flora, mainly by maintaining the balance of the intestinal flora and enhancing host immunity, thereby suppressing neurodegenerative pathologies. This paper reviewed the bidirectional interactions between the gut microbiota and the brain and their effects on the central nervous system, focusing on dietary polyphenols that regulate circadian rhythms and maintain the health of the central nervous system through the gut-brain axis.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Shengnan Zhan
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
11
|
Xiang Q, Liu Y, Wu Z, Wang R, Zhang X. New hints for improving sleep: Tea polyphenols mediate gut microbiota to regulate circadian disturbances. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Qiao Xiang
- Department of Food Science and Engineering Ningbo University Ningbo P.R. China
| | - Yanan Liu
- Department of Food Science and Engineering Ningbo University Ningbo P.R. China
| | - Zufang Wu
- Department of Food Science and Engineering Ningbo University Ningbo P.R. China
| | - Rui Wang
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life Sciences Sichuan University Chengdu P.R. China
| | - Xin Zhang
- Department of Food Science and Engineering Ningbo University Ningbo P.R. China
| |
Collapse
|
12
|
Unique roles in health promotion of dietary flavonoids through gut microbiota regulation: Current understanding and future perspectives. Food Chem 2023; 399:133959. [DOI: 10.1016/j.foodchem.2022.133959] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 11/21/2022]
|
13
|
Lin Y, Yu W, Cai C, Wang P, Gao S, Zhang J, Fan X, Fang W, Ye N. Rapid varietal authentication of oolong tea products by microfluidic-based SNP genotyping. Food Res Int 2022; 162:111970. [DOI: 10.1016/j.foodres.2022.111970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/04/2022] [Accepted: 09/21/2022] [Indexed: 11/04/2022]
|
14
|
Chrononutrition-When We Eat Is of the Essence in Tackling Obesity. Nutrients 2022; 14:nu14235080. [PMID: 36501110 PMCID: PMC9739590 DOI: 10.3390/nu14235080] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Obesity is a chronic and relapsing public health problem with an extensive list of associated comorbidities. The worldwide prevalence of obesity has nearly tripled over the last five decades and continues to pose a serious threat to wider society and the wellbeing of future generations. The pathogenesis of obesity is complex but diet plays a key role in the onset and progression of the disease. The human diet has changed drastically across the globe, with an estimate that approximately 72% of the calories consumed today come from foods that were not part of our ancestral diets and are not compatible with our metabolism. Additionally, multiple nutrient-independent factors, e.g., cost, accessibility, behaviours, culture, education, work commitments, knowledge and societal set-up, influence our food choices and eating patterns. Much research has been focused on 'what to eat' or 'how much to eat' to reduce the obesity burden, but increasingly evidence indicates that 'when to eat' is fundamental to human metabolism. Aligning feeding patterns to the 24-h circadian clock that regulates a wide range of physiological and behavioural processes has multiple health-promoting effects with anti-obesity being a major part. This article explores the current understanding of the interactions between the body clocks, bioactive dietary components and the less appreciated role of meal timings in energy homeostasis and obesity.
Collapse
|
15
|
Torres‐Fuentes C, Suárez M, Aragonès G, Mulero M, Ávila‐Román J, Arola‐Arnal A, Salvadó MJ, Arola L, Bravo FI, Muguerza B. Cardioprotective Properties of Phenolic Compounds: A Role for Biological Rhythms. Mol Nutr Food Res 2022; 66:e2100990. [PMID: 35279936 PMCID: PMC9786928 DOI: 10.1002/mnfr.202100990] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/25/2022] [Indexed: 12/30/2022]
Abstract
Cardiovascular diseases (CVD) are the leading cause of deaths worldwide and their prevalence is continuously increasing. Available treatments may present several side effects and therefore the development of new safer therapeutics is of interest. Phenolic compounds have shown several cardioprotective properties helpful in reducing different CVD risk factors such as inflammation, elevated blood pressure, hyperlipidemia, or endothelial dysfunction. These factors are significantly influenced by biological rhythms which are in fact emerging as key modulators of important metabolic and physiological processes. Thus, increased events of CVD have been observed under circadian rhythm disruption or in winter versus other seasons. These rhythms can also affect the functionality of phenolic compounds. Indeed, different effects have been observed depending on the administration time or under different photoperiods. Therefore, in this review the focus will be on the potential of phenolic compounds as therapeutics to prevent CVD via biological rhythm modulation.
Collapse
Affiliation(s)
- Cristina Torres‐Fuentes
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Manuel Suárez
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Gerard Aragonès
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Miquel Mulero
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Javier Ávila‐Román
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Anna Arola‐Arnal
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Maria Josepa Salvadó
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Lluís Arola
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Francisca Isabel Bravo
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| | - Begoña Muguerza
- Nutrigenomics Research GroupDepartament de Bioquímica i BiotecnologiaUniversitat Rovira i VirgiliTarragona43007Spain
| |
Collapse
|
16
|
A comprehensive review on bioavailability, safety and antidepressant potential of natural bioactive components from tea. Food Res Int 2022; 158:111540. [DOI: 10.1016/j.foodres.2022.111540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/12/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022]
|
17
|
Dinakis E, Nakai M, Gill P, Ribeiro R, Yiallourou S, Sata Y, Muir J, Carrington M, Head GA, Kaye DM, Marques FZ. Association Between the Gut Microbiome and Their Metabolites With Human Blood Pressure Variability. Hypertension 2022; 79:1690-1701. [PMID: 35674054 DOI: 10.1161/hypertensionaha.122.19350] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Blood pressure (BP) variability is an independent risk factor for cardiovascular events. Recent evidence supports a role for the gut microbiota in BP regulation. However, whether the gut microbiome is associated with BP variability is yet to be determined. Here, we aimed to investigate the interplay between the gut microbiome and their metabolites in relation to BP variability. METHODS Ambulatory BP monitoring was performed in 69 participants from Australia (55.1% women; mean±SD, 59.8±7.26 years; body mass index, 25.2±2.83 kg/m2). These data were used to determine nighttime dipping, morning BP surge (MBPS) and BP variability as SD. The gut microbiome was determined by 16S ribosomal RNA (rRNA) sequencing and metabolite levels by gas chromatography. RESULTS We identified specific taxa associated with systolic BP variability, nighttime dipping, and MBPS. Notably, Alistipesfinegoldii and Lactobacillus spp. were only present in participants within the normal ranges of BP variability, MBPS and dipping, while Prevotella spp. and Clostridium spp., were found to be present in extreme dippers and the highest quartiles of BP SD and MBPS. There was a negative association between MBPS and microbial α-diversity (r=-0.244, P=0.046). MBPS was also negatively associated with plasma levels of microbial metabolites called short-chain fatty acids (r=-0.305, P=0.020), particularly acetate (r=-0.311, P=0.017). CONCLUSIONS Gut microbiome diversity, levels of microbial metabolites, and the bacteria Alistipesfinegoldii and Lactobacillus were associated with lower BP variability and Clostridium and Prevotella with higher BP variability. Thus, our findings suggest the gut microbiome and metabolites may be involved in the regulation of BP variability.
Collapse
Affiliation(s)
- Evany Dinakis
- Hypertension Research Laboratory, School of Biological Sciences (E.D., M.N., F.Z.M), Monash University, Melbourne, Australia
| | - Michael Nakai
- Hypertension Research Laboratory, School of Biological Sciences (E.D., M.N., F.Z.M), Monash University, Melbourne, Australia
| | - Paul Gill
- Department of Gastroenterology (P.G., J.M.), Monash University, Melbourne, Australia
| | - Rosilene Ribeiro
- School of Life and Environmental Sciences, Charles Perkins Centre, University of Sydney, Australia (R.R.)
| | - Stephanie Yiallourou
- Central Clinical School, Faculty of Medicine Nursing and Health Sciences (Y.S., D.M.K.), Monash University, Melbourne, Australia.,Preclinical Disease and Prevention (S.Y., M.C.), Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Cardiology, Alfred Hospital, Melbourne, Australia (Y.S., D.M.K.)
| | - Yusuke Sata
- Neuropharmacology Laboratory (Y.S., G.A.H.), Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Jane Muir
- Department of Gastroenterology (P.G., J.M.), Monash University, Melbourne, Australia
| | - Melinda Carrington
- Preclinical Disease and Prevention (S.Y., M.C.), Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Geoffrey A Head
- Department of Pharmacology, Faculty of Medicine Nursing and Health Sciences (G.A.H.), Monash University, Melbourne, Australia.,Neuropharmacology Laboratory (Y.S., G.A.H.), Baker Heart and Diabetes Institute, Melbourne, Australia
| | - David M Kaye
- Central Clinical School, Faculty of Medicine Nursing and Health Sciences (Y.S., D.M.K.), Monash University, Melbourne, Australia.,Heart Failure Research Group (D.M.K., F.Z.M.), Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Cardiology, Alfred Hospital, Melbourne, Australia (Y.S., D.M.K.)
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences (E.D., M.N., F.Z.M), Monash University, Melbourne, Australia.,Heart Failure Research Group (D.M.K., F.Z.M.), Baker Heart and Diabetes Institute, Melbourne, Australia
| |
Collapse
|
18
|
Wang H, Zhang H, Su Y. New Insights into the Diurnal Rhythmicity of Gut Microbiota and Its Crosstalk with Host Circadian Rhythm. Animals (Basel) 2022; 12:1677. [PMID: 35804575 PMCID: PMC9264800 DOI: 10.3390/ani12131677] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 12/14/2022] Open
Abstract
Unlike the strictly hierarchical organization in the circadian clock system, the gut microbiota rhythmicity has a more complex multilayer network of all taxonomic levels of microbial taxa and their metabolites. However, it is worth noting that the functionality of the gut microbiota rhythmicity is highly dependent on the host circadian clock and host physiological status. Here, we discussed the diurnal rhythmicity of the gut microbiota; its crucial role in host physiology, health, and metabolism; and the crosstalk between the gut microbial rhythmicity and host circadian rhythm. This knowledge lays the foundation for the development of chronotherapies targeting the gut microbiota. However, the formation mechanism, its beneficial effects on the host of gut microbial rhythmicity, and the dynamic microbial-host crosstalk are not yet clear and warrant further research.
Collapse
Affiliation(s)
- Hongyu Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (H.Z.)
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - He Zhang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (H.Z.)
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (H.Z.)
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
19
|
Hu S, Hu C, Luo L, Zhang H, Zhao S, Liu Z, Zeng L. Pu-erh tea increases the metabolite Cinnabarinic acid to improve circadian rhythm disorder-induced obesity. Food Chem 2022; 394:133500. [PMID: 35749873 DOI: 10.1016/j.foodchem.2022.133500] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/04/2022]
Abstract
Obesity is one of the circadian rhythm disorders (CRD)-mediated metabolic disorder syndromes. Pu-erh tea is a viable dietary intervention for CRD, however its effect on CRD-induced obesity is unclear. Here, we found that Pu-erh tea improved obesity in CRD-induced mice, which stemmed from the production of Cinnabarinic acid (CA). CA promoted adipose tissue lipolysis and thermogenic response (HSL, ATGL, Pparα, CKB, UCP1) and increased adipocyte sensitivity to hormones and neurotransmitters by targeting the expression of adipose tissue receptor proteins (Q6KAT8, P51655, A2AKQ0, M0QWX7, Q6ZQ33, and mGluR4). This improved mitochondrial activity and facilitated adipose tissue metabolic processes, thereby accelerating glucolipid metabolism. Also, CA-induced alterations in gut microbes and short-chain fatty acids further improved CRD-mediated lipid accumulation. These results suggest that the increase of CA caused by Pu-erh tea, targeted to adipose tissue via the metabolite-blood circulation-adipose tissue axis, maybe a key mechanism for reducing the development of CRD-induced obesity.
Collapse
Affiliation(s)
- Shanshan Hu
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Changhua Hu
- College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Liyong Luo
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Beibei, Chongqing 400715, China
| | - Haotian Zhang
- College of Pharmaceutical Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Sibo Zhao
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China.
| | - Liang Zeng
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
20
|
Sun Y, Ho CT, Liu Y, Zhan S, Wu Z, Zheng X, Zhang X. The Modulatory Effect of Cyclocarya paliurus Flavonoids on Intestinal Microbiota and Hypothalamus Clock Genes in a Circadian Rhythm Disorder Mouse Model. Nutrients 2022; 14:nu14112308. [PMID: 35684108 PMCID: PMC9182649 DOI: 10.3390/nu14112308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 01/27/2023] Open
Abstract
Circadian rhythm disruption is detrimental and results in adverse health consequences. We used a multi-omics profiling approach to investigate the effects of Cyclocarya paliurus flavonoid (CPF)-enriched diets on gut microbiota, metabolites, and hypothalamus clock genes in mice with induced circadian rhythm disruption. It was observed that CPF supplementation altered the specific composition and function of gut microbiota and metabolites induced by circadian rhythm disruption. Analysis showed that the abundance of Akkermansia increased, while the abundance of Clostridiales and Ruminiclostridium displayed a significant downward trend after the CPF intervention. Correlation analysis also revealed that these gut microbes had certain correlations with the metabolites, suggesting that CPFs help the intestinal microbiota to repair the intestinal environment and modulate the release of some beneficial metabolites. Notably, single-cell RNA-seq revealed that CPF supplementation significantly regulated the expression of genes associated with circadian rhythm, myelination, and neurodegenerative diseases. Altogether, these findings highlight that CPFs may represent a promising dietary therapeutic strategy for treating circadian rhythm disruption.
Collapse
Affiliation(s)
- Ying Sun
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (Y.S.); (Y.L.); (S.Z.); (Z.W.)
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
- Correspondence: (C.-T.H.); (X.Z.); (X.Z.)
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (Y.S.); (Y.L.); (S.Z.); (Z.W.)
| | - Shennan Zhan
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (Y.S.); (Y.L.); (S.Z.); (Z.W.)
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (Y.S.); (Y.L.); (S.Z.); (Z.W.)
| | - Xiaojie Zheng
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China
- Correspondence: (C.-T.H.); (X.Z.); (X.Z.)
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (Y.S.); (Y.L.); (S.Z.); (Z.W.)
- Correspondence: (C.-T.H.); (X.Z.); (X.Z.)
| |
Collapse
|
21
|
Jiang Z, Zhuo LB, He Y, Fu Y, Shen L, Xu F, Gou W, Miao Z, Shuai M, Liang Y, Xiao C, Liang X, Tian Y, Wang J, Tang J, Deng K, Zhou H, Chen YM, Zheng JS. The gut microbiota-bile acid axis links the positive association between chronic insomnia and cardiometabolic diseases. Nat Commun 2022; 13:3002. [PMID: 35637254 PMCID: PMC9151781 DOI: 10.1038/s41467-022-30712-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 05/05/2022] [Indexed: 02/07/2023] Open
Abstract
Evidence from human cohorts indicates that chronic insomnia is associated with higher risk of cardiometabolic diseases (CMD), yet whether gut microbiota plays a role is unclear. Here, in a longitudinal cohort (n = 1809), we find that the gut microbiota-bile acid axis may link the positive association between chronic insomnia and CMD. Ruminococcaceae UCG-002 and Ruminococcaceae UCG-003 are the main genera mediating the positive association between chronic insomnia and CMD. These results are also observed in an independent cross-sectional cohort (n = 6122). The inverse associations between those gut microbial biomarkers and CMD are mediated by certain bile acids (isolithocholic acid, muro cholic acid and nor cholic acid). Habitual tea consumption is prospectively associated with the identified gut microbiota and bile acids in an opposite direction compared with chronic insomnia. Our work suggests that microbiota-bile acid axis may be a potential intervention target for reducing the impact of chronic insomnia on cardiometabolic health. Chronic insomnia is associated with cardiometabolic diseases. Here, in two clinical cohorts (n = 7,931), authors show that gut microbiota-bile acid axis may be an intervention target to attenuate the impact of chronic insomnia on cardiometabolic health.
Collapse
|
22
|
Cruz-Carrión Á, Calani L, Ruiz de Azua MJ, Mena P, Del Rio D, Arola-Arnal A, Suárez M. Impact of Seasonal Consumption of Local Tomatoes on the Metabolism and Absorption of (Poly)Phenols in Fischer Rats. Nutrients 2022; 14:nu14102047. [PMID: 35631187 PMCID: PMC9144325 DOI: 10.3390/nu14102047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/05/2023] Open
Abstract
Consuming (poly)phenol-rich fruits and vegetables, including tomato, is associated with health benefits. The health effects of tomato (poly)phenolic compounds have been attributed to their metabolites rather than parent compounds and their bioavailability can be modulated by several factors. This study aimed to evaluate the effect of seasonal consumption of local tomatoes on their (poly)phenol bioavailability. For this, (poly)phenol absorption and metabolism were evaluated by ultra-high-performance liquid chromatography coupled with mass spectrometry and linear ion trap mass spectrometric (uHPLC-MSn) after chronic tomato consumption in Fischer rats exposed to three photoperiods mimicking the seasonal daylight schedule. Tomatoes from two locations in Spain (LT, local tomatoes and NLT, non-local tomatoes) were used in this in vivo feeding study. The bioavailability of tomato (poly)phenols depended on the photoperiod to which the rats were exposed, the metabolite concentrations significantly varying between seasons. In-season tomato consumption allowed obtaining the highest concentration of total circulating metabolites. In addition, the origin of the tomato administered generated marked differences in the metabolic profiles, with higher serum concentrations reached upon NLT ingestion. We concluded that in-season tomato consumption led to an increase in (poly)phenol circulation, whereas LT consumption showed lower circulating metabolites than NLT ones. Thus, the origin of the tomato and the seasonal daylight schedule affect the bioavailability of tomato (poly)phenols, which could also affect their bioactivity.
Collapse
Affiliation(s)
- Álvaro Cruz-Carrión
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (Á.C.-C.); (M.J.R.d.A.); (M.S.)
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Arkansas Children’s Nutrition Center, USDA-Agricultural Research Service, Little Rock, AR 72202, USA
| | - Luca Calani
- Department of Food and Drugs, University of Parma, 43124 Parma, Italy; (L.C.); (D.D.R.)
| | - Ma. Josefina Ruiz de Azua
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (Á.C.-C.); (M.J.R.d.A.); (M.S.)
| | - Pedro Mena
- Department of Food and Drugs, University of Parma, 43124 Parma, Italy; (L.C.); (D.D.R.)
- Correspondence: (P.M.); (A.A.-A.); Tel.: +39-05-2190-3970 (P.M.); +34-977-55-8630 (A.A.-A.)
| | - Daniele Del Rio
- Department of Food and Drugs, University of Parma, 43124 Parma, Italy; (L.C.); (D.D.R.)
| | - Anna Arola-Arnal
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (Á.C.-C.); (M.J.R.d.A.); (M.S.)
- Correspondence: (P.M.); (A.A.-A.); Tel.: +39-05-2190-3970 (P.M.); +34-977-55-8630 (A.A.-A.)
| | - Manuel Suárez
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (Á.C.-C.); (M.J.R.d.A.); (M.S.)
| |
Collapse
|
23
|
Wang S, Zeng T, Zhao S, Zhu Y, Feng C, Zhan J, Li S, Ho CT, Gosslau A. Multifunctional health-promoting effects of oolong tea and its products. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
Yan R, Ho CT, Zhang X. Modulatory effects in circadian-related diseases via the reciprocity of tea polyphenols and intestinal microbiota. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Wei Y, Xu J, Miao S, Wei K, Peng L, Wang Y, Wei X. Recent advances in the utilization of tea active ingredients to regulate sleep through neuroendocrine pathway, immune system and intestinal microbiota. Crit Rev Food Sci Nutr 2022; 63:7598-7626. [PMID: 35266837 DOI: 10.1080/10408398.2022.2048291] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sleep disorders have received widespread attention nowadays, which have been promoted by the accelerated pace of life, unhealthy diets and lack of exercise in modern society. The chemical medications to improve sleep has shown serious side effects and risks with high costs. Therefore, it is urgent to develop efficient nutraceuticals from natural sources to ensure sleep quality as a sustainable strategy. As the second most consumed beverage worldwide, the health-promoting effects of tea have long been widely recognized. However, the modulatory effect of teas on sleep disorders has received much less attention. Tea contains various natural sleep-modulating active ingredients such as L-theanine (LTA), caffeine, tea polyphenols (TPP), tea pigments, tea polysaccharides (TPS) and γ-aminobutyric acid (GABA). This review focuses on the potential influence and main regulating mechanisms of different tea active ingredients on sleep, including being absorbed by the small intestine and then cross the blood-brain barrier to act on neurons in the brain as neurotransmitters, manipulating the immune system and further affect sleep-wake cycle by regulating the levels of cytokines, and controlling the gut microbes to maintain the homeostasis of circadian rhythm. Current research progress and limitations are summarized and several future development directions are also proposed. This review hopes to provide new insights into the future elucidation of the sleep-regulating mechanisms of different teas and their natural active ingredients and the development of tea-based functional foods for alleviating sleep disorders. HighlightsNatural sleep-modulating active ingredients in tea have been summarized.Influences of drinking tea or tea active ingredients on sleep are reviewed.Three main regulating mechanisms of tea active ingredients on sleep are explained.The associations among nervous system, immune system and intestinal microbiota are investigated.The potential of developing delivery carriers for tea active ingredients is proposed.
Collapse
Affiliation(s)
- Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jia Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Siwei Miao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Kang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Lanlan Peng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yuanfeng Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, P.R. China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
26
|
Hu S, Luo L, Zeng L. Tea combats circadian rhythm disorder syndrome via the gut-liver-brain axis: potential mechanisms speculated. Crit Rev Food Sci Nutr 2022; 63:7126-7147. [PMID: 35187990 DOI: 10.1080/10408398.2022.2040945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circadian rhythm is an intrinsic mechanism developed by organisms to adapt to external environmental signals. Nowadays, owing to the job and after-work entertainment, staying up late - Circadian rhythm disorders (CRD) are common. CRD is linked to the development of fatty liver, type 2 diabetes, and chronic gastroenteritis, which affecting the body's metabolic and inflammatory responses via multi-organ crosstalk (gut-liver-brain axis, etc.). However, studies on the mechanisms of multi-organ interactions by CRD are still weak. Current studies on therapeutic agents for CRD remain inadequate, and phytochemicals have been shown to alleviate CRD-induced syndromes that may be used for CRD-therapy in the future. Tea, a popular phytochemical-rich beverage, reduces glucolipid metabolism and inflammation. But it is immature and unclear in the mechanisms of alleviation of CRD-mediated syndrome. Here, we have analyzed the threat of CRD to hosts and their offspring' health from the perspective of the "gut-liver-brain" axis. The potential mechanisms of tea in alleviating CRD were further explored. It might be by interfering with bile acid metabolism, tryptophan metabolism, and G protein-coupled receptors, with FXR, AHR, and GPCR as potential targets. We hope to provide new perspectives on the role of tea in the prevention and mitigation of CRD.HighlightsThe review highlights the health challenges of CRD via the gut-liver-brain axis.CRD research should focus on the health effects on healthy models and its offspring.Tea may prevent CRD by regulating bile acid, tryptophan, and GPCR.Potential targets for tea prevention and mitigation of CRD include FXR, AHR and GPCR.A comprehensive assessment mechanism for tea in improving CRD should be established.
Collapse
Affiliation(s)
- Shanshan Hu
- College of Food Science, Southwest University, Beibei, Chongqing, People's Republic of China
| | - Liyong Luo
- College of Food Science, Southwest University, Beibei, Chongqing, People's Republic of China
| | - Liang Zeng
- College of Food Science, Southwest University, Beibei, Chongqing, People's Republic of China
| |
Collapse
|
27
|
Zhang Y, Cheng L, Liu Y, Zhang R, Wu Z, Cheng K, Zhang X. Omics Analyses of Intestinal Microbiota and Hypothalamus Clock Genes in Circadian Disturbance Model Mice Fed with Green Tea Polyphenols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1890-1901. [PMID: 35112849 DOI: 10.1021/acs.jafc.1c07594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Green tea polyphenols (GTP) have similar activities as prebiotics, which effectively regulate the structure of intestinal flora and affect their metabolic pathways. The intestinal flora is closely related to the host's circadian rhythm, and the supplementation with GTP may be an effective way to improve circadian rhythm disorders. In this study, we established a mouse model of circadian rhythm disturbance of anthropogenic flora to investigate the regulation mechanism of GTP on the host circadian rhythms. After 4 weeks of GTP administration, the results showed that GTP significantly alleviated the structural disorder of intestinal microbiota, thus effectively regulating related metabolites associated with brain nerves and circadian rhythms. Moreover, single-cell transcription of the mouse hypothalamus suggested that GTP up-regulated the number of astrocytes and oligodendrocytes and adjusted the expression of core clock genes Csnk1d, Clock, Per3, Cry2, and BhIhe41 caused by circadian disruption. Therefore, this study provided evidence that GTP can improve the physiological health of hosts with the circadian disorder by positively affecting intestinal flora and related metabolites and regulating circadian gene expression.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Ruilin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Kejun Cheng
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, P.R. China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| |
Collapse
|
28
|
Xiang Q, Cheng L, Zhang R, Liu Y, Wu Z, Zhang X. Tea Polyphenols Prevent and Intervene in COVID-19 through Intestinal Microbiota. Foods 2022; 11:506. [PMID: 35205982 PMCID: PMC8871045 DOI: 10.3390/foods11040506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/22/2022] [Accepted: 02/05/2022] [Indexed: 12/13/2022] Open
Abstract
Although all countries have taken corresponding measures, the coronavirus disease 2019 (COVID-19) is still ravaging the world. To consolidate the existing anti-epidemic results and further strengthen the prevention and control measures against the new coronavirus, we are now actively pioneering a novel research idea of regulating the intestinal microbiota through tea polyphenols for reference. Although studies have long revealed the regulatory effect of tea polyphenols on the intestinal microbiota to various gastrointestinal inflammations, little is known about the prevention and intervention of COVID-19. This review summarizes the possible mechanism of the influence of tea polyphenols on COVID-19 mediated by the intestinal microbiota. In this review, the latest studies of tea polyphenols exhibiting their own antibacterial and anti-inflammatory activities and protective effects on the intestinal mucosal barrier are combed through and summarized. Among them, (-)-epigallocatechin-3-gallate (EGCG), one of the main monomers of catechins, may be activated as nuclear factor erythroid 2 p45-related factor 2 (Nrf2). The agent inhibits the expression of ACE2 (a cellular receptor for SARS-CoV-2) and TMPRSS2 to inhibit SARS-CoV-2 infection, inhibiting the life cycle of SARS-CoV-2. Thus, preliminary reasoning and judgments have been made about the possible mechanism of the effect of tea polyphenols on the COVID-19 control and prevention mediated by the microbiota. These results may be of great significance to the future exploration of specialized research in this field.
Collapse
Affiliation(s)
- Qiao Xiang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (Q.X.); (Y.L.); (Z.W.)
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA;
| | - Ruilin Zhang
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Ningbo University, Ningbo 315211, China
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (Q.X.); (Y.L.); (Z.W.)
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (Q.X.); (Y.L.); (Z.W.)
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (Q.X.); (Y.L.); (Z.W.)
| |
Collapse
|
29
|
Li R, Xiao J, Cao Y, Huang Q, Ho CT, Lu M. Capsaicin Attenuates Oleic Acid-Induced Lipid Accumulation via the Regulation of Circadian Clock Genes in HepG2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:794-803. [PMID: 34964356 DOI: 10.1021/acs.jafc.1c06437] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As the major component in red chili peppers, capsaicin is useful in the prevention of lipid metabolism disorders. In this study, the attenuation effect of capsaicin on oleic acid (OA)-induced lipid accumulation in HepG2 cells was evaluated with respect to circadian clock gene expressions. Lipid profiles, including triacylglycerols, total cholesterols, high-density lipoproteins, low-density lipoproteins, and aspartate aminotransferase content, were measured using enzymatic assay kits. The mitochondrial membrane potential, cellular redox status, and lipid droplet morphology were also determined using different assay kits and staining methods. The mRNA and protein expressions of core circadian clock genes and major lipometabolism-related factors were assessed using RT-qPCR and western blotting. Results showed that 50 μM capsaicin alleviated the circadian desynchrony and inhibited OA-induced ROS overproduction (from 166.44 ± 12.63% to 119.90 ± 5.43%) and mitochondrial dysfunction (from 0.60 ± 0.08 to 0.83 ± 0.09, represented by the red/green fluorescence ratio) in HepG2 cells. The amelioration effect of capsaicin on OA-induced lipid accumulation was weakened after Bmal1-knockdown, demonstrating that the rhythmic expression of the circadian clock gene is involved in the regulation process of capsaicin in lipid metabolism.
Collapse
Affiliation(s)
- Run Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Muwen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
30
|
Ma H, Hu Y, Zhang B, Shao Z, Roura E, Wang S. Tea polyphenol – gut microbiota interactions: hints on improving the metabolic syndrome in a multi-element and multi-target manner. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
31
|
Sun Q, Ho CT, Zhang X, Liu Y, Zhang R, Wu Z. Strategies for circadian rhythm disturbances and related psychiatric disorders: A new cue based on plant polysaccharides and intestinal microbiota. Food Funct 2022; 13:1048-1061. [DOI: 10.1039/d1fo02716f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circadian rhythm is essential to human physiological homeostasis and health. The oscillation of host circadian rhythm affects the composition and function of intestinal microbiota, meanwhile, the normal operation of host...
Collapse
|
32
|
Hu S, Chen Y, Zhao S, Sun K, Luo L, Zeng L. Ripened Pu-Erh Tea Improved the Enterohepatic Circulation in a Circadian Rhythm Disorder Mice Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13533-13545. [PMID: 34726418 DOI: 10.1021/acs.jafc.1c05338] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Glucolipid metabolism, nitrogen metabolism, and inflammation are closely related to circadian rhythm disorder (CRD). Ripened Pu-erh tea (RPT) shows significant antidyslipidemic, antihyperurecemic, and anti-inflammatory effects. However, it is unclear whether healthy population are affected by CRD and whether long-term consumption of RPT can alleviate it. To investigate this problem, healthy mice were pretreated with RPT (0.25%, w/v) for 60 days and then subjected to CRD for 40 days. Our results indicated that healthy mice showed obesity, and the intestinal and liver inflammation increased after CRD, which were associated with the development of a metabolic disorder syndrome. RPT effectively reversed this trend by increasing the production and excretion rates of bile acid. RPT reshaped the disorder of gut microbiota caused by CRD and promoted the change of archaeal intestinal types from Firmicutes-dominant type to Bacteroidota-dominant type. In addition, by repairing the intestinal barrier function, RPT inhibited the infiltration of harmful microorganisms or metabolites through enterohepatic circulation, thus reducing the risk of chronic liver inflammation. In conclusion, RPT may reduce the risk of CRD-induced obesity in mice by increasing bile acid metabolism. The change of bile acid pool contributes to the reshaping of gut microflora, thus reducing intestinal inflammation and oxidative stress induced by CRD. Therefore, we speculated that the weakening of CRD damage caused by RPT is due to the improvement of bile acid-mediated enterohepatic circulation. It was found that 0.25% RPT (a human equivalent dose of 7 g/60 kg/day) has potential for regulating CRD.
Collapse
Affiliation(s)
- Shanshan Hu
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Yu Chen
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Sibo Zhao
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Kang Sun
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Liyong Luo
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Liang Zeng
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| |
Collapse
|
33
|
Feng C, Liu W, Chen H, Dong W, Yang J. Effect of dark environment on intestinal flora and expression of genes related to liver metabolism in zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2021; 249:109100. [PMID: 34174412 DOI: 10.1016/j.cbpc.2021.109100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023]
Abstract
To explore the effects of dark environment on intestinal flora and expression of genes related to liver metabolism in zebrafish, a total of 60 zebrafish were fed for 21 days (24 h dark treatments or 14/10 h light/dark cycle), and the influence of dark environment on gut microbes and liver gene expression was studied using sequencing analysis of intestinal flora and liver. The results showed that the body weight of fish was significantly increased in the dark group than that in the control group (P < 0.05). Compared with the control group, dark environment treatment changed the composition of dominant flora, increased the abundance of unconventional bacteria and reduced probiotics in the intestine of zebrafish. Of these, the ratio of Bacteroidetes to Firmicutes in the intestine was reduced. The genome expression of the liver showed significant changes, and liver metabolites were also affected. Meanwhile, dark environment decreased gene expression associated with changes in blood glucose, lipid metabolism and immunization. Dark environment also caused liver steatosis as observed by histological study. This study shows that dark environment treatment has an important impact on liver metabolism and intestinal microbes in zebrafish.
Collapse
Affiliation(s)
- Chi Feng
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Wuyun Liu
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China; School of Animal Science, Mongolian State University of Agriculture, Bayangol, Ulaanbaatar, Mongolia
| | - Hao Chen
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Jingfeng Yang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China.
| |
Collapse
|
34
|
Liu Y, Wu Z, Cheng L, Zhang X, Yang H. The role of the intestinal microbiota in the pathogenesis of host depression and mechanism of TPs relieving depression. Food Funct 2021; 12:7651-7663. [PMID: 34286799 DOI: 10.1039/d1fo01091c] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Depression is a prevalent neuropsychiatric disease with a high recurrence rate, affecting over 350 million people worldwide. Intestinal flora disorders and gut-brain-axis (GBA) dysfunction may cause mental disorders. Alterations in the intestinal flora composition could increase the permeability of the gut barrier, activate systemic inflammation and immune responses, regulate the release and efficacy of monoamine neurotransmitters, alter the activity and function of the hypothalamic-pituitary-adrenal (HPA) axis, and modify the abundance of the brain-derived neurotrophic factor (BDNF); all of these showed a close correlation with the occurrence of depression. In addition, the disturbance of the intestinal flora is related to circadian rhythm disorders, which aggravate the symptoms of depression. Tea polyphenols (TPs) have been found to have antidepressant effects. Therefore, the close reciprocity between the intestinal flora and circadian rhythm provides a new opportunity for TPs to regulate depression relying on the intestinal flora. In this review, we discussed the relationship between intestinal flora dysbiosis and the pathogenesis of depression and the mechanism of TPs relieving depression via the GBA.
Collapse
Affiliation(s)
- Yang Liu
- Laboratory of Food Biotechnology, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo315211, PR China.
| | | | | | | | | |
Collapse
|
35
|
Hong M, Zhang R, Liu Y, Wu Z, Weng P. The interaction effect between tea polyphenols and intestinal microbiota: Role in ameliorating neurological diseases. J Food Biochem 2021; 46:e13870. [PMID: 34287960 DOI: 10.1111/jfbc.13870] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/17/2021] [Accepted: 06/27/2021] [Indexed: 01/08/2023]
Abstract
Tea polyphenols (TP) are one of the most functional and bioactive substances in tea. The interactions between TP and intestinal microbiota suggest that probiotics intervention is a useful method to ameliorate neurological diseases. Now, numerous researches have suggested that TP plays a significant role in modulating intestinal bacteria, especially in the area of sustaining a stable state of intestinal microbial function and abundance. Furthermore, homeostatic intestinal bacteria can enhance the immunity of the host. The close reciprocity between intestinal microbiota and the central nervous system provides a new chance for TP to modulate neural-related diseases depending on intestinal microbiota. Therefore, based on the bidirectional relationship between the brain and the intestines, this review provides a new clue to solve insomnia symptoms and related neurological diseases that will enable us to better study the bidirectional effects of TP and intestinal microbiota on the improvement of host health. PRACTICAL APPLICATIONS: This review provides a new clue to solve insomnia symptoms and related neurological diseases that will enable us to better study bidirectional effects of TP and intestinal microbiota on the improvement of host health.
Collapse
Affiliation(s)
- Mengyu Hong
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Ruilin Zhang
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Yanan Liu
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Zufang Wu
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| | - Peifang Weng
- Department of Food Science and Engineering, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, P.R. China
| |
Collapse
|
36
|
Ávila-Román J, Soliz-Rueda JR, Bravo FI, Aragonès G, Suárez M, Arola-Arnal A, Mulero M, Salvadó MJ, Arola L, Torres-Fuentes C, Muguerza B. Phenolic compounds and biological rhythms: Who takes the lead? Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Zhang Y, Cheng L, Liu Y, Wu Z, Weng P. The Intestinal Microbiota Links Tea Polyphenols with the Regulation of Mood and Sleep to Improve Immunity. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1934007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yuting Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Lu Cheng
- Department of Food Science, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Peifang Weng
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| |
Collapse
|
38
|
Dufoo-Hurtado E, Olvera-Bautista R, Wall-Medrano A, Loarca-Piña G, Campos-Vega R. In vitro gastrointestinal digestion and simulated colonic fermentation of pistachio nuts determine the bioaccessibility and biosynthesis of chronobiotics. Food Funct 2021; 12:4921-4934. [PMID: 34100470 DOI: 10.1039/d0fo02708a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronodisruption leads to obesity and other metabolic disorders that can be alleviated by food-derived potential chronobiotics, such as phytomelatonin (PMT), phenolic compounds (PCs) and dietary fiber rich pistachios. Pistachios with (PN + SC) or without (PN) the seed coat were investigated for their in vitro chronobiotic potential since they are one of the main reported PMT sources. Consequently we evaluated the bioaccessibility, permeability, and biosynthesis of pistachio chronobiotics, particularly PMT, during gastrointestinal and colonic fermentation. The maximum in vitro bioaccessibility and apparent permeability (efflux-prone) of PCs, flavonoids and PMT were sample-specific [∼1.3% (both), 27 and 3.4% (PN + SC)], but additional amounts (flavonoids > PCs > PMT) were released under simulated colonic conditions. Short-chain fatty acids (SCFAs; 38 mM; >50% butyrate, PN + SC > PN) and some metabolites (e.g., indole, benzaldehyde, phenolic acids, and aliphatic/aromatic hydrocarbons) were detected depending on the sample. The predominant pistachio butyrate production during in vitro colonic fermentation can improve chronodisruption and benefit obese individuals. Pistachio's digestion increases the bioaccessibility and intestinal permeability of potential chronobiotics (PMT and PCs) and the biosynthesis of colonic metabolites (SCFAs, among others) also with chronobiotic potential.
Collapse
Affiliation(s)
- Elisa Dufoo-Hurtado
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Qro, Querétaro 76010, Mexico.
| | | | | | | | | |
Collapse
|
39
|
Hong M, Ho C, Zhang X, Zhang R, Liu Y. Dietary strategies may influence human nerves and emotions by regulating intestinal microbiota: an interesting hypothesis. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mengyu Hong
- Department of Food Science and Engineering Ningbo University Ningbo315211China
| | - Chi‐Tang Ho
- Department of Food Science Rutgers University New Brunswick NJ08901USA
| | - Xin Zhang
- Department of Food Science and Engineering Ningbo University Ningbo315211China
| | - Ruilin Zhang
- Department of Food Science and Engineering Ningbo University Ningbo315211China
| | - Yanan Liu
- Department of Food Science and Engineering Ningbo University Ningbo315211China
| |
Collapse
|
40
|
Maintain host health with time-restricted eating and phytochemicals: A review based on gut microbiome and circadian rhythm. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Circadian Rhythm: Potential Therapeutic Target for Atherosclerosis and Thrombosis. Int J Mol Sci 2021; 22:ijms22020676. [PMID: 33445491 PMCID: PMC7827891 DOI: 10.3390/ijms22020676] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
Every organism has an intrinsic biological rhythm that orchestrates biological processes in adjusting to daily environmental changes. Circadian rhythms are maintained by networks of molecular clocks throughout the core and peripheral tissues, including immune cells, blood vessels, and perivascular adipose tissues. Recent findings have suggested strong correlations between the circadian clock and cardiovascular diseases. Desynchronization between the circadian rhythm and body metabolism contributes to the development of cardiovascular diseases including arteriosclerosis and thrombosis. Circadian rhythms are involved in controlling inflammatory processes and metabolisms, which can influence the pathology of arteriosclerosis and thrombosis. Circadian clock genes are critical in maintaining the robust relationship between diurnal variation and the cardiovascular system. The circadian machinery in the vascular system may be a novel therapeutic target for the prevention and treatment of cardiovascular diseases. The research on circadian rhythms in cardiovascular diseases is still progressing. In this review, we briefly summarize recent studies on circadian rhythms and cardiovascular homeostasis, focusing on the circadian control of inflammatory processes and metabolisms. Based on the recent findings, we discuss the potential target molecules for future therapeutic strategies against cardiovascular diseases by targeting the circadian clock.
Collapse
|
42
|
The circadian machinery links metabolic disorders and depression: A review of pathways, proteins and potential pharmacological interventions. Life Sci 2020; 265:118809. [PMID: 33249097 DOI: 10.1016/j.lfs.2020.118809] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022]
Abstract
Circadian rhythms are responsible for regulating a number of physiological processes. The central oscillator is located within the suprachiasmatic nucleus (SCN) of the hypothalamus and the SCN synchronises the circadian clocks that are found in our peripheral organs through neural and humoral signalling. At the molecular level, biological clocks consist of transcription-translation feedback loops (TTFLs) and these pathways are influenced by transcription factors, post-translational modifications, signalling pathways and epigenetic modifiers. When disruptions occur in the circadian machinery, the activities of the proteins implicated in this network and the expression of core clock or clock-controlled genes (CCGs) can be altered. Circadian misalignment can also arise when there is desychronisation between our internal clocks and environmental stimuli. There is evidence in the literature demonstrating that disturbances in the circadian rhythm contribute to the pathophysiology of several diseases and disorders. This includes the metabolic syndrome and recently, it has been suggested that the 'circadian syndrome' may be a more appropriate term to use to not only describe the cardio-metabolic risk factors but also the associated comorbidities. Here we overview the molecular architecture of circadian clocks in mammals and provide insight into the effects of shift work, exposure to artificial light, food intake and stress on the circadian rhythm. The relationship between circadian rhythms, metabolic disorders and depression is reviewed and this is a topic that requires further investigation. We also describe how particular proteins involved in the TTFLs can be potentially modulated by small molecules, including pharmacological interventions and dietary compounds.
Collapse
|
43
|
Cheng WY, Lam KL, Pik-Shan Kong A, Chi-Keung Cheung P. Prebiotic supplementation (beta-glucan and inulin) attenuates circadian misalignment induced by shifted light-dark cycle in mice by modulating circadian gene expression. Food Res Int 2020; 137:109437. [PMID: 33233118 DOI: 10.1016/j.foodres.2020.109437] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/13/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022]
Abstract
Circadian rhythm governs multiple behavioural and physiological processes and its disruption is closely associated with various pathological conditions. In this study, the effects of dietary intervention by prebiotics including beta-glucan and inulin on attenuating circadian desynchrony in C57BL/6J mice subjected to weekly shifted light-dark cycle under a high fat diet was investigated. Using RT-qPCR and rhythmicity analysis, our study revealed that beta-glucan (0.2 g/day) and inulin (0.2 g/day) modulated the expression and phase of circadian-clock genes, explicitly reversed the phase delay of Period 1 and Period 3 in the hypothalamus, and reversed the phase delay of Period 2 in the liver of the mice. In the shifted mouse group, inulin also exhibited its reversal effects on the phase advance of Brain and muscle-Arnt-like 1 in the hypothalamus. These findings indicated that prebiotic supplementation can be a novel dietary approach for attenuating circadian misalignment.
Collapse
Affiliation(s)
- Wai-Yin Cheng
- Food and Nutritional Sciences, School of Life Sciences, The Chinese University of Hong Kong, University Science Centre, Shatin, New Territory, Hong Kong Special Administrative Region
| | - Ka-Lung Lam
- Food and Nutritional Sciences, School of Life Sciences, The Chinese University of Hong Kong, University Science Centre, Shatin, New Territory, Hong Kong Special Administrative Region
| | - Alice Pik-Shan Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, New Territories, Hong Kong Special Administrative Region
| | - Peter Chi-Keung Cheung
- Food and Nutritional Sciences, School of Life Sciences, The Chinese University of Hong Kong, University Science Centre, Shatin, New Territory, Hong Kong Special Administrative Region.
| |
Collapse
|
44
|
Zhang L, Yan R, Wu Z. Metagenomics analysis of intestinal flora modulatory effect of green tea polyphenols by a circadian rhythm dysfunction mouse model. J Food Biochem 2020; 44:e13430. [PMID: 32776532 DOI: 10.1111/jfbc.13430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
The present study investigated the regulatory mechanism of green tea polyphenols (GTP) on the circadian rhythm of gut flora. The administration of GTP mitigated the variations in the serum and liver level of constant dark (CD)-induced circadian rhythm disorder mouse model. For the gut microbial population, GTP promoted the relative abundance of Bacteroidetes while inhibited Firmicutes. Furthermore, KEGG pathways of biosynthesis of amino acids, two-component system and ATP-binding cassette translocators enriched the most differentially expressed genes after GTP interference. It indicated GTP may prevent CD-induced circadian rhythm disorder, which has an enormous potential to be utilized as prebiotic-like ingredients in food industry. PRACTICAL APPLICATIONS: The findings underscore the capacity of GTP to modulate circadian rhythm by modulating the structure and functional characteristics of host gut microbiota and influencing metabolism, conducing to the melioration of human microecology. The prebiotic function of GTP indicated it can be used to prevent metabolic disturbance related to circadian rhythm disorder.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physical Education, China University of Mining and Technology, Beijing, P.R. China
| | - Ruonan Yan
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| |
Collapse
|
45
|
Yan R, Ho C, Zhang X. Interaction between Tea Polyphenols and Intestinal Microbiota in Host Metabolic Diseases from the Perspective of the Gut–Brain Axis. Mol Nutr Food Res 2020; 64:e2000187. [DOI: 10.1002/mnfr.202000187] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/29/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Ruonan Yan
- Department of Food Science and EngineeringNingbo University Ningbo 315211 P. R. China
| | - Chi‐Tang Ho
- Department of Food ScienceRutgers University New Brunswick NJ 08901 USA
| | - Xin Zhang
- Department of Food Science and EngineeringNingbo University Ningbo 315211 P. R. China
| |
Collapse
|
46
|
Song D, Yang CS, Zhang X, Wang Y. The relationship between host circadian rhythms and intestinal microbiota: A new cue to improve health by tea polyphenols. Crit Rev Food Sci Nutr 2020; 61:139-148. [PMID: 31997655 DOI: 10.1080/10408398.2020.1719473] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Under the control of the host circadian rhythms, intestinal microbiota undergoes dietary-dependent diurnal fluctuations in composition and function. In addition, microbiome plays a critical role in maintaining the host circadian rhythms and metabolic homeostasis. The interactions between host circadian rhythms and intestinal microbiota suggest that intervention with prebiotics or probiotic is a possible way to alleviate circadian rhythm misalignment and related metabolic diseases. This review discusses the circadian rhythm oscillations of gut flora, relationship between host circadian rhythms and microbiome and related effects on metabolism. The influence on circadian rhythms by the interactions between tea polyphenols (TP) and intestinal microbiota is highlighted.
Collapse
Affiliation(s)
- Dan Song
- Department of Food Science and Engineering, Ningbo University, Ningbo University, Ningbo, P.R. China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo University, Ningbo, P.R. China.,State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, P.R. China
| | - Ying Wang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, P.R. China
| |
Collapse
|