1
|
Dozio D, Sacchi F, Pinto A, Dallavalle S, Annunziata F, Princiotto S. Natural Antifungal Alkaloids for Crop Protection: An Overview of the Latest Synthetic Approaches. Pharmaceuticals (Basel) 2025; 18:589. [PMID: 40284025 PMCID: PMC12030670 DOI: 10.3390/ph18040589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Alkaloids are nitrogen-containing compounds naturally occurring in plants, microorganisms, and marine organisms. Potent biological activities have been reported to date, ranging from neuroprotective to antioxidant and anticancer effects. Alkaloids have recently gained attention as potential antifungal agents for crop protection due to their broad spectrum of activity, eco-friendly nature, and ability to overcome some of the issues associated with synthetic fungicides, such as resistance development and environmental contamination. Several efforts have been made to obtain natural and nature-derived alkaloids endowed with significant activity against numerous pathogenic fungal strains. In this review, we collect synthetic strategies developed over the past decade to produce alkaloid fungicides for crop protection. Special emphasis is given to recent advancements in obtaining pure natural compounds and more potent analogs endowed with tailored and optimized properties.
Collapse
Affiliation(s)
| | | | | | | | - Francesca Annunziata
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy; (D.D.); (F.S.); (A.P.); (S.D.)
| | - Salvatore Princiotto
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, via Celoria 2, 20133 Milan, Italy; (D.D.); (F.S.); (A.P.); (S.D.)
| |
Collapse
|
2
|
Yang Y, Hu L, Chen T, Zhang L, Wang D, Chen Z. Chemical and Biological Investigations of Antiviral Agents Against Plant Viruses Conducted in China in the 21st Century. Genes (Basel) 2024; 15:1654. [PMID: 39766921 PMCID: PMC11728098 DOI: 10.3390/genes15121654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/15/2025] Open
Abstract
Research into the biology of plant viruses, their mechanisms of pathogenicity, and the induction of host resistance has laid a solid foundation for the discovery of antiviral agents and their targets and the development of effective control technologies. Additionally, recent advancements in fields such as chemical biology, cheminformatics, bioinformatics, and synthetic biology have provided valuable methods and tools for the design of antiviral drugs, the synthesis of drug molecules, assessment of their activity, and investigation of their modes of action. Compared with drug development for human viral diseases, the control of plant viral diseases presents greater challenges, including the cost-benefit of agents, simplification of control technologies, and the effectiveness of treatments. Therefore, in the current context of complex outbreaks and severe damage caused by plant viral diseases, it is crucial to delve deeper into the research and development of antiviral agents. This review provides a detailed overview of the biological characteristics of current targets for antiviral agents, the mode of interaction between plant virus targets and antivirals, and insights for future drug development. We believe this review will not only facilitate the in-depth analysis of the development of antivirals for crops but also offer valuable perspectives for the development of antiviral agents for use in human and veterinary medicine.
Collapse
Affiliation(s)
- Yuanyou Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Y.); (L.H.); (L.Z.)
| | - Lei Hu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Y.); (L.H.); (L.Z.)
| | - Tongtong Chen
- College of Agriculture, Guizhou University, Guiyang 550025, China;
| | - Libo Zhang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Y.); (L.H.); (L.Z.)
| | - Delu Wang
- College of Forestry, Guizhou University, Guiyang 550025, China;
| | - Zhuo Chen
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Y.); (L.H.); (L.Z.)
| |
Collapse
|
3
|
Li J, Ai X, Zhang S, Zheng X, Zhang L, Zhang J, Zhao L. Tagitinin A regulates an F-box gene, CPR30, to resist tomato spotted wilt orthotospovirus (TSWV) infection in Nicotiana benthamiana. PLoS One 2024; 19:e0315294. [PMID: 39656686 DOI: 10.1371/journal.pone.0315294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024] Open
Abstract
Tomato spotted wilt orthotospovirus (TSWV) is one of the most destructive pathogens and causes serious losses in agriculture worldwide. Biogenic pesticides application may be an effective approach for defending against TSWV. Tagitinin A (Tag A) extracted from Tithonia diversifolia (Hemsl.) A. Gray has a high protective effect against TSWV infection. Tag A can induce jasmonic acid to suppress gene expression in TSWV. In this study, the F-box protein (CPR30) was mediated by Tag A, the expression of the CPR30 gene in Tag A-treated leaves was significantly higher (2 times) than that of the negative control. Furthermore, the replication of TSWV-NSm/NSs genes and the expression of TSWV-NSm/NSs proteins significantly increased after silencing the CPR30 gene in protective assays; CPR30 overexpression showed the opposite tendency. The CPR30 protein only localized and interacted with the TSWV-NSm protein. Thus, this study reveals a new mechanism by which Tag A mediates ubiquitin-protein ligase E3 (CPR30) to interact with NSm inhibite NSm replication and expression, and defend against systemic TSWV infection.
Collapse
Affiliation(s)
- Jing Li
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, China
| | - Xiaoman Ai
- College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, China
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Suhua Zhang
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xue Zheng
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Lizhen Zhang
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jie Zhang
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Lihua Zhao
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
4
|
Wei C, Zhao C, Li J, Li C, Song B, Song R. Innovative Arylimidazole-Fused Phytovirucides via Carbene-Catalyzed [3+4] Cycloaddition: Locking Viral Cell-To-Cell Movement by Out-Competing Virus Capsid-Host Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309343. [PMID: 38477505 PMCID: PMC11109656 DOI: 10.1002/advs.202309343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/22/2024] [Indexed: 03/14/2024]
Abstract
The control of potato virus Y (PVY) induced crop failure is a challengeable issue in agricultural chemistry. Although many anti-PVY agents are designed to focus on the functionally important coat protein (CP) of virus, how these drugs act on CP to inactivate viral pathogenicity, remains largely unknown. Herein, a PVY CP inhibitor -3j (S) is disclosed, which is accessed by developing unusually efficient (up to 99% yield) and chemo-selective (> 99:1 er in most cases) carbene-catalyzed [3+4] cycloaddition reactions. Compound -3j bears a unique arylimidazole-fused diazepine skeleton and shows chirality-preferred performance against PVY. In addition, -3j (S) as a mediator allows ARG191 (R191) of CP to be identified as a key amino acid site responsible for intercellular movement of virions. R191 is further demonstrated to be critical for the interaction between PVY CP and the plant functional protein NtCPIP, enabling virions to cross plasmodesmata. This key step can be significantly inhibited through bonding with the -3j (S) to further impair pathogenic behaviors involving systemic infection and particle assembly. The study reveals the in-depth mechanism of action of antiviral agents targeting PVY CP, and contributes to new drug structures and synthetic strategies for PVY management.
Collapse
Affiliation(s)
- Chunle Wei
- National Key Laboratory of Green PesticideKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyang550025China
| | - Chunni Zhao
- National Key Laboratory of Green PesticideKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyang550025China
| | - Jiao Li
- National Key Laboratory of Green PesticideKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyang550025China
| | - Chunyi Li
- National Key Laboratory of Green PesticideKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyang550025China
| | - Baoan Song
- National Key Laboratory of Green PesticideKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyang550025China
| | - Runjiang Song
- National Key Laboratory of Green PesticideKey Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of EducationCenter for R&D of Fine Chemicals of Guizhou UniversityGuiyang550025China
| |
Collapse
|
5
|
Li ZX, Ding Y, Zhang TH, Hu JH, Luo RS, Zhou X, Liu LW, Yang S. Identification of Novel Bisamide-Decorated Benzotriazole Derivatives as Anti-Phytopathogenic Virus Agents: Bioactivity Evaluation and Computational Simulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6900-6912. [PMID: 38513076 DOI: 10.1021/acs.jafc.3c06806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
As a notorious phytopathogenic virus, the tobacco mosaic virus (TMV) severely reduced the quality of crops worldwide and caused critical constraints on agricultural production. The development of novel virucides is a persuasive strategy to address this predicament. Herein, a series of novel bisamide-decorated benzotriazole derivatives were elaborately prepared and screened. Biological tests implied that the optimized compound 7d possessed the most brilliant antiviral inactive profile (EC50 = 157.6 μg/mL) and apparently surpassed that of commercial ribavirin (EC50 = 442.1 μg/mL) 2.8-fold. The preliminary antiviral mechanism was elaborately investigated via transmission electron microscopy, microscale thermophoresis (MST) determination, RT-qPCR, and Western blot analysis. The results showed that compound 7d blocked the assembly of TMV by binding with coat protein (Kd = 0.7 μM) and suppressed TMV coat protein gene expression and biosynthesis process. Computational simulations indicated that 7d displayed strong H-bonds and pi interactions with TMV coat protein, affording a lower binding energy (ΔGbind = -17.8 kcal/mol) compared with Ribavirin (ΔGbind = -10.7 kcal/mol). Overall, current results present a valuable perception of bisamide decorated benzotriazole derivatives with appreciably virustatic competence and should be profoundly developed as virucidal candidates in agrochemical.
Collapse
Affiliation(s)
- Zhen-Xing Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yue Ding
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Tai-Hong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jin-Hong Hu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Rong-Shuang Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
6
|
Zhang T, Tian CY, Zhang J, An Q, Yi P, Yuan CM, Zhang ZK, Zhao LH, Hao XJ, Hu ZX. Quinolizidine Alkaloids and Isoflavones from the Herb of Thermopsis lupinoides and Their Antiviral, Antifungal, and Insecticidal Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5047-5061. [PMID: 38394631 DOI: 10.1021/acs.jafc.3c09529] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
As part of our ongoing investigation of natural bioactive substances from the genus Thermopsis of the tribe Fabaceae for agricultural protection, the chemical constituents of the herb Thermopsis lupinoides were systematically investigated, which led to the isolation of 39 quinolizidine alkaloids (QAs) (1-39), including 14 new QAs (1-14) and 14 isoflavones (40-53). Their structures were elucidated through comprehensive spectroscopic data analysis (IR, UV, NMR, HRESIMS), ECD calculations, and X-ray crystallography. The antitomato spotted wilt virus (TSWV) and antifungal (against Botrytis cinerea, Gibberella zeae, Phytophythora capsica, and Alternaria alternata) and insecticidal (against Aphis fabae and Tetranychus urticae) activities of the isolated compounds were screened using the lesion counting method, mycelial inhibition assay, and spray method, respectively. The bioassay results showed that 34 exhibited excellent protective activity against TSWV, with an EC50 value of 36.04 μg/mL, which was better than that of the positive control, ningnanmycin (86.03 μg/mL). The preliminary mechanistic exploration illustrated that 34 induced systemic acquired resistance in the host plant by acting on the salicylic acid signaling pathway. Moreover, 1 showed significant antifungal activity against B. cinerea (EC50 value of 20.83 μg/mL), while 2 exhibited good insecticidal activity against A. fabae (LC50 value of 24.97 μg/mL). This research is promising for the invention of novel pesticides from QAs with high efficiency and satisfactory ecological compatibility.
Collapse
Affiliation(s)
- Tong Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Cai-Yan Tian
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Ji Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Qiao An
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Ping Yi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Chun-Mao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| | - Zhong-Kai Zhang
- The Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming 650204, China
| | - Li-Hua Zhao
- The Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming 650204, China
| | - Xiao-Jiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China
| | - Zhan-Xing Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang 550014, China
| |
Collapse
|
7
|
Xue J, Guo X, Xu G, Chen X, Jiao L, Tang X. Discovery, Identification, and Mode of Action of Phenolics from Marine-Derived Fungus Aspergillus ustus as Antibacterial Wilt Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2989-2996. [PMID: 38214488 DOI: 10.1021/acs.jafc.3c07826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The bacterial wilt caused by Ralstonia solanacearum seriously affects crop yield and safety and is difficult to control. Biological activity-guided screening led to the isolation of 11 phenolic compounds including three undescribed compounds (carnemycin H-I and stromemycin B) from the secondary metabolites of a marine-derived Aspergillus ustus. One new compound is an unusual phenolic dimer. Their structures were elucidated by comprehensive spectroscopic data and J-based configurational analysis. The antibacterial activities of the isolated compounds against R. solanacearum were evaluated. Compound 3 exhibited excellent inhibitory activity with an MIC value of 3 μg/mL, which was comparable to that of streptomycin sulfate. Additionally, 3 significantly changed the morphology and inhibited the activity of succinate dehydrogenase (SDH) to interfere with the growth of R. solanacearum. Molecular docking was conducted to clarify the potential mechanisms of compound 3 with SDH. Further in vivo experiments demonstrated that 3 could remarkably inhibit the occurrence of bacterial wilt on tomatoes.
Collapse
Affiliation(s)
- Jingjing Xue
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State, Ministry of Natural Resources, Da-Xue Road, Xiamen 361005, People's Republic of China
| | - Xiaopeng Guo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State, Ministry of Natural Resources, Da-Xue Road, Xiamen 361005, People's Republic of China
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Guangxin Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State, Ministry of Natural Resources, Da-Xue Road, Xiamen 361005, People's Republic of China
| | - Xi Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State, Ministry of Natural Resources, Da-Xue Road, Xiamen 361005, People's Republic of China
| | - Lihang Jiao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State, Ministry of Natural Resources, Da-Xue Road, Xiamen 361005, People's Republic of China
| | - Xixiang Tang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography State, Ministry of Natural Resources, Da-Xue Road, Xiamen 361005, People's Republic of China
| |
Collapse
|
8
|
Su CF, Das D, Muhammad Aslam M, Xie JQ, Li XY, Chen MX. Eukaryotic splicing machinery in the plant-virus battleground. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1793. [PMID: 37198737 DOI: 10.1002/wrna.1793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/24/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
Plant virual infections are mainly caused by plant-virus parasitism which affects ecological communities. Some viruses are highly pathogen specific that can infect only specific plants, while some can cause widespread harm, such as tobacco mosaic virus (TMV) and cucumber mosaic virus (CMV). After a virus infects the host, undergoes a series of harmful effects, including the destruction of host cell membrane receptors, changes in cell membrane components, cell fusion, and the production of neoantigens on the cell surface. Therefore, competition between the host and the virus arises. The virus starts gaining control of critical cellular functions of the host cells and ultimately affects the fate of the targeted host plants. Among these critical cellular processes, alternative splicing (AS) is an essential posttranscriptional regulation process in RNA maturation, which amplify host protein diversity and manipulates transcript abundance in response to plant pathogens. AS is widespread in nearly all human genes and critical in regulating animal-virus interactions. In particular, an animal virus can hijack the host splicing machinery to re-organize its compartments for propagation. Changes in AS are known to cause human disease, and various AS events have been reported to regulate tissue specificity, development, tumour proliferation, and multi-functionality. However, the mechanisms underlying plant-virus interactions are poorly understood. Here, we summarize the current understanding of how viruses interact with their plant hosts compared with humans, analyze currently used and putative candidate agrochemicals to treat plant-viral infections, and finally discussed the potential research hotspots in the future. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Chang-Feng Su
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Debatosh Das
- College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences & Technology, University of Missouri, Columbia, Missouri, USA
| | - Mehtab Muhammad Aslam
- College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences & Technology, University of Missouri, Columbia, Missouri, USA
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ji-Qin Xie
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
| | - Xiang-Yang Li
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Mo-Xian Chen
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
9
|
Zhao B, Wang J, Wang L, Wang Z, Lu A. Discovery of Flavone Derivatives Containing Carboxamide Fragments as Novel Antiviral Agents. Molecules 2023; 28:2179. [PMID: 36903426 PMCID: PMC10004232 DOI: 10.3390/molecules28052179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Plant virus diseases seriously affect the yield and quality of agricultural products, and their prevention and control are difficult. It is urgent to develop new and efficient antiviral agents. In this work, a series of flavone derivatives containing carboxamide fragments were designed, synthesized, and systematically evaluated for their antiviral activities against tobacco mosaic virus (TMV) on the basis of a structural-diversity-derivation strategy. All the target compounds were characterized by 1H-NMR, 13C-NMR, and HRMS techniques. Most of these derivatives displayed excellent in vivo antiviral activities against TMV, especially 4m (inactivation inhibitory effect, 58%; curative inhibitory effect, 57%; and protection inhibitory effect, 59%), which displayed similar activity to ningnanmycin (inactivation inhibitory effect, 61%; curative inhibitory effect, 57%; and protection inhibitory effect, 58%) at 500 μg mL-1; thus, it emerged as a new lead compound for antiviral research against TMV. Antiviral mechanism research by molecular docking demonstrated that compounds 4m, 5a, and 6b could interact with TMV CP and disturb virus assembly.
Collapse
Affiliation(s)
- Bobo Zhao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Jiali Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Lu Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Aidang Lu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
10
|
Jin J, Shen T, Shu L, Huang Y, Deng Y, Li B, Jin Z, Li X, Wu J. Recent Achievements in Antiviral Agent Development for Plant Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1291-1309. [PMID: 36625507 DOI: 10.1021/acs.jafc.2c07315] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plant virus disease is the second most prevalent plant diseases and can cause extensive loss in global agricultural economy. Extensive work has been carried out on the development of novel antiplant virus agents for preventing and treating plant virus diseases. In this review, we summarize the achievements of the research and development of new antiviral agents in the recent five years and provide our own perspective on the future development in this highly active research field.
Collapse
Affiliation(s)
- Jiamiao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Tingwei Shen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Liangzhen Shu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yixian Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Youlin Deng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Benpeng Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jian Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
11
|
Antifungal and Antibacterial Activities of Isolated Marine Compounds. Toxins (Basel) 2023; 15:toxins15020093. [PMID: 36828408 PMCID: PMC9966175 DOI: 10.3390/toxins15020093] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 01/20/2023] Open
Abstract
To combat the ineffectiveness of currently available pharmaceutical medications, caused by the emergence of increasingly resistant bacterial and fungal strains, novel antibacterial and antifungal medications are urgently needed. Novel natural compounds with antimicrobial activities can be obtained by exploring underexplored habitats such as the world's oceans. The oceans represent the largest ecosystem on earth, with a high diversity of organisms. Oceans have received some attention in the past few years, and promising compounds with antimicrobial activities were isolated from marine organisms such as bacteria, fungi, algae, sea cucumbers, sea sponges, etc. This review covers 56 antifungal and 40 antibacterial compounds from marine organisms. These compounds are categorized according to their chemical structure groups, including polyketides, alkaloids, ribosomal peptides, and terpenes, and their organismal origin. The review provides the minimum inhibitory concentration MIC values and the bacterial/fungal strains against which these chemical compounds show activity. This study shows strong potential for witnessing the development of new novel antimicrobial drugs from these natural compounds isolated and evaluated for their antimicrobial activities.
Collapse
|
12
|
Yuan M, Tian Z, Yin X, Yuan X, Gao J, Yuan W, Lu A, Wang Z, Li L, Wang Q. Structural Optimization of the Natural Product: Discovery of Almazoles C-D and Their Derivatives as Novel Antiviral and Anti-phytopathogenic Fungus Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15693-15702. [PMID: 36479881 DOI: 10.1021/acs.jafc.2c05898] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plant diseases seriously affect the growth of crops and the quality and yield of agricultural products. The search for plant-derived pesticide candidates based on natural products is a hot topic of current research. Marine natural products almazoles C-D were efficiently prepared and selected as the lead compounds in this work. Two series of almazole derivatives were designed and synthesized, and their antiviral and fungicidal activities were systematically evaluated. The results of anti-tobacco mosaic virus (anti-TMV) activity showed that almazoles C-D and their derivatives had good anti-TMV activities. Compounds 6, 15, 16a, 16b, 16g, 16l, 16n, 20a, 20d, 20i, and 20n exhibited better anti-TMV activities than the commercial antiviral agent ribavirin. Anti-TMV mechanism studies showed that compound 16b could induce the polymerization of 20S CP (coat protein, CP), thereby affecting the assembly of TMV virus particles. Molecular docking results showed that compounds 15, 16b, and 20n could combine with amino acid residues through hydrogen bonds to achieve an excellent anti-TMV effect. In addition, most of the almazole derivatives were found to have broad-spectrum fungicidal activities against eight kinds of plant pathogens (Fusarium oxysporum f. sp. cucumeris, Cercospora arachidicola Hori, Physalospora piricola, Rhizoctonia cerealis, Alternaria solani, Pyricularia grisea, Phytophthora capsici, and Sclerotinia sclerotiorum). This study provides an important evidence for the research and development of almazole alkaloids containing indole and oxazole structural groups as novel agrochemicals.
Collapse
Affiliation(s)
- Meiling Yuan
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Zhaoyong Tian
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xiangyang Yin
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xinyu Yuan
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jixuan Gao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Wenying Yuan
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Aidang Lu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Liang Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
13
|
Design, Synthesis and Fungicidal Activity of N-(thiophen-2-yl) Nicotinamide Derivatives. Molecules 2022; 27:molecules27248700. [PMID: 36557835 PMCID: PMC9783666 DOI: 10.3390/molecules27248700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Based on the modification of natural products and the active substructure splicing method, a series of new N-(thiophen-2-yl) nicotinamide derivatives were designed and synthesized by splicing the nitrogen-containing heterocycle natural molecule nicotinic acid and the sulfur-containing heterocycle thiophene. The structures of the target compounds were identified through 1H NMR, 13C NMR and HRMS spectra. The in vivo bioassay results of all the compounds against cucumber downy mildew (CDM, Pseudoperonospora cubensis (Berk.et Curt.) Rostov.) in a greenhouse indicated that compounds 4a (EC50 = 4.69 mg/L) and 4f (EC50 = 1.96 mg/L) exhibited excellent fungicidal activities which were higher than both diflumetorim (EC50 = 21.44 mg/L) and flumorph (EC50 = 7.55 mg/L). The bioassay results of the field trial against CDM demonstrated that the 10% EC formulation of compound 4f displayed excellent efficacies (70% and 79% control efficacies, respectively, each at 100 mg/L and 200 mg/L) which were superior to those of the two commercial fungicides flumorph (56% control efficacy at 200 mg/L) and mancozeb (76% control efficacy at 1000 mg/L). N-(thiophen-2-yl) nicotinamide derivatives are significant lead compounds that can be used for further structural optimization, and compound 4f is also a promising fungicide candidate against CDM that can be used for further development.
Collapse
|
14
|
Xu W, Yang R, Hao Y, Song H, Liu Y, Zhang J, Li Y, Wang Q. Discovery of Aldisine and Its Derivatives as Novel Antiviral, Larvicidal, and Antiphytopathogenic-Fungus Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12355-12363. [PMID: 36130081 DOI: 10.1021/acs.jafc.2c04256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Based on the widespread use of hydrogen bonds in drug design, a series of aldisine derivatives containing oxime, oxime ether, and hydrazone moieties were designed and synthesized, and their antiviral, larvicidal, and fungicidal activities were evaluated for the first time. The bioassay results showed that most of these derivatives were active against tobacco mosaic virus (TMV). Hydrazone derivative 12 showed in vivo inactivation, curative, and protection activities of 52 ± 4, 49 ± 1, and 52 ± 3% at 500 mg/L, which are comparable to that of the commercial antiviral drug ningnanmycin (57 ± 3, 56 ± 2, and 59 ± 1%, respectively) at the same dose. The antiviral mechanism study showed that compound 12 could cause 20S CP (coating protein) disk fusion and disintegration, thus affecting the assembly of virus particles. The result of molecular docking indicated that there were obvious hydrogen bonds between compound 12 and TMV CP. Most derivatives were active against larvae of lepidopteran pests, such as Mythimna separata, Pyrausta nubilalis, and Plutella xylostella. Some compounds also exhibited larvicidal activities against Culex pipiens; among them compounds 9 and 13 exhibited larvicidal activities of 0.81 and 1.54 mg/L (LC50), respectively. Moreover, most of the derivatives showed broad-spectrum fungicidal activities against 14 kinds of phytopathogenic fungi at 50 mg/L.
Collapse
Affiliation(s)
- Wentao Xu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Rongxin Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Yanan Hao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Jingjing Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
- College of Basic Science, Tianjin Agricultural University, Tianjin 300384, China
| | - Yongqiang Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
15
|
Sishtla K, Lambert-Cheatham N, Lee B, Han DH, Park J, Sardar Pasha SPB, Lee S, Kwon S, Muniyandi A, Park B, Odell N, Waller S, Park IY, Lee SJ, Seo SY, Corson TW. Small-molecule inhibitors of ferrochelatase are antiangiogenic agents. Cell Chem Biol 2022; 29:1010-1023.e14. [PMID: 35090600 PMCID: PMC9233146 DOI: 10.1016/j.chembiol.2022.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/10/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023]
Abstract
Activity of the heme synthesis enzyme ferrochelatase (FECH) is implicated in multiple diseases. In particular, it is a mediator of neovascularization in the eye and thus an appealing therapeutic target for preventing blindness. However, no drug-like direct FECH inhibitors are known. Here, we set out to identify small-molecule inhibitors of FECH as potential therapeutic leads using a high-throughput screening approach to identify potent inhibitors of FECH activity. A structure-activity relationship study of a class of triazolopyrimidinone hits yielded drug-like FECH inhibitors. These compounds inhibit FECH in cells, bind the active site in cocrystal structures, and are antiangiogenic in multiple in vitro assays. One of these promising compounds was antiangiogenic in vivo in a mouse model of choroidal neovascularization. This foundational work may be the basis for new therapeutic agents to combat not only ocular neovascularization but also other diseases characterized by FECH activity.
Collapse
Affiliation(s)
- Kamakshi Sishtla
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nathan Lambert-Cheatham
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Bit Lee
- College of Pharmacy, Gachon University, Incheon 21936, South Korea
| | - Duk Hee Han
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, South Korea
| | - Jaehui Park
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, South Korea
| | - Sheik Pran Babu Sardar Pasha
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sanha Lee
- College of Pharmacy, Gachon University, Incheon 21936, South Korea
| | - Sangil Kwon
- College of Pharmacy, Gachon University, Incheon 21936, South Korea
| | - Anbukkarasi Muniyandi
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Bomina Park
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Noa Odell
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Spelman College, Atlanta, GA 30314, USA
| | - Sydney Waller
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Il Yeong Park
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, South Korea
| | - Soo Jae Lee
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, South Korea.
| | - Seung-Yong Seo
- College of Pharmacy, Gachon University, Incheon 21936, South Korea.
| | - Timothy W Corson
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
16
|
Chen J, Luo X, Chen Y, Wang Y, Peng J, Xing Z. Recent Research Progress: Discovery of Anti-Plant Virus Agents Based on Natural Scaffold. Front Chem 2022; 10:926202. [PMID: 35711962 PMCID: PMC9196591 DOI: 10.3389/fchem.2022.926202] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/13/2022] [Indexed: 12/26/2022] Open
Abstract
Plant virus diseases, also known as “plant cancers”, cause serious harm to the agriculture of the world and huge economic losses every year. Antiviral agents are one of the most effective ways to control plant virus diseases. Ningnanmycin is currently the most successful anti-plant virus agent, but its field control effect is not ideal due to its instability. In recent years, great progress has been made in the research and development of antiviral agents, the mainstream research direction is to obtain antiviral agents or lead compounds based on structural modification of natural products. However, no antiviral agent has been able to completely inhibit plant viruses. Therefore, the development of highly effective antiviral agents still faces enormous challenges. Therefore, we reviewed the recent research progress of anti-plant virus agents based on natural products in the past decade, and discussed their structure-activity relationship (SAR) and mechanism of action. It is hoped that this review can provide new inspiration for the discovery and mechanism of action of novel antiviral agents.
Collapse
Affiliation(s)
- Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- *Correspondence: Jixiang Chen,
| | - Xin Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yifang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yu Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Ju Peng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- Guizhou Rice Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Zhifu Xing
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
17
|
Liu J, Shi Y, Tian Z, Li F, Hao Z, Wen W, Zhang L, Wang Y, Li Y, Fan Z. Bioactivity-Guided Synthesis Accelerates the Discovery of Evodiamine Derivatives as Potent Insecticide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5197-5206. [PMID: 35435667 DOI: 10.1021/acs.jafc.1c08297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pests threaten worldwide food security by decreasing crop yields and damaging their quality. Natural product-based molecular design and structural optimization have been one of the most effective ways to innovate pesticides for integrated insect management. To continue our previous studies on the discovery of insecticidal lead, a series of evodiamine derivatives were designed, synthesized, and evaluated for their insecticidal activities. The bioassay results demonstrated that compounds Ian and Iao exhibited 90 and 80% insecticidal activities against Mythimna separata at 2.5 mg/L, respectively, which were superior to evodiamine (10% at 10 mg/L), matrine (45% at 600 mg/L), and rotenone (30% at 200 mg/L). Compounds Ian-Iap showed 90% insecticidal activities against Plutella xylostella at 1.0 mg/L, far more potent than those of evodiamine, matrine, and rotenone. Compound Ian displayed 60% insecticidal activity against Helicoverpa armigera at 5.0 mg/L, while evodiamine, matrine, and rotenone showed very poor activities. The study on the insecticidal mechanism of action by a calcium imaging experiment indicated that the insect ryanodine receptors (RyRs) could be the potential target of Ian. Furthermore, the molecular docking indicated that Ian anchored in the binding site of the RyR of P. xylostella. The above results manifested the potential of evodiamine derivatives as potent insecticide candidates.
Collapse
Affiliation(s)
- Jingbo Liu
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, P. R. China
| | - Yabing Shi
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, P. R. China
| | - Zhicheng Tian
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, P. R. China
| | - Fengyun Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P. R. China
| | - Zesheng Hao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Wen Wen
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, P. R. China
| | - Li Zhang
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, P. R. China
| | - Yuanhong Wang
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300384, P. R. China
| | - Yuxin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
18
|
Liao A, Li L, Wang T, Lu A, Wang Z, Wang Q. Discovery of Phytoalexin Camalexin and Its Derivatives as Novel Antiviral and Antiphytopathogenic-Fungus Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2554-2563. [PMID: 35179026 DOI: 10.1021/acs.jafc.1c07805] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In response to the invasion of plant viruses and pathogenic fungi, higher plants produce defensive allelochemicals. Finding candidate varieties of botanical pesticides based on allelochemicals is one of the important ways to create efficient and green pesticides. Here, a series of camalexin derivatives based on a phytoalexin camalexin scaffold were designed, synthesized, and assessed for their antiviral and fungicidal activities systematically. Most of these camalexin derivatives exhibited better antiviral activities against tobacco mosaic virus (TMV) than the control antiviral agent ribavirin. Under the same test conditions, the anti-TMV activities of compounds 3d, 5a, 5d, and 10f-10h were found to be equivalent to or better than that of ningnanmycin, an agricultural cytosine nucleoside antibiotic with excellent protective effect. The antiviral mechanism research showed that compound 5a could cause 20S CP disk fusion and disintegration, thus affecting the assembly of virus particles. The results of molecular docking indicate that there were obvious hydrogen bonds between compounds 3d, 5a, and 10f and TMV CP. The binding constants of compounds 5a and 10f to TMV CP were also calculated using fluorescence titration. These camalexin derivatives also presented broad spectrum fungicidal activities, especially for Rhizoctonia solani and Physalospora piricola. In this work, the design, synthesis, structure optimization, and mode of action of camalexin derivatives were carried out progressively. This work provides a reference for using defensive chemical compounds as novel pesticide lead compounds.
Collapse
Affiliation(s)
- Ancai Liao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Lin Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Tienan Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Aidang Lu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Ding B, Yu Y, Geng S, Liu B, Hao Y, Liang G. Computational Methods for the Interaction between Cyclodextrins and Natural Compounds: Technology, Benefits, Limitations, and Trends. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2466-2482. [PMID: 35170315 DOI: 10.1021/acs.jafc.1c07018] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cyclodextrins (CDs) have a hollow structure with a hydrophobic interior and hydrophilic exterior. Forming inclusion complexes with CDs will maximize the bioavailability of natural compounds and enable active components to be processed into functional foods, medicines, additives, and so forth. However, experimental methods cannot explain CD-guest binding at the atomic level. Different models have been recently developed to simulate the interaction between CDs and guests to study the binding conformation and analyze noncovalent forces. This review paper summarizes modeling methods of CD-natural compound complexes. The methods include quantitative structure-activity relationships, molecular docking, molecular dynamics simulations, and quantum-chemical calculations. The applications of these methods to enhance the solubility and bioactivities of guest molecules, assist material transportation, and promote compound extraction are also discussed. The purpose of this review is to explore interaction mechanisms of CDs and guests and to help expand new applications of CDs.
Collapse
Affiliation(s)
- Botian Ding
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Yuandong Yu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Sheng Geng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Benguo Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Youjin Hao
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| |
Collapse
|
20
|
Cebeci YU, Ceylan Ş, Karaoğlu ŞA. Conventional and microwave irradiated synthesis, biological activity evaluation of highly substituted indole-triazole hybrids. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Karthic A, Kesarwani V, Singh RK, Yadav PK, Chaturvedi N, Chauhan P, Yadav BS, Kushwaha SK. Computational Analysis Reveals Monomethylated Triazolopyrimidine as a Novel Inhibitor of SARS-CoV-2 RNA-Dependent RNA Polymerase (RdRp). Molecules 2022; 27:801. [PMID: 35164069 PMCID: PMC8840377 DOI: 10.3390/molecules27030801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 01/18/2023] Open
Abstract
The human population is still facing appalling conditions due to several outbreaks of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) virus. The absence of specific drugs, appropriate vaccines for mutants, and knowledge of potential therapeutic agents makes this situation more difficult. Several 1, 2, 4-triazolo [1, 5-a] pyrimidine (TP)-derivative compounds were comprehensively studied for antiviral activities against RNA polymerase of HIV, HCV, and influenza viruses, and showed immense pharmacological interest. Therefore, TP-derivative compounds can be repurposed against the RNA-dependent RNA polymerase (RdRp) protein of SARS-CoV-2. In this study, a meta-analysis was performed to ensure the genomic variability and stability of the SARS-CoV-2 RdRp protein. The molecular docking of natural and synthetic TP compounds to RdRp and molecular dynamic (MD) simulations were performed to analyse the dynamic behaviour of TP compounds at the active site of the RdRp protein. TP compounds were also docked against other non-structural proteins (NSP1, NSP2, NSP3, NSP5, NSP8, NSP13, and NSP15) of SARS-CoV-2. Furthermore, the inhibition potential of TP compounds was compared with Remdesivir and Favipiravir drugs as a positive control. Additionally, TP compounds were analysed for inhibitory activity against SARS-CoV RdRp protein. This study demonstrates that TP analogues (monomethylated triazolopyrimidine and essramycin) represent potential lead molecules for designing an effective inhibitor to control viral replication. Furthermore, in vitro and in vivo studies will strengthen the use of these inhibitors as suitable drug candidates against SARS-CoV-2.
Collapse
Affiliation(s)
- Anandakrishnan Karthic
- Bioinformatics, DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, India; (A.K.); (V.K.)
- Amity Institute of Biotechnology, Amity University Mumbai, Navi Mumbai 410206, India
| | - Veerbhan Kesarwani
- Bioinformatics, DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, India; (A.K.); (V.K.)
- Hap Biosolutions, Pvt. Ltd., Bhopal 462042, India
| | - Rahul Kunwar Singh
- Cyano Biotech Lab, Department of Microbiology, School of Life Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar (Garhwal) 246174, India;
| | - Pavan Kumar Yadav
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary and Animal Sciences, Banaras Hindu University, Mirzapur 231001, India;
| | - Navaneet Chaturvedi
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester LE1 7RH, UK;
| | | | - Brijesh Singh Yadav
- Faculty of Biosciences and Aquaculture, Nord University, N-8049 Bodø, Norway
| | - Sandeep Kumar Kushwaha
- Bioinformatics, DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, India; (A.K.); (V.K.)
| |
Collapse
|
22
|
Xiao Y, Li H, Shao Q, Liu Y, Xie Y, Zhao L, Li Y. Design, Synthesis, and Antifungal Activity of Sulfoximine Derivatives Containing Nitroguanidine Moieties. Chem Biodivers 2022; 19:e202100839. [PMID: 35037382 DOI: 10.1002/cbdv.202100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/14/2022] [Indexed: 11/06/2022]
Abstract
To discover novel pesticide candidates, a series of sulfoximine derivatives were designed and synthesized via the oxidation coupling reaction of sulfides and N -alkyl nitroguanidines. The compounds were evaluated for their antifungal activity against six phytopathogenic fungi. Most of them exhibited a broad spectrum of fungicidal activity in vitro . Compound 8IV-b displayed good fungicidal activity against Sclerotinia sclerotiorum , Rhizoctonia solani , Botrytis cinerea , Fusarium graminearum , and Phytophthora capsici , with EC 50 value of 12.82, 12.50, 17.25, 31.08, and 30.11 mg/L, respectively. In addition, compounds 8III-c and 8IV-e had EC 50 values of 22.23 and 20.67 mg/L against P.capsic , which were significantly better than that of the commercial procymidone (118.15 mg/L). Strikingly, 8IV-d exhibited satisfactory fungicidal activity against B.cinerea, which was comparable to control procymidone in terms of their EC 50 values (7.42 versus 10.83 mg/L), and the bioassays in vivo further confirmed that 8IV-d possessed potent protective effect against B.cinerea at 200 mg/L (72.2%). These present findings will facilitate the design and development of novel potent fungicides.
Collapse
Affiliation(s)
- Yulong Xiao
- Shanghai University of Engineering Science - Songjiang Campus: Shanghai University of Engineering Science, School of Chemistry and Chemical Engineering, 333 Longteng Road,Shanghai, Shanghai, CHINA
| | - Hongsen Li
- Shanghai University of Engineering Science, School of Chemistry and Chemical Engineering, 333Longteng Road Shanghai, 201620, Shanghai, CHINA
| | - Qun Shao
- Shanghai University of Engineering Science - Songjiang Campus: Shanghai University of Engineering Science, School of Chemistry and Chemical Engineering, 333 Longteng Road,Shanghai, Shanghai, CHINA
| | - Yuan Liu
- Shanghai University of Engineering Science, School of Chemistry and Chemical Engineering, 333 Longteng Road,Shanghai, Shanghai, CHINA
| | - Yonghai Xie
- Shanghai University of Engineering Science - Songjiang Campus: Shanghai University of Engineering Science, School of Chemistry and Chemical Engineering, 333 Longteng Road,Shanghai, Shanghai, CHINA
| | - Linjing Zhao
- Shanghai University of Engineering Science - Songjiang Campus: Shanghai University of Engineering Science, School of Chemistry and Chemical Engineering, 333 Longteng Road,Shanghai, Shanghai, CHINA
| | - Ya Li
- Shanghai University of Engineering Science, School of Chemistry and Chemical Engineering, 333 Longteng Road,Shanghai, Shanghai, CHINA
| |
Collapse
|
23
|
Shao WB, Wang PY, Fang ZM, Wang JJ, Guo DX, Ji J, Zhou X, Qi PY, Liu LW, Yang S. Synthesis and Biological Evaluation of 1,2,4-Triazole Thioethers as Both Potential Virulence Factor Inhibitors against Plant Bacterial Diseases and Agricultural Antiviral Agents against Tobacco Mosaic Virus Infections. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15108-15122. [PMID: 34905356 DOI: 10.1021/acs.jafc.1c05202] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Targeting the virulence factors of phytopathogenic bacteria is an innovative strategy for alleviating or eliminating the pathogenicity and rapid outbreak of plant microbial diseases. Therefore, several types of 1,2,4-triazole thioethers bearing an amide linkage were prepared and screened to develop virulence factor inhibitors. Besides, the 1,2,4-triazole scaffold was exchanged by a versatile 1,3,4-oxadiazole core to expand molecular diversity. Bioassay results revealed that a 1,2,4-triazole thioether A10 bearing a privileged N-(3-nitrophenyl)acetamide fragment was extremely bioactive against Xanthomonas oryzae pv. oryzae (Xoo) with an EC50 value of 5.01 μg/mL. Label-free quantitative proteomics found that compound A10 could significantly downregulate the expression of Xoo's type III secretion system (T3SS) and transcription activator-like effector (TALE) correlative proteins. Meanwhile, qRT-PCR detection revealed that the corresponding gene transcription levels of these virulence factor-associated proteins were substantially inhibited after being triggered by compound A10. As a result, the hypersensitive response and pathogenicity were strongly depressed, indicating that a novel virulence factor inhibitor (A10) was probably discovered. In vivo anti-Xoo trials displayed that compound A10 yielded practicable control efficiency (54.2-59.6%), which was superior to thiadiazole-copper and bismerthiazol (38.1-44.9%). Additionally, compound A10 showed an appreciable antiviral activity toward tobacco mosaic virus (TMV) with the curative and protective activities of 54.6 and 76.4%, respectively, which were comparable to ningnanmycin (55.2 and 60.9%). This effect was further validated and visualized by the inoculation test using GFP-labeled TMV, thereby leading to the reduced biosynthesis of green-fluorescent TMV on Nicotiana benthamiana. Given the outstanding features of compound A10, it should be deeply developed as a versatile agricultural chemical.
Collapse
Affiliation(s)
- Wu-Bin Shao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zi-Mian Fang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jin-Jing Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Deng-Xuan Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jin Ji
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Pu-Ying Qi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li-Wei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
24
|
Wang TN, Yang S, Shi SY, Yuan WY, Chen JX, Duan ZY, Lu AD, Wang ZW, Wang QM. Pityriacitrin marine alkaloids as novel antiviral and anti-phytopathogenic-fungus agents. PEST MANAGEMENT SCIENCE 2021; 77:4691-4700. [PMID: 34132452 DOI: 10.1002/ps.6510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Plant diseases have been gripping agricultural production, seriously affecting the growth and yields of crops. Marine natural products are an important source for novel drugs discovery. In this work, pityriacitrin marine alkaloids were selected as the parent structures. A series of pityriacitrin alkaloid analogues were rationally designed, synthesized and evaluated for their antiviral activities and fungicidal activities. RESULT Most of these compounds were demonstrated to have higher antiviral activities than ribavirin. Particularly, compounds 3a, 3e, 8f, 8g, and 9g displayed higher anti-TMV activities than ningnanmycin at 500 μg·mL-1 . Mechanism research revealed that 3a could bind to TMV CP with an excellent affinity (Ka = 8.67 × 106 L·mol-1 ), thus interfere with the assembly of virus particles. These alkaloids also showed broad-spectrum fungicidal activities against eight kinds of phytopathogenic fungi. Compound 5f with 1.43-3.84 μg·mL-1 EC50 value against three fungi emerged as a new fungicidal candidate. CONCLUSION Pityriacitrin alkaloids and their derivatives were synthesized and evaluated for anti-TMV and fungicidal activities for the first time. Compounds 3a and 5f with excellent activities emerged as new candidates for antiviral research and fungicidal research, respectively. Current work provided a new idea for the molecular design and development of novel plant virus and fungi inhibitors in the future. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tie-Nan Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Shan Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Shao-Yang Shi
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Wen-Ying Yuan
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Jian-Xin Chen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Zhong-Yu Duan
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Ai-Dang Lu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Zi-Wen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, China
| | - Qing-Min Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, China
| |
Collapse
|
25
|
Wang T, Li L, Zhou Y, Lu A, Li H, Chen J, Duan Z, Wang Q. Structural Simplification of Marine Natural Products: Discovery of Hamacanthin Derivatives Containing Indole and Piperazinone as Novel Antiviral and Anti-phytopathogenic-fungus Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10093-10103. [PMID: 34450009 DOI: 10.1021/acs.jafc.1c04098] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the increasing severity of plant diseases and the emergence of pathogen resistance, there is an urgent need for the development of new efficient and environment-friendly pesticides. Marine natural product (MNP) resources are rich and diverse. Structural simplification based on MNPs is an important strategy to find novel pesticide candidates. In this work, the marine natural product 6″-debromohamacanthin A (1a) was efficiently prepared and selected as the parent structure. A series of hamacanthin derivatives were designed, synthesized, and studied on the antiviral and antifungal activities. Most of these compounds displayed higher antiviral activities than ribavirin. The antiviral activities of compounds 1a and 13e-13h are similar to or higher than that of ningnanmycin (perhaps the most efficient anti-plant-virus agent). Compound 13h was selected for further antiviral mechanism research via transmission electron microscopy, molecular docking, and fluorescence titration. The results showed that compound 13h could bind to TMV CP and interfere with the assembly process of TMV CP and RNA. In addition, these hamacanthin derivatives also exhibited broad-spectrum inhibitory effects against eight common agricultural pathogens. Compounds 1a, 12b, and 12f with excellent fungicidal activities can be considered as new fungicidal candidates for further research. These results provide a basis for the application of hamacanthin alkaloids in crop protection.
Collapse
Affiliation(s)
- Tienan Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Lin Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yanan Zhou
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Aidang Lu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Hongyan Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jianxin Chen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Zhongyu Duan
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
26
|
Tian Z, Liao A, Kang J, Gao Y, Lu A, Wang Z, Wang Q. Toad Alkaloid for Pesticide Discovery: Dehydrobufotenine Derivatives as Novel Agents against Plant Virus and Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9754-9763. [PMID: 34415761 DOI: 10.1021/acs.jafc.1c03714] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plant viruses and fungi are a serious threat to food security and natural ecosystems. The efficient and environment-friendly control methods are urgently needed to help safeguard such resources. Here, we achieved the efficient synthesis of toad alkaloid dehydrobufotenine in eight steps with an overall yield of 8% from 5-methoxyindole. A series of dehydrobufotenine derivatives were designed, synthesized, and evaluated for their antiviral and fungicidal activities systematically. It was found for the first time that these compounds have good anti-plant virus activities and anti-plant pathogen activities. The antiviral activities of 21 compounds were similar to or better than those of ribavirin. Compounds 12 and 17 displayed better antiviral activities than ningnanmycin which is perhaps the most effective anti-plant virus agent. The antiviral mechanism research study of 12 revealed that it could make 20S CP disk fusion and aggregation. Further molecular docking results showed that there are hydrogen bonds between compounds 12, 17, and tobacco mosaic virus CP. The docking results are consistent with the antiviral activity. These compounds also displayed broad-spectrum fungicidal activities against 14 kinds of fungi, especially for Sclerotinia sclerotiorum. In this work, the synthesis, structure optimization, structure-activity relationship studies, and mode of action research of dehydrobufotenine alkaloids were carried out. It provides a reference for the development of the anti-plant virus agent and anti-plant pathogen agent from toad alkaloids.
Collapse
Affiliation(s)
- Zhaoyong Tian
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Ancai Liao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Jin Kang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Yongyue Gao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Aidang Lu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
27
|
Zhang X, Huang W, Lu X, Liu S, Feng H, Yang W, Ye J, Li F, Ke S, Wei D. Identification of Carbazole Alkaloid Derivatives with Acylhydrazone as Novel Anti-TMV Agents with the Guidance of a Digital Fluorescence Visual Screening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7458-7466. [PMID: 34165977 DOI: 10.1021/acs.jafc.1c00897] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Difficulty in preventing crops from plant viruses urges to discover novel efficient antiviral chemicals, which is sped up by precise screening methods. Fluorescence-based methods have recently been applied as innovative and rapid tools for visually monitoring the replication of viruses and screening of antivirals, whereas the quantification of fluorescence signals mainly depends on manually calculating the fluorescent spots, which is time-consuming and imprecise. In the present work, the fluorescence spots were automatically identified, and the fluorescence area was directly quantified by a program developed in our group, which avoided subjective errors from the operators. We further employed this digital and visual screening assay to identify antivirals using the tobacco mosaic virus-green fluorescence protein (TMV-GFP) construct, in which the expression of GFP intuitively reflected the efficacy of antivirals. The accuracy of this assay was validated by quantifying the activities of the commercial antiviral inhibitors ribavirin and ningnanmycin and then was applied to evaluate the subtle activity differences of a series of newly synthesized carbazole and β-carboline alkaloid derivatives. Among them, compounds 5 (76%) and 11 (63%) exhibited anti-TMV activities comparable to that of ningnanmycin (65%) at 50 μM, and they delayed the multiplication of TMV in the early stage of infection without phytotoxicity. Taken together, these findings demonstrated that the digital and visual TMV-GFP screening method was competent to test the antiviral activities of compounds with subtle modifications and facilitated the discovery of novel antivirals.
Collapse
Affiliation(s)
- Xianpeng Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Wenbo Huang
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, P. R. China
| | - Xu Lu
- Key Laboratory of Horticulture Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Sisi Liu
- College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Hui Feng
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Junli Ye
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Feng Li
- Key Laboratory of Horticulture Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Shaoyong Ke
- National Biopesticide Engineering Research Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, P. R. China
| | - Dengguo Wei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| |
Collapse
|
28
|
Tratrat C. 1,2,4-Triazole: A Privileged Scaffold for the Development of Potent Antifungal Agents - A Brief Review. Curr Top Med Chem 2021; 20:2235-2258. [PMID: 32621720 DOI: 10.2174/1568026620666200704140107] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/04/2020] [Accepted: 04/13/2020] [Indexed: 12/23/2022]
Abstract
Over the past decades, a tremendous rise in invasive fungal infection diseases attributed to the yeast Candida albicans in immunocompromised individuals poses a seriously challenging issue. Another concern is the emergence of multi-drug resistant pathogens to the existing medicines due to their overuse and misuse. It was recently reported that 25-55% of the mortality rate is caused by invasive infection. Despite a large variety of drugs being available to treat invasive candidiasis, only two of them contain a 1,2,4-triazole core, namely Fluconazole and itraconazole, which are efficient in treating infection induced by fungal Candida species. Moreover, long-term therapy associated with azole medications has led to an increase in azole resistance as well as a high risk of toxicity. Despite numerous outstanding achievements in antifungal drug discovery, development of novel, safer and potent antifungal agents while overcoming the resistance problem associated with the current drugs is becoming the main focus of medicinal chemists. Therefore, this review outlines the breakthroughs in medicinal chemistry research regarding 1,2,4- triazole-based derivatives as potential antifungal agents in the past decade. In addition, the structureactivity relationship of these compounds is also discussed.
Collapse
Affiliation(s)
- Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
29
|
Peng JW, Yin XD, Li H, Ma KY, Zhang ZJ, Zhou R, Wang YL, Hu GF, Liu YQ. Design, Synthesis, and Structure-Activity Relationship of Quinazolinone Derivatives as Potential Fungicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4604-4614. [PMID: 33872004 DOI: 10.1021/acs.jafc.0c05475] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plant diseases caused by phytopathogenic fungi reduce the yield and quality of crops. To develop novel antifungal agents, we designed and synthesized eight series of quinazolinone derivatives and evaluated their anti-phytopathogenic fungal activity. The bioassay results revealed that compounds KZL-15, KZL-22, 5b, 6b, 6c, 8e, and 8f exhibited remarkable antifungal activity in vitro. Especially, compound 6c displayed the highest bioactivity against Sclerotinia sclerotiorum, Pellicularia sasakii, Fusarium graminearum, and Fusarium oxysporum, displaying appreciable IC50 values (50% inhibitory concentration) of 2.46, 2.94, 6.03, and 11.9 μg/mL, respectively. A further mechanism interrogation revealed abnormal mycelia, damaged organelles, and changed permeability of cell membranes in S. sclerotiorum treated with compound 6c. In addition, the in vivo bioassay indicated that compound 6c possessed comparable curative and protective effects (87.3 and 90.7%, respectively) to the positive control azoxystrobin (89.5 and 91.2%, respectively) at 100 μg/mL concentration against S. sclerotiorum. This work validated the potential of compound 6c as a new and promising fungicide candidate, contributing to the exploration of potent antifungal agents.
Collapse
Affiliation(s)
- Jing-Wen Peng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiao-Dan Yin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hu Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Kun-Yuan Ma
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Rui Zhou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yu-Ling Wang
- Gansu Academy of Agricultural Sciences, Lanzhou 730000, People's Republic of China
| | - Guan-Fang Hu
- Gansu Academy of Agricultural Sciences, Lanzhou 730000, People's Republic of China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
30
|
Access to azolopyrimidine-6,7-diamines as a valuable “building-blocks” to develop new fused heteroaromatic systems. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
31
|
Amin NH, El-Saadi MT, Ibrahim AA, Abdel-Rahman HM. Design, synthesis and mechanistic study of new 1,2,4-triazole derivatives as antimicrobial agents. Bioorg Chem 2021; 111:104841. [PMID: 33798851 DOI: 10.1016/j.bioorg.2021.104841] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/20/2021] [Accepted: 03/17/2021] [Indexed: 12/30/2022]
Abstract
Novel 5-amino-1,2,4-triazole derivatives and their cyclized 1,2,4-triazolo[1,5-a]pyrimidine analogues were designed, synthesized and evaluated for their antimicrobial activities. They were tested against five bacterial strains (Methicillin Resistant S. aureus (MRSA), E. coli, K. pneumoniae, A. baumannii and P. aeruginosa) using ciprofloxacin as a positive control and against two fungal strains (C. albicans and C. neoformans) using fluconazole and amphotericin B as positive controls. Compounds 9, 13a and 13b showed high to moderate antifungal activities against candida albicans (MIC values = 4-32 µg/ml), with considerable safety profiles; where no cytotoxicity against human embryonic kidney or red blood cells were detected at concentrations up to 32 µg/mL. Furthermore, compound 9 showed significant inhibitory activity against lansterol 14α-demethylase (IC50 = 0.27 µM), compared to the reference drug fluconazole (IC50 = 0.25 µM). Molecular docking of compound 9 into the active site of the cytochrome P450 enzyme revealed comparable binding modes and docking scores to those of fluconazole. Finally, in silico ADME studies prediction and drug-like properties of these compounds revealed favorable oral bioavailability results.
Collapse
Affiliation(s)
- Noha H Amin
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Mohamed T El-Saadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Sinai University-Kantra Branch, Egypt
| | - Ahmed A Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Hamdy M Abdel-Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, 71526 Assiut, Egypt
| |
Collapse
|
32
|
Yang S, Wang T, Zhou Y, Shi L, Lu A, Wang Z. Discovery of Cysteine and Its Derivatives as Novel Antiviral and Antifungal Agents. Molecules 2021; 26:E383. [PMID: 33450940 PMCID: PMC7828423 DOI: 10.3390/molecules26020383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 11/18/2022] Open
Abstract
Based on the structure of the natural product cysteine, a series of thiazolidine-4-carboxylic acids were designed and synthesized. All target compounds bearing thiazolidine-4-carboxylic acid were characterized by 1H-NMR, 13C-NMR, and HRMS techniques. The antiviral and antifungal activities of cysteine and its derivatives were evaluated in vitro and in vivo. The results of anti-TMV activity revealed that all compounds exhibited moderate to excellent activities against tobacco mosaic virus (TMV) at the concentration of 500 μg/mL. The compounds cysteine (1), 3-4, 7, 10, 13, 20, 23, and 24 displayed higher anti-TMV activities than the commercial plant virucide ribavirin (inhibitory rate: 40, 40, and 38% at 500 μg/mL for inactivation, curative, and protection activity in vivo, respectively), especially compound 3 (inhibitory rate: 51%, 47%, and 49% at 500 μg/mL for inactivation, curative, and protection activity in vivo, respectively) with excellent antiviral activity emerged as a new antiviral candidate. Antiviral mechanism research by TEM exhibited that compound 3 could inhibit virus assembly by aggregated the 20S protein disk. Molecular docking results revealed that compound 3 with higher antiviral activities than that of compound 24 did show stronger interaction with TMV CP. Further fungicidal activity tests against 14 kinds of phytopathogenic fungi revealed that these cysteine derivatives displayed broad-spectrum fungicidal activities. Compound 16 exhibited higher antifungal activities against Cercospora arachidicola Hori and Alternaria solani than commercial fungicides carbendazim and chlorothalonil, which emerged as a new candidate for fungicidal research.
Collapse
Affiliation(s)
- Shan Yang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (S.Y.); (T.W.); (Y.Z.); (L.S.)
| | - Tienan Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (S.Y.); (T.W.); (Y.Z.); (L.S.)
| | - Yanan Zhou
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (S.Y.); (T.W.); (Y.Z.); (L.S.)
| | - Li Shi
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (S.Y.); (T.W.); (Y.Z.); (L.S.)
| | - Aidang Lu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China; (S.Y.); (T.W.); (Y.Z.); (L.S.)
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
33
|
Zou J, Zhao L, Yi P, An Q, He L, Li Y, Lou H, Yuan C, Gu W, Huang L, Hu Z, Hao X. Quinolizidine Alkaloids with Antiviral and Insecticidal Activities from the Seeds of Sophora tonkinensis Gagnep. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15015-15026. [PMID: 33285067 DOI: 10.1021/acs.jafc.0c06032] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The discovery of novel, effective, and botanical pesticides is one of the main strategies for modern plant protection and insect pest control. During the search for novel botanical pesticides from natural sources, the seeds of Sophora tonkinensis were systematically investigated to obtain 11 new matrine-type alkaloids (1-11), including one novel matrine-type alkaloid featuring an unprecedented 5/6/6/6 tetracyclic skeleton (1), along with 16 known compounds (12-27). Their structures were elucidated by comprehensive spectroscopic data analysis (IR, UV, NMR, and HRESIMS), ECD calculations, and single-crystal X-ray diffraction. The anti-tobacco mosaic virus (TMV) activity and insecticidal activities against Aphis fabae and Tetranychus urticae of the compounds were also respectively screened using the half-leaf method and spray method. Biological tests indicated that compounds 2, 4, 6, and 26 displayed significant anti-TMV biological activities compared with the positive control ningnanmycin. Compounds 7, 17, and 26 presented moderate activities against A. fabae with LC50 values of 38.29, 18.63, and 23.74 mg/L, respectively. Moreover, compounds 13 and 26 exhibited weak activities against T. urticae.
Collapse
Affiliation(s)
- Jibin Zou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, PR China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, PR China
| | - Lihua Zhao
- The Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming 650204, PR China
| | - Ping Yi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, PR China
| | - Qiao An
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, PR China
| | - Longxiang He
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, PR China
| | - Yanan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, PR China
| | - Huayong Lou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, PR China
| | - Chunmao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, PR China
| | - Wei Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, PR China
| | - Liejun Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, PR China
| | - Zhanxing Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, PR China
| | - Xiaojiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550002, PR China
| |
Collapse
|
34
|
Zhang M, Ding X, Kang J, Gao Y, Wang Z, Wang Q. Marine Natural Product for Pesticide Candidate: Pulmonarin Alkaloids as Novel Antiviral and Anti-Phytopathogenic-Fungus Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11350-11357. [PMID: 32956590 DOI: 10.1021/acs.jafc.0c04868] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plant diseases are seriously endangering agricultural production. The emergence of drug resistance has brought great challenges to the prevention and control of plant diseases. There is an urgent need for the emergence of new drug candidates. In this work, we achieved the efficient synthesis of pulmonarins A and B in 64% and 59% overall yield, respectively. Pulmonarins A and B were found to have good antiviral activities against tobacco mosaic virus (TMV) for the first time. A series of pulmonarin derivatives were designed, synthesized, and evaluated for their antiviral and fungicidal activities systematically. Most compounds displayed higher anti-TMV activities than commercial ribavirin. Compounds 6a, 6c, and 6n with better inactivation effects than ningnanmycin emerged as new antiviral candidates. We selected 6c for further antiviral mechanism research, which revealed that it could inhibit virus assembly by interacting with TMV coat protein (CP). The molecular docking results further confirmed that these compounds could interact with CP through hydrogen bonding. These compounds also displayed broad spectrum fungicidal activities. Especially compound 6u with prominent antifungal activity emerged as a new fungicidal candidate for further research. The current work provides a reference for understanding the application of pulmonarin alkaloids in plant protection.
Collapse
Affiliation(s)
- Mingjun Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Xin Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Jin Kang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Yongyue Gao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
35
|
Hao Y, Wang K, Wang Z, Liu Y, Ma D, Wang Q. Luotonin A and Its Derivatives as Novel Antiviral and Antiphytopathogenic Fungus Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8764-8773. [PMID: 32806124 DOI: 10.1021/acs.jafc.0c04278] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plant diseases caused by viruses and fungi have posed a serious threat to global agricultural production. The discovery of new leads based on natural products is an important way to innovate pesticides. In this work, natural product luotonin A was found to have good antiviral activity against tobacco mosaic virus (TMV) for the first time. A series of luotonin A derivatives were designed, synthesized, and evaluated for their antiviral activities and fungicidal activities systematically. Most compounds displayed better antiviral activities against TMV than commercial ribavirin. Compounds 9k, 12b, and 12d displayed about similar inhibitory effects as ningnanmycin (inhibitory rates of 55, 57, and 59% at 500 μg/mL for inactivation, curative, and protection activities in vivo, respectively), the best antiviral agent at present, and emerged as novel antiviral leads for further research. We selected 9k for further antiviral mechanism research via transmission electron microscopy and molecular docking, which revealed that compound 9k can interact with TMV coat protein through the hydrogen bond, leading to its polymerization, thus preventing virus assembly. Further fungicidal activity tests showed that these compounds also showed broad-spectrum fungicidal activities against 14 kinds of phytopathogenic fungi. Especially, compound 14 with a 100% antifungal effect against Botrytis cinereal emerged as a lead for further research. This work provides a reference for the development of agricultural active ingredients based on Chinese medicine plants.
Collapse
Affiliation(s)
- Yanan Hao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Kaihua Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Dejun Ma
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
36
|
Kang J, Gao Y, Zhang M, Ding X, Wang Z, Ma D, Wang Q. Streptindole and Its Derivatives as Novel Antiviral and Anti-Phytopathogenic Fungus Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7839-7849. [PMID: 32649198 DOI: 10.1021/acs.jafc.0c03994] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plant diseases caused by plant viruses and pathogens seriously affect the production and storage of food crops. With the emergence of drug resistance, it is very difficult to control. Natural products are the source of new drug discovery. Here, the natural product streptindole was found to have good antiviral activity against tobacco mosaic virus (TMV) and fungicidal activities against 14 kinds of phytopathogenic fungi. A series of derivatives of streptindole were designed, synthesized, and evaluated for their antiviral and fungicidal activities. Compounds 4, 5, 11, 12c, 12d, 13d, and 13i-13l showed higher anti-TMV activities than ribavirin (inhibitory rate: 38, 37, and 40% at 500 μg/mL for inactivation, curative, and protection activity in vivo, respectively), among which compound 12d (inhibitory rate: 57, 55, and 53% at 500 μg/mL for inactivation, curative, and protection activity in vivo, respectively) with excellent antiviral activity was further evaluated for the mode of action. The mechanism research revealed that 12d can break the three-dimensional structure of TMV coat protein (CP) through hydrogen bonds, thus inhibiting the assembly of virus particles. The molecular docking result showed that compound 12d did exhibit strong interaction with TMV CP. The derivatives of streptindole also displayed broad-spectrum fungicidal activities. The current study provided valuable insights into the antiviral and fungicidal activities of streptindole derivatives.
Collapse
Affiliation(s)
- Jin Kang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Yongyue Gao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Mingjun Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Xin Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Dejun Ma
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|